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Abstract

We address the problem of Bayesian re-
inforcement learning using efficient model-
based online planning. = We propose an
optimism-free Bayes-adaptive algorithm to
induce deeper and sparser exploration with a
theoretical bound on its performance relative
to the Bayes optimal as well as lower compu-
tational complexity. The main novelty is the
use of a candidate policy generator, to gen-
erate long-term options in the planning tree
(over beliefs), which allows us to create much
sparser and deeper trees. Experimental re-
sults on different environments show that in
comparison to the state-of-the-art, our algo-
rithm is both computationally more efficient,
and obtains significantly higher reward over
time in discrete environments.

1 INTRODUCTION

In Reinforcement Learning (Sutton and Barto, 1998),
an agent sequentially interacts with an unknown en-
vironment with the objective of maximising its total
reward over time. As the environment is unknown to
the agent, it must carefully balance its actions in or-
der to learn more about the environment (exploration)
and obtain reward with high certainty (exploitation)
as well. This dilemma of balancing exploration in the
environment with exploiting the existing knowledge is
referred to as the exploration—exploitation trade-off.

Bayesian Reinforcement Learning (BRL) solves this
trade-off by constructing and using a probability dis-
tribution over possible models of the environment and
trying to maximise total reward in expectation while
marginalising over all possible models. This automat-
ically takes into account the uncertainty about the en-
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vironment. However, this “Bayes-optimal” policy is
generally intractable as it requires performing dynamic
programming over an exponentially large tree. Sim-
pler solutions, such as Thompson sampling (Thomp-
son, 1933), are known to be nearly optimal in some set-
tings, such as multi-armed bandits (Kaufmann et al.,
2012). Alternatively, one can construct approximate
versions of the planning tree through Monte Carlo roll-
outs, sparse sampling, and limited look-ahead (Dimi-
trakakis, 2013a; Castro and Precup, 2010; Guez et al.,
2012).

In this paper, we introduce the DSS (Deeper Sparser
Sampling) algorithm to alleviate problems with exist-
ing approximations of the Bayes-optimal planner. DSS
uses policy samples to create a deep tree with a smaller
branching factor. We show that at any step, our algo-
rithm produces an action that is with high probability
close to the Bayes-optimal, and demonstrate experi-
mentally that it outperforms the state-of-the-art BRL
methods with significantly less computation.

The rest of the paper is organised as follows. In Sec-
tion 2, we describe the framework of Markov Decision
Processes (MDP) and Bayesian reinforcement learn-
ing. In Section 2.3, we discuss related work and the
outline of our contribution. Section 3 elaborates the
DSS algorithm. Then, we follow up by theoretical and
experimental analysis of DSS in Section 4 and 5 re-
spectively. Some technical proofs are relegated to the
Appendix.

2 BACKGROUND AND RELATED
WORK

2.1 Markov Decision Process (MDP)

Markov Decision Process (MDP) is a discrete-time
stochastic process that provides a formal framework
for reinforcement learning problems.

Definition 1. An MDP u = (S, A, P,R) is composed
of a state space S, an action space A, a reward distri-
bution R and a transition function P. The transition
function P £ P, (sy1]s¢,ar) dictates the distribution
over next states siy1 given the present state-action pair
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Figure 1: Visualising tree expansion. wt] denotes the information state at time ¢ given action i and having

observed state j.

(styar). The reward distribution R = P, (re41|st, ar)
dictates the obtained reward with r € [0,1]. We shall
also use Py (i1, St41|5¢, ar) to denote the joint distri-
bution of next states and actions of MDP .

A policy m belonging to a policy space II is an algo-
rithm for selecting actions given present state and pre-
vious observations. A policy is Markov if at any time
t, the action a; € A chosen by the policy only depends
on the current state s;, so that the action distribution
can be written as m(a; | s¢)-

The value function of a policy for a specific MDP is
the expected sum of discouted rewards obtained from
time ¢ to T while selecting actions in the MDP u:

T
= EZ(Z Vkrt—&-k’ | ¢ =), (1)
k=1

where v € (0, 1] is called the discount factor and E7
denotes the expectation under the Markov chain gen-
erated by a policy m acting on the MDP pu. Let us
define the infinite horizon discounted value function
of a policy m on an MDP p as VT 2 limy e VOTFT“
Now, we define the optimal value function to be
Vi £ max, V7, and the optimal policy to be 7}, =
argmax, V7. If the MDP is known, the optimal pol-
icy and value function is computable via backwards
induction (alias, value iteration) (Puterman, 1994).

