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ABSTRACT

Diffusion generative models, including Score-Based Generative Models (SGM) and
Denoising Diffusion Probabilistic Models (DDPM), have demonstrated remarkable
performance across various domains in recent years. However, concerns regarding
privacy and potential misuse of AI-generated content have become increasingly
prominent. While generative unlearning methods have been investigated on DDPM
models, research on unlearning SGM is still largely missing. Furthermore, the cur-
rent ‘gold standard’ of machine unlearning—retraining a model from scratch after
removing the undesirable data, does not perform well in SGM and its downstream
tasks, such as image inpainting and reconstruction. To fill this gap, we propose the
first Score-based Generative Unlearning (SGU) for SGM, which surpasses the previ-
ous ‘gold standard’ of unlearning. SGU introduces a new score adjustment strategy
that deviates the learned score from the original undesirable data score during the
continuous-time stochastic differential equation process. Extensive experimental
results demonstrate that SGU significantly reduces the likelihood of generating
undesirable content while preserving high quality for normal image generation.
Albeit designed for SGM, SGU is a general and flexible unlearning framework
that is compatible with diverse diffusion architectures (SGM and DDPM) and
training strategies (re-training and fine-tuning), and enables zero-shot transfer of
the unlearning generative model to downstream tasks, including image inpainting
and reconstruction. The code will be shared upon acceptance.

1 INTRODUCTION

The development and application of generative artificial intelligence technology have sparked a new
wave of interest in AI. Recent advancements in deep generative models have made it possible to
generate highly realistic images. Two types of diffusion generative models, namely Score-Based
Generative Models (SGM) (Song et al., 2021) and Denoising Diffusion Probabilistic Models (DDPM)
(Ho et al., 2020), represent the state-of-the-art methods in this field. These models sequentially
perturb the training data with gradually increasing noise and then learn to reverse this perturbation.
They effectively address several challenges that previous generative techniques faced, such as align-
ing the posterior distribution in Variational Autoencoders (VAEs)(Kingma & Welling, 2013; Wang
et al., 2021), handling the instability of adversarial objectives in Generative Adversarial Networks
(GANs)(Goodfellow et al., 2020; Wang et al., 2022), reducing the high training time and compu-
tational costs of Markov Chain Monte automobilelo (MCMC) methods in Energy-Based Models
(EBMs)(LeCun et al., 2006; Gao et al., 2020), and alleviating network constraints in normalizing
flows(Dinh et al., 2016; Zhang & Chen, 2021).

However, despite these technological breakthroughs, diffusion generative models also pose risks
of privacy breaches and potential misuse, raising public concerns regarding privacy, copyright and
the dissemination of misinformation (Dubiński et al., 2024). Firstly, diffusion generative models
possess memorization capabilities (Somepalli et al., 2023), which can lead to the replication of all
or part of the training data, resulting in privacy breaches within the training dataset. In addition to
privacy concerns, diffusion generative models are also susceptible to misuse, potentially producing
inappropriate digital content, such as deepfakes that can be used to create misleading videos or images
of individuals, potentially damaging their reputation or spreading misinformation (Rando et al., 2022;
Salman et al., 2023; Schramowski et al., 2023). Additionally, diffusion generative models can imitate
various artistic styles(Shan et al., 2023; Gandikota et al., 2023). Unauthorized use of others’ portraits
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or artworks for synthesis may infringe upon portrait and intellectual property rights, raising legal
concerns. These issues can negatively impact mental health, blur the line between reality and fiction,
and potentially erode social trust and values. Therefore, ensuring that AI technology advances human
and societal development without causing harm is a critical and urgent challenge.

To address this challenge, Machine Unlearning (MU) mechanism can enable generative models to
forget data deemed Not Suitable For Generation (NSFG), thereby protecting copyright and preventing
the generation of harmful content (Schramowski et al., 2023; Wang et al., 2023; Li et al., 2024; Shaik
et al., 2023). Very recently, MU for conditional DDPM has started to appear on text-conditioned
image generation (Gandikota et al., 2023; Heng & Soh, 2023; Fan et al., 2024; Zhang et al., 2024;
Kumari et al., 2023; Wu et al., 2024; Heng & Soh, 2024), but unlearning in score-based generative
model has been largely absent so far. Score-based generative models offer notable benefits in stability,
sampling efficiency, and generation quality, making them increasingly favored in practical use cases.
Therefore, this paper aims to fill this research gap by proposing a new unlearning score-based
generative model.

Unlearning for score-based generative model presents several challenges. First, the state-of-the-art
MU method is to re-train a model from scratch after removing the undesirable data from the original
training data, a process we refer to as Unseen Re-training. This method is often regarded as the
‘gold standard’ in MU. However, we have observed that even after Unseen Re-training, score-based
generative models can still produce undesirable content(Figure 1). Moreover, the current ‘gold
standard’ does not work well in downstream tasks, such as image inpainting and reconstruction.
How to design a better unlearning method that can exceed the current MU ‘gold standard’ in score-
based generative model is an crucial challenge. Furthermore, most existing unlearning generative
research focuses on conditional generative models (Gandikota et al., 2023; Heng & Soh, 2023;
Fan et al., 2024; Zhang et al., 2024; Kumari et al., 2023; Wu et al., 2024; Heng & Soh, 2024),
especially on text-to-image generation with conditional DDPM. These unlearning methods rely
heavily on specific conditions, such as text prompts, which limits the generalizability of their
unlearning frameworks. These unlearning methods are tightly coupled with the specific condition
(e.g., text prompts) (Gandikota et al., 2023; Heng & Soh, 2023), which limits the generalizability of
their unlearning frameworks. In contrast, unconditional models form the basis for many generative
frameworks, including conditional generators that are often built upon unconditional architectures.
Developing unlearning strategies for unconditional models could therefore provide more general
solutions that apply to a broader range of generative models. While unlearning on unconditional VAEs
and GANs have been investigated very recently (Moon et al., 2024), unlearning on unconditional
SDG is still under-explored. Finally, unlike most unlearning methods for DDPMs, which aim to
reduce the evidence lower bound (ELBO) on the distribution of the forgotten data, score-based
generative models focus on estimating the score of the data distribution across a continuous noise
schedule. How to design an effective unlearning method from a score-based perspective remains
unexplored.

