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ABSTRACT

Few-shot class incremental learning (FSCIL) aims to enable models to learn new
tasks from few labeled samples while retaining knowledge of previously ones.
This scenario typically involves an offline base session with sufficient data for pre-
training, followed by online incremental sessions where new classes are learned
from limited samples. Existing methods either rely on a frozen feature extractor
or meta-testing simulation to address overfitting issues in online sessions. How-
ever, they primarily learn feature representations using only the base session data,
which significantly compromises the model’s plasticity in feature representations.
To enhance plasticity and reduce overfitting, we propose the MetaAdapter frame-
work, which makes use of meta-learning for expandable representation. During
the base session, we expand the network with pre-trained weights by inserting par-
allel adapters and employ meta-learning to encode generalizable knowledge into
these modules. Then, the backbone is further trained on abundant data from the
base classes to acquire fundamental classification ability. In each online session,
the adapters are first initialized with parameters from meta-training, and subse-
quently tuned to adapt to the new classes. Leveraging meta-learning to produce
initial adapters, MetaAdapter enables the feature extractor to effectively adapt to
few-shot new classes, thus improving the generalization of the model. Experimen-
tal results on the mini-ImageNet, CUB200, and CIFAR100 datasets demonstrate
that our proposed framework achieves the state-of-the-art performance.

1 INTRODUCTION

Deep neural networks have excelled in various vision tasks (Ren et al., 2015 |He et al.l 2016} Huang
et al., 2017), but they usually depend on pre-collected datasets to achieve this success. However,
data often arrives as a stream with continuously emerging new classes in real-world applications.
An ideal model should recognize new categories while retaining the ability to distinguish previously
learned ones, a process known as class-incremental learning (CIL) (Li & Hoiem,|[2017;Rebuffi et al.,
2017; |Schwarz et al., 2018 Wu et al.l 2019; [Zhu et al.| [2021a). The primary challenge in CIL is
catastrophic forgetting (Goodfellow et al.,|2015)), where updating for new classes leads to forgetting
old ones. The trade-off between maintaining performance on old categories (stability) and adapting
to new ones (plasticity) is known as the stability-plasticity dilemma (Mermillod et al., 2013)).

Traditional CIL methods typically assume abundant data for each new category, but this is often
impractical in real-world applications due to the high costs of data collection and labeling. This
challenge has driven the development of few-shot class incremental learning (FSCIL) (Tao et al.
2020). In FSCIL, the model is first pretrained on abundant data during the base session, while it
must continually learn new classes from limited data in each incremental session. Similar to CIL,
FSCIL also suffers from the stability-plasticity dilemma. Moreover, the limited availability of new
class instances often results in overfitting (Zou et al.| [2022)), which means the model performs well
on the training data in incremental sessions but has poor generalization performance on unseen data,
thus reducing the model’s generalization capability.

In the realm of few-shot learning (FSL), meta-learning enhances the learning effect of the current
task by utilizing data from other related tasks (Rusu et al., [2019; |Liu et al.| 2020; Hospedales et al.}
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2021). Building on these advancements in FSL, many approaches in FSCIL use meta-learning to
reduce dependence on new data, which helps alleviate the risk of overfitting (Tian et al.| 2024).
These FSCIL approaches that rely on meta-learning can generally be divided into two categories:
prototype-based and process-based methods. Prototype-based methods freeze the feature extractor
following the base session and subsequently use it to generate prototypes for new classes, which
either serve as classifier weights or align with the prototypes of base classes (Wang et al.| [2024).
Process-based methods typically mimic the meta-testing scenario by sampling a sequence of incre-
mental tasks from base classes (Chi et al., [2022} Zhou et al., 2022b)). Nonetheless, these two types
of methods rely primarily on base session data to learn feature representations, which restricts the
model’s plasticity when adapting to new data (Zhang et al., [2023).

To reduce overfitting and improve model’s plasticity, we introduce the MetaAdapter framework, a
novel approach that integrates meta-initialized adapters to expand and enhance feature representa-
tions. Inspired by residual adapters (Rebuffi et al.,|2018) used in domain adaptation (Zheng et al.,
2021), we encode the task-agnostic knowledge into lightweight adapters, which are embedded as
extensions of the backbone. The training process is divided into three phases, where the first two are
conducted during the base session and the final phase focuses on few-shot adaptation in incremental
sessions. During the first phase, we construct few-shot tasks by randomly sampling instances from
each base class and train the adapters by meta-learning algorithms, such as Reptile (Nichol et al.,
2018)), to obtain generalizable initial parameters. During the second stage of backbone training, we
introduce the feature compactness loss (FCL) to bring feature representations closer together, which
prevents excessive dispersion in the embedding space, and thus reservs space for representation ex-
pansion. Additionaly, we search for flat local minima by adding gradient-based perturbations to the
parameters to enhance the model’s robustness against forgetting. For each incremental session in the
third phase, the backbone is kept frozen and serves as the teacher model for knowledge distillation,
while the adapters, initialized with parameters from the first phase, are tuned to expand the current
representations to encompass new class features. With the meta-initialized adapters, MetaAdapter
enables the model to adapt to new few-shot tasks efficiently without significantly increasing the ar-
chitectural complexity. During the test stage, the backbone and adapters are fused through structural
re-parameterization, ensuring that the model structure remains consistent during testing.

The contributions of this paper can be summarized as follows:

* We introduce a novel MetaAdapter framework, which incorporates meta-initialized
adapters to expand and refine feature representations with the goal of effectively mitigating
overfitting and improving the model’s plasticity.

* A unique loss for FSCIL, called feature compactness loss, is proposed to prevent the feature
space from becoming overly dispersed and leave more room for representation expansion.

» Extensive experiments on standard benchmarks CIFAR100, mini-ImageNet, and CUB200
show that our method outperforms baselines and achieves state-of-the-art results. Further-
more, we perform a thorough analysis to evaluate the importance of each component.

2 RELATED WORK

Meta-learning. Meta-learning, often described as learning how to learn, involves extracting insights
from multiple learning episodes and using this knowledge to improve learning efficiency in future
tasks (Hospedales et al.,2021). It is usually divided into two stages. During the meta-training stage,
the model is trained using multiple source tasks to obtain initial network parameters with strong
generalization ability. In the meta-testing stage, the model uses the parameters learned during meta-
training to quickly adapt unseen tasks with only a few samples. Due to its natural suitability for
FSL, meta-learning has been widely adopted in many studies (Triantafillou et al.,2018; Jamal & Q1
2019; [Elsken et al.l [2020). In our study, we employ Reptile (Nichol et al., [2018), one of the most
popular meta-learning algorithms, for adapter initialization to mitigate overfitting.