2.2 Bayes Adaptive MDP (BAMDP)

In reality, the underlying MDP is unknown to the
reinforcement learning algorithm. This amounts to
a trade-off between information seeking actions for
performing better exploration and acting optimally
given the current knowledge i.e. exploitation. This
exploration-exploitation trade-off is one of the cen-
tral issues in reinforcement learning. Bayesian Rein-
forcement Learning (BRL), specifically the informa-
tion state formulation (Dearden et al., 1999; Duff,

2002), provides a framework to quantify this trade-
off using Bayesian representation.

Following the Bayesian formulation, we maintain a
belief distribution 3; over the possible MDP models
pu € M.! With an appropriate prior belief Bo(u), we
obtain a sequence of posterior beliefs 8;(u) that rep-
resents our subjective belief over the MDPs at time ¢,
depending on the latest observations. By Bayes’ rule,
the posterior belief at time t + 1 is

Pp,(rt+17st+1|8t7a/t)ﬁt(/’[/ (2)

Brsr(p) = f./\/l (Pes1s Stalse, ar) Be(p')dp'

Now, we define the Bayesian value function v analo-
gously to the MDP value function:

£ [ Vrsdn. 3)
M

Bayesian value function is the average utility that the
decision maker is expected to obtain given its current
belief 8 and policy 7 for selecting future actions. A
policy computed using Bayesian value function can
in general be adaptive, and indeed this holds for the
Bayes-optimal policy. For completeness, we also define
the Bayes-optimal utility vj(s), i.e. the utility of the
Bayes-optimal policy.

max/ V(s (4)

mell

It is well known that by combining the original MDP’s
state s; and belief §; into a hyper-state w;, we ob-
tain another MDP called the Bayes Adaptive MDP
(BAMDP). The optimal policy for a BAMDP is the
same as the Bayes-optimal policy for the correspond-
ing MDP.

'More precisely, we can define a measurable space
(M, 9), where M is the possible set of MDPs, and 9
is a suitable o-algebra.
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Definition 2 (BAMDP). A Bayes Adaptive Markov
Decision Process (BAMDP) ji = (0, A, v, T) is a repre-
sentation for an unknown MDP p = (S, A, P, R) with
a space of information states ) = SxB, where B is an
appropriate set of belief distributions on M. At time t,
the agent observes the information state wy = (s¢, Bt)
and takes action a; € A. We denote the transition
distribution as v(wiyi|we,ar), the reward distribution
as T(ret1|we, at), and A as the common action space.

For each s¢41, the next hyper-state wi11 = (S¢41, Bt+1)
is uniquely determined since f;41 is unique given
(wt, $++1) and can be computed using equation (2).
Therefore the information state w; preserves the
Markov property. This allows us to treat the BAMDP
as an infinite-state MDP with v(wiy1|we,ar), and
T(r¢11|wt, ar) defined as the corresponding transition
and reward distributions respectively. The transition
and reward distributions are defined as the marginal
distributions

V(wt+1|wt,at)é/ Pp,(stJrl'St?at)Bt(:u’)d:uv

M

T(Tt+1‘Wt,at) é/\ P#(Tt+1|stva’t)/8t(lu’)d:u'
M

Though the Bayes-optimal policy is generally adaptive
in the original MDP, it is Markov with respect to the
hyper-state of the BAMDP. In other words, w; repre-
sents a sufficient statistic for the observed history.

Since the BAMDP is an MDP on space of hyper-states,
we can use backwards induction (alias, value iteration)
starting from the set of terminal hyper-states Q1 and
proceeding backwards to T'— 1,...,t following

Vi (w) = maxE[r | w,a] + ’y/Zv(w w, )V (W),
w EQeq1

()

where ;11 is the reachable set of hyper-states from
hyper-state w;. Equation (4) implies Equation (5) and
vice-versa, i.e. that vg(s) = Vi (w) for w = (s, 8) (Ap-
pendix B). Hence, we can obtain Bayes-optimal poli-
cies through backwards induction. Due to the large
hyper-state space, this is only feasible for small hori-
zons T in practice.