To address the challenges, we propose the first Score-based Generative Unlearning (SGU) method
for SGM, which surpasses the previous ‘gold standard’ for generative unlearning in SGM. SGU
aims to overcome the limitations of current ’gold standard’ in score-based generative unlearning,
by introducing a straightforward yet effective strategy to alter the score function. Our key idea is
to deviate the learned score from the original NSFG data score during the continuous SDE process,
while ensuring that it approximates the SFG data score to maintain generation quality. We present two
variants of SGU to handle different unlearning scenarios. Since the score is defined as the gradient
of the logarithm of the probability density function, the first variant is to learn a score suθ (x, t) that
is orthogonal to the ∇xf log pt(x

f ) of the ground truth NSFG data distribution. This orthogonality
ensure suθ (x, t) and ∇xf log pt(x

f ) are uncorrelated, helping to prevent the generation of undesired
content. Next, in cases where the NSFG and SFG distributions are very similar, or when content needs
to be erased from a pre-trained model, we propose another variant of USGM in which the learned
score suθ (x, t) is the inverse of ∇xf log pt(x

f ). This inverse relationship helps to more effectively
negate the influence of the NSFG data, improving convergence during training. Albeit designed for
SGM, SGU is a general and flexible unlearning framework that is compatible with diverse diffusion
architectures (SGM and DDPM) and training strategies (re-training and fine-tuning), and enables
zero-shot transfer of the unlearning generative model to downstream tasks, including image inpainting
and reconstruction. Extensive results demonstrate that SGU performs well in category forgetting,
feature forgetting, and various downstream tasks such as image inpainting and reconstruction.
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2 PRELIMINARIES

2.1 GENERATIVE MODELING

A generative model is often a statistical model pθ(x), where θ ∈ Θ, with θ representing the model
parameters and Θ denoting the set of allowable parameter values. The goal of a generative model
is to learn and estimate the unknown data distribution pdata(x) from a given dataset, allowing us
to generate new data samples and query the probability of any data point ideally. We find the
optimal parameter θ∗ ∈ Θ such that pθ(x) ≈ pdata(x). When the statistical model pθ∗(x) closely
approximates the data distribution pdata(x), we can use pθ∗(x) as a proxy for pdata(x) to generate
new samples and evaluate probability values. To this end, we can use a distance measure such as KL
divergence to quantify the difference between two distributions, pθ(x) and pdata(x). This allows us to
determine the optimal parameter θ∗, which can be simply formulated as follows:

θ∗ = argmin
θ∈Θ

KL(pdata(x)||pθ(x)) = Epdata(x)

[
pdata(x)

pθ(x)

]
, (1)

wherein the expectation can be estimated using the empirical mean over samples in the training
dataset. Therefore, we can train a generative model pθ(x) on the dataset consisting of independent
and identically distributed (i.i.d.) samples {xi ∈ RD}Ni from pdata(x) by maximizing the average
log-likelihood across the training data points, which is known as maximum likelihood estimation
(MLE), i.e.,

θ∗ = argmax
θ∈Θ

Epdata(x)logpθ(x). (2)

Machine unlearning in Generative Model Let D = {xi}Ni ∈ RD be the training data, which
follow the distribution xi ∼ pd. Let Df = {xu

i }Mi ⊆ D denote the forgetting dataset containing
privacy or toxicity issues, which is referred to as not suitable for generation (NSFG) data, following
the distribution pf (x). The remaining data, Dg = D\Df = {xg

i }
N−M
i ∼ pg(x), represents the

Suitable For Generation (SFG) data. Our goal is to enable the generative model to avoid generating
NSFG samples while maintaining the quality of image generation for SFG data. We refer to such
a generative model as an unlearning generative model. We use the symbol p to denote either a
probability distribution or its probability density or mass function depending on the context.

2.2 SCORE-BASED GENERATIVE MODELING WITH SDES

Score model Score function is the abbreviation of Stein score function (Stein, 1972). It is defined
as the gradient of the log density of a probability distribution. Specifically, the corresponding score
function s(x) for the probability density function is given by ∇x log pt(x). Given a probability den-
sity function, its score function is uniquely determined by the gradient of the log-density. Conversely,
a given score function can be used to recover the corresponding density function. Thus, the score
function retains the same amount of information as the probability density function. We refer to a
model that represents a score function as a score model, denoted by sθ(x), where θ represents the
model parameters. The score function does not require calculating the normalization constant, which
is a major advantage over the density function. As a result, it is considerably easier to model using
flexible deep neural networks.

Score-Based Generative Modeling with SDEs The two main components of a score-based SDE
generative model are the forward process and the reverse process.

