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ABSTRACT

We bring a new perspective to semi-supervised semantic segmentation by providing
an analysis on the labeled and unlabeled distributions in training datasets. We first
figure out that the distribution gap between labeled and unlabeled datasets cannot
be ignored, even though the two datasets are sampled from the same distribution.
To address this issue, we theoretically analyze and experimentally prove that appro-
priately boosting uncertainty on unlabeled data can help minimize the distribution
gap, which benefits the generalization of the model. We propose two strategies and
design an uncertainty booster algorithm, specially for semi-supervised semantic
segmentation. Extensive experiments are carried out based on these theories, and
the results confirm the efficacy of the algorithm and strategies. Our plug-and-play
uncertainty booster is tiny, efficient, and robust to hyperparameters but can signifi-
cantly promote performance. Our approach achieves state-of-the-art performance
in our experiments compared to the current semi-supervised semantic segmentation
methods on the popular benchmarks: Cityscapes and PASCAL VOC 2012 with
different train settings.

1 INTRODUCTION

Semantic segmentation has been a fundamental tool for various downstream applications. When deep
learning methods are adopted in this area, the lack of fine-grained annotations is gradually prominent.
Our paper focuses on semi-supervised semantic segmentation(Chen et al., 2021; Luo et al., 2022;
2021a;b), which learns a model with a few labeled data and excess unlabeled data. Under these
settings, how to appropriately utilize unlabeled data to improve generalization becomes critical.

Notice that, even if all labeled and unlabeled data are sampled from the same distribution, there is
still a non-negligible distribution gap between the two clusters of data. This is the key question we
deal with in this paper. Some recent approaches have attempted to tackle this question by designing
consistency regularization(Chen et al., 2021; Lee et al., 2021; Luo et al., 2021a) or evaluating
unlabeled o.o.d (out of distribution) data via uncertainty approaches(Wang et al., 2022; Kwon &
Kwak, 2022), when traditional methods always reduce the output uncertainty to get an improvement.
However, we want to argue that, due to the distribution gap, boosting uncertainty on the logits
of unlabeled o.o.d data can benefit the generalization of the model in semi-supervised semantic
segmentation.

We theoretically prove that elaborately designing an uncertainty booster for the model and applying it
to unlabeled data can reduce the distribution gap, which can improve the generalization of the model.
After that, we propose the requirements and strategies to design a suitable uncertainty booster for
segmentation. The core principle is that we should consider the original distribution of the unlabeled
images. Specifically, we demonstrate two strategies of selecting proper distribution and proper o.o.d
data.

Based on the proposed strategies, we design an uncertainty booster for semi-supervised semantic
segmentation to alleviate the distribution gap between the labeled and unlabeled datasets. Our newly
designed module is benefited from the following advantages:

(1) Plug-and-play The uncertainty booster can be used in all semi-supervised segmentation methods
that require retraining pseudo labels.
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(2) Green and Efficient There are no trainable parameters and only a few fixed parameters in the
booster, which means our module imposes nearly no impact on the training speed and only takes up
very little memory and training sources.

(3) Robustness Due to our ablation study in Table 4, our module is very robust to hyperparameters.
Different hyperparameters show little influence on the promotion.

Experiments are carried out on the chosen baseline in (Chen et al., 2021). Our strategy achieves
state-of-the-art performance compared to current methods on the Cityscapes(Cordts et al., 2016) and
PASCAL VOC 2012 (Everingham et al.) benchmarks under various data partition protocols.

1.1 RELATED WORK

Semi-supervised learning Semi-supervised learning has two typical paradigms: consistency
regularization(Bachman et al., 2014; French et al., 2019; Sajjadi et al., 2016; Xu et al., 2021) and
self-training(Lee et al., 2013; Zou et al., 2020). The derived methods focus on data augmented
self-training which utilizes strong augmentation such as CutMix(Yun et al., 2019), CutOut(DeVries &
Taylor, 2017), ClassMix(Olsson et al., 2021). Recent approaches pay attention to how to better release
the potential of unlabeled data(Mendel et al., 2020; Ke et al., 2020; Kwon & Kwak, 2022; Wang et al.,
2022), which, for example, aim to improve the quality of pseudo labels via distinguishing reliable
and unreliable pseudo label(Wang et al., 2022). However, these methods do not theoretically analyze
the difference between the distributions of unlabeled and labeled datasets, which is the essence of
making full use of unlabeled data. In contrast, our method gives a complete analysis of this question
and designs an algorithm for semi-supervised semantic segmentation.

