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ABSTRACT

Reinforcement learning from human feedback (RLHF), which aligns a diffusion
model with input prompt, has become a crucial step in building reliable generative
AI models. Most works in this area use a discrete-time formulation, which is prone
to induced errors, and often not applicable to models with higher-order/black-box
solvers. The objective of this study is to develop a disciplined approach to fine-tune
diffusion models using continuous-time RL, formulated as a stochastic control
problem with a reward function that aligns the end result (terminal state) with input
prompt. The key idea is to treat score matching as controls or actions, and thereby
making connections to policy optimization and regularization in continuous-time
RL. To carry out this idea, we lay out a new policy optimization framework for
continuous-time RL, and illustrate its potential in enhancing the value networks
design space via leveraging the structural property of diffusion models. We validate
the advantages of our method by experiments in downstream tasks of fine-tuning
large-scale Text2Image models of Stable Diffusion v1.5.

1 INTRODUCTION

Diffusion models Sohl-Dickstein et al. (2015), with the capacity to turn a noisy/non-informative
initial distribution into a desired target distribution through a well-designed denoising process Ho
et al. (2020); Song et al. (2020; 2021b), have recently found applications in diverse areas such as
high-quality and creative image generation Ramesh et al. (2022); Shi et al. (2020); Saharia et al.
(2022); Rombach et al. (2022), video synthesis Ho et al. (2022), and drug design Xu et al. (2022).
And, the emergence of human-interactive platforms like ChatGPT Ouyang et al. (2022) and Stable
Diffusion Rombach et al. (2022) has further increased the demand for diffusion models to align with
human preference or feedback.

To meet such demands, Hao et al. (2022) proposed a natural way to fine-tune diffusion models using
reinforcement learning (RL, Sutton & Barto (2018)). Indeed, RL has already demonstrated empirical
successes in enhancing the performance of LLM (large language models) using human feedback
Christiano et al. (2017); Ouyang et al. (2022); Bubeck et al. (2023), and Fan & Lee (2023) is among
the first to utilize RL-like methods to train diffusion models for better image synthesis. Moreover, Lee
et al. (2023); Fan et al. (2023); Black et al. (2023) have improved the text-to-image (T2I) diffusion
model performance by incorporating reward models to align with human preference (e.g., CLIP
Radford et al. (2021), BLIP Li et al. (2022), ImageReward Xu et al. (2024)). Notably, all studies
referenced above that combine diffusion models with RL are formulated as discrete-time sequential
optimization problems, such as Markov decision processes (MDPs, Puterman (2014)), and solved by
discrete-time RL algorithms like REINFORCE Sutton et al. (1999) or PPO Schulman et al. (2017).

Yet, diffusion models are intrinsically continuous-time as they were originally created to model the
evolution of thermodynamics Sohl-Dickstein et al. (2015). Notably, the continuous-time formalism
of diffusion models provides a unified framework for various existing discrete-time algorithms as
shown in Song et al. (2021b): the denoising steps in DDPM Ho et al. (2020) can be viewed as a
discrete approximation of a stochastic differential equation (SDE) and are implicitly score-based
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under a specific variance-preserving SDE Song et al. (2021b); and DDIM Song et al. (2020), which
underlies the success of Stable Diffusion Rombach et al. (2022), can also be seen as a numerical
integrator of an ODE (ordinary differential equation) sampler Salimans & Ho (2022). Awareness of
the continuous-time nature informs the design structure of the discrete-time SOTA large-scale T2I
generative models (e.g.,Dhariwal & Nichol (2021); Rombach et al. (2022); Esser et al. (2024)), and
enables simple controllable generations by classifier guidance to solve inverse problems Song et al.
(2021b;a). It also motivates more efficient diffusion models with continuous-time samplers, including
the ODE-governed probability (normalizing) flows Papamakarios et al. (2021); Song et al. (2021b)
and rectified flows Liu et al. (2022; 2023) underpinning Stable Diffusion v3 Esser et al. (2024). A
discrete-time formulation of RL algorithms for fine-tuning diffusion models, if/when directly applied
to continuous-time diffusion models via discretization, can nullify the models’ continuous nature and
fail to capture or utilize their structural properties.

Figure 1: Reward curve of model checkpoints sampling
under different timesteps (25, 50, 100): After training
Stable Diffusion v1.4 for a fixed prompt with 60 training
steps by DDPO with 50 discretization steps, the average
reward of images generated by checkpoints obtained
(under 50 discretization steps) evaluated by ImageRe-
ward increases by 0.046, while the average reward of
images generated with 100 discretization steps only in-
creases by less than 0.016.

For fine-tuning diffusion models, discrete-
time RL algorithms (such as DDPO Black
et al. (2023)) require a prior chosen time
discretization in sampling. We thus exam-
ine the robustness of a fine-tuned model
to the inference time discretization, and
observe an “overfitting” phenomenon as
illustrated in Figure 1. Specifically, im-
provements observed during inference at
alternative discretization timesteps (25 and
100) are significantly smaller than that of
sampling timestep (50) in RL.

In addition, for high-order solvers (such
as 2nd order Heun in EDM Karras et al.
(2022)), discrete-time RL methods will re-
quire solving a high-dimension root-finding
problem for each inference step, which is
inefficient in practice.

Main contributions. To address the above issues, we develop a unified continuous-time RL frame-
work to fine-tune score-based diffusion models.

Our first contribution is a continuous-time RL framework for fine-tuning diffusion models by treating
score functions as actions. This framework naturally accommodates discrete-time diffusion models
with any solver as well as continuous-time diffusion models, and overcomes the afore-mentioned
limitations of discrete-time RL methods. (See Section 3.)

