
Impact of Collective Behaviors of
Autonomous Vehicles on Urban Traffic Dynamics:
A Multi-Agent Reinforcement Learning Approach

Ahmet Onur Akman*1
onur.akman@uj.edu.pl

Anastasia Psarou1

anastasia.psarou@uj.edu.pl
Zoltán György Varga1

zoltan.varga@uj.edu.pl

Grzegorz Jamróz2
grzegorz.jamroz@uj.edu.pl

Rafał Kucharski2
rafal.kucharski@uj.edu.pl

1 Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
2 Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland

Abstract

This study examines the potential impact of reinforcement learning (RL)-enabled
autonomous vehicles (AV) on urban traffic flow in a mixed traffic environment. We
focus on a simplified day-to-day route choice problem in a multi-agent setting. We
consider a city network where human drivers travel through their chosen routes to
reach their destinations in minimum travel time. Then, we convert one-third of the
population into AVs, which are RL agents employing Deep Q-learning algorithm.
We define a set of optimization targets, or as we call them behaviors, namely
selfish, collaborative, competitive, social, altruistic, and malicious. We impose a
selected behavior on AVs through their rewards. We run our simulations using our
in-house developed RL framework PARCOUR. Our simulations reveal that AVs
optimize their travel times by up to 5%, with varying impacts on human drivers’
travel times depending on the AV behavior. In all cases where AVs adopt a self-
serving behavior, they achieve shorter travel times than human drivers. Our findings
highlight the complexity differences in learning tasks of each target behavior. We
demonstrate that the multi-agent RL setting is applicable for collective routing on
traffic networks, though their impact on coexisting parties greatly varies with the
behaviors adopted.

1 Introduction

With the recent advancements in autonomous driving technology, one can argue that we are moving
towards a future where traffic systems are populated with self-driving autonomous vehicles (AV).
Existing studies argue that the full integration will be costly and is still far down the road, but also
suggest that AVs could significantly lower accident rates, increase accessibility, and improve overall
traffic flow through optimized and coordinated route selection policies [9, 13]. The current feasibility
and anticipated prospects of integration of AVs are strongly promoted by parties with financial
interests [7, 6]. However, managing this integration requires rigorous analysis of the multifaceted
outcomes of such change, involving identifying and quantifying its impact on various stakeholders.

One of the main affected parties in this transformation may be the current inhabitants of our traffic
systems: human drivers. Apart from the aforementioned potential benefits, one of the reservations
regarding autonomous driving technology is its potential to negatively impact the experience for
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human drivers, possibly exacerbating their travel times. Previous research has highlighted how this
can occur naturally or consequently to a joint strategy [15, 12]. This research aims to contribute to
these discussions by examining the interaction between human drivers and AVs within a simulated
traffic environment. We demonstrate how different behavioral strategies of AVs can influence the
traffic flow and how this can be simulated with multi-agent RL (MARL).

In mixed traffic environments, the adopted behavior of a group of AVs may influence not only the
efficiency of the group itself but also the overall traffic efficiency. Studies have shown that AVs can
be programmed with various behavioral strategies and how different behaviors can affect traffic flow
and congestion [11, 3]. The interplay between these strategies and human driving behavior is an open
field for investigation, as it determines to what extent AVs can enhance or disrupt existing traffic
systems or compete with alternative modes to become the most attractive commuting option.

Among the various challenges presented by the integration of AVs, we address the problem of route
choice in mixed traffic environments. The route choice behaviors of the drivers can significantly
influence the traffic flow. Human drivers typically base their route choices on experience, sometimes
paired with real-time information, aiming to minimize their travel time [2]. In contrast, AVs can
employ more sophisticated learning algorithms and real-time data to make optimized route choices
that consider both individual and collective benefit [18, 8]. This divergence in decision-making
necessitates a detailed understanding of mixed route choice problems where humans and AVs coexist.

