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ABSTRACT

Understanding how the brain encodes visual information is a central challenge in
neuroscience and machine learning. A promising approach is to reconstruct vi-
sual stimuli—essentially images—from functional Magnetic Resonance Imaging
(fMRI) signals. This involves two stages: transforming fMRI signals into a latent
space and then using a pre-trained generative model to reconstruct images. The
reconstruction quality depends on how similar the latent space is to the structure
of neural activity and how well the generative model produces images from that
space. Yet, it remains unclear which type of latent space best supports this trans-
formation and how it should be organized to represent visual stimuli effectively.
We present two key findings. First, fMRI signals are more similar to the text
space of a language model than to either a vision-based space or a joint text–image
space. Second, text representations and the generative model should be adapted to
capture the compositional nature of visual stimuli, including objects, their detailed
attributes, and relationships. Building on these insights, we propose PRISM, a
model that Projects fMRI sIgnals into a Structured text space as an interMediate
representation for visual stimuli reconstruction. It includes an object-centric dif-
fusion module that generates images by composing individual objects to reduce
object detection errors, and an attribute–relationship search module that automat-
ically identifies key attributes and relationships that best aligne with the neural
activity. Extensive experiments on real-world datasets demonstrate that our frame-
work outperforms existing methods, achieving up to an 8% reduction in perceptual
loss. These results highlight the importance of using structured text as the inter-
mediate space to bridge fMRI signals and image reconstruction.

1 INTRODUCTION

Decoding visual stimuli from brain activity provides a unique lens into human perception (Naselaris
et al., 2011; Haufe et al., 2014). A central approach uses fMRI signals—which measure neural
activity through blood-oxygen-level-dependent responses—to reconstruct the images perceived by
subjects (Allen et al., 2022; Chang et al., 2019; Luo et al., 2023). Recent advances in deep generative
models have significantly improved these reconstructions, deepening our understanding of visual
representation in the brain (Chen et al., 2023) and enabling applications in brain-computer interfaces
(Sitaram et al., 2008) and brain-driven content generation (Wang et al., 2024a; Qiu et al., 2025).

FMRI-to-Image reconstruction involves two stages: mapping fMRI signals into a latent space and
then generating images from that space. Its success depends on the similarity between the latent
space and neural activity (alignment) and how well the generative model produces high-quality im-
ages. While recent studies (Scotti et al., 2023; 2024; Mai et al., 2024) focus on enhancing image
quality using advanced generative models (Podell et al., 2023; Xu et al., 2023), alignment remains
underexplored. Prior work often assumes that the latent space should match the modality of the
stimuli, i.e., using vision model representations to reconstruct visual stimuli (Scotti et al., 2023;
Wang et al., 2024b; Xia et al., 2024). Some studies incorporate auxiliary semantic information from
language models (LMs) (Lin et al., 2022; Quan et al., 2024), but still rely on vision-based representa-
tions as the core latent space. In contrast, we question whether matching the modality of visual stim-
uli is truly essential for reconstruction. In addition, prior work suffers from limited reconstruction
quality due to a unified hidden representation that conflates objects and their attributes, often causing
object detection errors, e.g., generating a tiger instead of a gray, tiger-striped cat (Appendix A). This
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reflects a fundamental mismatch with human visual processing, which is object-centric and compo-
sitional rather than holistic (Marr, 1980; Bracci & Op de Beeck, 2023). Overcoming this limitation
calls for generative models that explicitly capture the compositional structure of human perception.

To address these issues, we propose PRISM, a model that Projects fMRI sIgnals into a Structured
text space as an interMediate representation for image reconstruction. To identify the most effective
intermediate space, we compare fMRI signals with representations from pre-trained vision, lan-
guage, and vision–language models using established metrics (Wang et al., 2020; Murphy et al.,
2024; Keskar et al., 2016). Unlike prior work assuming vision-based representations are essential,
our first finding (Section 3.1) shows that fMRI signals align more closely with the text space of
LM, motivating the use of solely text as a bridge for reconstruction. Building on this, our sec-
ond finding reveals that reconstruction quality improves when the text and the generative model are
adapted to capture the compositional and relational nature of visual stimuli—encompassing objects,
their attributes, and their relationships. Guided by these insights, we develop two core modules: an
object-centric diffusion module that adapts the diffusion model to generate images by composing
individual objects, and an attribute–relationship search module that uses a vision–language model
(VLM) to automatically identify object attributes and relationships aligned with neural activity, pro-
viding structured guidance for reconstruction. Our contributions are summarized as follows:

• Novel Findings: To our knowledge, we are the first to show that accurate visual stimuli
reconstruction can be achieved without image-based latent representations, with LM text
space effectively bridging brain activity and generative models. Furthermore, we find that
adapting this text space and the generative model to capture the compositional and rela-
tional nature of visual images further improves reconstruction quality.

• Novel Framework: Motivated by our empirical findings, we introduce a new fMRI-to-
image reconstruction framework that adapts diffusion models for object-centric generation
and leverages VLMs to automatically identify brain-aligned object attributes and relation-
ships that can optimally guide the reconstruction.

• Comprehensive Experiments: Extensive evaluations on real-world fMRI datasets demon-
strate that our method achieves up to an 8% reduction in perceptual loss compared to state-
of-the-art models, highlighting the effectiveness of our framework.

2 PRELIMINARY

Notations. In our work, we denote the set of fMRI samples collected during image viewing as
X . Each sample is a preprocessed 1D vector xi ∈ Rv , capturing neural activity across v voxels
selected from brain regions (Scotti et al., 2023). The dataset is split into training and test subsets,
with superscripts indicating the split. For example, we denote the training set with N samples
as: X train = {x1, . . . ,xN}. The corresponding image stimulus for the i-th sample is denoted as:
Yi ∈ RH×W×3, which contains m objects.

Problem Setup. Our goal is to reconstruct the visual images that subjects viewed during fMRI
recording. Formally, we seek to learn a reconstruction function F : Rv → RH×W×3 that maps each
fMRI sample xi to its corresponding image stimulus Yi.

