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Abstract

Math word problem (MWP) aims to automat-001
ically solve mathematical questions given in002
texts. Most previous MWP models tend to003
fit the sole ground-truth solution provided by004
the dataset, without considering the diverse005
but equivalent solution expressions. To miti-006
gate this issue, we propose a self-competitive007
learning framework (called SCL), which at-008
tempts to get different predictions and improve009
the generalization ability of the model by co-010
operatively learning a source network and a011
pruned competitor network. The competitor012
network is created by pruning a source net-013
work, which perturbs the source network’s014
structure and is conducive to generate diverse015
solutions. The source network and the com-016
petitor network learn collaboratively and teach017
each other throughout the training process. Ex-018
tensive experiments on two large-scale bench-019
marks demonstrate that our model substan-020
tially outperforms the strong baseline meth-021
ods. In particular, our method improves the022
best performance (accuracy) by 8.4% (78.4%023
→ 86.8%) for Math23k and 6.2% (70.5% →024
76.7%) for Ape210K.025

1 Introduction026

Math word problem (MWP) is challenging and027

draws much attention from researchers in the field028

of natural language processing (Bobrow, 1964).029

MWP aims to automatically answer mathematical030

questions given in a natural language, which re-031

quires the model not only understand what facts032

are presented in a text, but also possess the reason-033

ing capability to answer the mathematical question.034

Table 1 shows an example MWP with a mathemati-035

cal problem and its solution expression.036

Inspired by the success of deep learning, the037

encoder-decoder framework with attention mecha-038

nisms (Bahdanau et al., 2014) have been dominated039

in MWP (Wang et al., 2019, 2018a,b), which bring040

the state-of-the-art to a new level. The key idea041

Problem: In March of this year, Uncle lee deposited
1,000 RMB into the bank for a period of 2 years at an
annual interest rate of 4.40%. How much does Uncle
lee’s interest pay at maturity?
Solution Expression: 1000×4.40%×2 Solution: 88

Table 1: A typical math word problem.

is to use an encoder to learn representations of 042

problem text and employ a decoder to generate the 043

corresponding solution expression. Subsequently. 044

several studies propose sequence-to-tree models, 045

which explore the tree structure information pre- 046

sented in the text and improve the generation of 047

solution expressions (Xie and Sun, 2019; Zhang 048

et al., 2020b; Wu et al., 2021). 049

However, the previous MWP methods tend to fit 050

the sole ground-truth solution expression provided 051

by the datasets without considering the diverse but 052

equivalent solution expressions. This may limit the 053

generalization ability of the MWP methods. 054

Recently, some works utilize multi-decoders to 055

encourage the MWP models to generate diverse ex- 056

pressions (Zhang et al., 2020a; Shen and Jin, 2020). 057

In addition, knowledge distillation has been proven 058

to be effective in MWP (Zhang et al., 2020a; Liang 059

and Zhang, 2021), where a teacher model is de- 060

signed to guide the learning process of a student 061

model. As revealed in (Liang and Zhang, 2021), 062

the teacher model can help the MWP model dis- 063

tinguish the MWP with similar problems but com- 064

pletely different solutions. However, the teacher 065

network, which is trained on the same data with the 066

student network, is likely to confuse similar solu- 067

tion expressions with the student network. In order 068

to avoid generating the same expression, a regu- 069

larized teacher model is necessary. On the other 070

hand, the previous model (Zhang et al., 2020a) also 071

encourages the MWP model to diversify the solu- 072

tions by perturbing the latent variables in the en- 073

coder. However, as revealed in (Liang and Zhang, 074

2021), the solution expression is sensitive to the 075

perturbed latent variables, since MWP with differ- 076

ent answers but similar mathematical problems are 077
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encoded closely in the latent space. Hence, more078