Uncertainty in Deep learning Uncertainties can be divided into aleatoric uncertainty and epistemic
uncertainty(Gal et al., 2016). The aleatoric uncertainty is also referred to data uncertainty, which
means some of the ground truth may be incorrect. The epistemic uncertainty, referred to as model
uncertainty, represents the uncertainty of the model, including whether the model parameters best
explain the observed data and whether the structure best fits the data. Some classical approaches that
qualify uncertainty include bayesian epistemic uncertainty estimation via dropout(Gal & Ghahramani,
2016), aleatoric uncertainty estimation via multi-network outputs(Kendall & Gal, 2017), epistemic
uncertainty estimation via ensembling(Lakshminarayanan et al., 2017). While for self-training in
semi-supervised semantic segmentation, the pseudo labels of unlabeled data play the role of ground
truth to finetune the model, which involves both aleatoric and epistemic uncertainty. We can connect
both of the uncertainties by presenting high-quality pseudo labels. Thus, in this paper, we only
consider the uncertainty of unlabeled data to analyze both of the uncertainties.

2 PRELIMINARIES

2.1 BOOSTING UNCERTAINTY

In this subsection, we will briefly introduce boosting uncertainty. Many common methods adopt
minimizing uncertainty as an effective strategy to reduce overfitting, yielding better performances.
A simple way to minimize uncertainty is adding l2 regularization, forcing the model to produce a
convincing result. While boosting uncertainty aims to let the model output a slightly fuzzy result
and change the distribution, take a simple example, if the original output is a [0.9, 0.05, 0.05] for a
classification model, we may modify the model to yield [0.85, 0.075, 0.075] instead of the original
one via boosting uncertainty. In this case, the gap between the distribution of the model output after
boosting uncertainty and the original distribution is getting wider hinges on the boosting strategy we
choose.

2.2 SETTINGS

Before we describe our findings, we shall clarify the symbols and settings used in this paper. To
simplify the statement, we divide the ideal training dataset distribution D into two subsets, DL and
DU , respectively denoted as sampled distributions of the labeled and unlabeled datasets. We then
denote the i.i.d. sampled elements of distribution DL as L = {(xd, yd)}Dd=1 ∼ DL as the empirical
distribution of DL, in which x ∈ Rk×k is from a k × k-dimensional input space, y = {1, 2, · · · ,K}
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where K is the number of classes. So it is with DU . The loss we use is 0-1 loss, defined as:
L(·) = 1{h(x) ̸= y}.

We first denote the vanilla model, which is trained only on the labeled dataset. Then we denote a
posterior distribution P on hypotheses that depends on the real distribution L of the labeled dataset,
parameterized by Wl with bounded induced norm: P =

∏d
i=1 N (Wlx̄l, I), whereas Wl is the

weights and biases of vanilla model h. In this settings, x̄l is the input representations from L.

Secondly, we denote another posterior distribution Q on hypotheses that depends on dataset DU and
distribution P , parameterized by Wlu: Q =

∏d
i=1 N (Wlux̄u, I), whereas Wlu is the weights and

biases of h trained on L and U , x̄u is the input representations from U .

We finally denote an uncertainty boosted posterior distribution on hypotheses that also depends on
dataset DU and distribution P : Qm =

∏d
i=1 N ((Wlu + b)x̄u, I), parameterized by Wlu, which is

the weights and biases of h′, whereas b indicates the distribution of uncertainty booster. By this, we
define RE

DU
(h) as the Expected Risk of h applying on DU and RG

DU
(h) as the Empirical Risk of h

applying on DU .