Diffusion Model. Diffusion models (Rombach et al., 2022; Zhang et al., 2023) are a class of gener-
ative models that synthesize data by learning to reverse a multi-step noising process. Starting from
Gaussian noise, they iteratively denoise a latent variable over a fixed number of timesteps using a de-
noising network—typically a U-Net—conditioned on the current timestep t. This process gradually
produces samples resembling the training distribution. To incorporate external inputs such as text,
the denoising network can take a conditioning input C, usually text embeddings from a pre-trained
encoder (Zhang et al., 2023). Conditioning is implemented via cross-attention mechanisms within
the U-Net architecture (Williams et al., 2023), enabling the integration of textual information. In
these layers, the latent representations Ht ∈ Rh×w×d at time t serve as queries, and C ∈ Rdt×d′

serves as both keys and values (Williams et al., 2023; Yang et al., 2024):

CrossAttention(Ht,C) = softmax
(
ϕ(Ht) ·WQ · (φ(C) ·WK)⊤√

dk

)
φ(C) ·WV ,

where WQ ∈ Rd×dk , WK ∈ Rd′×dk , WV ∈ Rd′×d are projection matrices; and ϕ(·) and φ(·) are
learned transformations. Further details are available in Section B.
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Figure 1: Framework Overview: PRISM generates structured text descriptions for each training image using
a VLM to iteratively extract brain-aligned object attributes and relationships. These descriptions capture the
image’s compositional and relational content and serve as supervision to train an encoder and fine-tune a lan-
guage model to map fMRI signals into the text space. During inference, the model predicts descriptions from
fMRI signals, which then guide a pre-trained diffusion model for object-centric image reconstruction.

3 METHOD
In this section, we present our framework, PRISM, for fMRI-to-image reconstruction (Figure 1).
We first show that fMRI signals align most strongly with the text space of LMs, compared to the
hidden spaces of vision or vision–language models, under established metrics (Section 3.1). This
finding motivates our choice of using pure text as the latent space. During training (Section 3.2), we
annotate each training image with structured text descriptions that are object-centric, compositional,
and relational. To generate these descriptions, we introduce an attribute–relationship search module
(Section 3.2.1), which learns optimal prompts to guide the VLM in automatically identifying the key
attributes and relationships most aligned with both the fMRI signals and images. These structured
descriptions are then used to train an encoder and fine-tune the LM, mapping fMRI signals into the
LM text space (Section 3.2.2). At inference time (Section 3.3), the predicted structured descriptions
guide an adapted diffusion model to generate object-centric images directly from fMRI signals.

3.1 TEXT AS THE LATENT SPACE

We question whether using vision representations as the latent space is truly essential for recon-
structing visual stimuli. In this section, we investigate the alignment between different model spaces
and fMRI signals using various measures.

Measuring the alignment between model spaces and fMRI signals. We examine three representa-
tion spaces: (1) the text space of language models, (2) the joint text-image space of vision-language
models, and (3) the latent space of vision models. For (2) and (3), image embeddings are extracted
directly from the respective models. For (1), we use text embeddings from image captions to repre-
sent the stimuli. We extract embeddings by feeding either text or images into different models: T5
and LLaMA3 for text embeddings, LDM (Rombach et al., 2022) and ResNet50 (He et al., 2016) for
image embeddings, and CLIP for both modalities.

Alignment is assessed using three metrics: Centered Kernel Alignment (CKA) (Murphy et al.,
2024), Canonical Correlation Analysis (CCA) (Wang et al., 2020), and Generalization Gap (Keskar
et al., 2016). CKA and CCA are widely used to quantify similarity between representation spaces
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(Kriegeskorte et al., 2008; Wang et al., 2020). Generalization Gap reflects learnability by measur-
ing the train-test loss difference when mapping fMRI signals to a target space using an MLP. Good
alignment yields higher CKA and CCA values and a lower Generalization Gap.

Let X = Concat(x1, . . . ,xN ) denote concatenated fMRI samples and K = Concat(k1, . . . ,kN )
the corresponding latent representations. With K(·) as a kernel function, the empirical
Hilbert-Schmidt Independence Criterion (HSIC) is: HSIC(X,K) = 1

(N−1)2 tr (K(X) · K(K)) ,

where tr(·) denotes the trace operator. The CKA is the normalized form: CKA(X,K) =
HSIC(X,K)√

HSIC(X,X)·HSIC(K,K)
. We adopt a Gaussian radial basis function (RBF) kernel for K (Alvarez,

2022; Cortes et al., 2012). CCA identifies linear projections u = p⊤
1 X and v = p⊤

2 K
that maximize their correlation. The first mode captures the dominant shared axis (Wang
et al., 2020), with the canonical correlation coefficient: ρ = corr(u,v) = corr(p⊤

1 X,p⊤
2 K),

reflecting the strongest linear alignment between brain activity and the model space.

Table 1: Alignment results between model repre-
sentations and fMRI data, evaluated using CKA,
Generalization Gap, and CCA. The best result is
highlighted in red. ↑ denotes higher is better; ↓
denotes lower is better.

CKA ↑ Generalization Gap ↓ CCA ↑
T5 0.5580 0.1132 0.8344
Llama3 0.5442 0.2216 0.8022
Clip text 0.5177 0.4532 0.7599
Clip img 0.3668 0.4860 0.7573
LDM 0.1957 1.2520 0.7215
Resnet50 0.1822 1.9800 0.6746

FMRI aligns better with the embedding space of
language model. Our results (Table 1) show that
the text space of language models aligns best with
fMRI data, outperforming both vision–language and
vision-only models across all metrics. Surpris-
ingly, vision–language models, despite integrating
both modalities, underperform compared to pure
language models. We hypothesize that this is be-
cause humans focus more on the meaning of an im-
age rather than pixel-level details (Naselaris et al.,
2009; Du et al., 2022). Unlike prior work (Scotti
et al., 2023; Wang et al., 2024b; Xia et al., 2024; Lin et al., 2022) that primarily relies on vision
representations, our findings motivate using pure text as the latent space.

3.2 TRAINING OF PRISM

In this section, we describe the training process of PRISM, which consists of automatic structured
description generation for training images and encoder training.

3.2.1 AUTOMATIC DESCRIPTION GENERATION

We design structured text descriptions as supervision for our framework. To capture the composi-
tional and relational nature of human vision, these descriptions should explicitly distinguish between
different objects and their relationships. Generating such descriptions with a VLM relies on care-
fully crafted prompts that specify the desired attributes and relations, since not all attributes and re-
lationships are directly reflected in brain activity. To address this issue, we propose a VLM-assisted
approach that automatically learns the most relevant attributes and relationships in an image based
on the training data, ensuring they are both meaningful and brain-aligned.