effective strategies need to be introduced to build079

the teacher and student networks for diversifying080

the solution expressions and establishing a robust081

MWP method.082

In this paper, we propose a self-competitive083

learning framework (called SCL) to solve MWP084

tasks. Our SCL model attempts to produce diverse085

solution expressions and improve the generaliza-086

tion ability of the model by cooperatively learn-087

ing a source network and a pruned competitor net-088

work. The competitor network is created by prun-089

ing the source network, which perturbs the source090

network’s structure and is conducive to generate091

diverse solution expressions. The competitor and092

source networks learn collaboratively and teach093

each other throughout the training process.094

We summarize our main contributions as follows:095

(1) We propose a novel self-competitive learning096

framework for MWP, which is conductive to gen-097

erate diverse solution expressions and improves098

the generalisability of the MWP model. (2) We099

conduct extensive experiments on two benchmark100

datasets (i.e., Math23k and Ape210k). The results101

demonstrate that our model achieves significantly102

better performance than the strong baselines.103

2 Methodology104

A math word problem (MWP) can be denoted105

by a projection F : W 7→ Y , where W =106

{w1, w2, . . . , wm} is the problem sequence with107

m words and Y = {y1, y2, . . . , yn} is the solution108

expression of the problem with n words. The goal109

of MWP is to establish a model F which generates110

a correct solution expression Y and calculates the111

correct answer for the problem W .112

As illustrated in Figure 1, the proposed SCL is113

composed of a source network (denoted as S) and a114

competitor network (denoted as C). The competitor115

network is obtained by pruning the source network.116

The two networks are optimised collaboratively117

and teach each other throughout the training pro-118

cess. We use the encoder-decoder framework as the119

backbone of both source and competitor networks.120

2.1 The Encoder-Decoder Architecture121

We briefly introduce the encoder and the decoder.122

Encoder We adopt the RoBERTa model (Liu123

et al., 2019b) as our encoder. We pass the prob-124

lem sequence W into the RoBERTa model and125

obtain problem representation Z ∈ Rm∗d, where d126

Figure 1: Overview of the proposed framework SCL

is the embedding size of the encoder. In order to 127

model the relationship between the quantities in the 128

pre-training model, we set up a learnable quantity 129

embedding matrix QE = {q1, q2, . . . , qn}, similar 130

to the learnable position embedding in BERT (De- 131

vlin et al., 2018). Before passing the sequence W 132

into the encoder, we first replace the each quantity 133

in the sequence W with a token ti ∈ Qt. 134

Decoder Our decoder follows the GTS model 135

(Xie and Sun, 2019). We use the recursive oper- 136

ation of the decoder to construct Y by the order 137

of pre-order traversal. First, the root node qroot 138

(middle operator part) is first generated. Then, we 139

generate the left child node ql. Finally, we gener- 140

ate the right child node qr. This process has been 141

iterated until the leaf nodes are generated. The at- 142

tention mechanism is applied to learn the global 143

context vector Gi which is utilized to generate the 144

current node token Ŷi. Here we denote the digital 145

embedding after being encoded by the encoder as 146

Q. Mathematically, we define the attention mecha- 147

nism as follows: 148

Gi =


Attention (Z, qroot, ql), ql /∈ ∅.
Attention (Z, qroot, qsl), qsl /∈ ∅.
Attention (Z, qroot), ql, qsl ∈ ∅.

(1) 149

150

Ŷi = Predict(Gi, Q). (2) 151

where Predict(·) is the final prediction layer for 152

producing the tree node. 153

If the current node is an operator, we will gen- 154

erate the left and right child nodes and push them 155

into the stack in the tree decoder according to the 156

top-down method. If it is a number, we will per- 157

form the merge operation until the leaf nodes in 158

the stack pop out, and the result of the merge is 159
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pushed into the left child node stack for attention160

