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Abstract

Recent advances in geometric deep learning and
generative modeling have enabled the design of
novel proteins with a wide range of desired proper-
ties. However, current state-of-the-art approaches
are typically restricted to generating proteins with
only static target properties, such as motifs and
symmetries. In this work, we take a step towards
overcoming this limitation by proposing a frame-
work to condition structure generation on flexibil-
ity, which is crucial for key functionalities such
as catalysis or molecular recognition. We first in-
troduce BackFlip, an equivariant neural network
for predicting per-residue flexibility from an in-
put backbone structure. Relying on BackFlip, we
propose FliPS, an SE(3)-equivariant conditional
flow matching model that solves the inverse prob-
lem, that is, generating backbones that display a
target flexibility profile. In our experiments, we
show that FliPS is able to generate novel and di-
verse protein backbones with the desired flexibil-
ity, verified by Molecular Dynamics (MD) simula-
tions. FliPS and BackFlip are available at https:
//github.com/graeter-group/flips.

1. Introduction
The past few years have arguably marked the golden age
of de novo protein design. Rapid advancement of deep
learning-based approaches and their application to the pro-
tein structure prediction problem have enabled an unprece-
dented level of modeling accuracy (Jumper et al., 2021;
Dauparas et al., 2021; Lin et al., 2022). This, in turn, paved

*Equal contribution 1Heidelberg Institute for Theoretical Stud-
ies, Heidelberg, Germany 2Dept. of Biochemistry and Biophysics
at Stockholm University and Science for Life Laboratory, Stock-
holm, Sweden 3Max Planck Institute for Polymer Research, Mainz,
Germany 4IWR, Heidelberg University, Heidelberg, Germany
5IAR, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

the way for more controllable and precise design of protein
structures with specific functional properties. For example,
proteins with on-demand chemical reactivities or binding
propensities are of particular interest for biotechnological
applications (Lovelock et al., 2022), therapeutics develop-
ment (Bennett et al., 2024) and even sustainability problems,
such as plastic degradation (Chen et al., 2022).

Only recently, several deep generative models for protein
structure design based on diffusion (Song et al., 2021) or
flow matching (Lipman et al., 2023; Albergo & Vanden-
Eijnden, 2022) have successfully demonstrated high bio-
physical consistency of generated samples (Watson et al.,
2023; Bose et al., 2024; Yim et al., 2023a). The molecular
context that such state-of-the-art models can be conditioned
on is typically restricted to static properties like the pres-
ence of a certain motif in the final structure, adherence to
specific symmetry groups or binding to target proteins or lig-
ands (Ingraham et al., 2023; Krishna et al., 2024; Yim et al.,
2024; Lin et al., 2024; Huguet et al., 2024). Protein struc-
tures generated by deep learning methods tend to be highly
thermostable, (Watson et al., 2023; Zambaldi et al., 2024),
which suggests high degree of structural rigidity (Scandurra
et al., 1998), and incorporating flexibility into specific parts
of a backbone remains a great challenge. Proteins, however,
must possess dynamic behavior in order to encode func-
tion such as chemical reactivities or specific recognition of
binding partners. For example, enzymes have complicated
free-energy landscapes (Benkovic et al., 2008) and traverse
from one conformation to another in their catalytic cycle,
which includes loop opening and closure, concurrent do-
main movements and local folding and unfolding events
(Miller & Benkovic, 1998; Liao et al., 2018; Zinovjev et al.,
2024). Also molecule-specific protein binders require local
structural flexibility in order to engage in a complex with
DNA, RNA or ligand molecules (Glasscock et al., 2023;
Pacesa et al., 2024; Guo et al., 2024). Since protein struc-
ture defines protein function, the limited structural diversity
and high rigidity of proteins designed with state-of-the-art
generative models impede the exploration of a vast potential
functional space.

Main contributions In this work, we propose a frame-
work for generating protein structures conditioned on struc-
tural flexibility relying on two key innovations. We first
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Figure 1. Flexibility-conditioned protein backbone design. Given a target flexibility profile (1), the conditional generative model FliPS is
used to sample several candidate backbones (2). Flexibility profiles of backbones are predicted with BackFlip (3) and the most promising
candidate is selected (4). The flexibility of the protein can then be validated in a Molecular Dynamics simulation (5).

introduce (1) BackFlip – an equivariant neural network
trained to predict per-residue flexibilities of a given pro-
tein backbone entirely independent of sequence information.
Utilizing BackFlip for large-scale flexibility annotation and
an auxiliary loss, we propose (2) FliPS – a generative model
for protein structure conditioned on per-residue flexibili-
ties, defined as magnitude of local fluctuations in Molec-
ular Dynamics (MD) simulation. FliPS is an extension of
the recent Geometric Algebra Flow Matching (GAFL), an
SE(3)-equivariant flow matching model for protein struc-
tures with diverse secondary structure composition of the
generated backbones (Wagner et al., 2024). We combine
the two proposed models and introduce a flexibility condi-
tioning pipeline, in which backbones are generated with the
conditional model FliPS and ranked with BackFlip (Fig. 1).

In our experiments we demonstrate that the proposed
flexibility-conditioning pipeline generates novel and diverse
protein structures that display a given flexibility profile, ver-
ified by MD simulations on the timescale of 300 ns.

1.1. Related work

Generative models for protein structure have been condi-
tioned on static structural features, such as symmetry groups
or motifs (Watson et al., 2023; Yim et al., 2024) and on pro-
tein or ligand targets (Watson et al., 2023; Ingraham et al.,
2023; Krishna et al., 2024). Deep learning-based tools have
been successfully combined with classical modeling tools
in the past to design dynamic protein structures, such as al-
losterically switchable assemblies (Pillai et al., 2024) or pH-
responsive filaments (Shen et al., 2024), without explicitly
harnessing intrinsic flexibility. Only few works attempted
incorporating dynamics into generative models for protein

design. (Komorowska et al., 2024) propose conditioning a
pre-trained diffusion model on normal modes that approx-
imate local harmonic movements around an equilibrium
state. Instead of learning a conditional model, gradients of
an analytical loss on normal modes are used for guidance
upon inference. (Kouba et al., 2024) introduce the back-
bone flexibility prediction model FlexPert-3D that relies on
embeddings from a large protein language model (pLM),
which we evaluate in Tab. A.1. They propose a framework to
condition sequence generation models to better align with a
target flexibility, leaving the structure invariant. We discuss
relevant works in more details in Appendix A.1.

