Self-Competitive Learning for Solving Math Word Problem

Anonymous ACL submission

Abstract

Math word problem (MWP) aims to automat-
ically solve mathematical questions given in
texts. Most previous MWP models tend to
fit the sole ground-truth solution provided by
the dataset, without considering the diverse
but equivalent solution expressions. To miti-
gate this issue, we propose a self-competitive
learning framework (called SCL), which at-
tempts to get different predictions and improve
the generalization ability of the model by co-
operatively learning a source network and a
pruned competitor network. The competitor
network is created by pruning a source net-
work, which perturbs the source network’s
structure and is conducive to generate diverse
solutions. The source network and the com-
petitor network learn collaboratively and teach
each other throughout the training process. Ex-
tensive experiments on two large-scale bench-
marks demonstrate that our model substan-
tially outperforms the strong baseline meth-
ods. In particular, our method improves the
best performance (accuracy) by 8.4% (78.4%
— 86.8%) for Math23k and 6.2% (70.5% —
76.7%) for Ape210K.

1 Introduction

Math word problem (MWP) is challenging and
draws much attention from researchers in the field
of natural language processing (Bobrow, 1964).
MWP aims to automatically answer mathematical
questions given in a natural language, which re-
quires the model not only understand what facts
are presented in a text, but also possess the reason-
ing capability to answer the mathematical question.
Table 1 shows an example MWP with a mathemati-
cal problem and its solution expression.

Inspired by the success of deep learning, the
encoder-decoder framework with attention mecha-
nisms (Bahdanau et al., 2014) have been dominated
in MWP (Wang et al., 2019, 2018a,b), which bring
the state-of-the-art to a new level. The key idea

Problem: In March of this year, Uncle lee deposited
1,000 RMB into the bank for a period of 2 years at an
annual interest rate of 4.40%. How much does Uncle
lee’s interest pay at maturity?

Solution Expression: 1000x4.40% %2 Solution: 88

Table 1: A typical math word problem.

is to use an encoder to learn representations of
problem text and employ a decoder to generate the
corresponding solution expression. Subsequently.
several studies propose sequence-to-tree models,
which explore the tree structure information pre-
sented in the text and improve the generation of
solution expressions (Xie and Sun, 2019; Zhang
et al., 2020b; Wu et al., 2021).

However, the previous MWP methods tend to fit
the sole ground-truth solution expression provided
by the datasets without considering the diverse but
equivalent solution expressions. This may limit the
generalization ability of the MWP methods.

Recently, some works utilize multi-decoders to
encourage the MWP models to generate diverse ex-
pressions (Zhang et al., 2020a; Shen and Jin, 2020).
In addition, knowledge distillation has been proven
to be effective in MWP (Zhang et al., 2020a; Liang
and Zhang, 2021), where a teacher model is de-
signed to guide the learning process of a student
model. As revealed in (Liang and Zhang, 2021),
the teacher model can help the MWP model dis-
tinguish the MWP with similar problems but com-
pletely different solutions. However, the teacher
network, which is trained on the same data with the
student network, is likely to confuse similar solu-
tion expressions with the student network. In order
to avoid generating the same expression, a regu-
larized teacher model is necessary. On the other
hand, the previous model (Zhang et al., 2020a) also
encourages the MWP model to diversify the solu-
tions by perturbing the latent variables in the en-
coder. However, as revealed in (Liang and Zhang,
2021), the solution expression is sensitive to the
perturbed latent variables, since MWP with differ-
ent answers but similar mathematical problems are

encoded closely in the latent space. Hence, more
effective strategies need to be introduced to build
the teacher and student networks for diversifying
the solution expressions and establishing a robust
MWP method.

In this paper, we propose a self-competitive
learning framework (called SCL) to solve MWP
tasks. Our SCL model attempts to produce diverse
solution expressions and improve the generaliza-
tion ability of the model by cooperatively learn-
ing a source network and a pruned competitor net-
work. The competitor network is created by prun-
ing the source network, which perturbs the source
network’s structure and is conducive to generate
diverse solution expressions. The competitor and
source networks learn collaboratively and teach
each other throughout the training process.

We summarize our main contributions as follows:
(1) We propose a novel self-competitive learning
framework for MWP, which is conductive to gen-
erate diverse solution expressions and improves
the generalisability of the MWP model. (2) We
conduct extensive experiments on two benchmark
datasets (i.e., Math23k and Ape210k). The results
demonstrate that our model achieves significantly
better performance than the strong baselines.