operation. The merge operation will pop the re-161

quired node qop and qsubtree from an embedding162

stack. This recursive construction process can be163

defined as follows:164

ql = Left(Ĝ, Ŷ , qroot). (3)165

qr = Right(Ĝ, Ŷ , qroot). (4)166

qm = Merge(qop, qsubtree, qm−1). (5)167

2.2 Self-competitive Learning168

As shown in Figure 1, the proposed SCL is com-169

posed of a source network and a competitor net-170

work. The competitor network is obtained by prun-171

ing the source network. In each iteration, the two172

networks provide each other with equivalent solu-173

tion expression supervision signals. At the same174

time, these two networks are also trained by ground-175

truth supervision signals.176

Formally, the training objective of the source net-177

work is to minimize negative log-likelihood (NLL)178

loss for each instance (W,Y ) from training data:179

LS(θS) = −
|Vo|∑
i=1

I{yi = Vi} log p(yi |W ; θS). (6)180

where I is an indicator function. θS denotes the181

parameters of the source network. Vo denotes the182

solution vocabulary.183

We prune the model parameters θS of the source184

model and obtain the parameters θC of the com-185

petitor network. The training objective of the com-186

petitor network C can be defined as:187

LC(θC) = −
|Vo|∑
i=1

I{yi = Vi} log p(yi |W ; θC). (7)188

The conventional supervised losses make the189

MWP model fit the sole ground-truth solution, with-190

out considering the diverse but equivalent solution191

expressions. To mitigate this issue, we train the192

competitor network and the source network collab-193

oratively, which teach each other throughout the194

training process. First, we use the Kullback Leibler195

(KL) Divergence to measure the distance from the196

source network’s prediction p1 to the competitor197

network’s prediction p2 by:198

DKL (p2‖p1) =

n∑
i=1

p2 (ŷi) log
p2 (ŷi)

p1 (yi)
. (8)199

where n is the length of the solution expression.200

yi and ŷi denote the i-th ground-truth and gen-201

erated tokens, respectively. Considering that KL202

divergence is asymmetric, we also calculate the203

divergence from p2 to p1:204

DKL (p1‖p2) =

n∑
i=1

p1 (ŷi) log
p1 (ŷi)

p2 (yi)
. (9)205

By averaging equations 8 and 9, we get a sym- 206

metric KL divergence, denoted as D̄KL. Note that 207

we alternately optimize S and C in each iteration, 208

and calculate symmetric KL divergence D̄KL1 and 209

D̄KL2 for S and C, respectively. We define the 210

overall loss functions LS and LC for networks S 211

and C respectively as follows: 212

LS = L1(θS) + α× D̄KL1 . (10) 213

LC = L2(θC) + α× D̄KL2 . (11) 214

where α is a proportional coefficient. In this way 215

each network learns to both correctly predict the 216

ground-truth of training instances and match the 217

probability estimation of its peer network. 218

3 Experimental Setup 219

Datasets We conduct experiments on two bench- 220

mark MWP datasets: Math23k (Wang et al., 2017) 221

and Ape210k (Zhao et al., 2020). Math23k con- 222

tains 22162/1000 questions for training/testing, re- 223

spectively. Ape210k is composed of 166,270 ques- 224

tions for training, 4,157 questions for validation, 225

and 4,159 questions for testing. 226

Implementation Details The word embedding 227

size of decoder is set to 1024. We adopt RoBERTa 228

(Liu et al., 2019b) as the problem encoder. Follow- 229

ing Roberta’s setting, the hidden size of the encoder 230

is set to 768, and we set the hidden size of the de- 231

coder to 1024. We used Adamw (Loshchilov and 232

Hutter, 2018) as the optimizer with the learning 233

rate as 5e-5. The mini-batch size is set to 16. We 234

adopt a beam search with the size of 5. Dropout 235

(dropout rate = 0.5) is employed to avoid overfit- 236

ting. For Ape210K, we set the maximum sequence 237

length of questions as 150 and that of solution ex- 238

pressions as 50, similar to (Wu et al., 2021). Our 239

model takes 80 epochs on Math23k and 50 epochs 240

on Ape210k for convergence. 241

Baselines We compare our model with several 242

strong baseline methods, including NS-Solver (Qin 243

et al., 2021), NumS2T (Wu et al., 2021), TSN- 244

MD (Zhang et al., 2020a), MATH-EN (Wang et al., 245

2018a), Multi-E/D (Shen and Jin, 2020), GTS (Xie 246

and Sun, 2019), Tree-Decoder (Liu et al., 2019a), 247

StackDecoder (Chiang and Chen, 2018), KAS2T 248

(Wu et al., 2021), Graph2tree (Zhang et al., 2020b), 249

and Ape (Zhao et al., 2020). 250

4 Experimental Results 251

Main Results The evaluation metric is answer 252

accuracy. Table 2 show the performance com- 253
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Models Math23k Math23k† Ape210k
StackDecoder - 65.8 52.2
Tree-Decoder 69.0 - 66.5