In this study, we represent the discrete route choice problem within an RL framework by concep-
tualizing it as a multi-agent decision-making process. We construct a traffic environment, and we
support the dynamics of this environment with traffic simulation software to reflect close-to-reality
transport dynamics. In this traffic environment, a group of driver agents, consisting of human drivers
and AVs, select routes to minimize their delays. We simulate the mobility of this driver population at
a peak hour on a random day. The traffic system initially consists of only human drivers, modeled as
selfish self-utility maximizers with no external guidance. After a predefined number of episodes, a
portion of the human drivers is replaced by a group of AVs, which are RL agents employing Deep
Q-Networks (DQN) [16]. AVs learn a selected behavior imposed on them through their rewards.
The reward formulation of an agent reflects the specific agent’s behavior, such as minimizing one’s
own travel time or maximizing the delay for others. We investigate the outcomes in scenarios where
AVs are imposed a selected behavior of each of six predefined behaviors: selfish, social, malicious,
cooperative, competitive, and altruistic. We assess the attainability of these optimization targets for
AVs in the given experimental setting and examine how they influence overall traffic efficiency.

In the following, we provide more in-depth specifications for our problem formulation. Next, we
introduce PARCOUR, our reinforcement learning framework that facilitated our experiments. We
then present our findings, highlighting the interesting trends observed in different scenarios. Our
contributions can be summarized as follows:

1. Definition of a day-to-day route-choice problem in a traffic network and formulation of this
problem as a MARL problem involving a varied set of agents.

2. Development of PARCOUR, our reinforcement learning tool designed for custom learning
scenarios like the one presented in this paper.

3. Simulation of the proposed route-choice problem with different AV strategies and an analysis
of our observations.

2 Methodology

2.1 Scenario

We design a simplified transport system involving route choice and congestion. We simulate traffic
movement at a peak hour on an arbitrary day. We provide each driver with a set of paths to choose
from and a utility to maximize. We observe their experiences over the days and how they learn to
optimize their returns.

We create a population of 1200 human drivers intending to travel from their origins to their destinations
through one of the three generated paths, by starting their commute on their individual start time.
Each driver’s start time is chosen randomly from the interval (0, 3600), representing every second
within an hour. The origin, destination, and start time information is initially assigned to each driver
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at random and remains unchanged throughout the simulation. Each human driver aims to reach their
destination with minimal travel time. We allow this population to interact with the environment, learn
about the traffic dynamics, and refine their knowledge about their options for 1000 episodes. We
name this time period Phase Settle.

In Phase Shock, starting in episode 1000, we replace approximately one-third of this population with
AVs, modeling a sudden shift to autonomous driving in the city. We pause the learning process for
humans and allow AVs to interact with this environment. By this, we aim to model the AVs’ offline
training procedure with a realistic environment model. Therefore, the remaining human drivers are
still present in the environment with their frozen knowledge. We allow AVs to explore their options,
and we once again allow the system to reach a loosely defined balance.

Finally in Phase Adapt, which is from episode 4000, we resume the learning process for humans,
while AVs are still learning. This is the time that AVs refine their offline-learned knowledge in the
actual city traffic. Therefore, we now have two sets of agents in a shared system, adapting to each
other’s existence. We continue simulating for 2000 more episodes. We observe the implications of
this coexistence for these two groups of drivers.

Episodes In each episode, we simulate driver movements with start times spread across an hour.
Drivers learn from their route choices and the delays they experience upon these choices. They take
turns to select routes, with the order determined by their start times. Before making their decisions,
AVs receive information about routes chosen previously by others, which helps construct their agent
state. Whereas human drivers decide solely based on their cost expectations associated with their
options. After all route choices are made, we simulate the travel using traffic simulator software and
collect each driver’s travel time. Agents then derive their rewards from this information according to
their behavior definitions. For instance, every human driver is selfish; their rewards (to minimize) are
their own travel times.

Difference between AVs and humans Humans are modeled using a behavioral model described
in Section 2.3, while AVs employ Deep Q-Learning from the RL framework. We define a set of
reward-induced behaviors for AVs: selfish, collaborative, competitive, malicious, altruistic, and social.
In each simulation run, we choose a different behavior to learn, but under the condition that the entire
group of AVs will bear the same behavior. However, each of the behaviors are individual optimization
targets and they do not constitute a collective objective, as we assume no direct communication or
shared knowledge amongst our agents, including the AVs.