Balancing Stability and Plasticity in Continual Learning. In continual learning, a core challenge
is the stability-plasticity dilemma, which involves balancing the model’s consistent performance on
learned classes (stability) and its adaptability to new classes (plasticity). Architecture-based methods
have been widely explored to enhance plasticity by allowing automatic adjustment of network archi-
tecture during runtime. A popular choice is to separate network components into task-sharing and
task-specific components, with the latter often being expandable. These task-specific components
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often include parallel branches, such as ACL (Ebrahimi et al.,2020) and ReduNet (Wu et al.,[2021));
adaptive layers, including GVCL (Loo et al.,|2020) and DyTox (Douillard et al., 2022); and low-rank
factorization techniques, like RCM (Kanakis et al., 2020) and IBP-WF (Mehta et al.| [2021). An-
other direction involves leveraging parallel sub-networks or sub-modules to learn incremental tasks
without explicitly defining task-sharing or task-specific components. For instance, Progressive Neu-
ral Networks (Rusu et al., 2016) add identical sub-networks for each task, facilitating task-specific
learning while allowing knowledge transfer through adaptor connections. And methods like PathNet
(Fernando et al., 2017) and RPSNet (Jathushan et al.,|2019) pre-allocate multiple parallel networks
to construct a few candidate paths and select the best path for each task. However, dynamic neural
networks often suffer from increased architectural complexity, which compromises their efficiency.
In our study, we propose using lightweight, meta-initialized adapters, which allow the model to
efficiently adapt to new few-shot tasks without significantly increasing the model’s complexity.

Few-Shot Class Incremental Learning (FSCIL). As a variant of class-incremental learning (CIL),
FSCIL requires rapid adaptation to new classes with limited data in each incremental session (Tao
et al., 2020). Many FSCIL approaches build on advancements in FSL, particularly utilizing meta-
learning to improve learning performance by leveraging data from related tasks (Rusu et al.| 2019
Hospedales et al., 2021). The methods in FSCIL leveraging meta-learning can be broadly cate-
gorized into two types: prototype-based and process-based approaches. Prototype-based methods
typically freeze the feature extractor trained on base classes and use the prototypes of new classes
as the corresponding classifier weights (Zhang et al., 2021} [Zhu et al., 2021b). While the frozen
feature extractor helps alleviate overfitting problem, it often results in biased prototypes (Liu et al.,
2020). Existing prototype adjustment methods (Liu et al., 2020; |[Zhu et al., |2021b; [Zhang et al.,
2021} Zhou et al.| [2022a)) aim to correct this bias but often involve complex pre-training algo-
rithms (e.g., contrastive learning, data mixup) (Zhou et al.| [2022a} |Peng et al., 2022} [Song et al.|
2023). Process-based methods focus on meta-testing simulation by sampling sequences of incre-
mental tasks from base classes (Yoon et al.,|2020; [Chi et al., 20225 Zhou et al.,2022b)). For example,
MetaFSCIL (Chi et al.,2022) adopts a meta-objective during the base phase to mimic the evaluation
protocol through sequential task sampling. In contrast, our approach leverages meta-learning to pro-
duce meta-initialized adapters, offering a generalizable starting point for enhancing and refining fea-
ture representations. During the online incremental learning stage, MetaFSCIL uses Bi-directional
Guided Modulation (BGM) to generate activation masks to mitigate forgetting. In comparison, our
MetaAdapter framework keeps the backbone frozen and utilize it as a teacher model for knowledge
distillation to guide the adaptation of lightweight adapters.

3 METHODOLOGY

We begin with the necessary problem setting in Section [3.1] followed by an overview of the frame-
work in Section[3.2] Sections [3.3|to[3.5]cover the specific training process.

3.1 PROBLEM SETTING

The aim of FSCIL is to accommodate new knowledge from limited samples of novel classes and
resist forgetting previously learned old classes. We assume there exists 7" sessions in total, including
a base session (i.e., the first session) and 7" — 1 incremental sessions (i.e., sessions after the first ses-
sion). The training data in the base session is denoted as DY, and the training data in the incremental
sessions is represented as {D!,D? ..., DT}, For the training data D! in the ¢-th session, it is
denoted by {(z;,y;)}X*, with the corresponding label space C*. Note that the training label space
between different sessions are disjoint, i.e., forany i, j € {0,1,..., 7 — 1} and i # j,C'NC’ = @.
Following standard incremental learning paradigm, a model in each session ¢ can only access D*.
Usually, the training set D in the base session contains a sufficient volume of data for base classes in
CO. In contrast, each training set Dt(l <t <T —1) in the following sessions contains few training
samples, which can be denoted as a N-way K -shot classification task, comprising of only K exam-
ples for each of the N categories from C?. Once the incremental learning in session ¢ is finalized,
the model is tested on query samples from all the seen classes so far: Ct = C°UC' - .- UCL.

In this work, the model is decoupled into a feature encoder ¢y(-) with parameters 6, and a lin-
ear classifier W. Given a sample z; € RP, the feature representation of x; is denoted as
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Figure 1: Overview of MetaAdapter framework. Our MetaAdapter framework is a three-phase approach for
FSCIL. Phase 1: (Adapter Meta-training) Few-shot tasks are constructed by sampling instances from each base
class, and the adapters are trained using meta-learning. Phase 2: (Backbone Pretraining) To reserve space
for future tasks, we introduce FCL to keep the embedding space compact during backbone training. Phase 3:
(Few-Shot Adaptation) We only fine-tunes these adapters to learn the new task while keeping the pre-trained
weight of the backbone.

do(zj) € R?. For an N-class classification task, the output logits of the sample x; are given by
O; = WT¢y(z;) € RN, where W € RN,

3.2 OVERVIEW OF METAADAPTER FRAMEWORK

Our MetaAdapter framework for FSCIL (see Figure [1)) begins with a meta-training of the adapters
in the first phase, with the aim of obtaining generalizable initial parameters for future few-shot
tasks. In the subsequent second phase, referred to as backbone pretraining in Figure [I] we leverage
feature compactness loss (FCL) to enhance the similarity of sample feature representations using
abundant data from D°, which equips the model with fundamental classification ability and prevents
the feature space from becoming overly dispersed. The third phase, implemented in each subsequent
incremental session, uses meta-initialized adapters to rapidly adapt to new few-shot tasks while
preserving old knowledge retained in the backbone.

3.3 ADAPTER META-TRAINING

In FSCIL, a model needs to adapt to new classes with limited instances and then evaluate over all
seen classes. As aresult, a more generalizable feature will facilitate more effective learning of future
classes and improve overall performance. This indicates that during the offline training phase, the
model needs to be trained on multiple source tasks to acquire initial parameters capable of strong
generalization, which enables effective adaptation to new categories in incremental sessions. To this
end, we construct pseudo support sets by randomly sampling instances from each base class and
apply meta-learning on these sets to search for an effective initialization.