2 Methodology

A math word problem (MWP) can be denoted
by a projection F' : W +— Y, where W =
{wy,wa, ..., wy,} is the problem sequence with
m words and Y = {y1,y2,...,yn} is the solution
expression of the problem with n words. The goal
of MWP is to establish a model F' which generates
a correct solution expression Y and calculates the
correct answer for the problem W.

As illustrated in Figure 1, the proposed SCL is
composed of a source network (denoted as S) and a
competitor network (denoted as C). The competitor
network is obtained by pruning the source network.
The two networks are optimised collaboratively
and teach each other throughout the training pro-
cess. We use the encoder-decoder framework as the
backbone of both source and competitor networks.

2.1 The Encoder-Decoder Architecture

We briefly introduce the encoder and the decoder.

Encoder We adopt the RoBERTa model (Liu
et al., 2019b) as our encoder. We pass the prob-
lem sequence W into the RoBERTa model and
obtain problem representation Z € R™*¢, where d

Ground-truth

) S
Y KL Divergency Y
> — —————>
Prune
Source Network Competitor Network

Tree Decoder

[RoBERTa Encoder] { RoBERTa Encoder]
t 1
|

Vehicle A travels [NUM2]
kilometers per hour, vehicle
B travels [NUM1]
kilometers per hour...

Replace Quantity Token

Vehicle A travels 70 kilometers per
hour, vehicle B travels 5 kilometers
per hour longer than vehicle A ...
How many hours can they meet?

MWP Text W

Figure 1: Overview of the proposed framework SCL

is the embedding size of the encoder. In order to
model the relationship between the quantities in the
pre-training model, we set up a learnable quantity
embedding matrix Qg = {q1,¢2, ..., qn}, similar
to the learnable position embedding in BERT (De-
vlin et al., 2018). Before passing the sequence W
into the encoder, we first replace the each quantity
in the sequence W with a token ¢; € Q,.

Decoder Our decoder follows the GTS model
(Xie and Sun, 2019). We use the recursive oper-
ation of the decoder to construct Y by the order
of pre-order traversal. First, the root node g oot
(middle operator part) is first generated. Then, we
generate the left child node ¢;. Finally, we gener-
ate the right child node ¢g,. This process has been
iterated until the leaf nodes are generated. The at-
tention mechanism is applied to learn the global
context vector GG; which is utilized to generate the
current node token Y;. Here we denote the digital
embedding after being encoded by the encoder as
(). Mathematically, we define the attention mecha-

nism as follows:
Attention (Z, q,001,91), 4q; ¢ 0.

G; = Attention (Z, 9root> 431)7 qs1 ¢ 0.
Attention (Z, qroot)7 q1,95 € 0.

(D

Y; = Predict(G;, Q). 2

where Predict(-) is the final prediction layer for
producing the tree node.

If the current node is an operator, we will gen-
erate the left and right child nodes and push them
into the stack in the tree decoder according to the
top-down method. If it is a number, we will per-
form the merge operation until the leaf nodes in
the stack pop out, and the result of the merge is

pushed into the left child node stack for attention
operation. The merge operation will pop the re-
quired node g, and g, pree from an embedding
stack. This recursive construction process can be
defined as follows:

q = Left(G, Y, groot)- 3)

qr = Right(é, ?7 Qroot>- “4)
qm = Merge(Qopa subtrees Gm—1)- 5

2.2 Self-competitive Learning

As shown in Figure 1, the proposed SCL is com-
posed of a source network and a competitor net-
work. The competitor network is obtained by prun-
ing the source network. In each iteration, the two
networks provide each other with equivalent solu-
tion expression supervision signals. At the same
time, these two networks are also trained by ground-
truth supervision signals.

Formally, the training objective of the source net-
work is to minimize negative log-likelihood (NLL)

loss for each instance (W, Y") from training data:
V|

Ls(0s) =

where I is an 1nd1cator function. 0g denotes the
parameters of the source network. V° denotes the
solution vocabulary.