2.2 Traffic Network

We use the traffic network of Csömör, a small town in Hungary, shown in Fig. 1 [5]. This network
is complex enough to demonstrate our case, with a well-organized grid-like layout with frequent
junctions, facilitating necessary grounds for strategy development for our agents.

We choose two origin and two destination nodes from this network and generate three paths connecting
each of the four origin and destination combinations. We use a custom heuristic-based path-finding
algorithm to create an action space that remains fixed across episodes for all agents. The resulting
paths are not guaranteed to be optimal but sufficiently distinct, with a few intersections on critical
nodes. We show all three paths generated to connect OD (0, 0) in Fig. 2.

Figure 1: Csömör traffic network Figure 2: Generated paths for OD (0, 0)
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Congestion We sample the agent start times from a Gaussian distribution centered on the half-hour
mark within our one-hour range. This way, we observe congestion build up and incentivize the use of
routes with higher free-flow travel time. The congestion on a selected junction over different time
steps within the same episode is displayed in Figure 3.

Figure 3: Congestion on a selected junction within a single episode on indicated time steps

2.3 Human Modeling

We use the behavioral model presented in the literature [4] for modeling our human agents’ learning
and decision-making procedure. This model is derived from random utility theory, a widely utilized
theoretical paradigm for modeling transport-related choices among discrete alternatives. In each
episode, the probability of an agent j to choose a route option i is:

pj(i) =
exp (βjci,j)∑

i′∈Ij exp (βjci′,j)
, (1)

where ci,j is agent j’s cost expectation for option i. βj represents the impact of human driver j’s
personal traits on decision-making, which is assigned to each human agent from a predetermined
negative range at random. This approach reflects our realistic assumption that not every human driver
will have the same level of uncertainty involved in their decision-making.

For each human agent j, we define a memory of cost expectations for each available action. Each
value in this memory is iteratively updated with perceived feedback as follows:

ct+1
i,j = (1− αj) · cti,j + αj · cti,j , (2)

where αj is the fixed step size, cti,j is agent j’s perception upon taking action i at time t, cti,j and ct+1
i,j

are the agent j’s expectations of costs associated with action i at time t and t+ 1, respectively. In our
case, cti,j will be the time spent in route i from the start time until the arrival to the destination.

In contrast to the RL algorithms, this model does not aim to represent an optimal decision-maker but
rather to portray rational decision-making with some impact of personal traits and the human-like
process of iterative expectation refinement. This model allows us to frame human driver behavior in
a traditional agent-environment interaction loop as we have it for the RL agents.

2.4 Reward function and AV behaviors

The reward function imposes a selected behavior on the agent. For an agent k with behavioral
parameters φk ∈ R4, reward is obtained as:

rk = φk
1 · T k

own + φk
2 · T k

group + φk
3 · T k

other + φk
4 · T k

all , (3)

where T k is a vector of travel time statistics provided to agent k, which contains:

• Own travel time Town: The amount of time the agent has spent in traffic.

• Group’s travel time Tgroup: The average travel time of agents within the same group as
the given agent (e.g., AVs for an AV agent).
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• Other group’s travel time Tother: The average travel time of agents within other groups
than the given agent (e.g., humans for an AV agent).

• System-wide travel time Tall: The average travel time of all the agents in the traffic.

We formulate each behavior with behavioral parameters listed in Table 1. We refer to behaviors with
a positive φ1 as self-serving behaviors. We care to maintain the same scale for the rewards across
behaviors by choosing values with an absolute sum equal to 1. This allows us to observe comparable
reward curves for different behaviors and maintain a consistent range of gradients in each experiment,
providing comparable learning processes of deep networks.

Table 1: Behavioral strategies and their objective weightings

Behavior φ1 φ2 φ3 φ4 Interpretation
Altruistic 0 0 0 1 Minimize delay for everyone

Collaborative 0.5 0.5 0 0 Minimize delay for oneself and one’s own group
Competitive 2 0 -1 0 Minimize self-delay and maximise for other group
Malicious 0 0 -1 0 Maximise delay for other group

Selfish 1 0 0 0 Minimize delay for oneself
Social 0.5 0 0 0.5 Minimize delay for oneself and everyone

We assume that an agent’s action can only impact a certain time window, and any events occurring
outside of this window are not informative for the agent. Although the consequences of the agent’s
decision might extend beyond this time window, we assume these effects are negligible. To avoid
distracting factors, we calculate T k for an agent k with start time tk by considering only the traffic
flow observed in the time window [tk − Lr, tk + Lr], where Lr is a hyperparameter.