Specifically, we expand the model’s structure by modularly adding adapters to learn new classes
and then apply the Reptile algorithm to these modules with the support sets. To make the pseudo
few-shot support sets share the similar data format as online incremental tasks, we partition the base
label space Y; into non-overlapping sets: Yy = Y3 UY,U---UYe, where |Y;| = N and |Yo| = NC.
We then randomly sample K examples from the corresponding label space Y; to construct an N -way
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K -shot training set S?, forming a sequence of support sets S', S2, ..., SC. The adapter parameters
0, are first initialized with a shared random initialization across all pseudo tasks. Then, we start to
perform fast adaptation to new classes and obtain ¢/, via a few gradient steps:

0] < 0a — aVoLce(X5, V51 04), M

where X7 and 7 are the samples and labels for support set in the j-th task, « is the learning rate for
task-specific up(fates, and Lcg denotes the cross-entropy loss. After completing the gradient descent
updates for all tasks, the parameter initialization in the meta-learner is updated as follows:

C

0a<_0a+6'é2(92_6a)7 (2)

j=1

where [ is the learning rate for meta-updates, and C'is the total number of tasks.

3.4 BACKBONE PRETRAINING

Feature Compactness Loss. Traditional pre-training methods often lead to a dispersed embedding
space, as they focus on optimizing empirical loss and maximizing inter-class margins for base-class
prototypes. While these strategies enhance feature discrimination, they may result in overfitting to
base classes and reduced adaptability to few-shot new classes. To mitigate these issues and reserve
capacity for incremental learning, we propose the Feature Compactness Loss (FCL). By compacting
both inter-class and intra-class distances, FCL prevents the embedding space from becoming overly
dispersed, which preserves learning capacity for future few-shot incremental learning scenarios.

We employ the FCL on the set O predicated on the current batch. O contains the following: mean
features for all classes within batch cpacn, mean features of unseen classes within batch cypgeen and
original features whith batch p. For every training batch B and their corresponding class labels ,
the within-batch means for all data features are computed as:

1
Chatch,k = Numy, Z Pj €))
y;=k

where Cpaen,i; Tepresents the mean feature of category k in the batch, and Numy, is the number
of samples in category k. Mean features of unseen classes in the current batch are derived from
the average feature representations computed during the previous epoch. The set O is defined as
O = {Cpateh U Cunseen UP }. Then we compute pairwise cosine similarities between all feature vectors
N Peoncat, and the Feature Compactness Loss (FCL) takes the form:

O]

1 sim (v;, v;)
Lo = “10] ZZIOgU (TJ) ; 4)

i=1 j#i

.
where v; and v; are feature vectors from the composite feature set O, sim(x,y) = W denotes

the cosine similarity between two vectors, o(-) is the softmax function, and 7 is a temperature
parameter that controls the smoothness of the probability distribution. This approach leaves more
space within the current feature representations for expansion, which facilitates the accommodation
of new categories during the incremental learning phase.

Finally, the total loss function in the base session is the weighted sum of the FCL and standard
cross-entropy loss:

Lpase = Wrel * Lt + Lk, ®)

where wg is a hyperparameter that balances the contributions of the two losses.

Searching for Flat Local Minima. To mitigate the interference of adapter integration on parameters
and enhance the model’s resilience to forgetting, we employ the SAM method (Foret et al.| 2021
during the base training phase. SAM refines the base loss function by searching for flat minima,
which reduces the model’s sensitivity to small perturbations in the data and consequently enhancing
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Figure 2: (a) Illustration of our proposed method in the incremental stage, where modules with dashed lines
are used only in the forward pass with frozen parameters. (b) Visualization of expanded classification weights
in session ¢.

overall performance. Specifically, SAM operates by exploring a p-ball neighborhood during each
parameter update. It first identifies a small perturbation that maximizes the base loss:

VEdeC( )
e(0) = ©)
Hv‘cbase )”
L:bdse( ) = ‘Cbase(g‘i’ﬁ(@)). (7)
Subsequently, gradient descent is applied to the perturbed parameters:
VEbdse( ) = v‘Cbase (9 + 6(0)) (8)

This process helps the model converge to a flatter solution, leading to greater stability and better
generalization during incremental learning.

3.5 FEW-SHOT ADAPTATION

Main Branch Distillation. As shown in Figure [2(a), before each incremental learning phase, we
first perform structure expansion by expanding adapters and initialize the new parameters using
those obtained from meta-training in the base session. In each session ¢ of the incremental phase, to
further handle new classes, the classification weights W ~! from session ¢t —1 are expanded to Wfl_l

(shape R¢* [ Rdxmt') based on D! as shown in Figure b). Specifically, the classification
weights for the newly appeared classes in session ¢ are computed using the feature centroids of
training samples with the same labels:

we=n Y Tui=d oo (), ©)

€ (xi,yi)€D?

where w, is the prototype of class ¢, [ is the indicator function, and NNV, is the number of samples in
class c in D? . The adapter and classification weights of the incremental branch are then initialized

as {071, W,ﬁ’l }, and these parameters can be further fine-tuned to accommodate new classes.

By utilizing the residual structure, the adapters can retain the generalization capabilities from the
previous model while adapting to new tasks. However, the decision boundary often shifts towards
the new classes, which can result in poor performance on previous classes. To ensure the updated
model can still classify instances of the old classes, we refer to the backbone and apply knowledge
distillation loss to implicitly constrain parameter updates. The loss for distillation is defined as:

I’

Lid = Z T(z log T (2L), (10)

where z!~! and z!, represent the logits from the previous and current models, respectively. The
evz(k)

TR denotes a temperature-scaled softmax output, with z(k) as the

function 74(z) =
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Table 1: Performance of FSCIL in each session on mini-ImageNet and comparison with other methods. “Avg.”
is the average accuracy of all sessions. “PD” denotes the performance drop, i.e., the accuracy difference be-
tween the first and the last sessions. “Final Improv.” calculates the improvement of our method in the last
session.

Backbone  Methods Accuracy in each session (%) Ave. PD Final
0 1 2 3 4 5 6 7 8 Improv.
iCaRL (Rebuffi et al.|[2017) 61.31 4632 4294 37.63 3049 24.00 20.89 18.80 17.21 3329 44.10 +42.04
TOPIC (Tao et al.|[2020) 61.31 50.09 45.17 41.16 3748 3552 3219 2946 2442 39.64 3689 +34.83
ERL++ (Dong et al.|[2021) 61.70 57.58 54.66 S51.72 48.66 46.27 44.67 4281 40.79 4987 2091 +18.46
CEC (Zhang et al.|[2021) 7200 66.83 6297 5943 5670 53.73 51.19 4924 47.63 57775 2437 +11.62
F2M (Shi et al.|[2021) 7205 6747 63.16 59.70 56.71 53.77 51.11 4921 47.84 57.89 2421 +11.41
ResNet-18 Replay (Liu et al.;|2022) 71.84 67.12 6321 59.77 57.01 5395 51.55 4952 4821 58.02 23.63 +11.04
MetaFSCIL (Chi et al.|[2022) 7204 6794 63.77 6029 57.58 55.16 5290 50.79 49.19 5885 2285 +10.06
FACT (Zhou et al.|[2022a) 7532 7034 6584 62.05 58.68 5535 5242 5042 4851 59.88 2681 +10.74
TEEN (Wang et al.|[2024) 7485 70.65 6650 62.88 60.38 57.34 5471 53.06 5170 6134 23.15 +7.55
ALICE (Peng et al.|[2022) 80.60 70.60 6740 6450 62.50 60.00 57.80 56.80 5570 63.99 2490 +3.55
BiDist (Zhao et al.{|2023) 7465 69.89 6544 61.76 5949 56.11 5328 51.74 5049 60.32 2416 +8.76
CEC+ (Wang et al.}[2023) 8265 77.82 7359 7024 67.74 6482 6191 59.96 5835 6856 2430 +0.90
MetaAdapter (ours) 82.80 78.46 7439 7157 68.71 65.69 63.40 60.63 59.25 69.43 23.55