3 THEORETICAL MOTIVATION FOR BOOSTING UNCERTAINTY ON
UNLABELED DATA

This section aims to figure out whether boosting uncertainty on unlabeled data can help the model
improve the generalization in semi-supervised semantic segmentation. Even though the labeled and
unlabeled datasets are sampled from the same distribution, there is still a non-negligible distribution
gap between these two sub-distributions, which is harmful to the model to yield pseudo labels for the
unlabeled dataset. This section aims to explore and give an effective solution to this question.

3.1 BOOSTING UNCERTAINTY HELPS REMITTING DISTRIBUTION GAP BETWEEN LABELED
AND UNLABELED DATA DISTRIBUTIONS

We will begin our derivation by considering the vanilla semi-supervised semantic model and its
variant of using an uncertainty booster. Given a trained model on labeled data, we will first explore
the difference between the expected and empirical risks of the two models(vanilla and the variant of
using uncertainty booster) on unlabeled data.

Our theory aims to find a model that can perform well on both labeled and unlabeled datasets, which
can generate a better pseudo label for the unlabeled dataset for further training. This means the
model can reveal the distance between labeled and unlabeled distributions and thus have a good
generalization. On this basis, the optimization goal for minimizing the distribution gaps is defined as:

F2(h, h
′, DL, DU ) = min

h′
|RE

DU
(h′)−RE

DL
(h)| (1)

where h′ is the model that utilizes the uncertainty booster. As RE
DL

(h) depends on the model and
labeled dataset selection, we can regard the RE

DL
(h) as a constant. Thus, we mainly focus on how

the uncertainty booster influence RE
DU

(h′).

Theorem 1 (McAllester, 2003) and (Germain et al., 2016) provide an upper bound of the difference
of expected risk RE

DU
(h′) and empirical risk RG

DU
(h′) with probability of at least 1− δ:

RE
DU

(h′)−RG
DU

(h′) ≤

√
KL[Qm∥P ] + log 2

√
N

δ

2N
(2)

where KL is the K-L divergence, N is the number of the samples in U .

For a semi-supervised model that utilizes the uncertainty booster, the K-L divergence in the upper
bound can be calculated as:

KL[Qm∥P ] =

d∑
i=1

KL(N ((Wlu + b)x̄u, I)∥N (Wlx̄l, I))

= d∥Wlx̄l − (Wlu + b)x̄u∥22

(3)
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Therefore, from Eq. 2 and Eq. 3, we have that:

RE
DU

(h′) ≤ RG
DU

(h′) +

√
d∥Wlx̄l − (Wlu + b)x̄u∥22

2N
+

√
log 2

√
N

δ

2N
(4)

Moreover, for the vanilla model h, the form of Eq. 4 is written as:

RE
DU

(h) ≤ RG
DU

(h) +

√
d∥Wlx̄l −Wlux̄u∥22

2N
+

√
log 2

√
N

δ

2N
(5)

The detailed proof is presented in the appendix.

In Eq. 1, after training on labeled dataset L, the model can learn a sub-distribution on the distribution
of the labeled dataset. As unlabeled data has no ground-truth labels, the Expected Risk: RE

DU
(h) for

predictor h on unlabeled dataset distribution always surpass than that of RE
DL

(h) on labeled dataset.
We will first discuss this most common situation.

Situation 1: RE
DU

(h′) is larger than RE
DL

(h) In this situation, Eq. 1 turns out to minimize the
upper bound of RE

DU
(h′). This means we should minimize the RHS of Eq. 4 compared to the RHS

of Eq. 5. As the input data is the same and the influence of uncertainty booster is tiny in an iteration,
we can suppose RG