Second, we illustrate the promise of leveraging the structural property of diffusion models to generate
tractable optimization problems and to enhance the design space of value networks. This includes
transforming the KL regularization to a tractable running reward over time, and a novel design of
value networks that involves “sample prediction” by sharing parameters with policy networks and
fine-tuned diffusion models. Through experiments, we demonstrate the drastic improvements over
naive value network designs. We also provide a new theory for RL in continuous-time and space,
which leads to the first scalable policy optimization algorithm for continuous-time RL.

1.1 RELATED WORKS

Other papers that relate to our work are briefly reviewed below.

Continuous-time RL. Wang et al. (2020) models the noise or randomness in the environment
dynamics as following an SDE, and incorporates an entropy-based regularizer into the objective
function to facilitate the exploration-exploitation tradeoff. Follow-up works include designing model-
free methods and algorithms under either finite horizon Jia & Zhou (2022a;b; 2023) or infinite horizon
Zhao et al. (2024).

Stochastic Control. Uehara et al. (2024), which also formulated the diffusion models alignment as a
continuous-time stochastic control problem with a different parameterization of the control; Tang
(2024) also provides a more rigorous review and discussion. Domingo-Enrich et al. (2024) proposes
to use adjoint to solve a similar control problem. In a concurrent work to ours, Gao et al. (2024) uses
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q-learning Jia & Zhou (2023) for inferring the score of diffusion models (instead of fine tuning a
pretrained model).

2 PRELIMINARIES

2.1 CONTINUOUS-TIME RL

Diffusion Process. We consider the state space Rd, and denote by A the action space. Let π(· | t, x)
be a feedback policy given t ∈ [0, T ] and x ∈ Rd. The state dynamics (Xπ

t , 0 ≤ t ≤ T ) is governed
by the following SDE:

dXπ
t = b (t,Xπ

t , at) dt+ σ(t)dBt, Xπ
0 ∼ ρ, (1)

where (Bt, t ≥ 0) is a d-dimensional Brownian motion; b : R+ × Rd ×A → Rd and σ : R+ → R+
1 are given functions; the action at follows the distribution π (· | t,Xπ

t ) by external randomization;
and ρ is the initial distribution over the state space.

Performance Metric. Our goal is to find the optimal feedback policy π∗ that maximizes the expected
reward over a finite time horizon:

V ∗ :=max
π

E

[∫ T

0

r (t,Xπ
t , a

π
t ) dt+ h(Xπ

T ) | Xπ
0 ∼ ρ

]
, (2)

where r : R+ × Rd ×A → R and h : Rd → R are the running and terminal rewards respectively.
Given a policy π(·), let b̃(t, x, π(·)) :=

∫
A b(t, x, a)π(a)da. We consider the following equivalent

representation of equation 1:

dX̃t = b̃
(
t, X̃t, π(· | t, X̃t)

)
dt+ σ(t)dB̃t, X̃0 ∼ ρ, (3)

in the sense that there exists a probability measure P̃ that supports a d-dimensional Brownian motion
(B̃t, t ≥ 0), and for each t ≥ 0, the distribution of X̃t under P̃ agrees with that of Xt under P defined
by equation 1. The value function associated with the feedback policy {π(· | t, x) : x ∈ Rd} is

V (t, x;π) := E

[∫ T

t

r (s,Xπ
s , a

π
s ) ds+ h (Xπ

T ) | Xπ
t = x

]
(4)

The performance metric is V π :=
∫
Rd V (0, x;π)ρ(dx), and V ∗ := maxπ V

π .

q-Value. Following the definition in Jia & Zhou (2023), given a policy π and (t, x, a) ∈ [0,∞)×
Rn ×A, we construct a “perturbed” policy, denoted by π̂: It takes the action a ∈ A on [t, t+∆t),
and then follows π on [t+∆t,∞). Specifically, the corresponding state process X π̂ , given X π̂

t = x,
breaks into two pieces: on [t, t+∆t), it is Xa following equation 1 with at ≡ a (i.e., π(t, x, a) = 1);
while on [t+∆t,∞), it is Xπ following (3) but with the initial time-state pair

(
t+∆t,Xa

t+∆t

)
. The

q-value measures the rate of the performance difference between the two policies when ∆t → 0, and
is shown in Jia & Zhou (2023) to take the following form:

q(t, x, a;π) =
∂V

∂t
(t, x;π) +H

(
t, x, a,

∂V

∂x
(t, x;π) ,

∂2V

∂x2
(t, x;π)

)
, (5)

where H(t, x, a, y, A) := b(t, x, a) · y + 1
2σ

2(t)
∑

i Aii + r(t, x, a) is the (generalized) Hamilton
function in stochastic control theory Yong & Zhou (1999).

2.2 SCORE-BASED DIFFUSION MODELS

Forward and Backward SDE. We follow the presentation in Tang & Zhao (2024). Consider the
following SDE that governs the dynamics of a process (Xt, 0 ≤ t ≤ T ) in Rd Song et al. (2021b),

dXt = f(t,Xt)dt+ g(t)dBt, X0 ∼ pdata(·), (6)

1For our applications here we assume that the diffusion coefficient σ(t) only depends on time t. Note,
however, that the general continuous-time RL theory also holds for time-, state- and action-dependent σ(t, x, a),
see Jia & Zhou (2022a;b).
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where (Bt, t ≥ 0) is a d-dimensional Brownian motion, f : R+ × Rd → Rd and g : R+ → R+ are
two given functions (up to the designer to choose), and the initial state X0 follows a distribution
with density pdata(·), which is shaped by data yet unknown a priori. Denote by pt(·) the probability
density of Xt.