We first show how structured descriptions can be generated from a VLM given a learned keyword a,
and then present our approach for learning the optimal keyword. Given an image Yi and a learned
keyword a, we construct a prompt P(a) to guide the VLM in describing the most important objects
in Yi based on a. Formally, the VLM receives the image and the prompt as input and outputs a
structured description Da

i :
Da

i = VLM(Yi,P(a)). (1)
The structured description is a list of m object-level tuples along with background information:

Da
i = [(o1 : d1 : loc1), (o2 : d2 : loc2), . . . , (om : dm : locm), bgi] . (2)

Each oj is an object in the image, dj is its description containing attributes and relationships with
other objects conditioned on keyword a, and locj denotes its location (selected from a predefined
set). The term bgi represents the background information of image Yi. To ensure meaningful
generation, we further augment each relation description dj with a structured header encoding its
semantic roles, following the PropBank annotation format (Màrquez et al., 2008; He et al., 2017;
Ross et al., 2021; Palmer et al., 2005).
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The choice of keyword a strongly influences the attributes and relationships captured in the object
descriptions, which in turn affects the quality of mapping fMRI signals to the text space. Ideally,
these descriptions should capture the most important information shared between the fMRI signals
and the stimulus images. To avoid manually selecting the keyword, we frame its discovery as a
prompt optimization problem and introduce our attribute–relationship search module.

Concretely, given a set of training images Y train = {Y1, . . . ,YN} and the corresponding fMRI
signals X train = {x1, . . . ,xN}, we define the following optimization problem to find the optimal a
in the prompt (P(a)) for the VLM:

max
a

N∑
i=1

S (Yi,Diff(VLM(Yi,P(a)))) (3)

s.t. CKA (X,Ka) > β;

X = Concat(x1, . . . ,xN ); Ka = Concat(ka
1 , . . . ,k

a
N );

ka
i = LMENC(VLM(Yi,P(a))) for i = 1, . . . , N ;

where S(·, ·) denotes the similarity score between two images (e.g. negative perceptual loss); Diff is
a pre-trained diffusion model that generates images from captions produced by the VLM; Concat in-
dicates the concatenation operation across all training samples; and LMENC is a pre-trained language
model to encode captions generated by the VLM. The constraint enforces that the CKA similarity
between the fMRI data X and the caption embeddings Ka generated using keyword a exceeds a
threshold β, ensuring strong alignment between the fMRI and text spaces. The objective ensures
that descriptions derived from the optimal keyword support accurate reconstruction.

To optimize the keyword a in equation 3, we guide the search along semantic links: keywords
with similar meanings tend to yield comparable reconstructions, so generating new keywords based
on the semantic relationships of top-performing candidates helps uncover more effective prompt
expressions. In the search, we utilize an LLM as a keywords generator and iteratively search for
improved relation keywords in a step-by-step manner. We begin by initializing a keywords set A
with a collection of frequently-used relation keywords identified in prior works (Johnson et al.,
2015; Lu et al., 2016; Krishna et al., 2017). We expand A through an ε-greedy search strategy:
at each search step, the attribute generator proposes new candidate keywords based on either the
top-performing keywords in A with probability 1−ε, or randomly selected keywords from A with
probability ε. Only candidates that exceed the similarity threshold are added to A. This balances
refinement of effective attributes and exploration of diverse novel attributes. See Appendix G for the
detailed algorithm and search results.

3.2.2 ENCODER TRAINING

We design an encoder to map fMRI signals into the latent space of the language model, using
structured and object-centric descriptions as supervision. Specifically, each object’s information is
independently encoded using an MLP. The resulting representations are concatenated and passed to
the language model to generate estimated structured descriptions D̂a

i , which is given by:
fj = MLPj(xi), j = 1, · · · ,m

D̂a
i = LM(MLPg(Concat(f1, . . . , fm))),

(4)

The language model is fine-tuned using a loss over all m object descriptions (Chang et al., 2024;
Gunel et al., 2020):

LLM = −
m∑
j=1

T∑
t′=1

log p(yt′ | y<t′ , fj), (5)

where yt′ denotes the t′-th token in the structured description. This training strategy enables fine-
grained alignment between fMRI signals and structured textual descriptions. We first train the MLPs
independently for a fixed number of epochs, then jointly fine-tune the language model and MLPs to
maximize overall reconstruction performance.

3.3 PRISM INFERENCE: OBJECT-CENTRIC IMAGE GENERATION

The inference process of PRISM has two steps: (1) generate structured descriptions D̂a
i from fMRI

signals using the trained encoder and language model, and (2) reconstruct the image by composing
objects conditioned on these descriptions with a pre-trained diffusion model: Ŷi = Diff(D̂a

i ).

5
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To reflect the brain’s compositional understanding of visual scenes, during inference, we adapted
a pre-trained diffusion model to perform compositional image generation, inspired by (Yang et al.,
2024). Specifically, given an image Yi and its predicted structured description D̂a

i (from Equa-
tion (4)), we extract a set of predicted objects {oj}mj=1 and a background description b̂gi. These are
combined into a global context prompt p̂0 and embedded into a conditioning matrix C0. Similarly,
each object description d̂j is embedded into a corresponding conditioning matrix Cj . These con-
ditioning matrices guide the denoising process via cross-attention (Section 2) from time t to 0. At
each step, the hidden representation of object j (or the global context when j = 0) at time t − 1

is computed as: Hj
t−1 = CrossAttention(Ht,Cj), where Ht is the hidden representation of the

full image at time t. We then resize and concatenate the object representations according to their
predicted locations ˆlocj :

Hcat
t−1 = Ψ({Hj

t−1,
ˆlocj}mj=1), (6)

where Ψ(·) denotes the resizing and spatially-aware concatenation operation. Thus, the image gener-
ation model encodes each object independently from its description and then spatially concatenates
their hidden representations according to the predicted locations.

To ensure smooth region boundaries and seamless fusion between objects and background, we com-
pute a weighted sum of the global context latent and the object latents:

Ht−1 = β ·Hcat
t−1 + (1− β) ·H0

t−1, (7)

where β is a hyperparameter that controls the blending ratio. This process is repeated across denois-
ing steps, enabling structured, object-aware generation aligned with the brain’s visual understanding.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate PRISM, guided by the following
questions: (RQ1) How well does our framework PRISM perform on the image reconstruction task?
(RQ2) How do different choices of latent space influence the reconstruction quality? (RQ3) What
is the contribution of each component in our framework to the overall reconstruction performance?