The forward process {x(t) ∈ Rd}Tt=0 transforming data from the distribution pdata(x) to a simple
noise distribution with a continuous-time stochastic differential equation (SDE)

dx = f(x, t)dt+ g(t)dw, t ∈ [0, T ], (3)

where f : Rd → Rd is called the drift coefficient of the SDE, g ∈ R is called the diffusion coefficient,
and w represents the standard Brownian Motion. Let pt(x) denote the density of x(t). At time t = 0,
the initial distribution of x(0) follows p0 := pdata, while at time t = T , x(T ) adheres to pT . Here,
pT commonly represents a prior distribution known for its manageable form and ease of sampling,
frequently taking the shape of a Gaussian distribution.
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The reverse process then converts noise into samples via reversing the diffusion process, effectively
executing generative modeling. Remarkably, x(t) satisfies a reverse-time SDE:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw̄, (4)

where w̄ is a Brownian motion in the reverse time direction, and dt represents an infinitesimal
negative time step.

Running the reverse process requires estimating the score function of the law of the forward process.
this is typically done by training neural networks on a score-matching objective.

Score Estimation In practice, when we only have sample access to pdata, the score function
∇x log pt(x) is not available. We can train a time-dependent score-based model sθ(x, t), to approxi-
mate ∇x log pt(x), using the following weighted sum of denoising score matching objectives

min
θ

Et LSGM = min
θ

Etλ(t)Ex(0)Ex(t)∥sθ(x(t), t)−∇x(t) log p0t(x(t) | x(0))∥22 (5)

where x(0) ∼ p0(x) and x(t) ∼ p0t(x(t) | x(0)), t ∼ U(0, T ) is a uniform distribution over [0, T ],
p0t(x(t) | x(0)) denotes the transition probability from x(0) to x(t), and λ(t) ∈ R>0 denotes a
positive weighting function. Note that Equation (5) uses denoising score matching, but other score
matching objectives, such as sliced score matching (Song et al., 2020) and finite-difference score
matching (Pang et al., 2020) are also applicable here.

3 UNLEARNING IS BETTER THAN UNSEEN

3.1 MOTIVATION

Two mainstream strategies for generative unlearning involve either erasing learned NSFG content
from a pre-trained generator, i.e., Erased Fine-tuning, or re-training the generator from scratch after
removing the forgetting data Dg from original training dataset, i.e., Unseen Re-training. Erased
Fine-tuning modifies specific parts of a generative model (e.g., weights or learned features) to forget
the influence of specific content, yet may still inadvertently generate unwanted contents (Qi et al.,
2023). From a data representation and gradient space perspective, research has demonstrated that
when fine-tuning data contains examples closely resembling known explicit content in any feature
space, the model’s susceptibility to adversarial attacks increases, resulting in the generation of NSFG
content (He et al., 2024). Conversely, Unseen Re-training is regarded as the state-of-the-art generative
unlearning strategy, significantly outperforming Erased Fine-tuning (Xu et al., 2024). However,
contrary to the belief that Unseen Re-training is considered the ‘gold standard’ for data forgetting
(Thudi et al., 2022; Fan et al., 2024), we found that when the distribution distance between Dg and
Df is close, malicious users may still exploit the model to generated undesirable content. Similarly,
Gandikota et al. (2023) demonstrates that even re-training the SD 2.0 (Rombach et al., 2022b) model
on filtered datasets that exclude explicit images, explicit content persists in the model’s outputs using
prompts from the Inappropriate Image Prompts (I2P) benchmark (Schramowski et al., 2023).

Table 1: The Negative log-likelihood (NLL)
values of different methods with respect to
the data from pdata.

Test Standard Unseen Unlearning

Dg 10.91 10.63 10.64
Df 10.73 11.59 39.01

Figure 1 shows a toy example to illustrate the above
phenomenon. We train a Variance Exploding Stochas-
tic Differential Equation (VE SDE) model (Song et al.,
2021) on the dataset D sampled from a mixture of
two-dimensional Gaussian distributions, where the data
distribution (shown on the left of Figure 1 (a) & (c) is
defined as pdata =

4
5N ((−2,−2), I)+ 2

5N ((0, 0), I)+
4
5N ((2, 2), I). We refer to this standard trained VE
SDE as Standard VE SDE, and it learns a data distribu-
tion as is shown in Figure 1 (a) on the right. NSFG data Df is identified as the data from distribution
pf = N ((0, 0), I) (colored green in Figure 1 (a) on the left). The remaining data sampled from
pg = 4

5N ((−2,−2), I) + 4
5N ((2, 2), I) represent the SFG data (colored red in Figure 1 (a) on the

left), denoted as Dg. The generator trained only on Dg is referred to as Unseen Re-training. Its
learned data distribution is shown in Figure 1 (b) on the right. Figure 1 (b) demonstrates that NSFG
data were inadvertently generated even when the model was trained on pure SFG data.

Additionally, we quantify the generation probability of NSFG and SFG data in terms of Negative
Log-likelihood (NLL) given different generators in Table 1. For Standard VE SDE, it is reasonable
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for Dg and Df to have the same likelihood, as both data are observed during training. However, for
Unseen Re-training, the likelihood of Df is almost the same as Dg . This indicates that the generator
trained by Unseen Re-training did not use NSFG data for training, it can still fit the unseen data well.
This raises our concerns about the “gold standard” of machine unlearning in generative models, as
the unlearning model can still generate undesirable content even if it has never seen Df . Naturally, a
question occurs to us:

Is there a better unlearning method that can exceed the current ‘gold standard’ for generative
unlearning, enabling the generator to entirely forget undesirable contents rather than merely

‘unseen’ them?