DU
(h) and RG

DU
(h′) remain the same. So the comparison of the scales of the upper

bounds in the RHS of Eq. 4 and Eq. 5 turns out to focus on the scales of ∥Wlx̄l − (Wlu + b)x̄u∥22
We can see that the aim of minimizing ∥Wlx̄l − (Wlu + b)x̄u∥22 is to keep (Wlu + b)x̄u closer
to Wlx̄l from labeled dataset. While for a uniform input x̄u sampled from U , as the model h has
already trained on labeled dataset, the weights Wlu have a strong affinity for the distribution of
labeled distribution L, thus when input o.o.d data in unlabeled data, Wlux̄u will be dragged far
away from original labeled dataset distribution, which incurs a much higher upper bound of Expected
Risk, so we may push back (Wlu + b)x̄u to Wlx̄l via the appending of b which is an uncertainty
booster that can slightly alter the distribution. Thus, if b is carefully designed and applied on possible
unlabeled o.o.d data, the RE

DU
(h′) can have a lower upper bound than the original RE

DU
(h). We then

further analyze how to design the proposed booster.

Situation 2: RE
DU

(h) is smaller than RE
DL

(h) In this rare case, Eq. 1 turns out to be:

F1(h, h
′, DL, DU ) = min

h
(RE

DL
(h)−RE

DU
(h′)) (6)

Thus, we focus on maximizing the upper bound of RE
DU

(h), so in Eq. 4, we just simply introduce
some random noise to increase the difference between Wlx̄l and (Wlu + b)x̄u via b and hence, we
can minimize function F .

In all, if better selected and designed, boosting uncertainty on unlabeled o.o.d data may reduce the
difference between the Expected Risks of labeled and unlabeled distributions, indicating that this
strategy helps minimize the potential distribution gap between labeled distribution and unlabeled
distribution.

3.2 A THEORY OF DESIGNING UNCERTAINTY BOOSTER FOR SEGMENTATION

In the last subsection, we figure out that boosting uncertainty in segmentation may help reduce the
distribution gap for labeled and unlabeled distributions. At the same time, there is still a disturbing
risk when rethinking Eq. 1. Since boosting uncertainty may reduce the upper bound of RE

DU
(h′),

there are questions about how much we reduce the upper bound suitable for the model. If a lousy
booster is chosen, was there a catastrophic influence on the distribution? We will further discuss these
several problems.

3.2.1 CONDITIONS OF COMPLIANCE WHEN BOOSTING UNCERTAINTY

In this subsection, to better understand the dense segmentation task, we will focus on the pixel
distribution in the image. We will begin with how to generate an excellent pseudo label for a single
image.
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Theorem 2 (McAllester, 2003) observed that, let H be a hypothesis space, h ∈ H, DL be the
labeled dataset distribution, IU be the distribution of a single unlabeled image. RX(h) is the Expected
Risk on IU , RD(h) is the Expected Risk on DL. We have:

∀h ∈ H,RX(h) ≤ RD(h) +
1

2
dH∆H (DL, IU ) + µh∗ (7)

whereas the dH∆H is denoted as empirical discrepancy distance:

dH∆H (DL, IU ) = 2 sup
(h1,h2)∈H2

∣∣∣∣ E
x∼DL

Pr [h1(x) ̸= h2(x)]− E
x∼IU

Pr [h1(x) ̸= h2(x)]

∣∣∣∣ (8)

and
µh∗ = RS (h∗) + RT (h∗) , h∗ = argminh∈H (RS(h) + RT (h)) (9)

and x is the pixels in the images.

As the unlabeled dataset has no ground-truth labels, the µh∗ is inaccessible, and both the labeled
dataset and the unlabeled image are sampled from the same distribution D. The µh∗ is assumed to be
low and trivial. As the target is to minimize the discrepancy between RX(h) and RD(h) in Eq. 7.
The aim turns out to minimize dH∆H (DL, IU ). Based on (Mansour et al., 2009), we can modify Eq.
8 into:

dH∆H (DL, IU ) = 2 sup
(h1,h2)∈H2

∣∣∣∣ E
x∼DL

Lr (h1(x), h2(x))− E
x∼IU

Lr (h1(x), h2(x))

∣∣∣∣ (10)