2. Background
2.1. Flow Matching for protein structure generation

Riemannian Flow Matching The goal of flow matching
(Lipman et al., 2023; Tong et al., 2024) is to sample from an
unknown distribution p1 : M → [0, 1] on the data domain
M by learning a flow ϕt : [0, 1]×M → M that transforms
a simple prior distribution p0 to the target p1 via the pushfor-
ward [ϕ1]∗p0 = p1. The flow is parametrized by a learnable,
time dependent vector field v(x, t) : M× [0, 1] → TxM
on the tangent space TxM according to the flow ODE,

d

dt
ϕt(x) = v(ϕt(x), t), ϕ0(x) = x , (1)

which is numerically integrated during inference. Lipman
et al. (2023) have shown that the vector field v can be learned
by defining trajectories between samples x0 ∼ p0 and x1 ∼
p1 and regressing on the tangent vectors. A common choice
for the trajectories are geodesics (Chen & Lipman, 2024).
For more details, we refer to Yim et al. (2023a).
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Protein backbone representation Many state-of-the-art
models represent the spatial structure of a protein backbone
of N residues as a sequence of N rotations and translations,
that is as rigid-body frames T ∈ M ≡ SE(3)N (Jumper
et al., 2021; Yim et al., 2023b). In diffusion and flow match-
ing for protein structure, it is common practice to learn the
flow vector field v (Eq. 1) by predicting a de-noised target
structure T̂1(Tt, t) from the intermediate structure Tt with
a neural network and then calculating a prediction for v as
the tangent vector of the geodesic between Tt and T1. Yim
et al. (2023a) have shown that, for the manifold SE(3)N ,
the tangent vectors to geodesics T ≡ (x, r) connecting
Tt ≡ (xt, rt) and T1 ≡ (x1, r1) can be calculated as

dx

dt
=

x1 − xt

1− t
,

dr

dt
=

logrt (r1)

1− t
, (2)

where the frames T ∈ SE(3)N are decomposed into transla-
tional part x ∈ R3N and rotational part r ∈ SO(3)N .

Model architecture In order to learn the function
T1 (Tt, t) as described above, Yim et al. (2023b) introduce a
neural network architecture based on the structure block of
AlphaFold2 (Jumper et al., 2021). The input features include
the noised frames Tt, their pairwise spatial distances, posi-
tional encodings of absolute and relative sequence positions,
and the flow matching time t. These features and the frames
defining the protein structure are updated consecutively in a
series of six blocks that use Invariant Point Attention (IPA),
introduced in Jumper et al. (2021), as a central component.

Wagner et al. (2024) propose replacing the point-valued
features of IPA with features embedded in the Projective
Geometric Algebra (PGA), yielding a geometrically ex-
pressive latent representation for protein structure. They
integrate this extension, termed Clifford Frame Attention
(CFA), into the flow matching framework FrameFlow (Yim
et al. (2023a)), and call the resulting model GAFL.

2.2. Metrics of protein flexibility

Proteins display dynamic behavior to perform functions,
such as catalysis, association, or regulation (Teilum et al.,
2009). To quantify protein flexibility, several metrics are
being used in the field, based on experiments or simulations.

B-factor Typically, structures of proteins resolved in ex-
periments contain data on the deviation of atoms from their
mean position, referred to as a B-factors (Sun et al., 2019).
Since B-factors strongly depend on the physical conditions
under which the experiment was conducted, such as tem-
perature and the radiation source (Eyal et al., 2005), com-
paring B-factors of two independently determined protein
structures is challenging and requires a series of normaliza-
tions (Djinovic-Carugo & Carugo, 2015).

pLDDT Recently, the confidence measure LDDT pre-
dicted by AlphaFold2 (pLDDT) has been suggested as
a proxy for the flexibility and disorder in proteins (Ruff
& Pappu, 2021; Alderson et al., 2023). An advantage of
pLDDT values over B-factors is that they can be obtained
in silico, without requiring wet-lab experiments.

RMSF One of the most established metrics for assess-
ing per-residue flexibility in a protein is the Root Mean
Square Fluctuation (RMSF) derived from Molecular Dy-
namics (MD) simulations or in-solution NMR experiments.
RMSF measures positional deviation of each residue after
aligning protein states to a reference conformation. How-
ever, there is no wide consensus on the choice of the refer-
ence conformation. Moreover, RMSF in its conventional
definition relies on the global superposition of the entire
protein, causing a non-locality that can lead to ambiguities
and artifacts, as we illustrate in Section A.11 and Fig. A.3.

Local RMSF Tackling the above-mentioned issues of
global RMSF, we propose a generalization in which the
fluctuations of a residue are measured with respect to its lo-
cal surrounding instead of the whole protein. We introduce
a fluctuation scale S that quantifies the number of neighbors
used for alignment of each residue, such that S = ∞ cor-
responds to the conventional global RMSF. We define the
local flexibility ξ of residue i in a set of conformations C
and reference conformation x(ref) as

ξi ≡
√

1

|C|
∑
x∈C

∣∣∣(T (S)
Align ◦ x

)
i
− x

(ref)
i

∣∣∣2 , (3)

where the transformation T
(S)
Align locally aligns residues in

the window W ≡ {i− S
2 , . . . , i+

S
2 },

T
(S)
Align ≡ argminT∈SE(3)

∥∥T ◦ xW − x
(ref)
W

∥∥
2
. (4)

In our experiments, we use S = 12 neighboring residues in
the sequence. In order to remove potential biases induced by
the choice of reference conformation, we randomly choose
Nref = 10 reference conformations from the MD trajectory.
This results in Nref local RMSF values for each residue,
across which we take the median. We visualize the differ-
ence to global RMSF in Fig. A.4.

3. BackFlip: Backbone flexibility predictor
In this section, we introduce BackFlip (Backbone Flexibility
Predictor), an SE(3)-equivariant neural network capable of
predicting per-residue protein flexibility from the backbone
structure alone. Consequently, BackFlip does not rely on
the protein’s sequence and, in particular, does not use any
evolutionary information and no pre-trained protein lan-
guage model for its prediction, making it especially useful
for de novo protein design applications.
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3.1. Architecture and training

BackFlip’s architecture is based on the GAFL architecture,
an SE(3)-equivariant transformer with Clifford Frame Atten-
tion (CFA) introduced in (Wagner et al., 2024) as extension
of AlphaFold’s invariant point attention (IPA) (Jumper et al.,
2021). We represent a protein backbone as an element of
SE(3)N , that is as set of Euclidean frames, as in (Jumper
et al., 2021). Node features are expressed in the local coordi-
nate systems given by the frame of the respective residue and
transformed into the target frame during message passing.
This not only ensures SE(3)-equivariance but also encodes
geometric information about relative displacement and ori-
entation of the residues. While in GAFL and AlphaFold2 the
backbone structure is updated after each message passing
block, the regression task performed by BackFlip does not
require structural updates. Instead, we extract intermediate
node features after ncfa blocks of CFA, feed them through a
node-wise Multilayer Perceptron (MLP) and map the output
to the range [0, ξmax] using a scaled sigmoid,

ξi = ξmaxσ (MLP (hi)) , (5)

where the scalar value ξi represents the flexibility of residue
i. For our experiments, we choose ncfa = 4, a node and
edge embedding size of 64 and 32, respectively, and a maxi-
mum flexibility of ξmax = 5 Å. With these hyperparameters,
BackFlip has 0.68 M parameters, compared to 16.7 M pa-
rameters of GAFL, which has six blocks of CFA and around
four times higher embedding dimensions. A schematic rep-
resentation of the architecture is depicted in Fig. A.1.