NC-FSCIL (Yang et al.;2023) ~ 84.02 76.80 72.00 67.83 6635 64.04 6146 59.54 5831 67.82 2571 +2.70
ResNet-12 C-FSCIL (Hersche et al.|[2022)  76.40 71.14 6646 6329 6042 5746 5478 53.11 5141 61.61 2500 +9.60
) OrCo (Ahmed et al.|[2024) 83.30 7080 6690 6432 6228 6046 5840 58.02 58.08 6473 2522 +2.93

MetaAdapter (ours)r 84.12 7995 7597 72.61 69.68 66.88 64.12 62.39 61.01 70.75 23.11

k-th element of z and ~ as the temperature coefficient controlling the sharpness of the distribution.
We formulate the final loss function for adapter tuning as:

Lincre = LcE + Wid * Lids (1)
where wygq is a trade-off hyperparameter.

Adapter Integration. Following the training in each incremental learning phase, the parameters of
the adapters are integrated into the corresponding convolutional layers to maintain the model’s archi-
tecture. This process not only enhances the model’s representational capacity but also ensures that
the number of network parameters remains constant across phases. Specifically, by zero-padding
and linear transformation, the parameters in the residual structure are fused with the original con-
volution kernel parameters. Before leanring the ¢-th new task (¢ > 1), MetaAdapter maintains the
weight 6% .. After learning the ¢-th task, MetaAdapter integrates the ¢-th branch into 6!, and
obtains:

Otony = Otomy + Wa - Fpaa(65), (12)

where 02! represents the convolutional layer parameters from the previous phase, 6% represents the
adapter layer parameters at phase ¢, w, denotes the adapter weight, and Fj,,q is a padding function
used to match the dimensions of the adapter weights with the convolution weights of the backbone.
In this way, the adapter parameters in previous tasks do not need to be maintained in the learning
of subsequent tasks. Therefore, throughout the learning process, MetaAdapter only expands the
number of parameters by adding a single branch of adapters alongside the backbone during training,
while for testing, the number of parameters remains the same as the backbone alone. The final
integrated parameters are represented as:

T—1
O = 0% +wa - Y Fraa(0L). (13)
t=1

Details regarding the impact of different adapter structures on model performance and the specific
configuration used in our experiments can be found in Appendix

4 EXPERIMENTS

In this section, we evaluate our method on FSCIL benchmark datasets, including mini-ImageNet
(Russakovsky et al., 2015), CIFAR100 (Krizhevsky et al.l [2009), and CUB200 (Wah et al.| 2011},
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Table 2: Ablation studies on three datasets to investigate the effects of our proposed method. “FINAL” refers
to the accuracy of the last session; “AVERAGE” is the average accuracy of all sessions; “PD” denotes the
performance drop, i.e., the accuracy difference between the first and the last sessions.

MIS FCL SAM mini-ImageNet CIFAR100 CUB200

FINALT AVERAGEt PD| | FINALtT AVERAGET PD| | FINALT AVERAGEt PDJ

v 56.96 66.34 25.11 | 5745 68.05 2597 | 60.69 67.61 19.31
v 60.67 70.05 23.29 | 58.75 69.15 2535 | 60.35 67.69 20.23

v v 60.66 70.44 23.70 | 58.08 69.22 25.77 | 60.66 67.75 19.92

v v 56.82 66.40 25.61 | 56.92 67.48 26.38 | 60.82 67.53 19.21
v v 60.36 70.17 2399 | 5884 69.11 25.11 | 60.92 67.89 19.52
v v v 61.01 70.75 23.11 | 59.20 69.73 24.85 | 61.70 68.45 18.93

and compare it with state-of-the-art methods. We also perform ablation studies to validate each
component. Detailed experimental setups can be found in Appendix [A]
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Figure 3: Performance curves of our method comparing to state of-the-art FSCIL methods on three datasets.
We annotate the performance gap after the last session between MetaAdapter and the runner-up method at the
end of each curve.

4.1 PERFORMANCE ON BENCHMARKS

We present the accuracy after each session for the benchmark datasets mini-ImageNet, CIFAR100,
and CUB200 in Figure 3] with detailed experimental results provided in Table([T] Table 3] (Appendix
[B), and Table[6](Appendix [B), respectively. As shown in Figure 3] our method consistently achieves
superior performance across all sessions on mini-ImageNet, CIFAR100, and CUB200 compared to
previous studies. Specifically, compared to the NC-FSCIL method (Yang et al., [2023)), which has
demonstrated strong performance in FSCIL, our approach improves the average performance by
2.93% on mini-ImageNet, 1.87% on CIFAR100, and 1.17% on CUB200. We also achieve a final
accuracy increase of over 2.7% on both mini-ImageNet and CIFAR100, and an improvement of
2.26% on CUB200. The above observations indicate that our method can effectively adapt to novel
classes with limited data and enhance generalization ability of the model.

4.2 ABLATION STUDIES

We first validate our three key components: the meta-initialization strategy (MIS) for adapters in
Section [3.3] the feature compactness loss (FCL) and sharpness-aware minimization (SAM) in Sec-
tion[3.4] Following this, we conduct hyper-parameter sensitivity test experiments.

Validation of Key Components. We conducted experiments with different combinations of our
three key components to evaluate their individual and collective contributions to the model’s per-
formance. From the results in Table 2] we can observe the contribution of each component to the
overall performance. When only MIS is applied, the model demonstrates significant improvements
compared to other methods, particularly in maintaining a high average accuracy across all datasets.
However, the addition of FCL and SAM further enhances the performance by reducing the perfor-
mance drop (PD) between sessions. Across mini-ImageNet, CIFAR100, and CUB200, adding both
FCL and SAM consistently yields the lowest PD values of 23.11, 24.85, and 18.93, respectively,
while also achieving the highest final accuracies of 61.01, 59.20, and 61.70. These results confirm
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Table 3: Base, Incremental, and Harmonic Mean accuracy across sessions on CIFAR100. “Avg.” is the average
accuracy of all sessions. The Harmonic Mean, following the work of |[Peng et al.[(2022), is used to evaluate the
balanced performance between the base and new classes.

Accuracy in each session (%)

Method Class Group 0 i 3 3 3 3 3 7 3 Avg.
Base 8252 79.55 78.63 7798 77.60 7598 7445 75.138 7398 77.32

NC-FSCIL (Yang et al.|2023)  Incremental - 44.00 41.60 36.47 3195 3132 3397 3131 2930 34.99
Harmonic Mean - 56.66 54.41 49.70 4526 4436 46.65 4421 4198 47.90
Base 84.05 81.73 80.50 79.53 7848 7742 7678 7623 7517 78.88

MetaAdapter (ours) Incremental - 4440 43.10 40.07 37.70 36.24 37.07 3629 3525 38.76
Harmonic Mean - 57.54 56.14 5329 5093 4937 49.99 49.17 4799 51.80

that the combination of MIS, FCL, and SAM significantly improves the model’s performance by
balancing stability and plasticity across sessions.
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Figure 4: Hyper-parameter Analysis.