4.1 EXPERIMENTAL SETUP

We conduct experiments on three datasets: NSD (Allen et al., 2022), BOLD5000 (Chang et al.,
2019), and GOD (Horikawa & Kamitani, 2017). Detailed descriptions of the datasets are provided
in Appendix C. Each method is evaluated by comparing the reconstructed images to the ground truth
using three metrics: Pixelwise Correlation (PixCorr), Structural Similarity Index (SSIM) (Wang
et al., 2004), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), which reflects
human perceptual similarity, CLIP two-way identification (CLIP) Scotti et al. (2024) and Inception
V3 two-way identification (Inception V3 ) Scotti et al. (2024). We compare our method against the
following baselines: Takagi & Nishimoto (Takagi & Nishimoto, 2023) (Takagi for short), Mindvis
(Chen et al., 2023), Mindeye (Scotti et al., 2023), and Mindeye2 (Scotti et al., 2024). To ensure a fair
comparison, we use the same generative model, Stable Diffusion 2.1 (Pernias et al., 2023; Rombach
et al., 2022), for all methods. We additionally present results for PRISM and Mindeye2 (ranked
second-best) with the newer SDXL backbone (Podell et al., 2023). More details about the baselines
and training are provided in Appendix D and Appendix E.

4.2 EFFECTIVENESS OF PRISM

We evaluate our fMRI-to-image reconstruction framework on test data and compare it with state-of-
the-art methods. Table 2 summarizes the results, with all metrics and standard deviations averaged
across subjects over five runs. Visualizations of reconstructed examples from the test set are shown
in Figure 2. As shown in Table 2, PRISM outperforms state-of-the-art methods across all datasets
and metrics, with up to a 17% improvement in LPIPS, indicating higher perceptual similarity to the
original images. Unlike baselines such as Mindeye2 (Scotti et al., 2024) and Mindeye1 (Scotti et al.,
2023), which often ignore key objects, PRISM successfully reconstructs all objects, yielding notable
gains in PixCorr, SSIM, and LPIPS. These results demonstrate the effectiveness of our framework
in translating brain activity into accurate, perceptually aligned image reconstructions.
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Table 2: Comparison of our framework with state-of-the-art methods on three datasets. All methods use Stable
Diffusion 2.1 as the backbone unless otherwise specified (+SDXL). Results are reported using PixCorr, SSIM,
LPIPS, CLIP and Inception V3 metrics. The best result using the same backbone in each column is highlighted
in red. ↑ indicates higher is better and ↓ indicates lower is better.

NSD PixCorr ↑ SSIM ↑ LPIPS ↓ CLIP ↑ Inception V3 ↑
PRISM 0.3404±0.05 0.4640±0.02 0.5963±0.02 0.9467±0.03 0.9516±0.03

Takagi 0.2100±0.01 0.388±0.04 0.7665±0.04 0.8811±0.06 0.9086±0.07

Mindvis 0.2736±0.06 0.3868±0.06 0.6789±0.02 0.9000 ±0.05 0.9135 ±0.05

Mindeye1 0.3114±0.05 0.3868±0.06 0.6501±0.03 0.9121 ±0.04 0.9198±0.03

Mindeye2 0.3160±0.04 0.4447±0.02 0.6338±0.04 0.9201±0.03 0.9308±0.03

PRISM+SDXL 0.3645±0.02 0.4983±0.04 0.5563±0.02 0.9600±0.01 0.9765±0.01

Mde2+SDXL 0.3471±0.04 0.4425±0.04 0.6002±0.01 0.9599±0.02 0.9602±0.01

BOLD5000

PRISM 0.2315±0.01 0.5341±0.02 0.6198±0.02 0.7720±0.03 0.6601±0.07

Takagi 0.1815±0.03 0.4418±0.06 0.7558±0.06 0.6990±0.04 0.5667±0.01

Mindvis 0.2122 ±0.05 0.4944 ±0.04 0.6463 ±0.05 0.7720±0.04 0.5701 ±0.08

Mindeye1 0.1942±0.01 0.4838±0.03 0.6913±0.04 0.7288 ±0.03 0.6222 ±0.07

Mindeye2 0.2265±0.02 0.5164±0.02 0.6416±0.03 0.7600±0.04 0.6428±0.03

PRISM+SDXL 0.2442 ±0.02 0.5600 ±0.03 0.5909 ±0.04 0.7881±0.04 0.6881±0.02

Mde2+SDXL 0.2310 ±0.04 0.5185 ±0.02 0.6186 ±0.02 0.7503±0.04 0.6556±0.02

GOD

PRISM 0.2571 ±0.01 0.5200 ±0.02 0.6213 ±0.01 0.8567 ±0.05 0.8428 ±0.06

Takagi 0.2322 ±0.05 0.4944 ±0.04 0.6463 ±0.05 0.7232 ±0.01 0.7556 ±0.02

Mindvis 0.1921±0.02 0.4304±0.03 0.697±0.04 0.7162±0.03 0.6119 ±0.03

Mindeye1 0.2286 ±0.03 0.4766 ±0.02 0.6807 ±0.05 0.8093 ±0.01 0.8002 ±0.04

Mindeye2 0.2442 ±0.03 0.4952 ±0.01 0.6586 ±0.02 0.8322±0.02 0.8280±0.04

PRISM+SDXL 0.2669 ±0.01 0.5537 ±0.01 0.5989 ±0.03 0.8727±0.03 0.8820±0.04

Mde2+SDXL 0.2500 ±0.04 0.5511 ±0.04 0.6224 ±0.01 0.8678±0.02 0.8556±0.01

Ground Truth PRISM Mindeye2 Mindeye1 Mindvis Takagi

Figure 2: Reconstructed images from different methods. The first column shows the original viewed images.
The rest of the columns show the reconstructed images from different methods.

We further evaluate our method on a question answering (QA) task using reconstructed test images
from the NSD dataset. For each image, we retrieve a corresponding question–answer pair from the
COCO dataset (Lin et al., 2014) and use Qwen2.5 (Bai et al., 2025) to answer the question based
on the generated image. QA accuracy is reported in Table 3. Our method achieves an accuracy
of 60.54%, significantly outperforming state-of-the-art methods. This demonstrates that our recon-
structions are not only visually faithful but also semantically meaningful.
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4.3 ABLATION STUDY

Table 3: Image QA results on reconstructed NSD images. Mdvs,
Mde1 and Mde2 refer to Mindvis, Mindeye1 and Mindeye2, re-
spectively. Results are reported as accuracy, with the best high-
lighted in red.