Where Lr can be a general real-valued loss. If Lr is a L2 loss:

dH∆H (DL, IU ) = 2 sup
(h1,h2)∈H2

∣∣∣∣ E
x∼DL

[
(h1(x)− h2(x))

2
]
− E

x∼IU

[
(h1(x)− h2(x))

2
]∣∣∣∣

= 2 sup
(h1,h2)∈H2

∣∣∣∣∣∣
∑

x∈(DL∪IU )

[DL(x)− IU (x)]
[
(h1(x)− h2(x))

2
]∣∣∣∣∣∣

(11)

In which we can see,
[
(h1(x)− h2(x))

2
]

depends on (DL ∪ IU ) which is sampled from the support
of D which we could hardly control and is greater than or equal to 0, so minimizing difference of
RX(h) and RD(h) depends on minimizing [DL(x)− IU (x)]. This means for each pixel in unlabeled
images, the difference between the pixel distribution of the output of the unlabeled images and the
prior distribution of the unlabeled images should be as close as possible.

3.2.2 TWO STRATEGIES FOR DESIGNING AN UNCERTAINTY BOOSTER FOR SEGMENTATION

Strategy 1: The Criteria for Distribution Imitation Based on Theorem 2, the uncertainty boosted
output should have a similar distribution to the prior distribution of the image. From an intuitive
perspective, the pixel distributions are various in different images, so we shall focus on image-wise
distribution for each pixel when boosting uncertainty for a segmentation model. In a nutshell, the
distribution of uncertainty booster that we apply to each image in the segmentation model shall be
subject to the distribution of the image itself.

Strategy 2: The Criteria for Data Selection In addition to considering the selection criteria of
the distribution, we shall also consider the scale that we boost uncertainty. We should focus on the
unlabeled o.o.d data relative to the prior output distribution. We first proposed that if a particular
model h is trained on a known sampled distribution, we test it on a sampled data point. If the trained
model yields a higher uncertainty on the sampled data point, the more likely this data point is out
of distribution from the known distribution; thus, we need to give this data point a more significant
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disturbance. Based on Theorem 2, we raise the second template for designing the uncertainty booster:
The scale of boosting uncertainty for data depends on the scale of the uncertainty that the model
generates on the data. This means that the model should pay more attention to the uncertain data
points. The more the model is unconfident, the more we boost the uncertainty.

4 UNCERTAINTY BOOSTER MODULE (UBM)

In this section, based on the two strategies proposed in section 3.2.2, we design a plug-and-play
uncertainty booster module (UBM) specialized for semi-supervised semantic segmentation. In the
meantime, our proposed module requires negligible extra memory or computation while achieving
noticeable performance gain for segmentation models.

4.1 REGIONAL UNCERTAINTY VOTER (RUV)

We aim to find a proper distribution to boost pixel-level uncertainty according to Strategy 1. As
mentioned above, commonly used Gaussian or Uniform Distributions applied to the whole dataset
may fail in semantic segmentation because the distribution of a specific image varies from one another.
The nature of semantic consistency renders a pixel closely related to its adjacent pixels in an image.
Thus, imposing non-regional perturbation on pixels prohibits the model from learning the actual
distribution. As such, we design the uncertainty booster on an image-wise case-by-case basis.

We consider taking regional information into account and propose the Regional Uncertainty Voter
(RUV) to produce a customized artificial distribution. Given a one-hot pseudo label poh ∈ Rh×w×K

of an image xh×w, where K is the number of classes.

We count the number of pixels belonging to each class in the hv × wv vicinity V of every individual
pixel xi, i ∈ [0, hw−1], by which pixels can The module can perceive and aggregate unique regional
information in the image, which is done by a specifically defined kernel.

Then we divide the counting result map by the cardinality of V to yield a probability map C ∈
Rh×w×K .