GTS 75.6 74.3 67.7
KAS2T 76.3 - 68.7

TSN-MD 77.4 75.1 -
Graph2Tree 77.4 75.5 -
NS-Solver - 75.6 -

Ape - 77.5 70.2
NumS2T 78.1 - 70.5
Multi-E/D 78.4 76.9 -

Source Network 85.5 84.5 76.3
Competitor Network 86.8 84.6 76.7

Table 2: Solution accuracy of SCL and various base-
lines. Note that Math23K denote results on public test
set and Math23K† denote 5-fold cross-validation.

Models Answer-ac Equation-ac
MATH-EN 66.7 60.1

GTS 75.6 64.8
TSN-MD 77.4 65.8

Source Network 85.5 73.3
Competitor Network 86.8 73.5

Table 3: Accuracy of equation generation on Math23k.

parison of our model with baseline methods on254

Math23K and Ape210k, respectively. Both our255

source network and competitor network achieve256

substantially better performance than the strong257

competitors, verifying the effectiveness of our self-258

competitive learning framework. We compute the259

accuracy of the generated solution expression. We260

consider a expression as correct when the predicted261

expression exactly matches the annotated solution.262

The expression prediction accuracy is reported in263

Table 3. We can see that the accuracy of solution264

expression generation is lower than the final answer265

prediction accuracy, showing that our model can266

generate some diverse solution expressions (not267

included in ground-truth expressions) leading to268

correct answers.269

Ablation Study We conduct ablation test on270

Math23k to analyze the impact of different compo-271

nents in SCL. First, we remove the mutual teaching272

from the source and competitor networks, denoted273

as source w/o MT and competitor w/o MT respec-274

tively. Second, we replace the pruned competitor275

Models Math23k
Source network w/o pruning 84.8

Competitor network w/o pruning 85.6
Source network w/o MT 84.2

Competitor network w/o MT 84.3
Source Network 85.5

Competitor Network 86.8

Table 4: Ablation study on Math23k.

α Math23k Pruning Rate Math23k
0.0005 85.1 0.1 85.8
0.005 86.8 0.2 86.8
0.05 4 0.3 84.4

- - 0.4 84.4
- - 0.5 4

Table 5: The Sensitivity Analysis of α and Pruning
Rate. 4 denote divergence.

Problem Text: A train leaves from place A at
7 o’clock and arrives at place
B at 17 o’clock. The train trav-
els 75 kilometers per hour. How
many kilometers is the distance
between the two places?

Ground-truth: (17 − 7) × 75
Source Network: (17 − 7) × 75
Competitor Network: 17 × 75 − 7 × 75

Table 6: Case study from Math23k.

network with the source network, so as to evaluate 276

the impact of pruning (denoted as source w/o prun- 277

ing and competitor w/o pruning respectively). We 278

summarize the results in Table 4. Both the pruning 279

strategy and mutual teaching contribute greatly to 280

the performance of SCL. 281

The Sensitivity Analysis of α We analyze the 282

sensitivity of α on Math23k. As shown in Table 283

5, when α is greater than or equal to 0.05, the 284

competitor network will not converge. We obtain 285

the best result when α = 0.005. 286

The Sensitivity Analysis of Pruning Rate We 287

analyze the sensitivity of pruning rate on the com- 288

petitor network. As shown in Table 5, when the 289

pruning rate is greater than 0.2 (the best value), 290

the performance of the competitor network drops 291

quickly. 292

Case Study As an intuitive way to show the per- 293

formance of SCL, we randomly choose one prob- 294

lem form Math23k and show its solution expression 295

generated by our model. As shown in Table 6, we 296

observe that our model can produce two different 297

but equivalent solutions. 298

5 Conclusion 299

In this paper, we proposed a self-competitive learn- 300

ing framework to solve MWP tasks. Our SCL 301

model obtained diverse predictions by coopera- 302

tively learning a source network and a pruned com- 303

petitor network. Extensive experiments on two 304

benchmark MWP datasets demonstrated the effec- 305

tiveness of our model. 306
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