PRISM Takagi Mdvs Mde1 Mde2
Acc.↑ 0.6054 0.4011 0.5037 0.5516 0.5765

In this subsection, we present abla-
tion studies to justify our choice of
text as the latent space and to evaluate
the effectiveness of the object-centric
diffusion and attribute–relationship
search modules. Experiments are
conducted on the NSD dataset,
though the trend generalizes to other
datasets.

Table 4: Reconstruction performance across three latent spaces.
The best result in each column is highlighted in red. ↑ indicates
higher is better and ↓ indicates lower is better.

NSD PixCorr ↑ SSIM ↑ LPIPS ↓ CLIP ↑ Inception V3 ↑
PRISM 0.3404±0.05 0.4640±0.02 0.5963±0.02 0.9467±0.03 0.9516±0.03

Clip text 0.3208±0.04 0.3725±0.06 0.6611±0.05 0.9197±0.02 0.9011±0.04

LDM 0.2090±0.07 0.3727±0.07 0.7502±0.04 0.8602 ±0.06 0.8925 ±0.05

We first compare reconstruction per-
formance across three latent spaces:
(1) language model embeddings
(ours), (2) CLIP text embeddings
(CLIP-Text), and (3) the image latent
space of a diffusion model (LDM).
As shown in Table 4, aligning fMRI
signals to the language model text
space consistently outperforms the other two spaces across all metrics. This demonstrates that
textual representations alone can capture multiple levels of visual information, making text space
a more brain-aligned and effective intermediate representation for fMRI-to-image reconstruction.
Results for the remaining two datasets are provided in the Appendix (Table 7).

Next, we evaluate the effectiveness of the two proposed modules. Results are in Table 5. To evaluate
the Object-centric Diffusion module, we compare against a variant (w/o ObjC.) that replaces object-
level cross-attention with standard U-Net cross-attention. To assess the attribute–relationship search
module, we test two variants that skip the search process and rely only on the initial keyword set: w/o
AttOpt.+Bst, which fixes the prompt to the highest-scoring (best) keyword, and w/o AttOpt.+Wst,
which fixes it to the lowest-scoring (worst) keyword.

Table 5: Effectiveness of the object-centric diffusion module and
attribute–relationship search module on NSD data. The best result
is highlighted in red.

PixCorrorr ↑ SSIM ↑ LPIPS ↓
PRISM 0.3404±0.05 0.4640±0.02 0.5963±0.05

w/o ObjC. 0.3291 ±0.06 0.4299 ±0.06 0.6111 ±0.05

w/o AttOpt.+Bst 0.3311±0.04 0.4421±0.01 0.6005±0.02

w/o AttOpt.+Wst 0.3068 ±0.05 0.4167±0.02 0.6398±0.05

Overall, removing or replacing the
two modules consistently degrades
performance across all metrics.
Specifically, eliminating object
cross-attention leads to notable
declines that cannot be recov-
ered through prompt optimization,
highlighting its essential role in
reconstructing perceptually accurate
images. Likewise, bypassing prompt optimization and using the best or worst initial attribute also
reduces performance, indicating that the initial attributes alone are insufficient and underscoring the
importance of prompt optimization in our model. The ablation study on the number of objects in
our framework is shown in Section F.2.

4.4 CASE STUDY IN KEYWORD SEARCH

To better understand the keywords selected by our attribute–relationship search module, Table 6
presents the top-scoring keywords across different rounds of the ε-greedy search. The results show
that, despite extensive exploration, the top-scoring keywords consistently converges toward spatially
oriented relationships such as Spatial Layout and Relative Position. This suggests
that: (1) descriptions emphasizing spatial information are most effective for guiding the diffusion
model to accurately reconstruct images, as indicated by their highest LPIPS scores; and (2) these at-
tributes also align well with fMRI data, as their CKA scores are no lower than those of the initial key-
words, in accordance with the search constraints. This result is consistent with prior neuro-scientific
findings showing that neural representations in the brain are sensitive to spatial arrangements and
relative positions of objects (Zopf et al., 2018; Graumann et al., 2022). Therefore, we use Spatial
Layout as the optimal keyword a to generate structured descriptions for model training. Further
details are provided in section G.
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Table 6: Top-5 relationship keywords scored by 1− LPIPS before searching and after 10, 20, 30 search steps.
The top-5 results remain unchanged after 30 search rounds. The search results indicate a clear preference for
keywords related to spatial and positional relations, with most of the top-performing keywords in the final
results containing the term ’spatial’.

Rank Initial Round 10 Round 20 Round 30+
#1 Spatial Configuration Spatial Arrangement Spatial Organization Spatial Layout

#2 Positional Relation Spatial Configuration Spatial Structure Spatial Patterns

#3 Location Relation Spatial Interaction Spatial Arrangement Spatial Organization

#4 Descriptive Attribute Positional Relation Spatial Configuration Relative Position

#5 Inclusion Dependency Feature Relation Spatial Interaction Spatial Relationships

5 RELATED WORKS

fMRI-Image Reconstruction. Early approaches leveraged linear models to decode fMRI signals
into visual features (Kay et al., 2008; Takagi & Nishimoto, 2023). More recent work employs deep
learning to map fMRI signals to the latent space of GANs (Lin et al., 2022; Ozcelik et al., 2022;
Goodfellow et al., 2020) for image reconstruction. With advances in vision-language models (Rad-
ford et al., 2021; Liang et al., 2024), several studies have mapped fMRI signals to CLIP’s image
embedding space (Scotti et al., 2024; 2023) and used diffusion models for reconstruction (Rombach
et al., 2022; Xu et al., 2023; Podell et al., 2023). Unlike prior work that directly maps fMRI signals to
joint text–image spaces (Wang et al., 2024b; Quan et al., 2024), we compare multiple representation
spaces and find that text embeddings from language models (Raffel et al., 2020) exhibit the strongest
alignment with fMRI signals. This insight motivates our approach of reconstructing images via the
embedding space of language models.

Diffusion models. Diffusion models have become foundational in generative tasks like image
creation and editing (Wijmans & Baker, 1995; Gal et al., 2022; Song et al., 2020), as well as text-to-
image synthesis (Ruiz et al., 2023). To enhance control over generated content, ControlNet (Zhang
et al., 2023) introduces high-level image features for controlling and GLIGEN (Li et al., 2023; Zhang
et al., 2025) incorporates position-aware adapters for spatial grounded generation. Meanwhile, there
are also training-free methods that adjust latent or attention maps during inference to guide outputs
without additional training (Chen et al., 2024; Yang et al., 2024). In our work, we guide the diffusion
process by modifying cross-attention layers during inference to integrate object-level descriptions
derived from fMRI data for image reconstruction.