2.3 Related Work

BRL was initially investigated in (Silver, 1963; Martin,
1967). The problem of computational intractability of
the Bayes-optimal solution motivated researchers to
design approximate techniques. Dearden et al. (1998,
1999) proposed Bayesian Q-learning and Duff (2003)
proposed a diffusion based approximation of Bayesian
Markov chains. A vast research has been conducted

Algorithm 1 FHTS (Finite Horizon Tree Search)

Parameters: Horizon T
Input: current hyper-state wy, and depth h.
if h =T then
return V(wy) =0
end if
for all actions a do
for all next states sp4+1 do
Br+1 = UpdatePosterior(wp,sp11,a) (eq. 2)
Whtl = (Sh+1; Brt1)
V(wh+1) = ]ZT‘HTS((JJ}LJA7 h + 1)
end for
end for
Q(wn,a) =0
for all wp41,a do
Q(wn, a) += v(wpt1|wn, a) x V(wpt1)
end for
return max, Q(wp, a)

towards model based BRL algorithms, which is com-
prehensively compiled in a survey by Ghavamzadeh
et al. (2015). We classify these algorithms in two cat-
egories: Myopic and Lookahead.

Myopic: Myopic algorithms do not lookahead in fu-
ture, rather they take actions depending on present
information. Thompson sampling (Thompson, 1933)
maintains a posterior distribution over transition mod-
els, samples an MDP and chooses the optimal pol-
icy for the sample. A reformulation of this for BRL
is proposed as Bayesian DP in (Strens, 2000). The
Best Of Sampled Set (BOSS) (Asmuth et al., 2009)
algorithm generalizes this idea to a multi sample op-
timistic approach. Monte-Carlo Utility Estimates for
BRL (MCBRL) (Dimitrakakis, 2011, 2013b) general-
izes these ideas to lower bound policies and gradient
based value function estimates for improved perfor-
mance.

Lookahead: The simplest algorithm is to calculate
and solve the BAMDP up to some horizon T', as out-
lined in Algorithm 1 and is illustrated in Figure la. A
simple modification to it is Sparse sampling by Kearns
et al. (1999), which instead only iterates over a set
of sampled states. When applied to BAMDP belief
tree?, the Kearns algorithm would still have to con-
sider all primitive actions. Wang et al. (2005) im-
proved upon this by using Thompson sampling to only
consider a subset of promising actions. High branch-
ing factor of the tree still makes planning with deep
horizon computationally expensive. Thus, more scal-
able algorithms, such as BFS3 (Asmuth and Littman,

ZWe freely use the term ‘tree’ or ‘belief tree’ to denote
the planning tree generated by the algorithms in the hyper-
state space of BAMDP.
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2011) and BAMCP (Guez et al., 2012), were proposed.
Similar to (Wang et al., 2005), BFS3 also selects a sub-
set of actions but with an optimistic action selection
strategy, though the backups are still performed us-
ing Bellman equation. BAMCP takes a Monte-Carlo
approach to sparse lookahead in belief-augmented ver-
sion of Markov decision process. BAMCP also uses
optimism for action selection.Unlike BFS3, the next
set of hyper-states are sampled from an MDP sampled
at the root3. Since posterior inference is expensive for
any non-trivial belief model, BAMCP further applies
lazy sampling and rollout policy, inspired by their ap-
plication in tree search problems Kocsis and Szepesvéari
(2006).