Run the SDE in equation 6 until a given time T > 0, to obtain XT ∼ p(T, ·). Next, consider the
“time reversal” of Xt, denoted X rev

t , such that the distribution of X rev
t agrees with that of XT−t on

[0, T ]. Then, (X rev
t , 0 ≤ t ≤ T ) satisfies the following SDE under mild conditions on f and g:

dX rev
t =

(
−f(T − t,X rev

t ) + g2(T − t)∇ log pT−t(X
rev
t )
)
dt+ g(T − t)dBt, (7)

where ∇ log pt(x) is known as Stein’s score function. Below we will refer to the two SDE’s in
equation 6 and equation 7, respectively, as the forward and the backward SDE.

For sampling from the backward SDE, we replace pT (·) with some pnoise(·) as an approximation.
The initialization pnoise(·) is commonly independent of pdata(·), which is the reason why diffusion
models are known for generating data from “noise”.

Inference Process. Once the best approximation sθpre is obtained by e.g. score matching for the stein
score function, we use it to replace ∇ log pt(x) in equation 7. The corresponding approximation to
the reversed process X rev

t , denoted as X←t , then follows the SDE:

dX←t =
(
−f(T − t,X←t ) + g2(T − t)sθpre(T − t,X←t )

)
dt+ g(T − t)dBt, (8)

with X←0 ∼ pnoise(·). At time t = T , the distribution of X←T is expected to be close to pdata(·). The
well-known DDPM Ho et al. (2020) can be viewed as a discretized version of the SDE in equation 8.
This has been established in Song et al. (2021b); Salimans & Ho (2022); Zhang & Chen (2022);
Zhang et al. (2022); also refer to further discussions in Appendix B. Throughout the rest of the paper,
we will focus on the continuous formalism (via SDE).

3 CONTINUOUS-TIME RL FOR DIFFUSION MODELS FINE TUNING

Here we formulate the task of fine-tuning diffusion models as a continuous-time stochastic control
problem, by treating score function approximation as a control process applied to the backward SDE.

Scores as Actions. First, to broaden the application context of the diffusion model, we add a
parameter c to the score function, interpreted as a “class” index or label (e.g., for input prompts).
Then, the backward SDE in equation 8 becomes:

dX←t =
(
−f(T − t,X←t ) + g2(T − t)sθpre(T − t,X←t , c)

)
dt+ g(T − t)dBt. (9)

Next, comparing the continuous RL process in equation 3 and the inference process equation 9, we
choose b and σ in the RL dynamics in equation 3 as:

b (t, x, a) := −f(T − t, x) + g2(T − t)a, σ(t) := g(T − t), (10)

In the sequel, we will stick to this definition of b and σ. Define a specific feedback control, aθpre
t =

sθpre(T − t,X←t , c), and the backward SDE in (9) is expressed as:

dX←t = b
(
t,X←t , a

θpre
t

)
dt+ σ(t)dBt. (11)

This way, the score function is replaced by the action, and finding the optimal score becomes a policy
optimization problem in RL. Denote by pθpre(t, ·, c) the probability density of X←t in equation 11.

Exploratory SDEs. As we will deal with the time-reversed process X←t exclusively from now on, the
superscript ← will be dropped to lighten the notation. To enhance exploration, we will use a Gaussian
control:

aθt ∼ πθ(· | t,Xθ
t , c) = N(µθ(t,Xθ

t , c),Σt). (12)
Specifically, the dependence on θ is through that of the mean function µθ, while the covariance matrix
Σt only depends on time t, representing a chosen exploration level at t. For brevity, write Xθ

t for the
(time-reversed) process Xπθ

t driven by the policy πθ. (We further denote by pθ(t, ·, c) the probability
density of Xθ

t .) Then (Xθ
t , 0 ≤ t ≤ T ) is governed by the SDE:

dXθ
t =

[
−f(T − t,Xθ

t ) + g2(T − t)µθ(t,Xθ
t , c)

]
dt+ g(T − t)dBt, Xθ

0 ∼ ρ. (13)
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Objective Function. The objective function of the RL problem consists of two parts. The first part
is the terminal reward, i.e., a given reward model (RM) that is a function of both XT and c. For
instance, if the task is T2I generation, then RM(XT , c) represents how well the generated image XT

aligns with the input prompt c. The second part is a penalty (i.e., regularization) term, which takes
the form of the KL divergence between pθ(T, ·, c) and its pretrained counterpart. This is similar in
spirit to previous works on fine-tuning diffusion models by discrete-time RL, see e.g., Ouyang et al.
(2022); Fan et al. (2023). As for exploration, note that it has been represented by the Gaussian noise
in aθt ; refer to (12), and more on this below. So, here is the problem we want to solve:

max
θ

E
[
RM(c,Xθ

T )− βKL
(
pθ(T, ·, c)∥pθpre(T, ·, c)

)]
, (14)

where β > 0 is a (given) penalty cost.

To connect the problem in equation 14 to the objective function of the RL model in equation 2, we
need the following explicit expression for the KL divergence term in equation 14.

Theorem 3.1. For any given c, the KL divergence between pθ and pθpre is:

KL(pθ(T, ·, c)∥pθpre(T, ·, c)) = E
∫ T

0

g2(T − t)

2
∥µθ(t,Xθ

t , c)− µθpre(t,Xθ
t , c)∥2dt. (15)

Proof Sketch. The full proof is given in Appendix C.1.