Prompt Optimization. Prompt optimization aims to discover effective textual prompts for LLMs
without model fine-tuning. Gradient-based methods (Shin et al., 2020; Shi et al., 2022; Wen et al.,
2023) update prompts using gradients or differentiable embeddings. Gradient-free approaches treat
LLMs as black boxes, using heuristic search (Prasad et al., 2022; Pryzant et al., 2023), reinforcement
learning (Deng et al., 2022; Zhang et al., 2022), or evolutionary strategies (Zhou et al., 2022; Yang
et al., 2023; Guo et al., 2025). We designed our gradient-free prompt optimization based on beam
search to optimize attribute keywords for black-box vision-language models.

6 CONCLUSION

In this work, we addressed the challenge of reconstructing visual stimuli from fMRI signals. Our
analysis revealed that fMRI signals align more closely with the text space of language models than
with vision-based or joint text–image representations, identifying text as a brain-aligned interme-
diate space. Building on this insight, we showed that explicitly modeling the compositional struc-
ture of visual perception—capturing objects along with their attributes and relationships—further
improves reconstruction quality. Guided by these findings, we developed PRISM, a framework
that maps fMRI signals into a structured text space and incorporates two specialized modules: an
object-centric diffusion module that generates images by composing individual objects, and an at-
tribute–relationship search module that automatically discovers attributes and relationships aligned
with neural activity. Experiments on real-world fMRI datasets demonstrate that PRISM reduces
perceptual loss by up to 8% compared to prior methods, underscoring the power of structured text
as a bridge between brain activity and image generation.
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7 ETHICS STATEMENT

Our work does not involve human or animal subjects, personally identifiable data, or sensitive in-
formation. The datasets used are publicly available, and we follow their respective licenses. The
methods and findings presented do not pose foreseeable risks of misuse, discrimination, or harm.
We therefore believe our work raises no specific ethical concerns under the ICLR Code of Ethics.

8 REPRODUCIBILITY STATEMENT

Section 3 details the proposed framework and its design. Section 4 describes the datasets, base-
line methods, and evaluation protocols used for comparison. Additional implementation details,
including training procedures and hyperparameter settings, are provided in the Appendix. Upon
acceptance of this paper, we will release our code on GitHub.
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A A COMMON ERROR IN GENERATIVE MODELS

Original  Image Generated Image

Figure 3: A Common Error in Generative Models. While the original image shows “a gray tiger-
striped cat,” the model incorrectly generates “a grey tiger,” illustrating semantic distortion.

In this section, we present a common failure, attribute binding, encountered in generative models
(especially for the diffusion model), where generative models misattribute visual properties to ob-
jects. Figure 3 compares original (left) and generated (right) images. The original depicts a gray
tiger-striped cat on a wooden bench, while the generated version incorrectly shows a gray tiger in-
stead of a cat. This issue arises because diffusion models usually rely on text encoders such as CLIP,
which are known to lack the ability to capture complex linguistic structures (Yuksekgonul et al.,
2022). Consequently, the diffusion process loses awareness of the bindings between objects and
their attributes, leading to mismatched visual properties. This impairs fMRI-to-image reconstruc-
tion. To address this, we introduce a neuroscience-inspired, object-centric generation approach that
improves reconstruction quality.

B PRELIMINARY: DIFFUSION MODEL

Diffusion models are a class of generative models that synthesize data by reversing a gradual noising
process. Given a data point H0 (e.g., an image), the forward process perturbs it into Gaussian noise
over T time steps. The model then learns the reverse process to reconstruct samples from noise. The
forward process is a Markov chain defined by:

q(Ht | Ht−1) = N (Ht;
√

1− βt Ht−1, βtI), t = 1, . . . , T,

where {βt}Tt=1 is a predefined variance schedule. The model is trained to predict the noise ϵ added
to the input, using a neural network ϵθ, by minimizing:

L = EH0,ϵ,t

[
∥ϵ− ϵθ(Ht, t)∥2

]
.

Here, Ht =
√
ᾱt H0 +

√
1− ᾱt ϵ, with ᾱt =

∏t
s=1(1 − βs), and ϵ ∼ N (0, I). To guide the gen-

eration process with external information C (e.g., a text prompt), the denoising network is extended
as:

ϵθ(Ht, t,C).

Then, the training objective becomes:

Lcond = EH0,ϵ,t,C

[
∥ϵ− ϵθ(Ht, t,C)∥2

]
.
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This formulation is widely used in text-to-image diffusion models, where C is the embedding of a
textual description obtained from a pre-trained text encoder (e.g., CLIP). In practice, the condition
C is incorporated into the U-Net via cross-attention modules.

In our work, we adopt the latent diffusion framework (Rombach et al., 2022), where the diffu-
sion process is applied in the latent space of a pre-trained VAE, rather than directly in pixel space.
Specifically, an input image Y ∈ RH×W×3 is first encoded by a VAE encoder into a compact latent
representation Z ∈ Rh×w×c:

Z = Encoder(Y).

The diffusion process is applied on Z, where the perturbed latent representation ZT is obtained after
T steps. The reversed denoising steps then generate a denoised latent Ẑ over T steps. The final
image is reconstructed by the denoised latent:

Ŷ = Decoder(Ẑ).

This formulation greatly reduces computational cost while maintaining high-quality image genera-
tion and is particularly well-suited for conditioning on high-level semantic representations such as
text or fMRI-derived embeddings.

C DATASET

In this subsection, we provide information about the three pre-processed datasets used for the fMRI-
to-image reconstruction task: NSD (Allen et al., 2022), BOLD5000 (Chang et al., 2019), and GOD
(Horikawa & Kamitani, 2017).

• NSD (Allen et al., 2022): The Natural Scenes Dataset (NSD) is a large-scale public fMRI
dataset capturing brain responses of human participants viewing naturalistic stimuli from
COCO images (Lin et al., 2014). The dataset includes scans for 30–40 hours across 30–40
separate sessions. During each session, participants viewed 750 images for 3 seconds each.
Each image was presented three times across sessions, with most images unique to each
subject, except for 1,000 shared images seen by all subjects. Following prior NSD recon-
struction studies (Scotti et al., 2023; Takagi & Nishimoto, 2023), we adopt the standardized
train/test split, where the shared images serve the test set. Consequently, the training set
for each subject contains 8,859 image stimuli and 24,980 fMRI trials, while the test set
includes 982 image stimuli and 2,770 fMRI trials.