Compared with the universal Gaussian or Uniform Distribution, our region-aware distribution is more
natural and sensible to impose. We formulate the calculation of C in Eq. 12:

Cj =

∑K−1
k=0 weight(j, k) ⋆ pohk

|V |
, where weight(j, k) =

{
1hv×wv if j = k

0hv×wv else
and Cj ∈ C (12)

where ⋆ is the valid 2D cross-correlation operator, Cj ∈ Rh×w is the probability map of class j,
weight(j, k) maps the k th layer (k th class) of poh to Cj . Note that weight(j, k) is a constant kernel
for gathering neighbor predictions. The voter in Eq. 12 can be efficiently computed by Conv2d with
our pre-designed kernel weight and is free from back-propagation, rendering neglectable computation
cost.

4.2 UNCERTAINTY ADAPTIVE STRATEGY (UAS)

Our uncertainty booster is required to be careful and smart. Intuitively, boosting uncertainty wildly
would negatively impact performance because correct and certain distribution that already learned
is likely to be deviated by the booster. Therefore, the selection criterion is crucial and should be
tailored for each pixel of every image at every single state of training. To address this issue, we
propose calculating the confidence value, Conf, based on the entropy of each pixel, which decides
how strong the booster should be for the corresponding pixel. Conventionally, we regard pixels with
great Conf value as well-classified ones, where extra uncertainty is unnecessary. While those with
small Conf values are expected to be unconfident o.o.d pixels, thus, a strong booster is needed. To
sum up, assume pred ∈ Rh×w×K to be the prediction probabilistic map of the model, we define
Conf of pixel xi ∈ x in Eq. 13 and the normalized adaptive weight Wxi

∈ Wx of pixel xi for the
pseudo label poh in Eq. 14:

Conf(xi) =

K−1∑
k=0

predi,k log(predi,k) (13)
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Wxi
=

Conf(xi)−minConf(x)

maxConf(x)−minConf(x)
, Wxi

∈ Wx (14)

In all, given a vanilla pseudo label poh, based on the RUV and UAS, we can define the uncertainty
boosted pseudo label p̂i in Eq. 15:

p̂ = UBM(poh) = Wx ∗ poh + (1−Wx) ∗ C, poh = Onehot(Pred) (15)

The proposed pipeline is shown in Fig. 1; the proposed UBM module is simple, low-parameters, and
efficient. After the UBM module finishes processing the vanilla probability map Pred, we use the
output pseudo labels p̂ for further training.

4.3 OVERALL STRATEGY

Figure 1: The pipline of UBM.

We follow CPS (Chen et al.,
2021) as the baseline, which con-
sists of two independent models,
namely f(x; θ1) and f(x; θ2).
The two models have the same
network structure and loss def-
inition but different initializa-
tion. For labeled data L, both
f(x; θ1) and f(x; θ2) are trained
by CrossEntropy (CE) loss with
ground truth; For unlabeled data
U , the models generate pseudo
labels pU

1 and pU
2 for each other

as the ground truth of CE loss.
We only apply the proposed module UBM on the two pseudo labels pU

1 and pU
2 . Finally, the overall

loss function for f(x; θ1) is defined in Eq. 16, vice versa for f(x; θ2).

L1 =
1

|L|
∑
x∈L

CE(p, y) + λ
1

|U |
∑
x∈U

CE(pU
1 ,UBM(pU

2 )) (16)

where p is the probabilistic output of labeled data, y is the ground truth of labeled data, pU
1 is the

probabilistic output of the unlabeled data of this model, pU
2 is the one-hot output of the same unlabeled

data of the other model, UBM is the proposed uncertainty booster module. λ is the trade-off weight
between the two CE losses.

5 EXPERIMENTS

Datasets & Evaluation PASCAL VOC 2012 dataset is a standard object-centric semantic seg-
mentation dataset, which contains 20 foreground classes and one background class. We follow
previous works and adopt the augmented set (Hariharan et al., 2011) with 10,582 training images and
1449 validation images. Cityscapes (Cordts et al., 2016) is a dataset for urban scene understanding,
consisting of 2,975 training images with fine-annotated labels and 500 validation images. For both
datasets, training images are split under label ratios of 1/16, 1/8, 1/4, and 1/2, respectively. We
directly adopt all the split partitions provided by CPS (Chen et al., 2021).