3.2 SCORE-BASED GENERATIVE UNLEARNING

To answer the above question, we first formalize the Unseen Re-training process as follows:

θ∗ = argmin
θ∈Θ

(DKL(pg(x)∥pθ(x))) . (6)

An Unseen Retrained generator only approximates pg(x) and the model generates data that follows
pg(x) with high likelihood as described in Equation (6). However, Equation (6) does not consider the
likelihood of generating Df . If the distributions pf (x) and pg(x) are close or overlapping, Unseen
Re-training may not control the probability of generating Df (see Table 1). Therefore, we propose a
new Unlearning Re-training strategy to prevent the generator from generating undesired content by
maximizing the distance between pf (x) and pθ(x), while minimizing the distance between pg(x)
and pθ(x), i.e.,

θ∗ = argmin
θ∈Θ

{DKL(pg(x)||pθ(x))−DKL(pf (x)||pθ(x))} . (7)

Different from Unseen Retrained model only approximating pg(x), the objective of unlearning
Re-training is to force the unlearning model to assign low likelihood to pf (x) and high likelihood
to pg(x). Considering that machine unlearning for score-based generative model has not been
investigated, we focus on unlearning in score-based generative model and instantiate unlearning
Re-training from a perspective of score estimation. It is well known that score estimation plays a
crucial role in the generation process of score-based generative models. Theoretically, as long as
the score estimation is sufficiently accurate and the forward diffusion time is long enough (such
that the final noise distribution approaches the prior distribution), diffusion models can approximate
any continuous data distribution with polynomial complexity under weak conditions (Chen et al.,
2023a). Therefore, Equation (7) can be framed as a score estimation problem, where different
score functions are estimated for pg(x) and pf (x). The question now becomes how to train a time-
dependent score-based model suθ (x, t) to approximate ∇xg log pt(x

g) and deviation ∇xf log pt(x
f ).

For approximating pg(x), we can directly use the original score estimation:

LUSGM(g) = λ(t)Ex(0)Ex(t)[∥suθ (xg(t), t)−∇xg(t) log p0t(x
g(t) | xg(0))∥22], xg ∈ Dg. (8)

For unlearning pf (x), if the estimated score at any moment deviates from the score of the NSFG data
on the timeline from 0 to T , the samples generated during sampling will be far away from the data
distribution of NSFG. Under this goal, a straightforward idea is to reduce the correlation between
suθ (x, t) and suθ (x, t), i.e. minimizing the inner product of the two scores:

LUSGM(f) = λ(t)Ex(0)Ex(t)[∥suθ (xf (t), t) · ∇xf (t) log p0t(x
f (t) | xf (0))∥22], xf ∈ Df . (9)

Equation (9) seeks for the null space of ∇xf log pt(x
f ), so that for xf ∈ Df , suθ (x, t)·

∇xf log pt(x
f ) → 0. We refer to this unlearning optimization as Orthogonal Unlearning. However,

in our preliminary experiments, we observed that when pg(x) and pf (x) are very close (e.g. when
generating human faces where local features like bangs or beards are undesirable) or when suθ (x

f , t)
has been learned well (e.g. erasing undesirable content from a converged pre-trained generator),
limiting the search to the null space of ∇xf log pt(x

f ) becomes difficult to optimize. To address this
issue, we expand the search space by ensuring suθ (x

f (t), t)· ∇xf log pt(x
f ) < 0, xf ∈ Df . This

leads us to define a new unlearning objective called Obtuse Unlearning:

LUSGM(f) = λ(t)Ex(0)Ex(t)[s
u
θ (x

f (t), t) · ∇xf (t) log p0t(x
f (t) | xf (0))], xf ∈ Df . (10)
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Figure 1: The samples from the mixture Gaussian distribution and the samples generated by the
model trained by Standard VE SDE (a), Unseen Re-training (b) and Unlearning Re-training (c). The
left side of (a), (b) and (c) represents the training data, in which the green part is NSFG data, and
the red part is SFG data. The right side of (a), (b) and (c) represents the data generated by diffusion
models.

The final loss of unlearning score-based generative modeling can be expressed as:

min
θ

Et∼U(0,T )LUSGM = min
θ

Et∼U(0,T )

(
αLUSGM(g) + (1− α)LUSGM(f)

)
, (11)

where U(0, T ) is a uniform distribution over [0, T ], p0t(x(t) | x(0)) denotes the transition probability
from x(0) to x(t), λ(t) ∈ R>0 denotes a positive weighting function and α is a hyperparameter
whose value depends on the ratio of M to N .

Figure 2: (a), (b) and (c) are the overlay of probability density of train-
ing data from pdata =

2
5
N ((−2,−2), I) + 1

5
N ((0, 0), I) 2

5
N ((2, 2), I)

and suθ (x(0.08), 0.08), (d) comparison of the scores from our proposed
method Unlearning and the Standard.