Our contribution: Unlike other approaches, we fo-
cus on reducing the branching factor by considering
K-step policies instead of primitive actions when plan-
ning. These policies are generated through (possi-
bly approximate) Thompson sampling. This approach
is rounded by using Sparse sampling (Kearns et al.,
1999). The reduced branching allows us to build a
deeper tree. The intuition why this might be desirable
is that if the belief changes slowly enough, an adap-
tive policy that is constructed out of a tree of K-step
stationary policies will still be approximately optimal.
This intuition is supported by the theoretical analysis
in Section 4. In Section 4, we prove that our algo-
rithm results in nearly-optimal planning under certain
mild assumptions regarding the belief. Section 5 ex-
perimentally shows that we get better policies than the
state-of-the-art with less computation time. The free-
dom to choose a policy generator allows the algorithm
scale smoothly. We choose Policy Iteration (PI) and a
variant of Real Time Dynamic Programming (RTDP)
for different sizes of environments.

3 DEEPER & SPARSER
SAMPLING (DSS)

The core idea of DSS algorithm is to plan in the be-
lief tree, not at the individual action level, but at the
level of K-step policies. Figure 1b illustrates this con-
cept graphically. At each time-step ¢, Algorithm 2 is
called with the current state s and belief 8 as input,
with additional parameters controlling how the tree is
approximated. The algorithm then generates the tree
and calculates the value of each policy candidate re-
cursively (for H stages or episodes), in the following
manner:

1. Line 6: Generate N MDPs from the current belief

3Note that ideally the next observations should be sam-
pled from the P(siy1|w:) instead of P(siy1|we, ), i.e. the
next-state marginal at the root belief.

Algorithm 2 DSS
1: Parameters: Number of stages H, steps K, no.
of policies N, no. of samples per policy M, policy
generator P

2: Input: hyper-state w, = (sn, Sn), depth h.
3: if h = KH then
4:  return V(wp) =0
5: end if
6: Hﬁh = {P(Nz)lﬂz “wh,t € 72,1 < N}
7: for all m € Ilg, do
8 Qwp,m) =0
9: for 1to M do
10: R=0,c=+9"k=0
11: Wk = Wh, Sk = Sh, Br = Bn, ar = 7(sn)
12: for k=1,...,K do
13: Skt1 v V(Wit1|wk, ak)
14: Tre1 o T(Tra1|w, ag)
15: R4+=cXrgr1;c=cxry
16: Bk+1 =  UpdatePosterior(wyg, Skt1, ak)
(from eq. 2)
17: end for
18: Q(wp,m)+= R+ DSS(wk, h + K)
19: end for
20: Q(wha 71—)/ =M
21: end for

22: return arg max, Q(wp,7)

B¢, and for each MDP p; use the policy generator
P : u — m to generate a policy m;. This gives a
policy set IIg with |IIg| = N.

2. Line 10-18: Run each policy for K steps, collect-
ing total K-step dicounted reward R in BAMDP.
Note that we sample the reward and next-state
from the marginal (Line 13-14), and also update
the posterior (Line 16).

3. Line 19-21: Make recursive call to DSS at the end
of K steps. Repeat the process just described for
M times. This gives an M-sample estimate of
that policy’s utility vg.

Note that the fundamental control unit that we are
trying to find here is a policy, hence Q-values are de-
fined over (ws,m) tuples. Since we now have policies
at any given tree node, we re-branch only after run-
ning those policies for K steps. Hence we can increase
the effective depth of the belief tree upto H K for the
same computational budget. This allows for deeper
lookahead and ensures that the approximation error
propagated is also smaller as the error is discounted
by v#¥ instead of v. We elaborate this effect in the
theoretical analysis.
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4 THEORETICAL ANALYSIS

The fundamental analysis of Kearns et al. (1999) for
any approximate tree based planning algorithm (like
Algorithm 1) is due to union bound on sampling ap-
proximation of every action-value at each node in the
tree, where bound is obtained due to discounting of er-
ror with increasing depth. In reality, due to exponen-
tial nodes with |A[|S| branching per level, computa-
tional limit is quickly reached and leaf-approximations
are needed. We improve on this approach by imposing
certain assumptions about the belief in the planning
tree and using the duality between Eq.(4) and Eq.(5).

In order to prove that DSS is nearly optimal, we need
two assumptions, and consider an idealized version of
the algorithm, ignoring some approximations done for
computational simplicity.*

Assumption 1. The belief By, in the planning tree is
such that €, < €g/h, where h > 1, ¢j = ||/3’h — Brlh
and Bh 1s the constant belief approximation at the start
of episode h.