As a remark, it is important to use the “reverse”-KL divergence KL
(
pθ(T, ·, c)∥pθpre(T, ·, c)

)
,

because it yields the expectation under the current policy πθ that can be estimated from sample
trajectories. By Theorem 3.1, the objective function in equation 14 is equivalent to the following:

ηθ := E
∫ T

0

−β

2
g2(T − t)∥µθ

t − µ
θpre
t ∥2︸ ︷︷ ︸

r(t,Xθ
t ,a

θ
t )

dt+ ERM(Xθ
T , c)︸ ︷︷ ︸

h(Xθ
T ,c)

, (16)

where we abbreviate µθ(t,Xθ
t , c) and µθpre(t,Xθ

t , c) by µθ
t and µ

θpre
t respectively. Thus, maximizing

the objective function in equation 14 aligns with the RL model formulated in equation 2. We can also
define the corresponding value function as:

V θ(t, x; c) =E
[ ∫ T

t

−β

2
g2(T − t)∥µθ

t − µ
θpre
t ∥2dt+ RM(Xθ

T , c) | Xθ
t = x

]
, (17)

Value Network Design. We also adopt a function approximation to learn the value function (i.e., the
critic). For the value function V θ(t, x; c) associated with policy πθ, there is the boundary condition:

V θ(T, x; c) = E
[
RM(Xθ

T , c) | Xθ
T = x

]
= RM(x, c). (18)

To meet this condition, we propose the following parametrization that leverages the structural property
of diffusion models:

V θ(t, x; c) ≈ Vθ
ϕ(t, x; c) := cskip(t) · RM(x̂θ(t, x, c))︸ ︷︷ ︸

reward mean predictor

+ cout(t) · Fϕ(t, x, c)︸ ︷︷ ︸
residual term corrector

, (19)

where Vθ
ϕ denotes the function family parameterized by (θ, ϕ), x̂θ(t, x, c) =

1
αt

(
σ2
t sθ(t, x, c) + x

)
,

with αt and σt being noise schedules of diffusion models (see Appendix B.2 for details). When
θ = θpre, x̂θ predicts a denoised sample given the current x and the score estimate sθ(t, x, c), which
is known as Tweedie’s formula. To treat the second term in equation 17, our intuition comes from that

RM(E(XT | Xt)) ≈ E(RM(XT ) | Xt), (20)

if we are allowed to exchange the conditional expectation and the reward model score (though
generally it’s not true). Fϕ(t, x, c) are effectively approximations to the residual term, which can be
seen as a composition of the possible reward error and the first term in equation 17.

We refer these two parts to as reward mean predictor and residual corrector. There cskip(t) and
cout(t) are differentiable functions such that cskip(T ) = 1 and cout(T ) = 0, so the boundary condition
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Architecture Predictor Corrector cout MSE

Baseline RM(x, c) F (x, c) 1-cos
(

π
2T

t
)

2.63
Org+Denoised RM(x, c) F (x̂θ, c) 1-cos

(
π
2T

t
)

2.51
Denoised+Orig RM(x̂θ, c) F (x, c) 1-cos

(
π
2T

t
)

0.67
Denoised+Denoised RM(x̂θ, c) F (x̂θ, c) 1-cos

(
π
2T

t
)

0.66
Denoised+Orig RM(x̂θ, c) F (x, c) sin

(
π
2T

t
)

0.29

(a) Architecture configurations: x̂θ abbreviates x̂θ(t, x, c). (b) Different Architecture MSE.

Figure 2: Architecture comparison and pretraining value function MSE.

equation 18 is satisfied. Notably, similar parametrization trick has also been used to train successful
diffusion models such as EDM Karras et al. (2022) and consistency models Song et al. (2023).

For learning the value function, we use trajectory-wise Monte Carlo estimation to update ϕ by
minimizing the mean square error (MSE). In our experiments, we observe that choosing cskip(t) =
cos( π

2T t) and cout(t) = sin( π
2T t) yields the smallest loss (see Table 2a). Also refer to Section 4.2 for

more architecture details.

Continuous-time Policy Optimization. To efficiently optimize the continuous-time RL problem
raised above, we further develop the theory of policy optimization in continuous time and space
for fine-tuning diffusion models. Different from the general formalism in the literature Schulman
et al. (2015); Zhao et al. (2024), we focus on the case of (1) KL regularized rewards, and (2) state-
independent diffusion coefficients in the continuous-time setup, which yield new results not only in
the analysis but also in the resulting algorithms.

We show that the continuous-time policy gradient can be directly computed without any prior
discretization of the time variable.
Theorem 3.2. The gradient of an admissible policy πθ parameterized by θ takes the form:

∇θV
θ = E

[∫ T

0

∇θ log π
θ(aθt |t,Xθ

t )q(t,X
θ
t , a

θ
t ;π

θ)dt

]
, (21)

where πθ, aθt and q are as defined in equation 12 and equation 5.

Note that the only terms in the q-value function that involve action a are (the second order term is
irrelevant to action a):

g2(T − t)a
∂V θ

∂x
(t, x) =: q̃θ(t, x, a).

In addition, the value function approximation can be computed by Monte Carlo or the martingale
approach as in Jia & Zhou (2022a), and then ∂V

∂x can be evaluated by backward propagation. Since the
reward can be non-differentiable, and also for the sake of efficient computation, we can approximate
q̃θ(t, x, a) ≈

(
V (t, x+ σ g2(T − t)a)− V (t, x)

)
/σ, where σ is a scaling parameter. We further

apply the same technique as in PPO Schulman et al. (2017) by clipping the ratio and replacing q with
q̃ (which is equivalent to adapting a baseline function). This yields the policy update rule as:

θn+1 = max
θ

E
∫ T

0

min
(
ρθt q

θn
t , clip

(
ρθt , ϵ

)
qθnt

)
dt, (22)

where the advantage rate function and the likelihood ratio are defined by qθnt = q̃(t,Xθn
t , aθnt ;πθ

n),

ρθt =
πθ(aθn

t |t,X
θn
t )

πθn (aθn
t |t,X

θn
t )

. The surrogate objective can then be optimized by stochastic gradient descent.