We train BackFlip with a mean squared error loss on
per-residue flexibilities of backbones from the ATLAS
dataset (Vander Meersche et al., 2024). ATLAS is comprised
of MD simulations of 1390 structurally non-redundant pro-
teins conducted as three replicas for a total length of 300
nanoseconds (ns), from which we calculate ground truth
per-residue flexibilities as local RMSF (see Sections 2.2 and
A.11). We filter ATLAS for proteins up to the length of 512
residues, resulting in a total of 1294 proteins, which we split
in 1035 backbones for training, 130 for validation and 129
for testing (further details in Appendix A.2).

3.2. Performance on unseen proteins

In order to test BackFlip’s performance on unseen proteins,
we evaluate it on held-out test proteins of the ATLAS dataset.
For that, we pass equilibrium experimental structures as
input to BackFlip and predict their local RMSF profiles.
Since AlphaFold2’s confidence measure pLDDT (Jumper
et al., 2021) has been suggested as measure for disorder and
flexibility before (Ruff & Pappu, 2021; Akdel et al., 2022;
Alderson et al., 2023), we compare BackFlip predictions
with pLDDT. We also investigate how well experimental
B-factors reflect local RMSF.

In Tab. 1 we report the correlation and mean absolute error
(MAE) of BackFlip’s predicted local RMSF compared with
the value obtained from two of the three MD trajectories
per protein in ATLAS. In order to quantify the noise present
in the ground truth, which is due to the trajectories only
covering finite time and thus not sampling the free energy
landscape extensively, we hold out the third MD trajectory
and report its correlation and MAE to the two other tra-
jectories. We find that BackFlip outperforms any baseline
considered and, indeed, reflects the shape of the local RMSF
profiles with a Pearson correlation coefficient of 0.8 on the
129 unseen proteins from ATLAS. Not only the shapes but
also the amplitudes of the profiles are matched, indicated by
an MAE of 0.17 Å. BackFlip’s remaining error can be in part
attributed to the noise present in the ground truth since MD
only performs slightly better, with a correlation of 0.84 and
an MAE of 0.14 Å. We find that pLDDT only moderately
displays trends of local RMSF and experimental B-factors
correlate poorly with MD-derived local flexibility. For both
pLDDT and B-factors, a direct conversion to local or global
RMSF is not available, thus MAEs are not reported.

In addition to the ATLAS test set proteins, we sample pro-
tein backbones that match the length distribution of the
ATLAS dataset with FrameFlow (Yim et al., 2024) and RF-
diffusion (Watson et al., 2023), respectively, and investigate
BackFlip’s performance on a total of 100 designable de-
novo proteins (Appendix A.6). We conduct three 100 ns
long MD simulations per protein (Appendix A.8) and com-
pute ground truth local RMSF profiles as for the ATLAS
dataset. Also in this setting, BackFlip demonstrates strong
performance in terms of correlation and MAE, indicating
generalization beyond naturally occurring proteins (Tab. 1).

We also compare BackFlip’s performance with FlexPert-3D
(Kouba et al., 2024), a recent backbone flexibility prediction
model trained on the ATLAS dataset, and find that Back-
Flip is either on-par with or outperforms FlexPert, which
relies on a large pre-trained protein language model, on both
natural and de novo proteins (Appendix A.5).

In Fig. A.2, we show that BackFlip’s predictions are con-
sistent for proteins of different sizes and visualize three
selected backbones with color-coded flexibility profiles (Fig.
2A, B). We find that loops and turns are identified as the
most flexible regions (Fig. 2B), which is expected since
these structural elements typically have less stabilizing non-
covalent interactions and thus can exhibit higher conforma-
tional heterogeneity. The model also identifies rigid regions,
such as α-helices and β-sheets residing in the tightly packed
core, as the least flexible regions. Notably, the model also
reliably captures less obvious alterations in local flexibility,
such as shorter secondary structure elements with interme-
diate mobility (e.g. residues 80-100 in 4zi3D, right panel).
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Table 1. Performance of BackFlip for the local RMSF derived from two 100 ns long MD simulations on unseen proteins from ATLAS and
100 de novo proteins. We also evaluate the flexibility proxies B-factor and negative pLDDT. We report the Pearson correlation coefficient
across all residues (Global r), the mean absolute error (MAE) and inference time for the 300-residue protein 7c45A on a single NVIDIA
A100 without batching. Errors are computed by bootstrapping the 2Nref = 20 ground truth RMSF profiles 100 times (see Section A.11).

ATLAS test set De novo proteins

Global r (↑) MAE [Å] (↓) Global r (↑) MAE [Å] (↓) Time [s] (↓)

MD (Ground Truth) 0.84 (0.00) 0.14 (0.00) 0.80 (0.01) 0.10 (0.00) O(10,000)

B-factor∗ 0.16 (0.01) - - - -
Negative pLDDT 0.54 (0.00) - 0.48 (0.00) - 118
BackFlip 0.80 (0.00) 0.17 (0.00) 0.73 (0.00) 0.11 (0.01) 0.6
*Computed for proteins where available.

Figure 2. BackFlip accurately predicts protein backbone flexibil-
ity. (A) Flexibility profiles of three selected proteins from the
test set, derived from Molecular Dynamics (ground truth) and
predicted by BackFlip along with their Pearson correlation. (B) Vi-
sualization of the corresponding proteins and their locally aligned
MD-ensembles, colored by the BackFlip-predicted local RMSF.

4. FliPS: Flexibility-conditioned protein
structure generation

In this section we introduce a flow-based generative model
FliPS (Flexibility-conditioned Protein Structure generation,)
capable of generating protein structures that display a given
target flexibility profile. The model is based on Geometric
Algebra Flow Matching (GAFL) (Wagner et al., 2024) –
an unconditional generative model for protein backbone de-
sign with strong performance in designability and secondary
structure diversity of sampled backbones. In order to condi-
tion on structural flexibility, we propose a modification of
GAFL by introducing a flexibility embedding, a flexibility
auxiliary loss, and a flexibility-masking procedure during
training. We term the resulting conditional model FliPS and
demonstrate that conditional sampling yields protein back-
bones that display flexibility profiles closely resembling
the target profile while being structurally diverse. As alter-

native to training a conditional model, we also propose a
training-free BackFlip-guidance (BG) strategy for flexibility
conditioning that can be integrated into existing frame-based
unconditional models like RFdiffusion (Watson et al., 2023).
We also introduce a screening procedure based on BackFlip
to find naturally occurring or generated protein backbones
that display the desired flexibility profile.