The first assumption states that as we go deeper in the
planning tree, the belief error reduces. The intuition
is that if the belief concentrates at a certain rate, then
so does error of Bayes utility for any Markov policy,
by the virtue of its definition (shown in Appendix A,
Lemma (3)). The ¢y denotes a constant dependent on
the current root belief 3.

Assumption 2. Fi(p)B:(n') < ﬁ, where
D(p, p') £ maxs o [ Pu(- | s,0) = P (- | s,0)];-
The second assumption states that belief correlation

across similar MDPs is higher than across dissimilar
ones.

Our algorithm finds a near-Bayes-optimal policy, as
stated in Theorem 1.

Theorem 1. Under Assumptions 1 and 2, Vs € S
1 ch+vK»

N

In M/
VN —q)?

with probability 1—6. Here, T is the horizon, divided by
parameter K into H stages, i.e, T = KH. In addition,
at each node of the sparse tree, we evaluate N policies
for M times.

vgs(s) > vg(s) — (260K1n T

At the same time, the algorithm is significantly
less computationally expensive than basic Sparse

4In particular, the sampled policies are not strictly com-
ing from the Thompson sampling distribution, due to the
use of partial policy iteration or RTDP.

sampling (Kearns et al., 1999) which would take
O((JAIM)T) calls to the generative BAMDP model,
while we require only O((NM)T/X) calls for a T-
horizon problem.

4.1 Proof Overview

Let’s consider the planning process to be computed
till horizon T, which is divided in H episodes each of
length K. Thus, we get T' = KH. Let IIx be the
set of all policies 71 £ {m:}i=1,.. m. Each i is a
concatenation of H, K-horizon policies. Hereafter, we
refer to such policies as K-step policies. Since planning
is divided into episodes, we define the episodic utility
in episode h + 1 as:

%@é&ﬁ%@mwm

Here, (5, is the belief at start of episode h. Simi-
lar to the definition of overall utility in Equation (3),
episodic utility of 7 defines the expected utility of
taking K steps in the BAMDP starting from belief
Bn . Let 75 be the Bayes-optimal policy, WES be
the DSS policy, Wé( the Bayes-optimal adaptive pol-
icy that is restricted to K-step policies, and WES the
Thompson sampling policy, with respective utilities
vt DS K LTS

BB 2 EB B

Now, we write the Bayesian regret of DSS policy rel-
ative to the Bayes-optimal policy and decompose it
in terms of relative regret of the the aforementioned
policies:

|
< s —vfllg 207" Mg, —va o 105® — vl
h

(6)

We bound the first and second term of (6) by Lemmas
1 and 2 below.

Lemma 1 (Anytime Error). Under Assumption 1,

Lemma 2 (Error of Thompson-sampling-distributed
Policy). For any episode belief B, under Assumption 2:

2(KC +~%)
(1=

vp =g Il llp — vf + 05 —vs” + 57 — 0B,

vg — vé(HOO < 2¢pKIn ﬁ

los” = v5°ll. <

Theorem 1 (sketch). Merging the errors due to Any-
time error and Thompson-sampling-distributed error

7_‘,TS
from Lemmas (1) and (2), we obtain vg” (s) > vj(s)—

260K In 1717,( + 2“{5:;“) for all s. Combined with
an additional Hoeffding inequality for last term of

eq.(6) we obtain Theorem (1). O
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5 EXPERIMENTAL ANALYSIS

Experimental protocol. We empirically evaluate
performance of DSS in comparison with three differ-
ent algorithms on four different environments. We give
additional plots in Appendix D, using Python API of
our code®.

Each algorithm has a number of hyperparameters to
choose. Some of which, such as the prior belief, are
common to all algorithms. The remainder are unique
to each algorithm which are tuned in the following
manner:

For each environment p and algorithm 7 combination,
we evaluate the algorithm’s hyperparameter \ over
10 experiments with horizon T and select the value
maximising average cumulative reward over them, i.e.
A (p, ) = argmax, Y210 ST i where 7\ is the
reward sequence of the i-th experiment. The param-
eter sets for each algorithm are detailed in Appendix
C. The final evaluation, and results shown, was per-
formed over 100 runs using the chosen A*. This is done
to avoid selection of the best parameter in hindsight.