We prune the model parameters 6g of the source
model and obtain the parameters ¢ of the com-
petitor network. The training objective of the com-

petitor network C' can be defined as:

Vel
— >y, = Vilogp(y, | W;00). (7)

1=1

The conventional supervised losses make the
MWP model fit the sole ground-truth solution, with-
out considering the diverse but equivalent solution
expressions. To mitigate this issue, we train the
competitor network and the source network collab-
oratively, which teach each other throughout the
training process. First, we use the Kullback Leibler
(KL) Divergence to measure the distance from the
source network’s prediction p; to the competitor
network’s prediction p2 by:

P2 (4)
sz @)log - ®
where n is the length of the solutlon expression.
y, and ¥; denote the ¢-th ground-truth and gen-
erated tokens, respectively. Considering that KL
divergence is asymmetric, we also calculate the
divergence from p, to pl'

Zm T; ©)

Lc(0c) =

Dk (pyllpy)

Drr (p:llps)

By averaging equations 8 and 9, we get a sym-
metric KL divergence, denoted as Dy 1. Note that
we alternately optimize S and C' in each iteration,
and calculate symmetric KL divergence D r, and
Dy, for S and C, respectively. We define the
overall loss functions Lg and L for networks S
and C respectively as follows:

ES:£1(05)+a X DKLl- (10)

,CC:£2(90)+O£XDKL2. (1D
where « is a proportional coefficient. In this way
each network learns to both correctly predict the
ground-truth of training instances and match the
probability estimation of its peer network.

3 Experimental Setup

Datasets We conduct experiments on two bench-
mark MWP datasets: Math23k (Wang et al., 2017)
and Ape210k (Zhao et al., 2020). Math23k con-
tains 22162/1000 questions for training/testing, re-
spectively. Ape210k is composed of 166,270 ques-
tions for training, 4,157 questions for validation,
and 4,159 questions for testing.

Implementation Details The word embedding
size of decoder is set to 1024. We adopt RoOBERTa
(Liu et al., 2019b) as the problem encoder. Follow-
ing Roberta’s setting, the hidden size of the encoder
is set to 768, and we set the hidden size of the de-
coder to 1024. We used Adamw (Loshchilov and
Hutter, 2018) as the optimizer with the learning
rate as 5e-5. The mini-batch size is set to 16. We
adopt a beam search with the size of 5. Dropout
(dropout rate = 0.5) is employed to avoid overfit-
ting. For Ape210K, we set the maximum sequence
length of questions as 150 and that of solution ex-
pressions as 50, similar to (Wu et al., 2021). Our
model takes 80 epochs on Math23k and 50 epochs
on Ape210k for convergence.

Baselines We compare our model with several
strong baseline methods, including NS-Solver (Qin
et al., 2021), NumS2T (Wu et al., 2021), TSN-
MD (Zhang et al., 2020a), MATH-EN (Wang et al.,
2018a), Multi-E/D (Shen and Jin, 2020), GTS (Xie
and Sun, 2019), Tree-Decoder (Liu et al., 2019a),
StackDecoder (Chiang and Chen, 2018), KAS2T
(Wu et al., 2021), Graph2tree (Zhang et al., 2020b),
and Ape (Zhao et al., 2020).

4 Experimental Results

Main Results The evaluation metric is answer
accuracy. Table 2 show the performance com-

Models Math23k Math23k’ Ape210k «a Math23k | Pruning Rate Math23k
StackDecoder - 65.8 522 0.0005 85.1 0.1 85.8
Tree-Decoder 69.0 - 66.5 0.005 86.8 0.2 86.8

GTS 75.6 74.3 67.7 0.05 A 0.3 84.4
KAS2T 76.3 - 68.7 - - 04 84.4
TSN-MD 774 75.1 - - - 0.5 A
Graph2Tree 77.4 75.5 - Table 5: The Sensitivity Analysis of o and Pruning
NS-Solver - 75.6 - Rate. A denote divergence.
Ape - 77.5 70.2
NumSZT 78.1 - 705 Problem Text: A train leaves from place A at
Multi-E/D 78.4 76.9 - 7 o’clock and arrives at place
Source Network 85.5 84.5 76.3 B at 17 o’clock. The train trav-
Competitor Network 86.8 84.6 76.7 els 75 kilometers per hour. How

Table 2: Solution accuracy of SCL and various base-
lines. Note that Math23K denote results on public test
set and Math23K " denote 5-fold cross-validation.