4.1. Method

In order to sample from the conditional probability distribu-
tion p (T |ξ) of protein structures T ∈ SE(3)N with given
per-residue flexibility profile ξ ∈ RN

+ , we train a conditional
flow matching model by approximating the conditional flow
vector field v(x, t, ξ) defined analogously to Eq. 1,

d

dt
ϕt(T |ξ) = v (ϕt, t, ξ) , ϕ0(T |ξ) = T . (6)

Training objective During training, we sample points in
time t ∼ U([0, 1]), prior structures T0 ∼ p0 and target struc-
tures with flexibility profiles (T1, ξ1) ∼ p1 from the training
set. We randomly mask parts of ξ1, or the whole flexibil-
ity profile, in order to prevent memorization and retain the
capability of unconditional structure generation (Appendix
A.9). We calculate the intermediate structure Tt along the
geodesic connecting T0 and T1 and predict the vector field
v̂ (Tt, t, ξ1) with the model, using the parametrization in
Eq. 2. We regress on the ground truth vector field v,

L = Et,T0∼p0,(ξ1,T1)∼p1

[∥∥v − v̂ (Tt, t, ξ1)
∥∥2 + laux

]
(7)

using the norm and heuristic auxiliary loss function laux
proposed in (Yim et al., 2023b). We extend laux by a novel
flexibility loss as described below. The key difference to
unconditional training is that we pass the flexibility profile
ξ1 of the target structure to the model v̂, implicitly learning
the relationship between flexibility and structure.

Flexibility embedding In order to pass the flexibility pro-
file ξ to the model, we embed the per-residue flexibility
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as additional node input feature. For this, we divide the
flexibility into 8 bins with maximum value of ξmax = 3 Å.

Flexibility auxiliary loss We propose an additional auxil-
iary loss term that explicitly penalizes the generation of
structures with deviating flexibility profile during train-
ing. To this end, we use the predicted target structure
T̂1 (Tt, t, ξ1), obtained via Eq. 2, to retrieve predicted flex-
ibilities for all residues ξBF(T̂1) by applying BackFlip to
the predicted target structure. Importantly, as the predictor
ξBF of BackFlip is differentiable, we can construct a dif-
ferentiable auxiliary loss term that penalizes a deviation of
predicted and target flexibility profile via the mean square
error loss and add this term to the auxiliary loss in Eq. 7,

laux = laux, FD +
λflex

N

∥∥∥ξ1 − ξBF

(
T̂1

)∥∥∥2 , (8)

where laux, FD is the original auxiliary loss from FrameDiff
(Yim et al., 2023b). Notably, this is only possible because
BackFlip is differentiable with respect to the backbone struc-
ture and does not rely on the protein sequence as input.

BackFlip guidance (BG) As an alternative to training a
model to approximate the flexibility-conditioned flow vector
field v(Tt, t, ξ) directly, as described above, we also pro-
pose BackFlip guidance (BG) – a training-free approach
based on BackFlip for guiding an unconditional model
upon inference. Inspired by classifier-guidance (Dhariwal &
Nichol, 2021), we add the gradient of the deviation between
BackFlip-predicted flexibility ξBF and target flexibility ξ of
the intermediate structure Tt at flow matching time t,

v̂cond(Tt, t, ξ) = v̂(Tt, t)︸ ︷︷ ︸
unconditional

− η∇Tt ∥ξ−ξBF(Tt)∥2︸ ︷︷ ︸
cond. guidance term

, (9)

where the BG scale η is a hyperparameter. In an abla-
tion study (Tab. A.4), we find that BackFlip guidance with
FrameFlow as unconditional model underperforms the con-
ditional model FliPS, which we describe in more details in
Appendix A.13.

BackFlip screening (BFS) After (flexibility-conditioned)
backbone generation, we identify protein backbones that
best display the target flexibility profile ξref using a flexi-
bility screening strategy relying on BackFlip. We note that
flexibility-screening of de novo backbones benefits from an
efficient model for flexibility prediction that is independent
of the sequence in order to apply the screening before the
expensive refolding pipeline (see e.g. (Yim et al., 2023b)).

For a set of backbones, we predict the flexibility profiles
with BackFlip and compute (i) the Pearson correlation r and
(ii) the mean absolute error (MAE) between the predicted
profile ξ and the profile of interest ξref. We assign a profile

similarity score s by combining the two metrics in order to
evaluate both the shape and the amplitude of flexibility,

s(ξ, ξref) = wcorr r(ξ, ξref) − wmae MAE(ξ, ξref) , (10)

where we choose the weights wcorr ≡ 1 and wmae ≡ 2.

4.2. Experiments

Training We train FliPS on the PDB dataset (Berman
et al., 2000) introduced in FrameDiff (Yim et al., 2023b)
annotated with BackFlip-predicted residue-level flexibili-
ties1. We filter the dataset for lengths between 60 and 512
residues and exclude all structures containing breaks, which
results in a set of 22977 proteins. The hyperparameters are
chosen as in GAFL (Wagner et al., 2024) and λflex is set to
100. We train the model for a total of 21 GPU days on eight
NVIDIA A100 GPUs (details in Appendix A.9.)

Evaluation setup To illustrate that FliPS generates plau-
sible protein structures for a range of different target flex-
ibility profiles, we extensively evaluate it on a set of 10
hand-drawn profiles and on 10 profiles of randomly cho-
sen natural proteins. For each profile, we generate 100
samples per backbone length N ∈ {60, 70, . . . , 120}. We
further extend the evaluation to bigger proteins with length
N ∈ {200, 215, . . . , 300}, for which we pass another 4
hand-drawn flexibility profiles as a condition. We apply
BackFlip screening (Section 4.1) to choose the highest-
ranked sample that best reflects the target profile and run
three 100 ns long MD simulations to assess how well the
target profile is recapitulated in practice.

Baselines Since, to the best of our knowledge, FliPS is
the first model for the generation of flexibility-conditioned
protein structures, we can not directly compare it to exist-
ing approaches. However, we apply BackFlip screening to
find backbones with the desired flexibility properties sam-
pled with the established unconditional models FoldFlow2
(Huguet et al., 2024) and RFdiffusion (Watson et al., 2023).
For that, we calculate a flexibility similarity score for all
generated backbones and pick the highest-scored structures,
as described in Section 4.1. We also apply the same screen-
ing procedure to 3673 natural proteins from the SCOPe
dataset (Fox et al., 2014; Chandonia et al., 2022) comprised
of protein lengths between 60 and 128 residues (see Ap-
pendix A.9). Additionally, we perform an extensive ablation
of BackFlip guidance (Section 4.1) and find that its perfor-
mance is inferior to the conditional FliPS sampling. Results
are reported in Appendix A.13 and Tab. A.4.

Metrics We evaluate the similarity of flexibility profiles
by calculating the Pearson correlation coefficient r and the

1Source code, model weights and the flexibility-annotated
dataset are available at https://github.com/graeter-group/flips
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mean absolute error (MAE) for each profile, measuring how
well shape and amplitudes of the profile are recapitulated.
We also report established metrics for protein structure gen-
eration that measure structural similarity across samples
(diversity), similarity to the naturally existing structures
(novelty) and consistency with folding and inverse folding
models (scRMSD) (Yim et al., 2023b; Bose et al., 2024).
For diversity, novelty and scRMSD, we use the same defini-
tion as GAFL (Wagner et al., 2024) (see Appendix A.7).