2.5 Observations and agent states

We provide each agent with a partial statistic about the current traffic condition in the form of
observations, and we derive it from other vehicles’ decisions, leveraging the turn-based structure
of our episodes, as detailed in Section 2.1. The environment emits an observation ot during each
turn, which includes the selected actions in the previous turns within the same episode. We assume
that an agent k with start time tk can only observe a limited time window preceding tk. Therefore,
we constrain the observations with an observation time window of a length Lo, where Lo is a
hyperparameter. We also limit the observations to include information only about those with the same
OD pair as the observing agent.

The observation ot is used to derive the agent state sak,t for agent k. The agent state sat embeds useful
statistics about the current traffic conditions, leveraging the notion of action warmth to maintain the
temporal order of previous actions.

Upon receiving the route choices of prior agents, agent k constructs its agent state sak,t as a vector
of size 2 ∗ |A|. |A| = 3 is the number of route options for an agent and the same for all agents
in our experiments. The first half of the values are filled with the warmth of each action, but only
considering prior agents from the same group. The second half is filled in the same way, but by
considering the prior agents from other groups. The warmth of an action j concerning the other group
for an AV agent k with start time tk is obtained as:

warmthother
j =

∑
i∈Nother,wtk

(ti −minwtk) · 1{ODi=ODk} · 1{actioni=j} , (4)

where

• wtk is the observation time window of length Lo defined for start time tk. It contains all
time steps ranging in [tk − Lo, tk].

• Nother,wtk
is the set of prior non-AV agents whose start times fall within the observation

window wtk .
• ODi and ODk are the OD pairs of agents i and k, respectively.
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• ti and actioni are the start time and chosen action of agent i, respectively.

• 1{ODi=ODk} is an indicator function that is 1 if the OD pair of agent i is the same as agent
k’s, and 0 otherwise.

• 1{actioni=j} is an indicator function that is 1 if the action of the agent i is j, and 0 otherwise.

Following this, an agent state sak,t of AV agent k is constructed as:

sak,t =

(
warmthAV

warmthother

)
, (5)

where warmthAV =


warmthAV

1

warmthAV
2

· · ·
warmthAV

|A|

 and warmthother =


warmthother

1

warmthother
2

· · ·
warmthother

|A|

. In our presented scenario,

for an AV agent, the set of other groups contains only the group of human drivers and vice versa.

We should highlight that start times and OD pairs are intrinsically contained in the agent state.
However, as these factors remain unmodified throughout the simulation runtime, we choose not to
explicitly represent them. In other cases, one should modify the agent state accordingly.

2.6 PARCOUR

We conduct our experiments using our very own multi-agent reinforcement learning framework:
PARCOUR. PARCOUR (Playground for Agents with Rationality Competing for Optimal Urban
Routing) is designed to allow researchers to define and test different behavior and learning models in
custom multi-agent route-choice scenarios and observe agent interactions in a shared environment.

In PARCOUR, we ensure modularity by modeling each component with separate lifecycles and
minimal dependencies. PARCOUR exemplifies the principle of separation of concerns (SoC), as
each component has distinct responsibilities. Moreover, it relies solely on a small set of core libraries
like PyTorch [17] and pandas [14] to provide broader compatibility. A Unified Modeling Language
(UML) class diagram illustrating the structure of PARCOUR is provided in Appendix A.

PARCOUR is for discrete route choice problems, like the one we present in this study. A rigorous
investigation of this type of problem requires an accurate modeling of the traffic flow. We capture
the realistic transport dynamics by enabling the integration with an external traffic simulator. In
our experiments, we choose to use Simulation of Urban MObility (SUMO) [10], an open-source,
microscopic, and continuous traffic simulation software [1]. However, users can integrate any external
traffic simulator with a Python interface by extending the provided BaseSimulator class.