Algorithms. In our experiments, we consider four
lookahead algorithms, all of which expand the
BAMDP to a finite horizon.5

Sparser: Alg. 2 with two variants of policy generators:
PI and RTDP. PI refers to exact discounted Policy-
iteration while RTDP refers Barto et al. (1995), where
the RTDP horizon can intuitively be taken as K as we
run the generated policy for next K-steps in the belief
tree.

BAMCPT": The current state-of-the-art. It applies
UCT algorithm in belief tree, combined with root-
sampling and lazy sampling for faster computation.
(Guez et al., 2012)

SBOSS™: A more effective variant of BOSS algorithm.
BOSS algorithm samples multiple MDPs from the be-
lief, creates an extended MDP using the samples, then
solving it to yeild an optimistic policy. (Castro and
Precup, 2010)

BFS37: An optimistic follow-up to Wang et al. (2005),
it performs optimistic action selection in belief tree
planning. It main advantage lies in non-uniform tra-
jectory selection. (Asmuth and Littman, 2011)
Environments. We evaluate on the following envi-
ronments:

®https://github.com/revorg7/DeepSparseSampling

SMyopic algorithms like Thompson sampling were not
excluded. In particular, TS is a special case of SBOSS, but
in our hyperparameter search it was always automatically
excluded.

"We use the implementations from BAMCP paper.

1. Chain: An MDP consisting of 5 states, connected
in a linear chain, with a big reward opposite to the
start state at one corner (Dearden et al., 1998).8

2. DoubleLoop: A 9-state MDP consisting of two
seperate loops, sharing one state in common (Dear-
den et al., 1998).

3. Grid: Two sparse-reward environments, repre-
sented by square grids, of size 5x5 (Grid5) and
10x10 (Grid10), with reward only at goal state. Ini-
tial state is always diagonally opposite to the goal
state.

4. Maze: A grid world with 264 states, consisting of
flags to be collected a various locations, which in-
turn decide the reward value when goal state is fi-
nally reached. The states are encoded by location of
agent, as well as flag status (Dearden et al., 1998).

Shared parameters. Some parameters are shared
by all algorithms. When possible, we reuse the ones
used in (Guez et al., 2012):

e We impose a limit 0.25sec/step for Chain and
DoubleLoop, 1.5sec/step for Maze and lsec/step
for the grid environments. Hyperparameter val-
ues exceeding those limits were excluded from the
hyperparameter search.

e We assume known rewards. We recompute the
optimal action at each step in simulation.

e Experiments last for 77 = 1000 steps in Chain,
DoubleLoop and Grid5, T' = 2000 in Grid10 steps
and in 7" = 20000 in Maze.

e We use a hierarchical Dirichlet (Friedman and
Singer, 1999) on the transition probabilities.

e We use the environment simulators from (Guez
et al., 2012).°

5.1 Analysis of Results

We measure three quantities over 100 trials for each
environment: the mean total reward (Table 1), the
per-step average reward (Figure 2), and the CPU time
(Table 2). The CPU time denotes the time taken per
episode for the best performing parameters.

Table 1 shows the average cumulative reward, a com-
parison metric used in previous works, for each of the

8Note that Chain was not compared in the BAMCP
paper. For all other environments, we used a configuration
identical to experiments in Guez et al. (2012).

?Code: https://github.com/acguez/bamcp
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Figure 2: Moving average performance on log time scale
ALGORITHM CHAIN DouBLELoOP GRIDS GRID10 Mazg
SPARSER-RTDP  358.97+5.15 387.20+0.64 78.74+0.80  44.32+0.89 849.99420.68
SPARSER-PI 370.06+4.71 380.60+0.62 79.01+0.47 50.91+0.50 944.99+19.36
BAMCP 267.63£5.72 309.3244.26 73.924+0.96  37.07£0.72 738.24£21.96
BFS3 340.574+4.51 367.954+0.74  44.94+0.88 8.60+0.28 225+6.88
SBOSS 351.494+4.28 371.114+£1.77  47.50%+0.36 13.3240.35 513.2545.59

Table 1: Total reward obtained, averaged over 100 experiments, shown with standard errror.

algorithms on each of the environments. The standard
error incurred by both DSS variants is small enough.
This implies that both DSS variants outperform the
current state of the art for all environments tested;
following a rigorous and unbiased hyperparameter se-
lection process.