Hyper-Parameter Sensitivity. In Eq. (3), Eq. (TT) and Eq. (12), three key hyper-parameters are
involved during training: wy, wkq and w,. We conducted a hyper-parameter search to determine
suitable values for wy and wyg by exploring their combinations. As observed from Figure Eka),
our model achieves satisfactory performance on the mini-ImageNet dataset when using a relatively
larger value for wyqg and a smaller value for wy. Moreover, the model’s performance remains robust
across a wide range of values for these two hyperparameters, with wyq ranging from 1.0 to 3.0 and
wge) ranging from 0.5 to 2.0. This is because the model can prevent more knowledge from being
forgotten with the help of a larger knowledge distillation weight wyy. However, while the feature
compactness loss can help to prevent feature representations from becoming overly dispersed, an
excessively large coefficient for wg can negatively impact the classification performance. Addi-
tionally, consistent experimental results are observed across the other two datasets. As a result, we
set wg) = 1.0 and wyg = 1.0 respectively throughout our experiments.

In addition, we analyze the final accuracy fluctuation under different adapter weights w, which con-
trols the strength of feature representation adjustments by the adapters in Eq. (I2). The larger value
of w, enhances the model’s attention to the knowledge brought by the newly expanded features. As
depicted in Figure[d] (b), the accuracy improves initially as w, increases, which allows the model to
better learn new class knowledge. However, as w, becomes excessively large, the expanded feature
representations start to interfere with the performance of the original backbone, leading to a decline
in accuracy. The optimal w, for three datasets is 0.15, 0.20 and 0.25, respectively. For classes
from the fine-grained dataset CUB200 that share similar appearance, a smaller w, is required to
leverage more knowledge from the base stage. To the contrary, for classes from mini-ImageNet and
CIFAR100, which are less semantically related, a relatively larger w, is preferable.

4.3 FURTHER ANALYSES

Pseudo Way/Shot. As discussed in Section [3.3] MetaAdapter requires sampling few-shot tasks
from the base data for the meta-training stage. We vary the pseudo-incremental way across
{1,5,10,15,20} and the pseudo-incremental shot across the same values, resulting in 25 differ-
ent configurations to evaluate their influence on the final accuracy on CIFAR100. We can infer
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from Figure fc) that MetaAdapter with prefer moderate pseudo-training way and shot settings, i.e.,
training with 10-way and 10-shot achieves best performance, with an accuracy of 59.20%. Further-
more, it is also evident that the influence of the pseudo-incremental way is stronger than that of the
pseudo-incremental shot.

Layer Locations for Adapter Placement. We also conduct
ablation experiments to explore the impact of selecting dif- Taple 4 Impact of residual layer selec-
ferent residual layers for adapter insertion, focusing on the tion for adapter on CUB200.

residual blocks of the ResNet architecture as described by |[He
et al] (2016). As shown in Table [4] inserting adapters only

x i N Layer Locations | Final Acc.
into the last residual layer of conv5_x yields a final accuracy last resblock of convs x 58.96
of 58.96%, highlighting the model’s limited capacity to adapt convS.x 5921
. . . conv4~5_x 60.76
to new tasks. On the other hand, placing adapters in all resid- conv3~5x 59.99
ual layers increases the number of parameters excessively, but conv3~d.x 61.70
. . R conv2~4_x 60.66
slightly lowers accuracy to 58.81%, suggesting a risk of over- conv2~5_x 60.11

fitting due to excessive parameters especially in few-shot sce- all resblocks of backbone gy | 58.81

narios. Finally, our model achieves the best trade-off between

stability and plasticity when adapting the intermediate residual layers (i.e., conv3_x to conv4 _Xx).
This is because the earlier layers are primarily involved in general feature extraction, while the later
layers have a more significant impact on the classification performance of previous tasks.

Trade-off between Base and Novel Classes. For a deeper understanding of the challenges in FS-
CIL, we analyze the model’s ability to adapt to novel classes while preserving base knowledge by
examining the individual accuracy of both base and novel classes, along with the harmonic mean.
Table [3| shows that our approach outperforms the second-best result on novel classes by 6% in the
final session which highlights the effectiveness of the meta-initialization strategy for adapters. At
the same time, we still maintain competitive base class accuracy, as the adapter integration shows no
significant forgetting. Finally, the highest harmonic mean demonstrates that our approach achieves
a superior balance between performance on base and novel classes.

5 CONCLUSION

In this paper, we present a novel framework that leverages meta-initialized adapters to expand and
strengthen feature representations for FSCIL. By applying meta-learning during the base session,
we effectively train the adapters to capture generalizable knowledge, enabling the model to learn
efficiently from limited task samples. Furthermore, a novel loss function is used to drive features
closer together and prevent excessive dispersion in the embedding space. During incremental ses-
sions, we tune the adapters to refine feature representations, which allows the model to effectively
accommodate new knowledge. Through extensive experiments and comprehensive analysis, our
approach consistently surpasses previous methods and sets a new state-of-the-art.
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public health, privacy, fairness, security, efc. All authors affirm compliance with the ICLR Code of
Ethics.

Reproducibility Statement. All datasets used in this paper are public and have been cited. Please
refer to Appendix [A] for the dataset descriptions and the implementation details of our experiments.
The source code necessary for reproducing all results is provided as part of the supplementary ma-
terials.

REFERENCES
Noor Ahmed, Anna Kukleva, and Bernt Schiele. Orco: Towards better generalization via orthog-

onality and contrast for few-shot class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 28762-28771, 2024.

10



Under review as a conference paper at ICLR 2025

Zhixiang Chi, Li Gu, Huan Liu, Yang Wang, Yuanhao Yu, and Jin Tang. Metafscil: A meta-learning
approach for few-shot class incremental learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14166-14175, 2022.

Songlin Dong, Xiaopeng Hong, Xiaoyu Tao, Xinyuan Chang, Xing Wei, and Yihong Gong. Few-
shot class-incremental learning via relation knowledge distillation. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 1255-1263, 2021.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
for continual learning with dynamic token expansion. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 9285-9295, 2022.

Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
sarial continual learning. In European Conference on Computer Vision, pp. 386—402. Springer,
2020.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of neural
architectures for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12365-12375, 2020.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021.

Ian J Goodfellow, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. stat, 1050:4, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770-778, 2016.

Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu Sebastian, and Ab-
bas Rahimi. Constrained few-shot class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9057-9067, 2022.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149-5169, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700-4708, 2017.

Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic meta-learning for few-shot learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11719-11727, 2019.

Rajasegaran Jathushan, Hayat Munawar, H Salman, Khan Fahad Shahbaz, and Shao Ling. Random
path selection for incremental learning. Advances in Neural Information Processing Systems,
2019.