The ScenarioRunner object serves as the central orchestrator, connecting and managing the
interactions between various components. Users can model any scenario using their custom
ScenarioRunner class. A scenario in PARCOUR is constructed as a series of phases. The events to
occur in each phase, the number of phases, and their spans are configurable by the user.

The framework allows users to integrate an external RL library, or implement their own learning
algorithms, just like the ones we utilize in this study. PARCOUR is still in early development and it
is available as open-source software.1

3 Results

We implement our scenario (Sec. 2.1) in Csömör network (Sec. 2.2) using PARCOUR, integrated
with SUMO (Sec. 2.6). We run experiments with six reward-induced AV behaviors (Sec. 2.4) in
identical settings. Each case was repeated three times, and the results were averaged to provide a
clearer representation of the repeated trends and to capture the variability across trials. This section
presents our findings and highlights the contrast between the impacts of different AV behaviors.

1Available at: https://github.com/COeXISTENCE-PROJECT/parcour
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Demand and Action Space Our action space comprises 12 paths connecting every four OD pairs.
Each route’s free flow travel times are given in Table 2. Free flow travel time is the time it takes for a
vehicle to complete its journey under no traffic congestion. The provided values are calculated by
SUMO.

Table 2: Free flow travel time (in minutes) for different routes

Origin Destination Route 0 Route 1 Route 2
0 0 2.08 1.39 3.22
0 1 0.78 2.95 2.36
1 0 0.69 0.92 1.88
1 1 1.91 3.02 1.99

Each OD pair is associated with a demand
load, measured by the number of drivers in-
tending to travel between them at any timestep
of the simulation. While we aim to maintain
similar loads for each pair, perfect equality
in demand is hardly the case in real-world
traffic and is also not reflected in our gener-
ated driver population. Demand levels for
each OD pair and AV to human driver ra-
tios are shown in Figure 4. Note that up to
Phase Shock, all demand is created by human
drivers and the levels correspond to green and
red bars combined. Figure 4: Number of drivers traveling on each OD

Comparing behaviors We test six cases, in each imposing a different behavior on the AV fleet.
We compare the mean travel times of humans and AVs in each experiment, with human driver data
(origins, destinations, start times, if they will mutate to an AV) remaining consistent. This consistency
yields similar curves in Phase Settle for humans. The mean travel times of AVs and humans over the
episodes for each scenario are visualized in Figure 5.

Figure 5: For each case, mean travel times of humans and AVs over episodes

We show the consequences of different AV behaviors on their travel time and other drivers in Table 3,
where we compare the mean travel times averaged on the last 100 episodes of Phase Settle and the
last 100 episodes of Phase Adapt. Traffic efficiency measures the change in travel time of the entire
driver population in the traffic system.

These results demonstrate the contrast in the impact of different AV behaviors on the traffic flow. The
negative impact on the human commuting experience is relatively small but existent in competitive,
collaborative, selfish, and social cases. All self-serving behaviors yield lower delays for AVs and
increase overall traffic efficiency. In the malicious case, AVs establish a noticeable disadvantage for
human drivers, at the cost of significantly more delays for themselves. Interestingly, malicious AVs
manage to assert their malicious strategy more effectively once humans are allowed to react to their
existence. In the altruistic case, a minor enhancement in human driving experience costs 23.06%
more delays for AVs. In our experimental setting, despite our definition of the altruistic objective,
altruistic AVs not only fail to enhance traffic efficiency but worsen it.
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Table 3: Impact of different AV behaviors. Positive impact indicates lowered travel time.

Behavior On AV T.T.(%) On Human T.T. (%) On Traffic Efficiency (%)
Altruistic -23.06 0.27 -7.06
Collaborative 4.28 -0.71 0.86
Competitive 4.59 -0.75 0.93
Malicious -36.29 -5.43 -15.12
Selfish 4.57 -0.70 0.96
Social 4.21 -0.66 0.87

Learning efficiency of DQNs We show the learning processes of DQNs of AVs in each case in
Figure 6 using Mean Squared Error (MSE) loss. Our results show a generally downward trend in
losses in all cases, highlighting an effective learning procedure in our simulations. Surprisingly,
we observe that Phase Adapt is marked by further loss reduction and stabilization in most cases.
However, depending on the AV objective, achieved losses and fluctuations vary greatly.