Notably, since scRMSD depends on the superposition of a
generated backbone with the refolded structure, and flexibil-
ity induces a fundamental uncertainty in the structure of a
protein (Halle, 2002), it can be expected that more flexible
proteins have worse scRMSD scores. Indeed, we establish
a relation between scRMSD and flexibility on natural pro-
teins from the SCOPe dataset (Fig. 3), which are designable
by definition, questioning the role of scRMSD if generat-
ing flexible backbones is intended. We observe a similar
relation between scRMSD and novelty of FrameFlow and
RFdiffusion samples (Fig. 3).

Figure 3. Relationship between scRMSD and average local RMSF
predicted by BackFlip for proteins from the SCOPe dataset (left)
and between scRMSD and novelty for the de novo proteins (right)
sampled with RFdiffusion and FrameFlow as described in Sec-
tion 3.2. Vertical axis is log-scaled. Boxes represent 0.25 and 0.75
quantiles. Means are shown as grey dashed lines.

4.3. Results

Tab. 2 summarizes the results of the experiment described
above on domain-sized proteins and Tab. A.3 on bigger pro-
teins. For each profile, we obtain a total of 700 samples and
a single top-ranked sample selected by BackFlip screening.
We conduct all-atom MD simulations (see Appendix A.8)
of the top-ranked, refolded samples and report novelty of
the structure and similarity of the MD-derived flexibility
profile to the target (MD of top samples).

FliPS generates structures that recapitulate target flexi-
bility profiles in MD We find that FliPS generates back-
bones whose MD-derived flexibility, indeed, reflects the
target profile (Tab. 2 and Fig. 4). For the target profiles
considered, the average Pearson correlations r of 0.70, 0.78
for smaller and 0.79 for bigger proteins approach the up-

per bound of around rMD ≈ 0.8, set by the fundamental
uncertainty between independent (unconverged) MD runs
as observed in Tab. 1. Flexibility-conditioning substantially
outperforms the flexibility-screening of unconditionally gen-
erated de novo and natural proteins in similarity to the target
profile. We also find that, in terms of novelty, backbones
generated with FliPS are on par with backbones sampled
by FoldFlow2 and RFdiffusion, which are trained on larger
datasets. Remarkably, with only 700 generated samples,
FliPS outperforms screening of over 3,500 natural proteins
from the SCOPe dataset in terms of capturing flexibility
profiles, showcasing the potential of the proposed flexibil-
ity conditioning method (Tab. 2). In Fig. 4 we visualize
proteins generated with FliPS and their MD-derived flexi-
bility profiles. The samples are composed of both α-helices
and β-strands and display local RMSF profiles that mainly
follow the shape and magnitudes of the target profiles. Es-
pecially for bigger proteins, peak positions and magnitudes
are recapitulated by the designs. All other target profiles
can be found in Fig. A.5.

Conditioning increases similarity to the target flexibility
To separate the effect of BackFlip screening from the condi-
tioning in FliPS, we also report the same metrics for all 700
generated samples per profile, that is, without screening for
top samples. Since evaluating the flexibility of all structures
in MD simulations is prohibitively expensive, we estimate
the flexibility with BackFlip and report average values over
all profiles (Tab. 2, A.3; BackFlip on all samples). We
find that for both existing and hand-drawn profiles, protein
backbones sampled conditionally with FliPS, on average,
reflect the target flexibility profiles substantially better. The
strongly improved performance of FliPS over unconditional
sampling can be attributed to flexibility conditioning, which
is especially prominent for bigger proteins where uncondi-
tional samples, on average, do not resemble the flexibility
profile at all (Tab. A.3).

FliPS generates diverse structures with various sec-
ondary structure compositions Additionally, we investi-
gate how structurally diverse the generated or natural protein
backbones are on a set of small proteins from Tab. 2. For
that, we pick the 10 top-ranked backbones for each tar-
get profile identified with BackFlip screening and report
diversity and novelty along with the flexibility correlation
in Tab. 3. Note that this is in contrast to Tab. 2, where
we apply expensive MD simulation only for one sample
per profile. FliPS achieves a maximum pairwise TM score
smaller than 0.5 and thus generates structurally distinct
backbones, being better or on par with the unconditional
baselines. SCOPe proteins display the highest diversity,
which can be expected, as this dataset was filtered to contain
structurally non-redundant proteins. The experiment also
shows that not only one but several backbones with high
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Table 2. Flexibility conditioned backbone generation for 10 existing and 10 hand-drawn target profiles. For each of the profiles, we
generate backbones spanning lengths N ∈ {60, 70, . . . , 120} using FliPS by conditioning on the flexibility profiles. We apply BackFlip
screening (BFS) to obtain a best-ranked candidate sample for each profile. For each of the baselines, we sample the same number of
structures unconditionally and also apply BFS – or screen the entire SCOPe dataset. For quantifying the effect of conditioning, we
also report average values across all sampled backbones without ranking (BackFlip on all samples). We report the per-target Pearson
correlation (r) and the mean absolute error (MAE) to the target profiles, and TM-similarity to the PDB (Novelty). For the best-ranked
candidates for each of the profile (MD of top samples), we calculate the profile of the generated protein with MD. We report standard
deviations obtained by bootstrapping MD profiles as in Tab. 1 and by bootstrapping the set of all generated backbones, respectively.

MD of top samples BackFlip on all samples

r (↑) MAE [Å] (↓) Novelty (↓) r (↑) MAE [Å] (↓) Novelty (↓)

10 existing profiles
FliPS 0.70 (0.02) 0.16 (0.00) 0.62 (-) 0.52 (0.00) 0.15 (0.00) 0.63 (0.01)
RFdiffusion-BFS 0.58 (0.03) 0.16 (0.00) 0.60 (-) 0.28 (0.00) 0.19 (0.00) 0.62 (0.02)
FoldFlow2-BFS 0.45 (0.04) 0.16 (0.00) 0.57 (-) 0.27 (0.00) 0.18 (0.00) 0.57 (0.01)
SCOPe-BFS 0.52 (0.02) 0.19 (0.00) 1.0 (-) 0.19 (0.00) 0.25 (0.00) 1.0 (-)

10 hand-drawn profiles
FliPS 0.78 (0.01) 0.31 (0.01) 0.55 (-) 0.56 (0.00) 0.43 (0.00) 0.64 (0.03)
RFdiffusion-BFS 0.56 (0.02) 0.44 (0.00) 0.60 (-) 0.13 (0.00) 0.49 (0.00) 0.62 (0.02)
FoldFlow2-BFS 0.50 (0.03) 0.45 (0.01) 0.57 (-) 0.08 (0.00) 0.50 (0.01) 0.57 (0.01)
SCOPe-BFS 0.61 (0.02) 0.35 (0.01) 1.0 (-) 0.09 (0.01) 0.48 (0.00) 1.0 (-)

Figure 4. FliPS samples for two selected existing and hand-drawn target profiles from Tab. 2 (top panel) and for all hand-drawn profiles
from Tab. A.3. The generated protein’s flexibility is computed from MD simulation. Corresponding protein structure is depicted with
sequential coloring (N-terminus blue, C-terminus red).
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Table 3. Diversity and novelty of flexibility-conditioned backbones from Tab. 2. Metrics are reported as averages over the 10 top-ranked
samples for all profiles, selected with BackFlip screening (BFS). We report diversity and novelty based on pairwise TM similarity,
scRMSD is computed by aligning the refolded with the generated backbone (see Appendix A.7). We report Pearson correlation r and mean
average error (MAE) between the BackFlip predicted and target flexibility profiles. Standard deviations are obtained by bootstrapping all
generated samples 10 times.

scRMSD Diversity (↓) Novelty (↓) r (↑) MAE [Å] (↓) Helix pct. Strand pct.