Models Answer-ac Equation-ac
MATH-EN 66.7 60.1
GTS 75.6 64.8
TSN-MD 77.4 65.8
Source Network 85.5 73.3
Competitor Network 86.8 73.5

Table 3: Accuracy of equation generation on Math23k.

parison of our model with baseline methods on
Math23K and Ape210k, respectively. Both our
source network and competitor network achieve
substantially better performance than the strong
competitors, verifying the effectiveness of our self-
competitive learning framework. We compute the
accuracy of the generated solution expression. We
consider a expression as correct when the predicted
expression exactly matches the annotated solution.
The expression prediction accuracy is reported in
Table 3. We can see that the accuracy of solution
expression generation is lower than the final answer
prediction accuracy, showing that our model can
generate some diverse solution expressions (not
included in ground-truth expressions) leading to
correct answers.

Ablation Study We conduct ablation test on
Math23k to analyze the impact of different compo-
nents in SCL. First, we remove the mutual teaching
from the source and competitor networks, denoted
as source w/o MT and competitor w/o MT respec-
tively. Second, we replace the pruned competitor

Models Math23k
Source network w/o pruning 84.8
Competitor network w/o pruning 85.6
Source network w/o MT 84.2

Competitor network w/o MT 84.3
Source Network 85.5
Competitor Network 86.8

Table 4: Ablation study on Math23k.

many kilometers is the distance
between the two places?

Ground-truth: (17 -7 x175
Source Network: (17 -7y x 175
Competitor Network: | 17 X 75 —7 x 75

Table 6: Case study from Math23k.

network with the source network, so as to evaluate
the impact of pruning (denoted as source w/o prun-
ing and competitor w/o pruning respectively). We
summarize the results in Table 4. Both the pruning
strategy and mutual teaching contribute greatly to
the performance of SCL.

The Sensitivity Analysis of o We analyze the
sensitivity of a on Math23k. As shown in Table
5, when « is greater than or equal to 0.05, the
competitor network will not converge. We obtain
the best result when o = 0.005.

The Sensitivity Analysis of Pruning Rate We
analyze the sensitivity of pruning rate on the com-
petitor network. As shown in Table 5, when the
pruning rate is greater than 0.2 (the best value),
the performance of the competitor network drops
quickly.

Case Study As an intuitive way to show the per-
formance of SCL, we randomly choose one prob-
lem form Math23k and show its solution expression
generated by our model. As shown in Table 6, we
observe that our model can produce two different
but equivalent solutions.

5 Conclusion

In this paper, we proposed a self-competitive learn-
ing framework to solve MWP tasks. Our SCL
model obtained diverse predictions by coopera-
tively learning a source network and a pruned com-
petitor network. Extensive experiments on two
benchmark MWP datasets demonstrated the effec-
tiveness of our model.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Daniel G Bobrow. 1964. Natural language input for a
computer problem solving system.

Ting-Rui Chiang and Yun-Nung Chen. 2018.
Semantically-aligned equation generation for
solving and reasoning math word problems. arXiv
preprint arXiv:1811.00720.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Zhenwen Liang and Xiangliang Zhang. 2021. Solving
math word problems with teacher supervision. 1J-
CAL

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019a. Tree-structured decoding for
solving math word problems. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 2370-2379.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng
Tang, and Liang Lin. 2021. Neural-symbolic solver
for math word problems with auxiliary tasks. arXiv
preprint arXiv:2107.01431.

Yibin Shen and Cheqing Jin. 2020. Solving math word
problems with multi-encoders and multi-decoders.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2924-2934.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018a. Translating a math
word problem to an expression tree. arXiv preprint
arXiv:1811.05632.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018b. Math-
dgn: Solving arithmetic word problems via deep re-
inforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019. Template-based math word problem solvers
with recursive neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7144-7151.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845—
854.

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuan-Jing
Huang. 2021. Math word problem solving with
explicit numerical values. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5859-5869.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word prob-
lems. In IJCAI, pages 5299-5305.

Jipeng Zhang, Ka Wei LEE, Ee-Peng Lim, Wei Qin,
Lei Wang, Jie Shao, Qianru Sun, et al. 2020a.
Teacher-student networks with multiple decoders for
solving math word problem.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph-to-
tree learning for solving math word problems. Asso-
ciation for Computational Linguistics.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and
Jingming Liu. 2020. Ape210k: A large-scale and
template-rich dataset of math word problems. arXiv
preprint arXiv:2009.11506.