4 EXPERIMENTS

4.1 ENHANCING SMALL-STEPS DIFFUSION MODELS

Setup. We evaluate the ability of our proposed algorithm to train short-run diffusion models with
significantly reduced generation steps T , while maintaining high sample quality. In the experiment,
we take T = 10. Our experiments are conducted on the CIFAR-10 (32×32) dataset Krizhevsky et al.

6



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

(2009). We fine-tune pretrained diffusion model backbone using DDPM Ho et al. (2020). The primary
evaluation metric is the Fréchet Inception Distance (FID) Heusel et al. (2017), which measures the
quality of generated samples.

To benchmark our method, we compare it against DxMI Yoon et al. (2024), which formulates the
diffusion model training as an inverse reinforcement learning (IRL) problem. DxMI jointly trains a
diffusion model and an energy-based model (EBM), where the EBM estimates the log data density and
provides a reward signal to guide the diffusion process. To ensure a fair comparison, we replace the
policy improvement step in DxMI with our continuous-time RL counterpart, maintaining consistency
while evaluating the effectiveness of our approach. We set the learning rate of the value network to
2× 10−5 and U-net to 3× 10−7.

Result. Figure 3 shows our approach converges significantly faster than DxMI, and achieves
consistently lower FID scores throughout training. The samples from the two fine-tuned models
are shown in Figures 4 and 5. In comparison, the samples generated from the model fine-tuned
by continuous-time RL have clearer contours, better aligned with real-world features, and exhibit
superior aesthetic quality.

Figure 3: Training curves of DxMI and
continuous-time RL.

Figure 4: DxMI samples
at the 6000-th step

Figure 5: CTRL samples
at the 6000-th step

4.2 FINE-TUNING STABLE DIFFUSION

Setup. We also validate our proposed algorithm for fine-tuning large-scale T2I diffusion models,
Stable Diffusion v1.5 2. We adopt the pretrained ImageReward Xu et al. (2024) as the reward
signal during RL, as it has been shown in previous studies to achieve better alignment with human
preferences to other metrics such as aesthetic scores, CLIP and BLIP scores.

We train the value networks with full parameter tuning, while we use LoRA Hu et al. (2021) for
tuning the U-nets of diffusion models. We adopt a learning rate of 10−7 for optimizing the value
network, 3×10−5 for optimizing the U-net and β = 5×10−5 for regularization. We train the models
on 8 H200 GPUs with 128 effective batch sizes.

Value Network Architecture. Since we fix the reward model as ImageReward, we design the value
network by using a similar backbone to the ImageReward model, which is composed of BLIP and a
MLP header (see Figure 6a). To ensure the boundary condition, we fix the parameters (i.e., BLIP and
MLP) in the left part (skyblue) of the value network and only tune 30% of the parameters of BLIP in
the right part (green). The VAE Decoder on both parts is fixed for efficiency and stabilized training.

As a remark, replacing x with xθ(t, x) in the “residual corrector” leads to minimum gain, compared to
the drastic improvement brought forth by using xθ(t, x) as the input in the “reward mean predictor”.
See Figure 6a and Table 2a for our ablation of network architecture and MSE statistics.

Policies trained by Continuous-time RL are robust to time discretization. We find that the
policies trained by continuous-time RL achieve coherent performance in terms of the reward mean
evaluated by ImageReward. In Figure 7a, three line plots that correspond to 25, 50, and 100 steps
almost always overlap after 20 epochs of training, which is consistent with our theoretical analyses.

Qualitative examples with the same prompt of the base model, continuous-time RL training for 50
steps and 100 steps can be found in Figure 6b.

2https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
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(a) We adopt the similar backbone of ImageReward for
two parts in the value network, both by adding an MLP
layer over the BLIP encoded latents.

(b) Model generations with prompt “A unicorn in a
clearing. it has a single shining horn. volumetric light.”
a) Top: Base model Stable Diffusion v1.5; b) Mid:
continuous-time RL after 50 training steps; c) Bot:
continuous-time RL after 100 training steps.

Figure 6: (Left) Value network architecture; (Right) Model generations.

(a) Performance of continuous-time RL’s checkpoints
with respect to discretization timesteps.

(b) Performance of continuous-time RL against
discrete-time RL under the same 50 discretization
timesteps.

Figure 7: CTRL’s performance vs discretization timesteps and Comparison of CTRL and DTRL.

Continuous-time RL outperforms Discrete-time RL baseline methods in both efficiency and
stability. We also compare the reward curves of discrete-time RL with our continuous-time RL
algorithms. In Figure 7b, the performance of the continuous-time RL is much more stable, and is
more efficient in achieving a high average reward.

Why continuous-time approaches show better performance? Here we provide a heuristic explanation.
Discrete-time RL methods optimize the objective with a priori time-discretization, which induces
an error such that the resulting optimal policy can be significantly away from the true optimum in
continuous time. Continuous-time RL methods, on the other hand, only require time-discretization
in estimating the policy gradient. The error caused by this discretization — the gap between the
resulting optimum and the true (continuous-time objective) optimum — is bounded by a polynomial
of the step size (in gradient estimation) under suitable regularity conditions.

5 DISCUSSION AND CONCLUSION

We have proposed in this study a continuous-time reinforcement learning (RL) framework for fine-
tuning diffusion models. Our work introduces novel policy optimization theory for RL in continuous
time and space, alongside a scalable and effective RL algorithm that enhances the generation quality
of diffusion models, as validated by our experiments.