10 existing profiles
FliPS 1.52 (0.01) 0.36 (0.02) 0.57 (0.01) 0.86 (0.01) 0.09 (0.00) 0.53 (0.01) 0.19 (0.01)
RFdiffusion-BFS 0.72 (0.00) 0.40 (0.02) 0.61 (0.01) 0.68 (0.01) 0.15 (0.02) 0.78 (0.01) 0.09 (0.01)
FoldfFlow-BFS 0.72 (0.01) 0.44 (0.02) 0.57 (0.01) 0.67 (0.02) 0.16 (0.01) 0.83 (0.01) 0.02 (0.00)
SCOPe-BFS 0.79 (0.01) 0.33 (0.02) 1.0 (-) 0.72 (0.02) 0.12 (0.00) 0.29 (0.01) 0.33 (0.01)

10 hand-drawn profiles
FliPS 2.01 (0.03) 0.47 (0.02) 0.60 (0.01) 0.86 (0.01) 0.28 (0.00) 0.60 (0.01) 0.15 (0.01)
RFdiffusion-BFS 0.74 (0.01) 0.44 (0.02) 0.59 (0.01) 0.66 (0.01) 0.39 (0.01) 0.74 (0.01) 0.11 (0.01)
FoldfFlow-BFS 0.72 (0.01) 0.45 (0.02) 0.59 (0.01) 0.58 (0.02) 0.43 (0.02) 0.84 (0.01) 0.02 (0.00)
SCOPe-BFS 1.96 (0.02) 0.32 (0.02) 1.0 (-) 0.76 (0.02) 0.28 (0.02) 0.31 (0.01) 0.24 (0.01)

BackFlip-predicted flexibility-similarity can be found, as
indicated by the Pearson correlations of over 0.8 between
BackFlip-predicted and target profile. Remarkably, while
better reflecting flexibility profiles of interest, FliPS back-
bones also contain higher amount of β-strands than both
RFdiffusion and FoldFlow2, more closely resembling the
secondary structure composition of SCOPe proteins.

Biophysical consistency of protein structures depends on
the target profile To assess consistency of the generated
backbones, we calculate scRMSD for the top 10 samples for
each profile for the same set of small-sized proteins as de-
scribed in the previous subsection (Tab 3). We find that, for
most profiles, FliPS generates designable backbones with
scRMSD below 2 Å. However, backbones generated with
FliPS have higher scRMSD values than unconditionally gen-
erated samples. We observe that scRMSD strongly depends
on the target profile (Fig. A.6), which can be expected since
scRMSD is correlated with flexibility and novelty (Fig. 3),
both of which can be influenced by the target profile. In
this context, we find that even natural proteins from SCOPe
display elevated scRMSD values for samples screened for
agreement with the hand-drawn profiles.

4.4. Discussion

In our experiments we demonstrate that the proposed
flexibility-conditioning framework is capable of delivering
protein backbones of varying small and bigger lengths that
display a range of different realistic and custom hand-drawn
flexibility profiles. We note that there is a fundamental
uncertainty in MD-derived flexibility due to deviations be-
tween simulation runs, as observed in Tab. 1, making the
generation of backbones that recapitulate the MD-derived
flexibility especially challenging. Importantly, compared to
unconditional models augmented by flexibility screening or

guidance, proteins sampled conditionally with FliPS best
reflect the desired flexibility, while being structurally non-
redundant, novel, and contain both α-helices and β-strands.
This finding suggests that FliPS learns a relation between
structure and flexibility, exploring a structural space beyond
natural proteins in order to find distinct backbones that dis-
play the desired flexibility profile.

5. Conclusion
We introduce a generative model for protein structure de-
sign conditioned on per-residue flexibilities. The proposed
flexibility-conditioning framework relies on the structure-
based flexibility prediction model BackFlip, enabling large
scale flexibility annotation of proteins, a flexibility auxiliary
loss and a flexibility screening procedure to find protein
backbones that best display a flexibility profile of interest.
Our experiments demonstrate that flexibility-conditioning
leads to the generation of diverse and novel backbones that
indeed display the respective target flexibility profile in
Molecular Dynamics simulations. Thus, the proposed frame-
work enables to overcome the current restriction of deep
learning-based protein design to static protein structures.
While functional protein motions often involve timescales
beyond the 300 ns of MD used as flexibility definition in
this work, this limitation might be overcome as soon as
better ground truth data for flexibility on longer timescales
becomes available. Flexibility conditioning can be straight-
forwardly combined with motif or symmetry conditioning
as used to design binding sites or protein assemblies, for
which flexibility is required. Since flexibility is crucial for
a wide range of protein functionalities, we believe that the
proposed method for controlling the flexibility of designed
proteins on a per-residue level paves the way for exploring a
yet uncharted but highly relevant space of protein structures.
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A. Appendix
A.1. Previous work on flexibility flexibility-conditioned protein design

In the past, it was possible to introduce flexibility into the desired protein region with classical modeling tools, such as
Rosetta MotifGraft (Alford et al., 2017) along with Rosetta BackRub (Lauck et al., 2010) sampling, Modeller (Šali &
Blundell, 1993) or LoopGrafter (Planas-Iglesias et al., 2022). However, these tools require a structure as input to specify the
context into which a loop or any given motif should be incorporated. This limits the applicability of these tools to designing
scaffolds, but not the novel protein structures, where the starting structure best suited to encode the desired dynamical
properties is not known. Another common downside of the classical tools is their relatively high computational cost due to
an extensive iterative sampling relying on empirically-parameterized energy functions. Nonetheless, by combining classical
tools and deep learning-based approaches, allosterically switchable proteins (Pillai et al., 2024), pH-dependent filamentous
self-assembling protein complexes (Shen et al., 2024) and fold-switching proteins (Guo et al., 2024) have been successfully
designed without explicitly conditioning on flexibility. In most above-mentioned cases, deep learning, however, is only used
for protein structure prediction of designed sequences, not for generating target structures. We see potential for improvement
by using generative deep learning with the flexibility conditioning framework proposed in the main text of the paper in
design studies described above.