We conduct a quick experiment
on the mixture Gaussian dis-
tribution using Unlearning Re-
training strategy to evaluate the
effectiveness of the proposed
method. As shown in Figure 1,
compared to Unseen Re-training,
samples generated by our method
almost do not contain NSFG data.
Meanwhile, the NLL values in
Table 1 indicate a substantial de-

crease in the probability of generating NSFG data. We further show why Unlearning Re-training can
surpass Unseen Re-training. We plot the learned scores at a randomly selected generation process
t = 0.08 in Figure 5. The results show that the scores for both Unseen Re-training and Standard
VESDE are quite similar, while our method alters the score distribution of NSFG data, causing the
model to steer away from high probability density areas, thereby reducing the likelihood of generating
NSFG data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets Preparation. We evaluate our proposed SGU on MNIST (Alsaafin & Elnagar, 2017),
CIFAR-10 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011) and CelebA (Liu et al., 2015)
datasets. Despite evaluation on score-based models such as Variance Preserving (VP) SDE (Song
et al., 2021) and VE SDE (Song et al., 2021), we also employ DDPM (Ho et al., 2020) to verify
the generalization of SGU to different types of diffusion generative models. According to the
characteristics of the datasets, we conducted class forgetting experiments using MNIST (Alsaafin
& Elnagar, 2017), CIFAR10 (Krizhevsky et al., 2009) and STL-10 (Coates et al., 2011) datasets,
and performed attribute elimination generation on CelebA (Liu et al., 2015) datasets. We outline
the dataset preparation for the experiments, detailing the selection of Df and the generative models
trained on each dataset as follows:

• MNIST: We trained the VE SDE model, selecting all instances of the digits “3” and
“7” for Df . The MNIST dataset exhibits a sparse distribution of digits ‘0 − 9’ in high-
dimensional space. While individual handwritten digits are independent, they exhibit strong
local structural dependencies. This characteristic makes the Variational SDE (VESDE)
particularly suitable for modeling the MNIST data distribution.
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• CIFAR-10: We trained the VP SDE and DDPM models, selecting the data labeled as “dog”
and “automobile” classes for Df .

• STL-10: We trained the VP SDE models, selecting the data labeled as the “airplane” class
for Df .

• CelebA:We trained the VP SDE model, selecting the feature “Bangs” from the 40 available
features provided for each image to form Df .

Compared Methods. Our proposed SGU has two variants: SGU-Orthogonal and SGU-Obtuse.
We compare SGUs with the following methods. Standard: the original generative models trained
on D before unlearning serve as a reference. Unseen: a model retrained from scratch on data that
does not contain Df . Unseen is often considered the ‘gold standard’ in MU and the state-of-the-art
unlearning strategy.

Evaluation Metric. We use the following evaluation metrics to evaluate the effectiveness of unlearn-
ing:
Unlearning ratio(UR): UR measures the percentage of generated samples in the NSFG data produced
by the model. A lower UR value indicates that the model has successfully unlearning the NSFG data.
We use external classifiers or CLIP to evaluate the generated samples to ensure that the unlearning
categories or attributes have been effectively removed. For all experiments, we randomly sample
10,000 images from the model to calculate the unlearning ratio.
Negative log-likelihood(NLL): For the SDE-based generation diffusion model, we can accurately
calculate the value of NLL, from which we can calculate the likelihood of the generation of NSFG
data and SFG data. Higher values indicate a lower probability of generation.

Generation Quality Evaluation. SGU preserves the generative quality when generating SFG data
while generating noise to replace generating NSFG data. Therefore, using commonly used metrics
FID (Heusel et al., 2017) and IS (Salimans et al., 2016) to evaluate generation performance is
unsuitable, because these quality evaluation metrics assess the quality of whole generated data
(including generated NSFG data and SFG data). We argue that we should evaluate the generative
quality of generated NSFG and SFG data respectively. To this end, we test our method on image
inpainting and reconstruction tasks, using CLIP embedding distance (Radford et al., 2021) to assess
whether the reconstruction quality degrades on NSFG and SFG data.

4.2 CLASS-WISE/FEATURE-WISE UNGENERATION

Quantitative Results. In Table 2, we compare the unlearning performance with baseline methods
in unconditional generation. First, SGU achieves the lowest unlearning rate compared to Unseen
across all datasets, indicating that SGU effectively unlearns the NSFG data. Second, for Unseen,
both SFG and NSFG data exhibit low NLL values, suggesting that despite the NSFG data never
being observed during the training process, the generative model can still fit the distributions well. In
contrast, SGU significantly reduces the generation probability of Df via substantially increasing the
NLL values of the NSFG data. Additionally, although both SGU-Orthogonal and SGU-Obtuse
can successfully unlearn undesirable data/features, their performance varies across different scenarios.
SGU-Orthogonal is more effective for class unlearning, while SGU-Obtuse is more effective for
feature unlearning. We suspect that SGU-Orthogonal seeks null space of ∇xf log pt(x

f ), so that
suθ (x, t) does not learn any semantic features(see Figure 3), hence SGU-Orthogonal is effective
for most cases. However, when pg(x) and pf (x) are very close, the null space of ∇xf log pt(x

f )
is hard to be found, hence using SGU-Orthogonal to extend the search space (suθ (x

f (t), t)·
∇xf log pt(x

f ) < 0, xf ∈ Df ) can improve the unlearning performance.