Altruistic, collaborative, and social AVs exhibit a more consistent and effective learning process,
converging steadily to a below-one MSE loss. In the malicious case, we see an early convergence to a
near-one MSE loss from early on, but apart from a minor fluctuation at Phase Adapt, this level of
loss is more or less preserved until the end of the simulation. Selfish AVs struggle relatively more
to converge to an acceptable loss value, and we see that the loss curve is noisier, ending up with a
below-one MSE loss. In contrast, competitive AVs exhibit a less stable learning curve, reflecting the
increased complexity in the task of learning such a strategy in our multi-agent setting.

Figure 6: Average MSE loss of deep-RL agents over episodes

To emphasize learning stability with reward acquisition, we show the reward curves for each case
in Figure 7. In the altruistic case, despite the stable loss curve, there is the least steady reward
minimization over the episodes. This was anyway evident in Table 3. This hints at the difficulty
of implementing such behavior in our experimental setting. We observe a similar situation in the
malicious case, although Phase Adapt greatly aids the reward minimization (as also apparent in Figure
5). Other cases exhibit satisfactory reward minimization over the episodes. Interestingly, despite
the unsteady loss curve, the competitive case exhibits the steepest improvement over the episodes,
highlighting the contrast in difficulties in learning and implementing this behavior.

Figure 7: Average rewards of deep-RL agents over episodes observed in each experiment. Malicious
rewards are negated for visualization.

Impact on human experience Thus far we considered the changes in traffic dynamics as a whole
and disregarded the differences between different parts of the traffic. However, to accurately assess the

8



implementation and impact of each autonomous vehicle (AV) behavior, a more detailed, fine-grained
analysis is required. This necessitates examining the differences across various subnetworks within
the traffic system. Each set of routes connecting individual OD pairs constitutes a distinct subnetwork,
and these subnetworks converge at key intersections. These subnetworks vary in terms of the number
of nodes, path lengths, and the complexity of interactions at shared intersections, which are governed
by priority-based turning rules. Therefore we expect to see variations in how AVs affect the driving
experience in different parts of the traffic.

Firstly, we focus on how human driver travel times change over the episodes based on their origin and
the destination they are traveling to. The shifts in human travel times for each OD pair are visualized
in Figure 8. It is noticeable that the impact of AV behavior greatly varies across OD pairs. It is visible
in all cases, and quite obvious in the malicious case, that human drivers in some subnetworks get
affected negatively, while others either do not get affected or even experience a positive change in
their travel times. We also notice that human travel times are more unpredictable in some ODs than
others, indicated by wide error bars for ODs (0, 0) and (0, 1), while others are relatively consistent.

Figure 8: Change in human travel times for each OD pair. Error bars show the standard deviation
across experiment runs.

Next, we have a closer look at the changes that occurred in OD (0, 0) (which was displayed in Figure
2). In Figure 9, we show the portion of each driver group choosing one of the three routes connecting
OD (0, 0) over the episodes. This figure nicely visualizes the way AVs implement their strategies,
and how humans adapt to them. The first thing we notice is that in all cases where AVs adopt a
self-serving behavior, they optimize their travel time by simply populating the most favorable routes.
We notice a slight increase in the number of human drivers in route 2, which is the least viable option.
We interestingly observe quite similar changes in the cases of self-serving AVs and social AVs. In the
altruistic case, we see that the AV domination in Route 0 is not as drastic, and AVs also populate less
favorable routes as well. This makes Route 1 more attractive than how it was, and human drivers
partially shift their preference from Routes 0 and 2 to Route 1.

In the malicious case, AVs populate each route in a more balanced manner. After the Phase Adapt
initiates, they favor Route 1 more, but the route preferences are still not as contrasted as in other
cases. Interestingly, malicious AVs prefer Route 2 more than AVs in other cases, which is the longest
path (as shown in Table 2), but we understand that this is for a good reason. Figure 2 shows the
critical points where three routes intersect. In a few spots, particularly at the intersection leading to
the destination link, Route 2 has the priority. This may be consequential in congestion, like in the
case at timestep 2400 in Figure 3, as this may form long queues on the lanes with low priority. Given
that malicious AVs focus solely on maximizing human travel times rather than minimizing their own
delays, it becomes clear why selecting Route 2 can be a viable option for their strategy.