In addition, our algorithm and network designs exhibit a striking versatility that allows us to incorpo-
rate and leverage some of the advantages of prior works in diffusion models design, so as to better
exploit model structures and to improve value network architectures. In view of this, we believe the
continuous-time RL, in providing cross-pollination between diffusion models and RLHF, presents a
highly promising direction for future research.
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A APPENDIX

B CONNECTION BETWEEN DISCRETE-TIME AND CONTINUOUS-TIME
SAMPLER

In this section, we summarize the discussion of popular samplers like DDPM, DDIM, stochastic
DDIM and their continuous-time limits being a Variance Preserving (VP) SDE.

B.1 DDPM SAMPLER IS THE DISCRETIZATION OF VP-SDE

We review the forward and backward process in DDPM, and its connection to the VP SDE following
the discussion in Song et al. (2021b); Tang & Zhao (2024). DDPM considers a sequence of positive
noise scales 0 < β1, β2, · · · , βN < 1. For each training data point x0 ∼ pdata (x), a discrete Markov
chain {x0, x1, · · · , xN} is constructed such that:

xi =
√

1− βixi−1 +
√
βizi−1, i = 1, · · · , N, (23)

where zi−1 ∼ N (0, I), thus p (xi | xi−1) = N
(
xi;

√
1− βixi−1, βiI

)
. We can further think of xi

as the ith point of a uniform discretization of time interval [0, T ] with discretization stepsize ∆t = T
N ,

i.e. xi∆t = xi; and also zi∆t = zi. To obtain the limit of the Markov chain when N → ∞, we define
a function β : [0, T ] → R+ assuming that the limit exists: β(t) = lim∆t→0 βi/∆t with i = t/∆t.
Then when ∆t is small, we get:

xt+∆t ≈
√

1− β(t)∆txt +
√
β(t)∆tzt ≈ xt −

1

2
β(t)xt∆t+

√
β(t)∆tzt.

Further taking the limit ∆t → 0, this leads to:

dXt = −1

2
β(t)Xtdt+

√
β(t)dBt, 0 ≤ t ≤ T,

and we have:
f(t, x) = −1

2
β(t)x, g(t) =

√
β(t).

Through reparameterization, we have pᾱi
(xi | x0) = N (xi;

√
ᾱix0, (1− ᾱi) I), where ᾱi :=∏i

j=1 (1− βj). For the backward process, a variational Markov chain in the reverse direction is

parameterized with pθ (xi−1 | xi) = N
(
xi−1;

1√
1−βi

(xi + βisθ (i, xi)) , βiI
)

, and trained with a
re-weighted variant of the evidence lower bound (ELBO):

θ∗ = argmin
θ

N∑
i=1

(1− ᾱi)Epdata (x)Epᾱi
(x̃|x)

[
∥sθ(i, x̃)−∇x̃ log pᾱi

(x̃ | x)∥22
]
.

After getting the optimal model sθ∗(i, x), samples can be generated by starting from xN ∼ N (0, I)
and following the estimated reverse Markov chain as:

xi−1 =
1√

1− βi
(xi + βisθ∗ (i, xi)) +

√
βizi, i = N,N − 1, · · · , 1. (24)

Similar discussion as for the forward process, the equation equation 24 can further be rewritten as:

x(i−1)∆t ≈
1√

1− βi∆t∆t
(xi∆t + β(i∆t)∆t · sθ∗ (i∆t, xi∆t)) +

√
βizi,

≈ (1 +
1

2
βi∆t∆t) (xi∆t + β(i∆t)∆t · sθ∗ (i∆t, xi∆t)) +

√
βizi,

≈ (1 +
1

2
βi∆t∆t)xi∆t + β(i∆t)∆t · sθ∗ (i∆t, xi∆t) +

√
βizi,

(25)

when βi∆t is small. This is indeed the time discretization of the backward SDE:

dX←t = (
1

2
β(T − t)X←t + β(T − t)sθ∗(T − t,X←t ))dt+

√
β(t)dBt,

=
(
−f(T − t,X←t ) + g2(T − t)sθ∗(T − t,X←t )

)
dt+ g(T − t)dBt.

(26)
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B.2 DDIM SAMPLER IS THE DISCRETIZATION OF ODE

We review the backward process in DDIM, and its connection to the probability flow ODE following
the discussion in Song et al. (2021b); Kingma et al. (2021); Salimans & Ho (2022); Zhang & Chen
(2022).

(i) DDIM update rule: The concrete updated rule in DDIM paper (same as in the implementation)
adopted the following rule (with σt = 0 in Equation (12) of Song et al. (2020)):

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ

(t)
θ (xt)√

ᾱt

)
︸ ︷︷ ︸

“predicted x0”

+
√
1− ᾱt−1 · ϵ(t)θ (xt)︸ ︷︷ ︸

“direction pointing to xt”

(27)

To show the correspondence between DDIM parameters and continuous-time SDE parameters, we
follow one derivation in Salimans & Ho (2022) by considering the “predicted x0”: note that define
the predicted x0 parameterization as:

x̂θ (t, x) =
x−

√
1− ᾱtϵ

(t)
θ (x)√

ᾱt
, or , ϵ(t)θ (x) =

x−
√
ᾱtx̂θ (t, x)√
1− ᾱt

,

above equation 27 can be rewritten as:

xt−1 =

√
1− ᾱt−1√
1− ᾱt

(
xt −

√
ᾱtx̂θ (t, x)

)
+

√
ᾱt−1 · x̂θ (t, x) (28)

Using parameterization σt =
√
1− ᾱt and αt =

√
ᾱt, we have for t− 1 = s < t:

Xs =
σs

σt
[Xt − αtx̂θ (t,Xt)] + αsx̂θ (t,Xt) , (29)

which is the same as derived in Kingma et al. (2021); Salimans & Ho (2022).