Qualitative Results. We report the qualitative visualization comparison in Figure 3. In Figure 3,
we observe that Unseen may not completely erase the bangs features. For example, facial images
generated by Unseen may still exhibit few bangs features, even though the bang features are not as
long as those in Df . In contrast, SGU completely erases the bang features. An interesting phenomenon
is that SGU-Orthogonal and SGU-Obtuse forget bangs in different ways. For the unwanted
feature, SGU-Orthogonal replaced the bangs with noisy images, while SGU-Obtuse generate
features opposite to the bangs in the score distribution, such as ‘no bangs’ or ‘hat’. This is because
SGU-Orthogonal seeks for null space of ∇xf log pt(x

f ), hence suθ (x, t) learns nothing, while
suθ (x, t) in SGU-Obtuse learn the inverse of ∇xf log pt(x

f ), hence may generate the ‘inverse’
feature of bangs. The visual results in other datasets also have the same phenomenon, as shown in
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Table 2: Quantitative results for unleaning feature or class on different datasets. ‘Feature/class’ means
we need to unlearn content. The unlearning ratio represents the degree of forgetting, measured by
predicting the proportion of Df data in the generated 10,000 images using CLIP. The right side of
the table presents the negative log-likelihood values for D, Dg and Df data.

Dataset Model Feature/class Unlearning ratio (%) (↓) Test Negative log-likelihood (NLL) Test (↓)

Standard SGU-Orthogonal SGU-Obtuse Unseen Standard SGU-Orthogonal SGU-Obtuse Unseen

MNIST VESDE
3 11.0 0.4 1.5 1.8 Dg 2.82 3.92 3.70 3.077 15.8 0.8 3.6 2.3

Df3 and 7 26.8 1.2 5.1 4.1 2.78 13.23 12.08 3.01

CIFAR-10 VPSDE
automobile 11.2 1.9 0.9 3.4 Dg 3.12 3.22 3.28 3.09dog 13.4 10.0 11.5 10.8

Dfdog and automobile 24.6 11.9 12.4 14.2 3.20 5.94 4.37 3.21

STL-10 VPSDE airplane 12.1 2.4 3.6 3.8 Dg 2.90 2.90 2.92 2.90
Df 2.19 8.94 9.25 2.32

CELEBA VPSDE Bangs 19.6 3.5 0.7 6.7 / / / / /

Figure 3: Image generation using different unlearning methods for VP SDE on MNIST and
CELEBA. The top, middle, and bottom rows show images generated by unlearning strategy Unseen,
SGU-Orthogonal and SGU-Obtuse respectively. NSFG images sampled from the forgetting
dataset Df are enclosed in the green box. Images generated by the different unlearning methods are
enclosed in the yellow box.

Figure 4: The comparison of restoration results on the CELEBA dataset. The mask size is 64× 32,
in the upper half of the image. The restored results on Df are displayed on the left, enclosed in the
orange box. The restored results on Dg are displayed on the right, enclosed in the green box.

the right side of the Figure 3. Additionally, for SFG content generation, SGU shows competitive
generative performance compared to the source images, and performs well with high-resolution
images.

4.3 APPLICATION TO DOWNSTREAM TASKS

Unleanring Inpainting. SGU enables zero-shot transfer of the unlearning SGM to downstream
task. We first test SGU on inpainting task. We mask the upper part of the image and attempt to
restore the whole image. The quantitative restoring results on Df and Dg are reported in Section 4.2.
We regard the classification as correct if the predicted class of the restored image matches that of
the corresponding original image. SGU-Obtuse still contains a high classification accuracy for
restored images on Dg while significantly decrease the accuracy on restored images on Df . This
indicates that restored image by SGU-Obtuse still retains similar semantics on Dg, while altering
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Table 3: The performance results of various methods on the inpainting task of Original, Orthogonal,
Obtuse and Unseen. ”Clean” refers to the prediction accuracy on real dataset using the CLIP classifier.
‘Classification accuracy’ means if the predicted class of the restored image matches that of the
corresponding original image. ‘CLIP of Dg’ indicates the CLIP distance between the restored and
original images for 5,000 images after the inpainting task.

Dataset Feature/class Classification accuracy (%) CLIP of Dg(↓)

Clean Standard SGU-Orthogonal SGU-Obtuse Unseen Standard SGU-Orthogonal SGU-Obtuse Unseen

CIFAR-10 dog and automobile Dg 95.4 72.5 75.5 74.7 75.8 6.80 6.80 6.77 6.72
Df 95.5 75.0 57.2 49.6 59.7

STL-10 airplane Dg 96.3 83.4 83.6 83.1 84.5 8.50 8.51 8.50 8.50
Df 96.3 84.1 59.5 50.3 54.9

Table 4: The comparison results of reconstruction on CIFAR-10.

Dataset Model Classification accuracy (%) CLIP

Standard SGU-Orthogonal SGU-Obtuse Unseen Standard SGU-Orthogonal SGU-Obtuse Unseen

CIFAR-10 VPSDE Dg 88.1 87.7 87.0 87.9 Dg 6.91 6.90 6.89 6.90
Df 74.4 48.4 69.6 70.3 Df 7.02 7.25 7.00 7.00

Figure 5: The comparison of reconstruction results on the CIFAR-10 dataset. The top, middle and
bottom columns are the original images, reconstruction images by Unseen, and reconstruction images
by SGU-Orthogonal respectively.

the source semantics on Dg . In addition, SGU captures the same CLIP distance as a standard trained
generator on Dg , indicating that the SGU-trained generator still retains high generation performance.
Furthermore, we compare the visual results on Figure 4. When the masked image is from Dg (no
‘bangs’), Unseen still has the probability to restore a face image with bangs. When the masked image
is from Df , most of the restored image fail to erase the ‘bang’ features. In contrast, our method can
effectively erase the bangs on Df , and restore the similar semantic features on Dg