We use the mean Intersection-over-Union (mIoU) metric to evaluate the segmentation performance.
We report results on PASCAL VOC 2012 val set and Cityscapes val set for all label ratios. Following
(Wang et al., 2022), for PASCAL VOC 2012, we center crop images to a fixed resolution; as for
Cityscapes, we use sliding-window evaluation.

Implementation We use ResNet-101(He et al., 2016) pretrained on ImageNet(Deng et al., 2009) as
our backbone and DeepLabv3+(Chen et al., 2018) as the segmentation head. Following CPS (Chen
et al., 2021), we add a deep stem block to our backbone, remove the last down-sampling operations,
and employ dilated convolutions in the subsequent convolution layers. In addition, we use mini-batch
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SGD with the momentum of 0.9 and a weight decay of 0.0001 to train our model. As in CPS (Chen
et al., 2021), we train PASCAL VOC 2012 for 60 epochs with λ = 1.5 and Cityscapes with OHEM
loss for 240 epochs with λ = 6, where the learning rates are 0.0025 and 0.005, respectively. For
simplicity, the size of the vicinity V in UBM is set to 5× 5 in all experiments.

5.1 COMPARISON WITH EXISTING ALTERNATIVES

We compare our method with the current state-of-the-art methods, including DCC(Lai et al., 2021),
ST++(Yang et al., 2022), U2PL(Wang et al., 2022) etc. Experiments are carried out via the same
network architecture. Notice that we don’t use CutMix(Yun et al., 2019), which is a powerful
augmentation, and we still achieve state-of-the-art performance.

Results on PASCAL VOC 2012 Table 1 compares our proposed method with state-of-the-art
methods on PASCAL VOC 2012 dataset. Compared to the baseline, our uncertainty booster steadily
promotes the performance, achieving impressive improvements of +1.41, +1.42, +1.75 and +2.00,
respectively under 1/16, 1/8, 1/4, 1/2 partition protocols. Compared to state-of-the-art methods, our
method outperforms nearly all the methods in all settings.

Results on Cityscapes Table 2 presents the comparison with state-of-the-art methods on the
Cityscapes dataset. The UBM brings about +2.03, +0.58, +2.78, and +2.60 of improvements under
1/16, 1/8, 1/4, 1/2 partition protocols compared to baseline. Also, our method outperforms all the
state-of-the-art methods.

Table 1: Comparison with state-of-the-art methods on PASCAL VOC 2012. All the methods are
based on DeepLabv3+ and ResNet-101 Backbone. All other results are referred from ST++ (Yang
et al., 2022)

Method CutMix 1/16(662) 1/8 (1323) 1/4(2646) 1/2(5291)

Supervised 66.30 70.60 73.10 77.21

CutMix (French et al., 2019) ✓ 71.66 75.51 77.33 78.21
GCT (Ke et al., 2020) ✗ 67.20 72.50 75.10 77.40
DCC (Lai et al., 2021) ✗ 72.40 74.60 76.30 –
ST (Yang et al., 2022) ✓ 72.90 75.70 76.40 –
ST++ (Yang et al., 2022) ✓ 74.50 76.30 76.60 –

CPS (Chen et al., 2021) ✗ 72.18 75.83 77.55 78.64
CPS+UBM ✗ 73.59+1.41 77.25+1.42 79.30+1.75 80.64+2.00

Table 2: Comparison with state-of-the-art methods on Cityscapes. All methods are based on
DeepLabv3+ and ResNet-101 Backbone. All other results are referred from U2PL (Wang et al.,
2022).