In their work (Komorowska et al., 2024) condition a pre-trained diffusion model on the lowest non-trivial normal modes
computed with the Normal Mode Analysis (NMA). Lowest normal modes are obtained from the eigenvectors of the
Hessians of the potential energy relying on a force field that assumes the harmonicity of the system, which inherently limits
sampling protein structure states to the movements around an equilibrium state. Conditioning is achieved by the gradient
guidance whilst gradients are computed from an analytical normal mode loss. Different to their work, we propose training a
conditional model akin to classifier-free guidance, whereby the flexibility is derived directly from Molecular Dynamics
(MD) simulations. Thus, our approach is not limited to analytical conditioning but handles non-analytical conditions. Since
we train our model to approximate a conditional flow, we avoid potential conflicts between unconditional and conditional
gradient terms, which might arise in the gradient guidance relying on the analytically computed gradients. We implemented
a classifier-guidance strategy, which we term BackFlip-guidance (BG), as an alternative to the conditional FliPS model.
However, we found that BG performed worse than conditional sampling and often violated the physicality of the generated
backbones, as discussed in A.13.

(Kouba et al., 2024) propose a pipeline to condition protein sequence design on MD-derived flexibility. They introduce
flexibility prediction model termed FlexPert-3D, which they use as a scoring model to fine-tune the sequence design model
ProteinMPNN (Dauparas et al., 2022) on generation of sequences that better capture the target flexibility observed in MD
simulations. FlexPert-3D is a regression model that relies on the pre-trained weights from a protein Language Model and
has a trainable CNN head to combine pLM embeddings with Hessian matrices obtained from the Anisotropic Network
Model (ANM) computations The approach operates exclusively in sequence space and requires both an input structure and
evolutionary information encoded by the pLM embeddings, rendering it fundamentally different from our work. In our
experiments we show that BackFlip outperforms FlexPert on both natural proteins from ATLAS and de novo proteins in A.5.

A.2. Training details of BackFlip

In order to train the BackFlip specifically on local flexibility, for each protein in the ATLAS dataset, we first compute local
RMSF values as described in Sections 2.2 and A.11. We split the dataset into train, valid, and test set according to the
splitting scheme 80:10:10 and limit protein size to 512 residues. An epoch is defined as a single pass through the whole
dataset, whereby one of the Nref conformations is randomly selected for each protein. We batch proteins together during
training, where each batch contains at most 32 proteins. We train the model on a single NVIDIA A100 GPU and use the
value of RMSE between the ground truth and predicted local flexibility scores on the validation set as the early stopping
criterion. We then select the best checkpoint based on the RMSE on the validation set and evaluate the model on the test set.

A.3. BackFlip’s architecture

We illustrate a schematic, high-level overview architecture of BackFlip in Fig. A.1.
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Figure A.1. High-level overview of the architecture of BackFlip. Current node hl and edge zl embeddings at layer l are updated by the
Clifford Frame Attention (CFA) block 4 times. Updated features are input to the Readout Block and processed. The output is a tensor
ξ ∈ RN , where N denotes the length of a protein. Blocks are indicated with dashed lines.

A.4. Additional results on BackFlip performance on held-out test set proteins of ATLAS

We find that BackFlip consistently predicts local RMSF profiles for proteins from the ATLAS test set of varying lengths
(Fig. A.2A). Also we visualize the distribution of the predicted and ground truth per-residue local RMSF values for the
same set of proteins in Fig. A.2B).

A B

Figure A.2. (A) Pearson correlation coefficients of BackFlip predictions on the held-out test set proteins from the ATLAS dataset to the
ground truth local RMSF computed from MD simulations as a function of protein length. (B) Distribution of the BackFlip-predicted local
RMSF values compared with the distribution of the ground-truth local RSMF for the same set of proteins as in (A).

A.5. Comparison of BackFlip with FlexPert on the ATLAS and de novo datasets

We compared the performance of BackFlip to another recently released backbone flexibility predictor FlexPert-3D (Kouba
et al., 2024). As discussed in Section 1.1 and Appendix A.1, FlexPert relies on the protein Language Model (pLM)
embeddings and has a more complicated architecture with a trainable CNN head. We retrained BackFlip on the global
RMSF metric and the dataset split used in FlexPert, both without and with one-hot encoded sequence embeddings, to also
assess their effect. Without any sequence embedding, BackFlip outperforms FlexPert on both global and per-target Pearson
correlation (as reported in the FlexPert paper), while performing slightly worse in terms of MAE (Tab. A.1). On the the de
novo protein set, BackFlip significantly outperforms FlexPert on all metrics (Tab. A.2). We hypothesize that the reason for
this might be that pLM embeddings are not informative for these proteins, as there is no evolutionary information available.

Table A.1. Comparison of performance of BackFlip to FlexPert on the ATLAS test set. BackFlip was retrained on the global RMSF
metrics and the ATLAS dataset split used in FlexPert.

Model Global r ↑ MAE [Å] ↓ Per-target r ↑ Per-target MAE [Å] ↓
BackFlip∗ 0.78 0.61 0.88 0.73
BackFlip† 0.81 0.56 0.88 0.72
FlexPert‡ 0.74 0.44 0.83 0.47
∗No sequence embedding †One-hot sequence embedding embeddings ‡pLM embeddings
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Table A.2. Comparison of performance of BackFlip to FlexPert on the set of 100 MD simulations of de novo proteins from Tab. 1. For
inference with BackFlip, we use the same model checkpoint as in the Tab. A.1.

Model Global r ↑ MAE [Å] ↓ Per-target r ↑ Per-target MAE [Å] ↓
BackFlip∗ 0.63 0.49 0.85 0.48
FlexPert‡ 0.51 0.62 0.63 0.60

∗ No sequence embedding ‡ pLM embeddings

A.6. Generation of the de novo protein dataset

We generate 20 protein backbones for each specified length N ∈ [60, 65, . . . , 512] using both FrameFlow (Yim et al., 2024)
and RFdiffusion (Watson et al., 2023). Each generated backbone undergoes a self-consistency pipeline as introduced in
prior work (Trippe et al., 2023; Watson et al., 2023; Yim et al., 2023b). This process involves designing eight sequences per
backbone with ProteinMPNN (Dauparas et al., 2022) and refolding these sequences using ESMfold (Lin et al., 2023). We
next analyze the length distribution of the ATLAS dataset (Vander Meersche et al., 2024), and select 50 backbones from
each method (FrameFlow and RFdiffusion) that exhibit a self-consistency RMSD (scRMSD) of ≤ 2.0 Å, and closely match
the size distribution observed in the ATLAS dataset.

A.7. Designability, novelty and diversity of protein backbones

In Tab. 1 we select 50 designable backbones sampled each with FrameFlow and RFdiffusion and in Tab. 2 we report
novelty for backbones sampled for a certain flexibility profile. In order to find designable backbones, we follow a pipeline of
self-consistency (Trippe et al., 2023; Watson et al., 2023) well-established in the protein design field. For each sampled
backbone, we design 8 candidate sequences with ProteinMPNN (Dauparas et al., 2022), and predict their 3D structures
with ESMfold (Lin et al., 2023), and define scRMSD as the smallest RMSD between our generated backbone and the
8 refolded, aligned candidates. Similar to (Watson et al., 2023; Yim et al., 2023b), we call backbone designable if the
generated backbone has scRMSD < 2 Å.