Unlearning Reconstruction. Generative models can learn the latent representations of data and
reconstruct images. Through the reconstruction, we use these latent representations as guidance
to verify whether our method effectively achieves unlearning. To maintain the similarity between
reconstruction results and original images on Dg, we set t = 0.02 for the continuous-time SDE
schedule. We reconstruct images using VP SDE model trained by standard training, Unseen and our
proposed SGU method and report the comparison results in Table 4. We utilize the classification accu-
racy to assess whether the reconstructed images still be classed by the original class. SGU-Obtuse
significantly decrease the accuracy for reconstructed Df data while maintain the original semantic
information for reconstructed Dg. Additionally, we calculate the CLIP distance for Dg and Df

with respect to their respective ground truth images. Our method SGU-Orthogonal demonstrates
superior forgetting effects compared to the Unseen, with a larger CLIP distance on Df . Next, we
visualize the reconstruction quality in Figure 5. Unlike Unseen, where the reconstruction quality
of Df matches that of Dg, SGU-Orthogonal reconstructs Df as noisy images, indicating that
SGU-Orthogonal has completely unlearned the Df distribution.
4.4 UNLEARNING DDPM AND FINE-TUNE

SGU is a general and flexible framework that is compatible with DDPM models and fine-tuning
training. The technical details of SGU application to DDPM can be found in Appendix B. To
demonstrate this, we conduct both class and feature unlearning on pre-trained VP SDE and DDPM
models. The Table 5 presents quantitative results for fine-tuning experiments on different datasets
using the SGU method. We conduct 80,000 and 30,000 iterations of fine-tuning on SGM and DDPM
architecture respectively, across all datasets. It is noteworthy that SGU also performed well in the
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DDPM fine-tuning tasks, indicating that our unlearning framework can also be applied to the DDPM
architecture. SGU-Obtuse achieve the lowest unlearning rates across all models and datasets,
indicating its effectiveness for erasing undesirable content from pre-trained models. Since the DDPM
architecture cannot calculate exact NLL values, they are marked as ‘\’ in the table. Similarly, on the
CelebA dataset, where the unlearning task involves removing attribute features, NLL values on image
data cannot reflect the probability of generating specific attributes, and thus are also marked as ‘\’.
SGU surpasses Unseen in NLL tests.

Table 5: Fine-tune quantitative results for unleaning feature or class on different datasets. ‘Fea-
ture/class’ means we need to unlearn content. The unlearning ratio represents the degree of forgetting,
measured by predicting the proportion of Df data in the generated 10,000 images using CLIP. The
right side of the table presents the negative log-likelihood values for D, Dg and Df data.

Dataset Model Feature/class Unlearning ratio (%) (↓) Test Negative log-likelihood Test (↓)

Standard SGU-Orthogonal SGU-Obtuse Unseen Standard SGU-Orthogonal SGU-Obtuse Unseen

CIFAR-10

VPSDE
automobile 11.2 2.7 0.6 3.4 Dg 2.89 3.06 4.36 2.92dog 13.4 8.7 8.9 10.8

dog and automobile 24.6 11.4 9.5 14.2 Df 2.91 10.36 14.96 2.95

DDPM
automobile 13.1 3.3 1.6 2.7 \ \ \ \ \

dog 13.9 5.4 3.6 4.5 \ \ \ \ \
dog and automobile 27.0 8.7 5.2 7.2 \ \ \ \ \

CELEBA VPSDE Bangs 19.6 2.6 0.1 6.7 \ \ \ \ \

5 CONCLUSION

In this work, we make the first attempt to investigate generative unlearning in score-based generative
model. To this end, we introduce score-based generative unlearning (SGU), which surpass the previous
‘gold standard’ for machine unlearning in score-based generative models. Extensive experiments
demonstrate that SGU effectively unlearns undesirable content, without sacrificing generation quality
for suitable data. Although SGC is primarily designed for score-based generative model, SGU is a
straightforward and flexible unlearning framework, which can be generalized to diverse diffusion
architectures (SGM and DDPM) and training strategies (re-training and fine-tune). Additionally, SGU
effectively enables zero-shot transfer of the unlearning score-based generative model to downstream
tasks, including image inpainting and reconstruction. This further illustrates that SGU maintains
effective unlearning even when faced with inappropriate content guidance.

Ethics Statement. The application of Score-based Generative Unlearning (SGU) for unconditional
generative models can be effectively utilized to prevent the generation of content related to user privacy
and copyright violations. Moreover, SGU can mitigate the risk of producing harmful content, such as
violence or pornography, ensuring a more responsible and ethical use of generative technologies.

Reproducibility Statement. For the datasets used in our experiments, all the datasets used in this
paper are open dataset and are available to the public. Besides, our codes are primarily based on
Pytorch. All the source code and model checkpoints will be shared upon acceptance. All inference
details and mathematical deduction can be found in Section 3.
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A RELATED WORK