Figure 2, which shows the time evolution of the av-
erage reward. For clear illustration, the average re-
ward is smoothed over a window of 200 steps (500
steps for the Maze). DSS outperforms all other al-
gorithms initially, due to better exploratory actions.
In most cases there exists at least one (different) al-
gorithm that achieves the asymptotic performance of
DSS. This phenomenon is expected since beliefs of all
competing algorithms converge to the true model, but
they are generally unable to converge as fast as DSS
for all the environments.

The advantage of DSS is not only in terms of perfor-
mance but also in terms of efficiency. Table 2 shows
that DSS takes significantly less time per episode for
larger environments than its immediate predecessor,
BFS3, and also often manages to outperform the state-

of-the-art BAMCP in terms of computation time.

It is important to note that, although we impose a
per-step time limit on computation, the performance
of the tested algorithms does not necessarily increase
with computation time. For example, we observe that
performance of BAMCP actually drops when number
of root samples are increased from 10° to 10° while
keeping other parameters constant. This reinforces the
need for using an unbiased experimental methodology
for tuning hyperparameters, as advocated in this pa-
per. Similar observations were made in (Guez et al.,
2012) regarding SBOSS and BFS3. For DSS, in prac-
tice, the performance generally increases with param-
eters N and M but plateaus quite fast. For further
reference, the chosen hyperparameters are shown in
Table 3 (Appendix C).

6 DISCUSSION AND FUTURE
WORK

We propose an optimism-free algorithm that induces
deeper and sparser exploration, with a PAC planning
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ALGORITHM CHAIN DouBLELoopP GRID5 GRID10 MAZE
SPARSER-RTDP 0.93 1.31 5.32 97.4 1267.2
SPARSER-PI 2.72 1.70 5.73 142.2 1532.0
BAMCP 0.56 1.25 172.46 315.7 1789.4
BFS3 6.25 2.26 54.03 >2000* 3558.7
SBOSS 0.01 0.01 0.28 300.95 3695.5

Table 2: Time taken in seconds per epsiode. (*Time limit exceeded)

process, and also achieves state-of-the-art results with
lower computational complexity. The PAC guaran-
tee provides DSS with theoretical strength relative
to other state-of-the-art algorithms (c.f. Table 4.1
in Ghavamzadeh et al. (2015)). The analysis also
shows how the gap between the Bayes-optimal policy
and DSS depends on the main hyperparameter K.

In comparison, BAMCP is Bayes-optimal policy only
asymptotically (Guez et al., 2012). The guarantees for
BOSS are PAC-MDP (i.e. that there is only a poly-
nomial number of steps for which its takes an action
with unbounded utility error), However, Araya et al.
(2012) argue that PAC-MDP is not the most suitable
for evaluating BAMDP algorithms. Finally, the theo-
retical properties of BFS3, which can be regarded as
the immediate predecessor to DSS, are not known.

Experimental results on different environments show
that, compared to the state-of-the-art, our algorithm
is both more efficient and obtains higher reward. In
practice, we drastically reduce the computation time
compared to its immediate Forward Search predeces-
sor BFS3, as can be seen in Table 2. This is because we
only compute policies every K-step while planning in
belief tree. And unlike BFS3, instead of maintaining
upper and lower bounds on observation nodes, we sim-
ply select them by sampling from the current posterior
in the tree branch.

Future extensions to this work can be to provide
tighter bounds for Thompson policies, similar to very
recent work by (Efroni et al., 2019); reinforcing this
approach of planning at policy level instead of indi-
vidual action level. DSS could also possibly be ex-
tended to continuous state spaces by keeping a prior
over models other than discrete MDPs, such as lin-
ear state-space model or a non-linear Neural Network
model. However, this would require us to strike a deli-
cate balance between approximations in inference and
planning, and is left as a subject for future work.
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