B.2.1 ODE EXPLANATION BY ANALYZING THE DERIVATIVE

We further assume a VP diffusion process with α2
t = 1− σ2

t = sigmoid (λt) for λt = log
[
α2
t /σ

2
t

]
,

in which λt is known as the signal-to-noise ratio. Taking the derivative of equation 29 with respect
to λs, assuming again a variance preserving diffusion process, and using dαλ

dλ = 1
2αλσ

2
λ and

dσλ

dλ = − 1
2σλα

2
λ, gives

Xλs

dλs
=

dσλs

dλs

1

σt
[Xt − αtx̂θ (t,Xt)] +

dαλs

dλs
x̂θ (t,Xt)

= −1

2
α2
s

σs

σt
[Xt − αtx̂θ (t,Xt)] +

1

2
αsσ

2
s x̂θ (t,Xt) .

Evaluating this derivative at s = t then gives

Xλs

dλs

∣∣∣∣
s=t

= −1

2
α2
λ [Xλ − αλx̂θ (t,Xλ)] +

1

2
αλσ

2
λx̂θ (t,Xλ)

= −1

2
α2
λ [Xλ − αλx̂θ (t,Xλ)] +

1

2
αλ

(
1− α2

λ

)
x̂θ (t,Xλ)

=
1

2

[
αλx̂θ (t,Xλ)− α2

λXλ

]
.

(30)

Recall that the forward process in terms of an SDE is defined as:

dXt = f(t,Xt)dt+ g(t)dBt, t ∈ [0, T ]

and Song et al. (2021b) shows that backward of this diffusion process is an SDE, but shares the same
marginal probability density of an associated probability flow ODE (by taking t := T − t) :

dXt =

[
f(t,Xt)−

1

2
g2(t)∇x log p(t,Xt)

]
dt, t ∈ [T, 0]
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where in practice ∇x log p(t, x) is approximated by a learned denoising model using

∇x log p(t, x) ≈ sθ(t, x) =
αtx̂θ (t, x)− x

σ2
t

= −
ϵ
(t)
θ (x)

σt
. (31)

with two chosen noise scheduling parameters αt and σt, and corresponding drift term f(t, x) =
d logαt

dt xt and diffusion term g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t .

Further assuming a VP diffusion process with α2
t = 1− σ2

t = sigmoid (λt) for λt = log
[
α2
t /σ

2
t

]
,

we get

f(t, x) =
d logαt

dt
x =

1

2

d logα2
λ

dλ

dλ

dt
x =

1

2

(
1− α2

t

) dλ
dt

x =
1

2
σ2
t

dλ

dt
x.

Similarly, we get

g2(t) =
dσ2

t

dt
− 2

d logαt

dt
σ2
t =

dσ2
λ

dλ

dλ

dt
− σ4

t

dλ

dt
=
(
σ4
t − σ2

t

) dλ
dt

− σ4
t

dλ

dt
= −σ2

t

dλ

dt
.

Plugging these into the probability flow ODE then gives

dXt =

[
f(t,Xt)−

1

2
g2(t)∇x log p(t, x)

]
dt

=
1

2
σ2
t [Xt +∇x log p(t,Xt)] dλt.

(32)

Plugging in our function approximation from Equation equation 31 gives

dXt =
1

2
σ2
t

[
Xt +

(
αtx̂θ (t,Xt)−Xt

σ2
t

)]
dλt

=
1

2

[
αtx̂θ (t,Xt) +

(
σ2
t − 1

)
Xt

]
dλt

=
1

2

[
αtx̂θ (t,Xt)− α2

tXt

]
dλt.

(33)

Comparison this with Equation equation 30 now shows that DDIM follows the probability flow ODE
up to first order, and can thus be considered as an integration rule for this ODE.

B.2.2 EXPONENTIAL INTEGRATOR EXPLANATION

In Zhang & Chen (2022) that the integration role above is referred as ”exponential integrator” of
equation 33. We adopt two ways of derivations:

(a) Notice that, if we treat the x̂θ (t,Xt) as a constant in equation 33 (or assume that it does not
change w.r.p. t along the ODE trajectory), we have:

dXt +
1

2
α2
tXtdλt = x̂θ (t,Xt) ·

1

2
αtdλt. (34)

Both sides multiplied by 1/σt and integrate from t to s yields:

Xs

σs
− Xt

σt
= x̂θ (t,Xt) ·

(
exp(

1

2
λs)− exp(

1

2
λt)

)
= x̂θ (t,Xt) ·

(
αs

σs
− αt

σt

)
. (35)

which is thus

Xs =
σs

σt
Xt +

[
αs − αt

σs

σt

]
x̂θ (t,Xt) , (36)

which is the same as DDIM continuous-time intepretation as in equation 29.

(b) We also notice that we can also simplify the whole proof by treating the scaled score (same as in
Zhang & Chen (2022)):

σt∇x log p(t, x) ≈ σtsθ(t, x) =
αtx̂θ (t, x)− x

σt
(37)
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as a constant in equation 32 (or assume that it does not change w.r.p. t along the ODE trajectory).
Notice that from backward ODE, we have:

dXt =
1

2
σ2
t

[
Xt +

1

σt
σt∇x log p(t,Xt)

]
dλt. (38)

Both sides multiplied by 1/αt and integrate from t to s yields:

Xs

αs
− Xt

αt
=

(
αtx̂θ (t,Xt)−Xt

σt

)
·
(
−σs

αs
+

σt

αt

)
. (39)

which is thus

Xs =
σs

σt
Xt +

[
αs − αt

σs

σt

]
x̂θ (t,Xt) , (40)

which is the same as DDIM continuous-time intepretation as in equation 29.