Figure 9: Portions of drivers choosing each route connecting origin 0 to destination 0
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To understand how these preference changes affect travel times, we reveal the human travel time
distributions in OD (0, 0) in Figure 10. We observe noticeable changes in the spread of travel times,
which indicates how AVs implement their strategies in Phase Shock and how humans react to these
changes in Phase Adapt. For instance, we see that all self-serving behaviors cause tighter distributions
of human travel times at the end of Phase Shock. Generally, we notice an increased spread for the
cases where humans shift to Route 2, which is the least favorable route, and denser distributions for
the cases where humans shift to Route 1, which is the middle ground in terms of attractiveness.

Figure 10: Distribution of travel times of human drivers traveling on OD (0, 0) in the final episode
of (1) Phase Settle, (2) Phase Shock, (3) Phase Adapt. Black lines show the median and the golden
markers show the mean points.

4 Conclusions

We have conducted an experimental investigation of the potential implications of a shift to autonomous
driving in transport systems. We defined a multi-agent route choice problem in a traffic network
involving a driver population made up of humans and RL-enabled AVs. We established distinct
learning and decision-making methods for both kinds, which enabled us to simulate their experiences
in a unified RL agent-environment interaction loop.

We introduced PARCOUR, our RL framework for route choice problems, which facilitated our
experiments. PARCOUR enables the simulation of traffic flow in realistic transport dynamics by
enabling integration with an external traffic simulator, which, in our case, was SUMO.

We defined six target behaviors for AVs, each with a distinct impact on traffic flow. We formed a
unified parameterization for formulating these behaviors through reward functions. We experimented
with six scenarios where, in each case, the group of AVs adopted one of the defined behaviors. We
analyzed the attainability of each of these behaviors in a MARL setting. We provided a clear overview
of our findings using different data visualization techniques paired with our interpretations.

Our results indicate that different reward definitions for AVs imply contrasted consequences for the
other drivers in the traffic, as well as the users of the autonomous driving technology. We observed
that each behavior can influence the overall traffic flow with different rates, while this is generally a
positive influence for the self-serving AVs. We investigated the way AVs enforce their strategies, and
we showed that the implications of their behaviors for different parts of the network vary greatly. We
analyzed the preference changes of humans in adapting to the existence of AVs and showed that a
portion of the human driver population needed to give up on their preferred routes.

The multi-agent route choice problem concerning heterogeneous driver populations remains an
open field of research. Drawing conclusions concerning real-world applications requires analyzing
realistically scaled problems. With this study, we have provided a solid foundation for prospective
studies, which will address more complex problem definitions, the use of more sophisticated learning
models, the integration of a centralized control mechanism for AVs, and what other implications this
may have on the human driving experience.
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EWRL Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We define a multi-agent route choice scenario (see Section 2.1) that provides a
ground for making observations regarding the scope we form in the abstract and introduction.
Then, we formulate our scenario as a decision-making process and implement it in the
MARL setting. In Section 3, we make observations aiming to contribute to the discussions
we refer to in Section 1. Our findings match with what we present in the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 2, we describe and visualize precisely the complexity of the used
traffic network. In Section 3, we interpret our results by pointing out that they are valid for
our experimental setting and do not imply that they may generalize to other settings. In
Section 4, we point out the need for more realistically scaled problem definitions for making
observations applicable to real-world applications.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not present any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the hyperparameters and experimental setting details in the Ap-
pendix, in Section B. We conduct our experiments with the mentioned settings using our
framework PARCOUR, which is now available as open-source software, and which we
share the UML class diagram of in the Appendix in Section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While EWRL does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We conduct our experiments with the mentioned settings using our framework
PARCOUR, which is now available as open-source software.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the EWRL code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the EWRL code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We share experimental setting specifications in detail in the Appendix in
Section B, and we describe all new concepts we introduce in Section 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: Our paper reports variability in data by reporting distributions and variance of
travel times (Section 3). We use various visualization techniques to provide insights into the
underlying patterns of our high-level observations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the computational resources we used and the runtime of our
experiments in the Appendix, in Section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
EWRL Code of Ethics https://ewrl.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do our best forth to fully comply with the EWRL Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the EWRL Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We show in our experimental setting what would be the implications of
adapting autonomous driving with adversarial or social strategies (as we define them) in
transport systems, and we share our results revealing the effect on human commuting
experience. We note that our problem definition is not extensive enough to generalize our
findings to rigid societal conclusions. We believe that extrapolating our observations, given
our constraints, would be misleading for an uninformed reader. We aim our findings to
present a foundation for prospective research that investigates the impact of autonomous
driving on a more realistic scale.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The novel work is a product of the named authors only. Used assets are
appropriately referred to by citing the related references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: Even though it was sufficient to facilitate our experiments, our framework (Sec.
2.6) is still in the stage of early development. We are actively enhancing its functionality
and documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the EWRL Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the EWRL Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A UML class diagram of PARCOUR