Score-based generative models In recent years, there are two classes of diffusion generative
models that sequentially corrupt training data with slowly increasing noise and then learn to reverse
this corruption. Score matching with Langevin dynamics (SMLD)(Song & Ermon, 2019; 2020)
estimates the score at each noise scale and then employs Langevin dynamics to sample from a
sequence of progressively reduced noise scales during the generation process. Denoising diffusion
probabilistic modeling (DDPM) (Ho et al., 2020; Nichol & Dhariwal, 2021; Sohl-Dickstein et al.,
2015) is a probabilistic generative model that learns the distribution of original data by incrementally
adding noise to the data to degrade the data structure, and then learning a corresponding reverse
process to denoise it. Since the training objective of DDPM implicitly computes the score at each
noise scale in a continuous state space, we can refer to these two types of models as score-based
generative models or diffusion models. To develop new sampling methods and further enhance the
capabilities of score-based generative models, a unified framework is introduced that generalizes
previous approaches through the lens of stochastic differential equations (SDEs) (Song et al., 2021).
Specifically, this framework considers perturbing the data based on a continuous distribution evolving
over time according to a diffusion process, rather than relying on a finite number of noise distributions.
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Due to the powerful performance of the diffusion model, many diffusion models are used to generate
creative content in actual production. Applications for image generation systems like DALL ·
E2(Ramesh et al., 2022), Imagen(Saharia et al., 2022) and Stable Diffusion(Rombach et al., 2022a)
utilize diffusion models for conditional generation. More recently, some applications have started to
employ diffusion models to generate various modal data such as voice and video. But at the same
time, the powerful capabilities and wide application of the diffusion model have also led to potential
negative impacts. The content generated by the diffusion model has copyright issues, privacy issues,
bias issues, etc.

Security and privacy of AIGC The emergence of AIGC marks a critical moment in the evolution
of information technology. With AIGC, generating high-quality data has become easy. However,
the surge in generated data in cyberspace also brings security and privacy issues, including personal
privacy leakage and media forgery, which may be used for improper purposes such as fraud. Diffusion
models, as a major type of deep generative model, typically use training data from various open
sources. When utilizing such unfiltered data, there is a risk of contamination (Chen et al., 2023b)
or manipulation (Rando et al., 2022), which may lead to the generation of inappropriate content
(Schramowski et al., 2023). Additionally, these models may risk imitating copyrighted content, such
as replicating artistic styles (Gandikota et al., 2023; Shan et al., 2023).

Machine unlearning MU can help generative models forget training data. To address the challenges
in the security and privacy of AIGC, it is urgent to explore effective MU techniques. However,
SALUN (Fan et al., 2024) demonstrated that existing MU methods designed for image classification
are not sufficient to address MU in image generation. Therefore, the challenge of ensuring effective
unlearning for generative models has become increasingly important and pressing. Recently, a few
studies (Gandikota et al., 2023; Heng & Soh, 2023; Fan et al., 2024; Zhang et al., 2024; Kumari
et al., 2023; Wu et al., 2024; Heng & Soh, 2024) have explored unlearning in diffusion models, with
most focusing on text-to-image diffusion models. Kumari et. al (Kumari et al., 2023) fine-tuned
diffusion models by modifying the sensitive training data so that the models forget already memorized
images. Forget-Me-Not (Zhang et al., 2024) is adapted as a lightweight model patch for Stable
Diffusion. It effectively removes the concept of containing a specific identity and avoids generating
any face photo with the identity. SA (Heng & Soh, 2024) can be applied to conditional variational
likelihood models, which encompass a variety of popular deep generative frameworks, including
variational autoencoders and large-scale text-to-image diffusion models. ERASEDIFF (Wu et al.,
2024) explores the issue of unlearning in diffusion models and proposes an effective unlearning
method for both unconditional and conditional diffusion models. While current research provides
strategies for concept erasure in diffusion models, achieving precision comparable to exact forgetting
remains a challenging task.

B SGU FOR UNLEARNING DDPM

Denoise Diffusion Probabilistic models (DDPMs) (Ho et al., 2020) are a type of generative model that
generate samples from a distribution via an iterative Markov denoising method. Initially, a sample
xT is drawn from a Gaussian distribution and subsequently denoised over T time steps, ultimately
resulting in a clean sample x0. During the training phase, the model learns to predict the noise
ϵθ(xt, t) that needs to be removed from the sample xt using the following reweighted variational
bound:

LUSGM(g) = Ex0,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ϵ− ϵθ(
√
ᾱtx

g
0 +

√
1− ᾱtϵ, t)

∥∥2] , xg
0 ∈ Dg, (12)

where β1, . . . , βT is a variance schedule used for adds Gaussian noise to the data in the forward
process, αt = 1 − βt, ᾱt =

∏t
s=1 αs and xt =

√
ᾱtx0 +

√
1− ᾱtϵ for ϵ ∼ N (0, I). While

our method is primarily designed for score-based generative models, the Score-based Generative
Unlearning (SGU) approach is also compatible with the DDPM models. By applying our method
within the DDPM framework, we derive the following unlearning method:

SGU-Orthogonal for DDPM

LUSGM(f) = Ex0,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥∥ϵ · ϵu
θ(
√
ᾱtx

f
0 +

√
1− ᾱtϵ, t)

∥∥∥2] , xf
0 ∈ Df . (13)
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SGU-Obtuse for DDPM

LUSGM(f) = Ex0,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

(
ϵ · ϵu

θ(
√
ᾱtx

f
0 +

√
1− ᾱtϵ, t)

)]
, xf

0 ∈ Df . (14)

Similarly, the final loss of unlearning DDPM modeling can be solved by Equation (11).

15


	Introduction
	Preliminaries
	Generative modeling
	Score-Based Generative Modeling with SDEs

	Unlearning is Better than Unseen
	Motivation
	Score-based Generative Unlearning

	Experiments
	Experimental Setup
	Class-wise/Feature-wise ungeneration
	Application to Downstream Tasks
	Unlearning DDPM and Fine-tune

	Conclusion
	Related Work
	SGU for Unlearning DDPM