Menelaos Kanakis, David Bruggemann, Suman Saha, Stamatios Georgoulis, Anton Obukhov, and
Luc Van Gool. Reparameterizing convolutions for incremental multi-task learning without task
interference. In European Conference on Computer Vision, pp. 689—707. Springer, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935-2947, 2017.

11



Under review as a conference paper at ICLR 2025

Huan Liu, Li Gu, Zhixiang Chi, Yang Wang, Yuanhao Yu, Jun Chen, and Jin Tang. Few-shot
class-incremental learning via entropy-regularized data-free replay. In European Conference on
Computer Vision, pp. 146-162. Springer, 2022.

Jinlu Liu, Liang Song, and Yongqgiang Qin. Prototype rectification for few-shot learning. In Com-
puter Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part I 16, pp. 741-756. Springer, 2020.

Noel Loo, Siddharth Swaroop, and Richard E Turner. Generalized variational continual learning. In
International Conference on Learning Representations, 2020.

Nikhil Mehta, Kevin Liang, Vinay Kumar Verma, and Lawrence Carin. Continual learning using
a bayesian nonparametric dictionary of weight factors. In International Conference on Artificial
Intelligence and Statistics, pp. 100-108. PMLR, 2021.

Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: inves-
tigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in
Psychology, 4:504, 2013.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Can Peng, Kun Zhao, Tianren Wang, Meng Li, and Brian C Lovell. Few-shot class-incremental
learning from an open-set perspective. In European Conference on Computer Vision, pp. 382—
397. Springer, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2001-2010, 2017.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8119-8127, 2018.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in Neural Information Processing Systems,
28, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In International Conference
on Learning Representations, 2019.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In International Conference on Machine Learning, pp. 4528-4537. PMLR, 2018.

Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-Ming Wu. Overcoming
catastrophic forgetting in incremental few-shot learning by finding flat minima. Advances in
Neural Information Processing Systems, 34:6747-6761, 2021.

Zeyin Song, Yifan Zhao, Yujun Shi, Peixi Peng, Li Yuan, and Yonghong Tian. Learning with
fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
24183-24192, 2023.

12



Under review as a conference paper at ICLR 2025

Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-
shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12183-12192, 2020.

Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, and Prayag Tiwari. A survey on few-shot
class-incremental learning. Neural Networks, 169:307-324, 2024.

Eleni Triantafillou, Hugo Larochelle, Jake Snell, Josh Tenenbaum, Kevin Jordan Swersky, Mengye
Ren, Richard Zemel, and Sachin Ravi. Meta-learning for semi-supervised few-shot classification.
In International Conference on Learning Representations, 2018.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Qi-Wei Wang, Da-Wei Zhou, Yi-Kai Zhang, De-Chuan Zhan, and Han-Jia Ye. Few-shot class-
incremental learning via training-free prototype calibration. Advances in Neural Information
Processing Systems, 36, 2024.

Ye Wang, Guoshuai Zhao, and Xueming Qian. Improved continually evolved classifiers for few-shot
class-incremental learning. IEEE Transactions on Circuits and Systems for Video Technology, 34
(2):1123-1134, 2023.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 374-382, 2019.

Ziyang Wu, Christina Baek, Chong You, and Yi Ma. Incremental learning via rate reduction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1125—
1133, 2021.

Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip Torr, and Dacheng Tao. Neural collapse
inspired feature-classifier alignment for few-shot class-incremental learning. In International
Conference on Learning Representations, 2023.

Sung Whan Yoon, Do-Yeon Kim, Jun Seo, and Jaekyun Moon. Xtarnet: Learning to extract task-
adaptive representation for incremental few-shot learning. In International Conference on Ma-
chine Learning, pp. 10852-10860. PMLR, 2020.

Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu. Few-shot incremental
learning with continually evolved classifiers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12455-12464, 2021.

Jinghua Zhang, Li Liu, Olli Silven, Matti Pietikédinen, and Dewen Hu. Few-shot class-incremental
learning: A survey. arXiv preprint arXiv:2308.06764, 2023.

Linglan Zhao, Jing Lu, Yunlu Xu, Zhanzhan Cheng, Dashan Guo, Yi Niu, and Xiangzhong Fang.
Few-shot class-incremental learning via class-aware bilateral distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11838-11847, 2023.

Kecheng Zheng, Wu Liu, Lingxiao He, Tao Mei, Jiebo Luo, and Zheng-Jun Zha. Group-aware label
transfer for domain adaptive person re-identification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5310-5319, 2021.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9046-9056, 2022a.

Da-Wei Zhou, Han-Jia Ye, Liang Ma, Di Xie, Shiliang Pu, and De-Chuan Zhan. Few-shot class-
incremental learning by sampling multi-phase tasks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(11):12816—-12831, 2022b.

13



Under review as a conference paper at ICLR 2025

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation
and self-supervision for incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5871-5880, 2021a.

Kai Zhu, Yang Cao, Wei Zhai, Jie Cheng, and Zheng-Jun Zha. Self-promoted prototype refine-
ment for few-shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6801-6810, 2021b.

Yixiong Zou, Shanghang Zhang, Yuhua Li, and Ruixuan Li. Margin-based few-shot class-
incremental learning with class-level overfitting mitigation. Advances in Neural Information
Processing Systems, 35:27267-27279, 2022.

14



Under review as a conference paper at ICLR 2025

A APPENDIX: EXPERIMENTAL SETUPS

Datasets and Evaluation. Following mainstream settings, our experiments are conducted on three
benchmark datasets: mini-ImageNet (Russakovsky et al., 2015), CIFAR100 (Krizhevsky et al.,
2009), and CUB200 (Wabh et al., 2011). mini-ImageNet is a variant of ImageNet, including 60,000
images with an image size of 84 x 84 from 100 chosen classes. CIFAR100 is composed of 60,000
tiny images of size 32 x 32 from 100 categories. CUB200 is a fine-grained classification dataset
for 200 bird species with similar appearance in a resolution of 224 x 224. For mini-ImageNet and
CIFAR100, 60 categories are selected as base classes (¢ = 0) while the remaining are split into 8
incremental sessions (1 < ¢ < 8) with only 5 training examples per novel class (i.e., 5-way 5-shot).
As for the CUB200 dataset, 100 categories are selected as the base training sets, while the rest forms
10-way 5-shot tasks for 10 sessions in total.