As a summary, treating the denoised mean or the noise predictor as the constants will both recovery
the rule of DDIM. Usually, for ODE flows, the denoised mean assumption naturally holds; however,
why the scaled score leads to the same integration rule remains to be an interesting question, probably
comes from the design property of DDIM, see e.g. discussions in Karras et al. (2022).

C THEOREM PROOFS

C.1 PROOF OF THEOREM 3.1

The main proof technique relies on Girsanov’s Theorem, which is similar to the argument in Chen
et al. (2022). First, we recall a consequence of Girsanov’s theorem that can be obtained by combining
Pages 136-139, Theorem 5.22, and Theorem 4.13 of Le Gall (2016).

Theorem C.1. For t ∈ [0, T ], let Lt =
∫ t

0
bs dBs where B is a Q-Brownian motion. Assume that

EQ

∫ T

0
∥bs∥2 ds < ∞. Then, L is a Q-martingale in L2(Q). Moreover, if

EQE(L)T = 1, where E(L)t := exp

(∫ t

0

bs dBs −
1

2

∫ t

0

∥bs∥2 ds

)
, (41)

then E(L) is also a Q-martingale, and the process

t 7→ Bt −
∫ t

0

bs ds (42)

is a Brownian motion under P := E(L)TQ, the probability distribution with density E(L)T w.r.t. Q.

If the assumptions of Girsanov’s theorem are satisfied (i.e., the condition equation 41), we can apply
Girsanov’s theorem to Q as the law of the following reverse process (we omit c for brevity),

dXt =
(
−f(T − t,Xt) + g2(T − t)sθpre(T − t,Xt)

)
dt+ g(T − t)dBt, X0 ∼ p∞(·) (43)

and

bt = g(T − t)
[
sθ(T − t,Xt)− sθpre(T − t,Xt)

]
, (44)

where t ∈ [0, T ]. This tells us that under P = E(L)TQ, there exists a Brownian motion (βt)t∈[0,T ]
s.t.

dBt = g(T − t)
[
sθ(T − t,Xt)− sθpre(T − t,Xt)

]
dt+ dβt. (45)

Plugging equation 45 into equation 43 we have P -a.s.,

dXt =
(
−f(T − t,Xt) + g2(T − t)sθ(T − t,Xt)

)
dt+ g(T − t)dβt, X0 ∼ p∞(·) (46)

15



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

In other words, under P , the distribution of X is the same as the distribution generated by current
policy parameterized by θ, i.e., pθ(·) = PT = E(L)TQ. Therefore,

DKL

(
pθ∥pθpre

)
= EPT

ln
dPT

dQT
= EPT

ln E(L)T

= EPT

[∫ t

0

bs dBs −
1

2

∫ t

0

∥bs∥2
]

= EPT

[∫ t

0

bs dβs +
1

2

∫ t

0

∥bs∥2
]

=
1

2

∫ t

0

g2(T − t)EP

∥∥sθ(T − t,Xt)− sθpre(T − t,Xt)
∥∥2︸ ︷︷ ︸

ϵ2t

dt

Thus we can bound the discrepancy between distribution generated by the policy θ and the pretrained
parameters θpre as

DKL(pθ∥pθpre) ≤
1

2

∫ T

0

g2(T − t)ϵ2tdt (47)

C.2 PROOF OF THEOREM 3.2

First we include the policy gradient formula theorem for finite horizon in continuous time from Jia &
Zhou (2022b):
Lemma C.2 (Theorem 5 of Jia & Zhou (2022b) when R ≡ 0). Under some regularity conditions,
given an admissible parameterized policy πθ, the policy gradient of the value function V

(
t, x;πθ

)
admits the following representation:

∂

∂θ
V (t, x;πθ) =EP

[∫ T

t

e−β(s−t)
{

∂

∂θ
log πθ(aπ

θ

s |s,Xπθ

s )
(
dV (s,Xπθ

s ;πθ)

+
[
rR(s,X

πθ

s , aπ
θ

s )− βV (s,Xπθ

s ;πθ)
]
ds
)}

| Xπθ

t = x
]
, (t, x) ∈ [0, T ]× Rd

(48)
in which we denote the regularized reward

rR(t,X
πθ

t , aπ
θ

t ) = γ(t)∥aπ
θ

t − sθ
∗
(t,Xt)∥2.

First, by applying Itô’s formula to V (t,Xt), we have:

dV (t,Xt) =

[
∂V

∂t
(t,Xt) +

1

2
σ(t)2 ◦ ∂2V

∂x2
(t,Xt)

]
dt+

∂V

∂x
(t,Xt)dXt. (49)

Further recall that:

q(t, x, a;π) =
∂V

∂t
(t, x;π) +H

(
t, x, a,

∂V

∂x
(t, x;π) ,

∂2V

∂x2
(t, x;π)

)
− βV (t, x;π) , (50)

this implies that (similar discussion also appeared in Jia & Zhou (2023))

q (t,Xπ
t , a

π
t ;π) dt = dJ (t,Xπ

t ;π) + r (t,Xπ
t , a

π
t ) dt− βJ (t,Xπ

t ;π) dt+ {· · · }dBt. (51)

Plug this equality back in equation 48 yields:

∂

∂θ
V (t, x;πθ) =EP

[∫ T

t

e−β(s−t)
∂

∂θ
log πθ(aπ

θ

s |s,Xπθ

s )q (t,Xπ
t , a

π
t ;π) ds | Xπθ

t = x

]
,

(52)
Let t = 0, β = −α and further taking expectation to the initial distribution yields Theorem 3.2.
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