• BOLD5000 (Chang et al., 2019): The BOLD5000 dataset is a publicly available fMRI
dataset capturing brain activity as subjects viewed a series of images. It contains 4,916
unique images, including 2,000 from the COCO dataset and 1,916 from ImageNet (Deng
et al., 2009). Each image was presented as a visual stimulus in individual trials. Of these,
4,803 images were shown once, while 113 images were repeated three or four times across
trials, resulting in a total of 5,254 stimulus trials. We follow the standardized train/test split
used in prior BOLD5000 reconstruction studies (Chen et al., 2023; Wang et al., 2024b).
Specifically, the training set includes trials with non-repeated image stimuli, comprising
4,803 samples, while the test set consolidate repeated image stimulus trials into 113 sam-
ples.

• GOD (Horikawa & Kamitani, 2017): The Generic Object Decoding (GOD) is a public
dataset developed for fMRI based decoding. It aggregates fMRI data gathered through the
presentation of images from 200 representative object categories, originating from Ima-
geNet. We follow the standardized train/test set split employed in existing GOD image
reconstruction studies (Sun et al., 2023) and get 1200 training samples and 50 test sam-
ples.The Generic Object Decoding (GOD) dataset is a publicly available fMRI dataset de-
signed for decoding object representations. It includes fMRI data collected during the
presentation of images from 200 representative object categories sourced from ImageNet.
Following the standardized train/test split used in prior GOD reconstruction studies (Sun
et al., 2023), we use 1,200 training samples and 50 test samples.
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D BASELINES

In this section, we provide details about the baselines used in our experiments.

• Takagi & Nishimoto (Takagi & Nishimoto, 2023): This baseline maps fMRI signals to
the latent space of a pre-trained VAE within a diffusion model using linear regression, en-
abling image reconstruction. The method combines image latent representations with text
embeddings extracted from a CLIP text encoder, both mapped from fMRI signals in higher
(ventral) visual cortex regions, to improve reconstruction quality. For a fair comparison, we
adapt this approach to the Diffusion 2.1 pipeline by retraining the linear regression to map
fMRI signals to both the VAE latent space and the textual conditioning used in Diffusion
2.1.

• Mindvis (Chen et al., 2023): This baseline uses a self-supervised representation of fMRI
data using masked modeling within a high-dimensional latent space in an encoder–decoder
framework. The learned representation is then projected into the conditioning space of
LDM by fine-tuning the model. For fair comparison, we adapt the image generator of this
approach to Diffusion 2.1 by fine-tuning it with the learned projection module, following
the strategy outlined by the original authors.

• Mindeye (Scotti et al., 2023): This model proposed two modules to map the fMRI signal to
the CLIP image space. Specifically, the model first uses contrastive learning to align fMRI
signals with image embeddings. Second, the paper trains a diffusion prior to reconstructing
images from these embeddings via mapping brain activity into CLIP image space, enabling
the generation of images that closely resemble the original stimuli. To adapt the method
for fair comparison, we replace the Versatile Diffusion with Diffusion 2.1.

• Mindeye2 (Scotti et al., 2024): This method trains multiple MLPs to project fMRI signals
from all subjects into a shared representation space, followed by training a diffusion prior
to map these representations into the CLIP image embedding space. The final image is then
reconstructed using a pre-trained SDXL (Podell et al., 2023). To adapt this method to our
setting, we replace the generative backbone with Diffusion 2.1.

E TRAINING DETAILS

In this section, we provide the training details of our model. Our model is implemented with Pytorch
and trained on two NVIDIA-L40 GPUs with 48GB of memory. We use T5 as the language model to
generate the object-level descriptions. For NSD data, we train the model for 80 epochs: 60 epochs
for MLP training (EMLP) with a learning rate lr1 = 1 × 10−5, followed by 20 epochs of joint
training, where we continue training the MLP and fine-tune the T5 model (ET5) using a learning
rate lr2 = 5× 10−7. For BOLD5000, we set Emlp = 50, lr1 = 1e− 5, ET5 = 5, and lr2 = 1e10−8.
For GOD, we set Emlp = 40, lr1 = 1e − 5, ET5 = 5, and lr2 = 5e−9. For image reconstruction at
inference time, we set the blending ratio β = 0.5 and the denoising step as 40 for all the datasets.
We use GPT 4o-mini to generate the object-centric descriptions with the prompt shown in H. For
images that do not have a caption, we first use GPT-4o-mini to generate a short caption and then
use our prompt to generate the object-centric description.

F ADDITIONAL EXPERIMENTS

F.1 RECONSTRUCTION PERFORMANCE ACROSS THREE LATENT SPACES.

We report the ablation studies to justify our choice of text as the latent space on BOLD5000 and
GOD. As shown in Table 7, aligning fMRI signals to the language model text space (our method)
consistently outperforms alignment to the other two spaces across all metrics, including CLIP and
Inception V3. This supports our core contribution: textual representations alone are sufficient to
capture both high-level semantic and low-level visual information, and text space provides a more
brain-aligned and effective intermediate representation for fMRI-to-image reconstruction.
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Table 7: Reconstruction performance across three latent spaces. The best result in each column is
highlighted in red. ↑ indicates higher is better and ↓ indicates lower is better.

PixCorr ↑ SSIM ↑ LPIPS ↓ CLIP ↑ Inception V3 ↑
BOLD5000
Ours 0.2315±0.01 0.5341±0.02 0.6198±0.02 0.7720±0.03 0.6601±0.07

Clip text 0.2000±0.06 0.4885±0.06 0.6520±0.04 0.7265±0.04 0.6199±0.04

LDM 0.1622±0.03 0.4300±0.02 0.7894±0.08 0.7025±0.08 0.5590 ±0.05

GOD
Ours 0.2571 ±0.01 0.5200 ±0.02 0.6213 ±0.01 0.8567 ±0.05 0.8428 ±0.06

Clip text 0.2200 ±0.05 0.4682 ±0.04 0.6827 ±0.04 0.8120 ±0.05 0.7602 ±0.04

LDM 0.1900±0.02 0.3999±0.07 0.7100±0.02 0.7099±0.01 0.7484 ±0.03

Table 8: Comparison of the number of objects in our framework. Results are reported using PixCorr,
SSIM, LPIPS, CLIP, and Inception V3 metrics. The best result in each column is highlighted in red.
↑ indicates higher is better and ↓ indicates lower is better.