Training Details. Previous studies commonly use ResNet-12, ResNet-18, and ResNet-20 (He
et al.|[2016) for FSCIL experiments. For mini-ImageNet and CIFAR100, we use ResNet-12 follow-
ing (Hersche et al.| [2022; [Yang et al., 2023)), and we first pre-train the model on half of the base
classes to initialize the feature extractor. For CUB200, we use ResNet-18 (pre-trained on ImageNet)
following other studies. In the base session, we first meta-train the adapters for 30 epochs across
all datasets. We set « = 0.05, 3 = 0.01 for CIFAR100, & = 0.01, = 0.1 for mini-ImageNet
and o = 0.001, 8 = 0.001 for CUB200. Following the meta-training of adapters, the backbone is
trained on base session data. For CIFAR100 and mini-ImageNet, the training is conducted with a
learning rate of 0.1, a batch size of 256, and for 1000 epochs. The cosine scheduler is used to adjust
the learning rate. For CUB200, the backbone is trained with a learning rate of 0.004, a batch size of
128, and epochs of 400. In each incremental session, we further tune the adapters for 1-5 iterations
using a learning rate of 0.001 on CUB200, 0.01 on mini-ImageNet, and 0.05 on CIFAR100. Be-
fore computing the cross-entropy loss, a commonly used temperature scalar is applied to adjust the
distribution of the output logits. For example, the original output logits of instance x; are denoted

as O; € RP . The logits used to compute cross-entropy loss are denoted as O— The 7, is set to
64 for mini- ImageNet and CIFAR100 datasets and 32 for CUB200 dataset. The selection of other
hyper-parameters is provided in Section

B APPENDIX: MORE RESULTS

Our results on CIFAR100, as shown in Table[5] indicate that MetaAdapter outperforms all compared
methods in terms of final accuracy improvement, achieving a notable gain of 69.73%. Similarly, our
experimental results on CUB200, shown in Table [6] demonstrate that we achieve better accuracy
across all sessions compared to most baseline methods. Although we do not surpass NC-FSCIL in
the third session, we still maintain the highest average accuracy among all methods.

Impact of Adapter Structure. To investigate how the struc-

ture of residual adapters affects expandable representation dur- Taple 7: Performance under different
ing training, we design the following experiments. We eval- expanding structures on CUB200.
uate four different convolutional block structures within the
residual component: 1 x 1 convolution, a combination of 1 x 1
convolution with BatchNorm, 3 x 3 convolution, and a combi- oy ol o3 i
nation of 3 x 3 convolution with BatchNorm. As shown in 3x3convtbn | 6043 6784 2002
Table [7] the performance of the 1 x 1 convolution and the ORI I S o
combination are similar, while the 3 x 3 convolution results in

slightly lower accuracy. This indicates that the 1 x 1 convolu-

tion structure is sufficient for learning the representation of new classes without requiring additional
parameters. To ensure consistency in feature map dimensions during integration, the stride and
padding configurations of the 1 x 1 adapters are aligned with the backbone convolutional layers. For
example, if the backbone uses a 3 x 3 convolutional kernel with padding = 1, the 1 x 1 adapter kernel
is aligned at the center with no additional padding (padding = 0). This ensures that the integrated
kernel produces the same output feature maps as the original backbone.

Adapter Structure ‘ FINALT AVERAGEt PDJ
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Table 5: Performance of FSCIL in each session on CIFAR100 and comparison with other methods. “Avg.” is
the average accuracy of all sessions. “PD” denotes the performance drop, i.e., the accuracy difference between
the first and the last sessions. “Final Improv.” calculates the improvement of our method in the last session.

Backbone  Methods Accuracy in each session (%) Ave. PD Final
0 1 2 3 4 5 6 7 8 Improv.
iCaRL (Rebuffi et al. 72017) 64.10 5328 41.69 34.13 2793 2506 2041 1548 13.73 32.87 5037 +44.81
TOPIC (Tao et al.|[2020) 64.10 55.88 47.07 45.16 40.11 3638 33.96 31.55 2937 42.62 3473 +29.17
ERL++ (Dong et al.|[2021) 73.62 6822 65.14 61.84 5835 5554 5251 50.16 4823 59.29 2539 +10.31
F2M (Shi et al.||2021) 7145 68.10 64.43 60.80 57.76 5526 53.53 51.57 4935 59.14 2210 +9.19
ResNet-18 Replay (Liu et al.}[2022) 7440 7020 66.54 6251 59.71 56.58 54.52 5239 50.14 60.77 2426 +8.40
ALICE (Peng et al.|[2022) 79.00 70.50 67.10 63.40 61.20 5920 58.10 56.30 54.10 6321 2490 +4.44
BiDist (Zhao et al.|[2023) 79.45 7520 7134 6740 6450 61.05 5873 56.73 5431 6542 2514 +4.23
CEC+ (Wang et al.}[2023) 8125 7723 7330 6941 66.69 6393 62.16 59.62 5741 67.50 23.84 +1.13
MetaAdapter (oursj 82.00 78.34 7413 7033 67.09 6424 62.67 60.16 5854 68.61 23.46
CEC (Zhang et al.|[2021) 73.07 68.88 6526 61.19 58.09 5557 5322 5134 49.14 5953 2393 +3.32
MetaFSCIL (Chi et al.|[2022) 7450 70.10 66.84 62.77 5948 56.52 5436 5256 49.97 60.79 2453  +2.49
ResNet-20  FACT (Zhou et al.|[2022a} 78.83 7271 68.63 6471 6148 5834 56.00 53.85 51.84 6293 2699 +0.62
TEEN (Wang et al.|[2024) 7693 7252 6829 6445 61.08 58.14 5570 5342 5149 6245 2544  +0.97
MetaAdapter (ours) 76.83 72.60 6828 6490 61.83 59.34 57.60 55.78 52.46 63.29 2437
NC-FSCIL (Yang et al.|[2023)  82.52 76.82 73.34 69.68 66.19 62.85 6096 59.02 56.11 6750 2641 +3.09
ResNet-12 C-FSCIL (Hersche et al.|[2022) 77.47 7240 6747 6325 59.84 56.95 5442 5247 5047 61.64 2699 +8.73
OrCo (Ahmed et al.|[2024) 80.08 7146 6495 68.65 57.60 56.68 56.16 54.62 52.19 6138 2789 +7.01
MetaAdapter (ours) 84.05 78.86 7516 71.64 6829 6531 63.54 61.52 59.20 69.73 24.85

Table 6: Performance of FSCIL in each session on CUB200 and comparison with other methods. “Avg.” is the
average accuracy of all sessions. “PD” denotes the performance drop, i.e., the accuracy difference between the
first and the last sessions. “Final Improv.” calculates the improvement of our method in the last session.