Method CutMix 1/16(186) 1/8(372) 1/4(744) 1/2(1488)

Supervised 65.74 72.53 74.43 77.83

CutMix(French et al., 2019) ✓ 67.06 71.83 76.36 78.25
GCT(Ke et al., 2020) ✗ 66.75 72.66 76.11 78.34
DCC (Lai et al., 2021) ✗ – 69.70 72.70 77.50
RCC (Zhang et al., 2022) ✓ – 74.04 76.47 –
U2PL(Wang et al., 2022) ✓ 70.30 74.37 76.47 79.05

CPS(Chen et al., 2021) ✗ 69.78 74.31 74.58 76.81
CPS+UBM ✗ 71.81+2.03 74.89+0.58 77.36+2.78 79.41+2.60
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5.2 ABLATION STUDIES

All the ablation studies are carried out on PASCAL VOC 2012 dataset with labeled ratio 1/4, with
DeepLabv3+ and ResNet-101 backbone, the size of the vicinity is set to 15 × 15.

The Effectiveness of Components in Uncertainty Booster To further analyze the effective portions
of our methods, we separately introduce Uniform Distribution instead of RUV and remove UAS. The
results are shown in Table 3 (Van. indicates Vanilla; UD indicates Uniform Distribution booster). We
can see that if we add UAS for each unlabeled image, there will be an increase of +1.49. But if we
add a Uniform Distribution booster and UAS to boost uncertainty, there will be a remarkable decrease
in mIoU with -6.39. This proves that the distribution of pixels in different images is remarkably
different. When we add both the UAS and RUV, we achieve the highest performance of +1.93. That
is because RUV catches non-local distributions of the pixel, thus can better generate a more similar
distribution to the input unlabeled image distribution.

Ablation Study on The Size of The Vicinity We also ablate the vicinity size of the 2D cross-
correlation operator. As table 4 shows, the results remain almost the same, which proves that if
we focus on image-wise distribution for each pixel when boosting uncertainty for the model, the
hyperparameters count for little influence on the model.

Table 3: Ablations on Two Strategies
Van. UAS UD/UAS RUV/UAS

mIoU 77.55 79.04 72.91 79.48

Table 4: Ablations on Different Vicinity Sizes
Size 3× 3 5× 5 9× 9 15× 15

mIoU 79.45 79.30 79.40 79.48

5.3 QUALITATIVE RESULTS

(a) Input (b) Baseline (c) UBM (d) GT

Figure 2: Qualitative results on PASCAL VOC
2012 val set.

The qualitative results tested on 1/8 labeled data
of PASCAL VOC are presented in Figure 2. Our
method outperforms the baseline in many sce-
narios. We get a more complete and accurate
segmentation result rather than baseline method,
and incorrect semantics can be corrected by
nearby semantic information. More results are
presented in the supplementary material.

6 CONCLUSION
AND FUTURE OUTLOOK

In this paper, we theoretically and experimen-
tally propose that boosting uncertainty on unla-
beled data helps with the generalization of the
model in semi-supervised semantic segmenta-
tion. We demonstrate two advanced strategies
to design a novel uncertainty booster. The first
strategy aims to map the uncertainty-boosted
output closer to the prior labeled output of the
model. The second strategy proposes that the model should pay more attention to the uncertain data
points, which means the more the model is unconfident, the more we boost the uncertainty of the
data points. Following the theoretical strategies, we design a plug-and-play module that does not
need any training. Our module makes the old baseline method outperform the current methods on
PASCAL VOC 2012 and Cityscapes via different partition protocols without increasing too much
training cost. Our work can trigger the research interest in the distribution gap and inspire more work
on developing uncertainty methods in semi-supervised learning.
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A APPENDIX

For the vanilla model h, the upper bound of RE
DU

(h)−RG
DU

(h) turns out to be:

RE
DU

(h)−RG
DU

(h) ≤

√
KL[Q∥P ] + log 2

√
N

δ

2N
(17)

Thus, for the upper bound of Eq. 17, the K-L divergence is:

KL[Q∥P ] =

d∑
i=1

KL(N (Wlux̄u, I)∥N (Wlx̄l, I))

= d∥Wlx̄l −Wlux̄u∥22

(18)

Thus, for the vanilla model h, the form of Eq. 17 is written as:

RE
DU

(h) ≤ RG
DU

(h) +

√
d∥Wlx̄l −Wlux̄u∥22

2N
+

√
log 2

√
N

δ

2N
(19)

which is shown in the main body of the paper.
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