PixCorr ↑ SSIM ↑ LPIPS ↓ CLIP ↑ Inception V3 ↑
Ours (Two Objs) 0.3404 ±0.05 0.464 ±0.02 0.5943 ±0.02 0.9467 ±0.03 0.9516 ±0.03

One Obj 0.3355 ±0.05 0.4532 ±0.04 0.6014 ±0.04 0.9344 ±0.02 0.9342 ±0.01

Four Objs 0.3202 ±0.03 0.4469 ±0.04 0.6284 ±0.02 0.9400 ±0.05 0.9322 ±0.05

F.2 ANALYSIS ON THE NUMBER OF OBJECTS IN OUR FRAMEWORK

In our framework, we fix the number of objects per image to two and assign a separate MLP to
each. We learn to assign each object a location label from a predefined set of spatial positions
(e.g., left/right or top/bottom). This fixed assignment of each object to a dedicated MLP, along with
the predefined spatial labeling scheme, is used consistently during both training and inference. At
inference time, each MLP independently encodes fMRI signals for one object, and the language
model generates a structured description for each. These descriptions are then passed to the object-
centric diffusion model, which generates object images independently and places them into their
corresponding spatial positions to form the final image.

We conduct an experiment to determine the optimal number of objects (MLPs) in our framework;
the results on the NSD dataset are shown in Table 8. The results reveal that setting the number of ob-
jects per image to two yields the best performance. This choice is also supported by neuroscientific
findings suggesting that, although the number of objects in an image is inherently uncertain, human
attention and memory are limited to only a few of the objects. Both empirical experiments Alvarez
& Franconeri (2007) and neural evidence Cowan (2001); Todd & Marois (2004) show that humans
can attend to only 3–4 simple objects (e.g., a circle on a white background) at a time. For complex
objects (e.g., those with intricate color patterns), this capacity drops to around 2 due to the increased
cognitive load per item Xu & Chun (2006). This cognitive bottleneck limits the amount of infor-
mation that can be decoded from fMRI signals. As a result, increasing the number of m does not
necessarily enhance the level of detail in the reconstructed image and may even lead to less reliable
reconstructions—for example, by hallucinating non-existent objects. Therefore, we choose to use
m = 2, as it empirically yields the best performance.

G RELATION OPTIMIZATION DETAILS

The detailed algorithm used to solve the prompt optimization problem in equation 3 is provided in
Algorithm 1. In our experiments, we adopt the scoring function S(Y1,Y2) = 1−LPIPS(Y1,Y2).
The CKA threshold β is initialized to the minimum CKA score among the initial candidates. We
set ε = 0.5, k1 = 8, k2 = 2 and search for T = 40 rounds. We randomly sampled 667 images
from the training set of NSD (Allen et al., 2022) for prompt optimization. While this subset was
used for efficiency, our method is applicable to the full training set and generalizes to other settings.
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we use GPT-4o-mini as the VLM and the LLM that generates new keywords. We use CLIP-text
(Radford et al., 2021) as LMENC, and Stable Diffusion 2.1 (Pernias et al., 2023; Rombach et al.,
2022) as the diffusion model.

Algorithm 1 ε-Greedy Prompt Optimization
Input: Training set X train,Y train; Initial keyword set A; Search rounds T ; Parameters ε, k1, k2
Initialize: Threshold β ← mina∈A CKA (X,Ka)
for t = 1 to T do

Filter: A ← {a ∈ A | CKA (X,Ka) > β}
Sort: Rank a ∈ A in descending order by

∑N
i=1 S (Yi,Diff(VLM(Yi,P(a))))

if random() < ε then
Sample: S ← RandomSample(A, k1) % Randomly sample k1 keywords from A

else
Select: S ← Top(A, k1) % Select top-k1 keywords from A

end if
Generate: Use LLM to synthesize k2 new keywords Anew based on S
Update: A ← A∪Anew

end for
Output: argmaxa∈A

∑N
i=1 S (Yi,Diff(VLM(Yi,P(a))))

The search is initialized with six widely-used keywords describing object relationships: Seman-
tic Relation (Johnson et al., 2015), Positional Relation (Lu et al., 2016; Haldekar et al., 2017),
Functional Relation (Zhu et al., 2015), Action Relation (Lu et al., 2016), Visual Attributive Rela-
tion (Farhadi et al., 2009), and Part–Whole Relation(Lu et al., 2016). For each type, we use GPT-4o
to generate four synonymous keywords, resulting in an initial pool of 24 candidate attributes. Fig-
ure 4 reports the LPIPS scores of all initial and subsequently discovered relation keywords.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

We declare that Large Language Models (LLMs) were confined to peripheral tasks and had no in-
fluence on the methodology, results interpretation, or theoretical insights of this work. Specifically,
they were used for (i) generating training datasets required for our experiments and (ii) grammar
correction and minor word-level refinements. All language edits were carefully reviewed by the au-
thors to ensure that no hallucinations were introduced and that the text faithfully reflects the original
intent. The technical development, experimental design, analysis, and conclusions presented here
are entirely the work of the authors.
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The prompt used by the GPT-4o-mini is shown below:

Prompt in generating structured descriptions

Given the image and caption, first describe the background color style of the image with 3-5 

words. Second, detect the TWO most important objects in the image. Then, describe each of the 

objects and their relationship using: {keyword} with TWO sentences. For each sentence, use 5-

10 words and as easy as possible.

        

Then, detect the absolute position of the two objects in the image, and select from [right, left, top, 

bottom]. "left" and "right" should appear together for horizontal objects, and "top" and "bottom" 

should appear together for vertical objects. DO NOT mix. 

Example:

 

 ### Background color style: Grayscale urban.

        

        ### The Man [left]

        1. The man is standing near the sidewalk edge. The Man is close to the building wall.

    

        ### The Suitcase [right]

        1. The suitcase is beside the man's foot. The Suitcase is placed on the street's curved edge.

Now, given the image I uploaded and the caption "{caption}", detect the two most important 

objects with absolute position, describe them using {keyword} with EXACTLY the example 

format:

Prompt in attribute–relationship optimization

System prompt: You are a helpful brainstormer. Given a list of keywords, generate {gen_num} 

related or similar keywords. Respond with a comma-separated list of keywords.

User prompt: keyword: {keywords}
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Figure 4: Scores of all tested relation keywords during the prompt search. Among the top-10 relation
keywords, the most frequent keyword is ’spatial’.
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