Backbone  Method Accuracy in each session (%) Ave. PD Final
0 1 2 3 4 5 6 7 8 10 Improv.
iCaRL (Rebuffi et al.}{[2017) 68.68 52.65 48.61 44.16 36.62 29.52 27.83 2626 2401 21.16 36.67 47.52 +40.54
TOPIC (Tao et al.|[2020) 68.68 6249 54.81 4999 4525 4140 3835 3536 3222 2628 4392 4240 +35.42
ERL++ (Dong et al.|[2021) 7352 71.09 66.13 6325 5949 5889 58.64 5772 56.15 5228 61.17 2124 +9.42
CEC (Zhang et al.|2021) 75.85 7194 6850 6350 6243 5827 57.73 55.81 54.83 5228 61.33 2357 +9.42
F2M (Shi et al.|2021) 77.13  73.92 7027 66.37 6434 61.69 60.52 59.38 57.15 55.89 6396 2124 +5.81
Replay (Liu et al.}[2022) 7590 72.14 68.64 63.76 6258 59.11 57.82 5589 5492 5239 6152 2351 +9.31
MetaFSCIL (Chi et al.|2022) 7590 72.41 68.78 64.78 62.96 59.99 5830 56.85 5478 52.64 6193 2326 +9.06
ResNet-18  FACT (Zhou et al.|[2022a) 7891 7519 71.34 66.09 6559 62.06 60.92 5931 57.65 5596 6455 2295 +5.74
TEEN (Wang et al.|[2024) 79.02 7479 7133 66.56 66.05 63.09 62.04 60.83 59.55 58.09 6548 2093 +3.61
BiDist (Zhao et al.|[2023} 79.12 7499 70.87 6730 6589 6345 6140 60.11 58.61 5748 6522 21.64 +4.22
ALICE (Peng et al.||2022} 7740 7270 70.60 6720 6559 6340 6290 6190 60.50 60.10 6575 17.30 +1.60
NC-FSCIL (Yang et al.[[2023)  80.45 7598 7230 70.28 68.17 65.16 6443 6325 60.66 59.44 67.28 21.01 +2.26
CEC+ (Wang et al.|[2023) 7946 76.11 73.12 69.31 6797 6586 6450 63.83 6220 60.97 67.76 1849 +0.73
OrCo (Ahmed et al.}[2024) 7559 7274 6458 60.12 60.16 5804 5841 5796 5697 5793 6186 17.66 +3.77
MetaAdapter (ours) ; 80.63 76.85 73.62 69.75 69.13 66.23 65.67 6451 6229 6170 6845 1893

C APPENDIX: VISUALIZATIONS OF EXPANDED FEATURES

In this part, we provide more analyses of our proposed MetaAdapter. In Figure [5] we visualize
the feature embeddings and corresponding classification weights (i.e., prototypes) from the mini-
ImageNet test set, comparing the results using a frozen extractor and our proposed MetaAdapter
after adaptation to novel classes. For clarity, we randomly select 5 base classes and 5 novel classes,
with features from 100 test samples per class. As illustrated in the left part of Figure [5] the novel
class prototypes tend to overlap and exhibit confusion with each other, with a less compact feature
space when MetaAdapter is not applied. This occurs because the model, trained exclusively on base
categories, fails to effectively adapt to novel concepts. In contrast, after applying MetaAdapter, these
classes become more separable, and the feature space becomes more compact, as shown in the right
part of Figure 5]
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(a) Feature space with a frozen extractor (b) Feature space with MetaAdapter

Figure 5: T-SNE (Van der Maaten & Hintonl [2008) plots of test samples and the corresponding classification

weights/prototypes in the final session from mini-ImageNet with a frozen extractor (Wang et al.l 2024) or our
proposed MetaAdapter. Categories are represented by different colors. Best viewed in color.

D APPENDIX: ANALYSES OF INCREMENTAL SHOT

To further validate the effectiveness of our proposed method, we vary the shot number (i.e., the
number of training samples in each incremental class) in the original N-way K -shot few-shot class
incremental learning task. As shown in Figure [§] our method demonstrates robustness even in ex-
treme cases where only a single training sample (1-shot) is available. Moreover, as the number
of training samples from novel classes increases, we observe corresponding performance improve-
ments. This indicates that our approach can better adapt to incremental classes with additional
training data, thereby proving the extendibility of our method.
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Figure 6: Influence of different shot settings on incremental session accuracy.

E APPENDIX: ANALYSES OF CONFUSION MATRIX

To gain deeper insights into the specific challenges of the few-shot class incremental learning task,

we present the confusion matrix results for (a) learning with afrozen extractor (Wang et al., [2024)
and (b) MetaAdapter without FCL and (c) our full method in Figure[7}

We can see from Figure [7[a) that learning with a frozen extractor specializes in classifying base
classes with concentrated values on the diagonal of these categories. However, it performs poorly
on novel classes with much darker diagonal and and scattered prediction distribution, since the
frozen extractor is only trained on the base training set without adaptation to novel classes.
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Adapting with meta-initialized adapters in Figure [7(b) can better handle novel class samples, but
struggles to sufficiently preserve base knowledge, resulting in a darker diagonal on base classes
compared to Figure[7|c). It is because the severe data scarcity of few-shot class incremental learning
not only causes the unique overfitting issue but also aggravates catastrophic forgetting.

As shown in Figure[7|c), with the proposed meta initialized adapters and feature compactness loss,
our full method can address the above difficulties with concentrated values on the diagonal of both

base and novel classes, confirming the observed performance gains in experiments.
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Figure 7: Confusion matrices of baseline approaches and our proposed method on the mini-ImageNet dataset
are presented. The blue lines distinguish base and novel classes. Our method demonstrates significant improve-
ments in prediction accuracy during the final session, as evidenced by a less scattered confusion matrix.

F APPENDIX: DATASETS OF DIFFERENT SEMANTIC SIMILARITIES

To provide a clearer understanding of the semantic characteristics of the benchmark datasets: mini-
ImageNet (Russakovsky et al.,[2015)), CIFAR100 (Krizhevsky et al.,[2009) and CUB200 (Wah et al.,
2011)), we describe the category information of the three datasets. The fine-grained classification
dataset CUB200 consists solely of bird categories with similar appearances, leading to strong se-
mantic correlations between the base and novel classes. It validates the empirical finding that more
knowledge from base classes (i.e., with a smaller value of the coefficient w, in Eq. (I2) of the
main paper) should be transferred for facilitating the learning of novel classes in CUB200 due to
the strong semantic correlations between them. In contrast, images from the mini-ImageNet and
CIFAR100 classification datasets exhibit more diverse visual appearances, with lower semantic sim-
ilarity between base and novel classes compared to CUB200. The first half of the base classes in
mini-ImageNet (indices 1-35) are animal-related (i.e., ‘house finch’, ‘robin’, ‘green mamba’), while
the remaining base classes (indices 36-60) and the novel classes (indices 61-100) consist largely of
inorganic objects. For CIFAR100, the dataset contains 100 classes grouped into 20 superclasses,
covering a wide range of categories such as ‘aquatic mammals’, ‘large carnivores’ and ‘household
devices’. Similar to mini-ImageNet, the semantic differences between these categories are also sig-
nificant, offering diverse visual representation across various domains. Thus, for better handling
these classes, the model should pay more attention to the new few-shot classes by using a larger w,,
which further confirms the results of Figure {b) in our main paper.

18



	Introduction
	Related Work 
	Methodology
	Problem Setting
	Overview of MetaAdapter Framework
	 Adapter Meta-training
	Backbone Pretraining
	Few-Shot Adaptation

	Experiments
	Performance on Benchmarks 
	Ablation Studies 
	Further Analyses

	Conclusion
	Appendix: Experimental Setups
	Appendix: More Results
	Appendix: Visualizations of Expanded Features
	Appendix: Analyses of Incremental Shot
	Appendix: Analyses of Confusion Matrix
	Appendix: Datasets of Different Semantic Similarities