Figure 11 displays a UML class diagram illustrating the structure of PARCOUR. This diagram
presents only the classes we used in our experiments.

Figure 11: UML Class Diagram of PARCOUR

B Reproducibility

The results we present in this paper are obtained through experiments with 1200 driver agents and
6000 episodes. Generated driver population data is provided in the same repository as PARCOUR.
We construct the scenario we describe in Section 2.1 with 3 phases, namely: Settle, Shock, and Adapt.
These phases start in episodes 1, 1000, and 4000, respectively. We conducted each experiment three
times, and the results presented are the averages of these repetitions.

Phase Settle is where all driver agents are humans, implemented using the model we describe in
Section 2.3. Phase Shock is where 377 randomly selected human drivers are replaced by AVs. AVs
are RL agents utilizing the (Single) Deep Q-learning algorithm. We turn off the learning for humans
in Phase Shock. Phase Adapt is when we enable learning for everyone and let both parties adjust to
each other’s existence.

Start time and OD assignments to agents are done randomly. OD assignment distributions are
provided in Figure 4. Start times range in a period of one hour, with seconds precision. We sample
start times from a Gaussian distribution as justified in Section 2.2.

AVs all have their individual Q-Networks, trained solely using their own experiences. Each network
has an identical architecture, implemented using nn.Module from PyTorch. Each network consists
of an input layer, two hidden layers, and an output layer. It processes the state input through the input
layer to 32 units, followed by a hidden layer to 64 units and another hidden layer to 32 units before
mapping values to the action through the output layer. ReLU activation is applied after each layer
except the output. The learning rate is the same for all agents, fixed to 0.003. We use MSE loss and
Adam optimizer, which are implemented in PyTorch. Each agent has a replay buffer of size 256 and
a batch size 32. The exploration is ensured by an epsilon-greedy policy with ε set to 0.99 and a decay
rate of 0.998, applied in every episode.

The observation window size Lo (Sec. 2.5) is set to 300, which corresponds to a 5 minutes range.
The reward window size Lr (Sec. 2.4) is set equal to Lo.

Humans have their individual cost tables (Sec. 2.3), which we initially populated with each route
option’s free flow travel times. They share the same α value, set to 0.2. They have randomized β, as
reasoned in Section 2.3, randomly determined from the range [−0.8,−0.2].

The network we used is included within the same repository as PARCOUR. We use nodes from our
traffic network 279952229#0 and 115604053 as origins, and -115602933#2 and -441496282#1
as destinations (Sec. 2.2). We generate the action space using our path generation algorithm with
logit β set to −0.1, creating three routes linking every origin-destination combination. Generated
paths and the path generation code are also included in our repository.
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PARCOUR has an integrated plotting functionality, which automatically saves useful plots to the
disk once an experiment concludes. However, the plots we present in this work are produced using a
different code from the data generated in our experiments. All line plots in Section 3 are smoothed
by 50 steps using uniform_filter1d from scipy.

C Computing Resources

The experiments (Sec. 3) were conducted on our faculty’s high-performance computing cluster. The
resources allocated for these experiments included a single GPU (NVIDIA Tesla V100), 64 GB of
RAM, and 4 CPU cores per task. The total execution time for each experiment was around 18 hours.
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