We compute novelty analogously to (Wagner et al., 2024) by comparing the structures of protein backbones to the ones found
in the PDB database using FoldSeek (Van Kempen et al., 2024) in TMalign mode (–alignment-type 1), and report novelty as
the average of the highest TM score calculated for a given backbone, averaged over all proteins considered. Diversity from
Tab. 3 is computed as a pairwise TM-similarity score for a set of protein backbones also as defined in (Wagner et al., 2024).

A.8. Settings of Molecular Dynamics (MD) simulations

We conduct MD simulation using GROMACS v2023 (Abraham et al., 2015) with the all-atom force field CHARMM27.
Since FliPS generates only protein backbones, we provide as input to MD simulation the structure of the best-scoring
sequence refolded with ESMfold in terms of scRMSD. Proteins are placed in the periodic dodecahedron box with at least
1 nm distance from the box edge. The system is solvated with the TIP3P water model (Jorgensen et al., 1983) and NaCl
concentration is adjusted to 150 mM. The system is energy-minimized for 5000 steps. NVT equilibration is performed
for 1 ns with a 2 fs timestep using the leap-frog integrator with the temperature of 300K maintained with the Berendsen
thermostat. Next, the system is NPT equilibrated for another 1 ns with the pressure set at 1 bar and maintained with the
Parrinello-Rahman barostat. The production run is performed starting from the last frame of the NPT equilibration as
three replicas of 100 ns resulting in the total simulation time of 300 ns. Covalent bonds involving hydrogen atoms were
constrained using the LINCS (Hess, 2008) algorithm in all the simulations. Long range electrostatic interactions were
accounted for using the Particle-Mesh Ewald (PME) method.

A.9. Details on FliPS training

As mentioned in Section 4.2, we train FliPS on a subset of the PDB dataset. We observed that first pre-training on a smaller
SCOPe dataset (Chandonia et al., 2022) annotated with BackFlip-predicted flexibilities helps stabilize training on the bigger
PDB dataset and results in better performance. SCOPe can be considered as a benchmark dataset in the field of protein
design, as it has been manually curated and used for training several generative models for protein backbones (Yim et al.,
2023a; Lin & AlQuraishi, 2023). We filter SCOPe dataset clustered by 40 % sequence identitiy for lengths between 60 and
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128 residues, which results in a set of 3673 structures. The hyperparameters are chosen as in GAFL (Wagner et al., 2024)
and λflex is set to 100. We train FliPS for a total of four GPU days on two NVIDIA A100 GPUs. Then, starting from this
model checkpoint, we continue training on the filtered PDB dataset, as introduced in Section 4.2 for another 17 GPU days
on 8 NVIDIA A100 GPUs, totalling 21 GPU days.

During training, 10% of the time we fully mask one-hot encoded per-residue flexibility and perform training of FliPS as an
unconditional model with the original loss function introduced in (Yim et al., 2023a; Wagner et al., 2024). For remaining
90%, we randomly unmask flexibility as a window of size ∼ U([0.2, 0.4]) and with the window center positions ∼ U([1, N ])
where N stands for the total protein length. We do not use padding during the masking procedure.

A.10. Sampling different protein lengths for a flexibility profile of interest with FliPS

In Section 4.2, we demonstrate that FliPS samples protein backbones of different lengths that display a flexibility profile
given as an input. For this, we linearly scale the profile such that it has the same length as the generated sample.

A.11. Definition of a local measure for flexibility

Figure A.3. A globally-aligned helix-turn-helix motif. Since the smaller helix has lower weight in the global alignment, it is assigned
large (global) RMSF values although it is locally stiff. In dotted lines are the positions of the residues in the reference conformation.

The Root Mean Square Fluctuation (RMSF) commonly obtained either from conformational ensembles C of NMR-
determined or MD-simulated protein structures is computed as

RMSF =

√
1

|C|
∑
x∈C

∣∣Topt ◦ xi − xref
i

∣∣2, (11)

with the reference conformation xref and where i denotes the residue index. The transformation Topt is defined as

Topt = argmin
T∈SE(3)

{
N∑
i=1

(
T ◦ xi(t)− xref

i

)2}
(12)

where N is the number of residues.

In simpler formulation, the RMSF shows the extent of positional deviation for a given residue from its reference state, all
expressed in relation to the whole protein. Since the superposition in the definition of Topt (Eq. 12) is a global quantity that
depends on the whole protein, it is apparent that RMSF is non-local in the sense that the value of a given residue depends on
the position of all other residues, even if their spatial distance is large. This suggests that the global RMSF cannot be the
only measure for per-residue flexibility, as it often simply captures the movement of an entire, locally stiff subdomain with
respect to the rest of the protein. This not only contradicts the notion of per-residue flexibility (as opposed to flexibility
of subdomains or collective degrees of freedom), the non-locality can also lead to discontinuities. An example for such a
case is illustrated in Fig. A.3A, where, due to the higher weight in the alignment, the longer helix in the helix-turn-helix
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motif is rendered as stiff by the global RMSF and the other is rendered as flexible. If the shorter helix would be slightly
longer, the global alignment would render it stiff and the other helix as flexible instead. For one and the same movement, the
RMSF profile thus shows a large change upon a slightly change in the protein’s topology. We not that this is no discontinuity
in the strict mathematical sense since continuity cannot be defined for functions that depend on the length of individual
subdomains because the length is discrete.

Addressing this issue, we propose a new, local definition of flexibility that avoids global superposition of the whole protein
to the reference state in Section 2.2.

To illustrate the difference between local and global RMSF, we aligned 25 conformations of a 324 residues long protein
(PDB: 1RM6) available from the ATLAS dataset according to the definition of local flexibility with sequence-window
size 2K + 1 = 13 and compare with standard global alignment (Eq. 12). Fig. A.4 demonstrates that in the case of local
alignment, the secondary structure elements, such as α-helices remain stable and well resolved, whereas in the case of
global alignment, the helices experience significant positional changes and fluctuate more. As mentioned above, this will be
manifested in the computation of RMSF, which will be significantly higher for the helical regions experiencing fluctuations
in the global alignment.

Global RMSFLocal RMSF

A B

Figure A.4. Comparison of 25 conformations of a 324 residues long protein (PDB: 1RM6) aligned either locally, according to the definition
of local flexibility in Eq. 4 (A) or globally (B). Bold circles highlight secondary structural elements where the difference between local
and global alignment is most pronounced.

A.12. Conditional FliPS sampling for proteins of bigger lengths

Table A.3. Flexibility conditioned backbone generation for 4 hand-drawn target profiles illustrated in the lower panel of Fig. 4. For each
of the profiles, we generate backbones spanning lengths N ∈ {200, 215, . . . , 300} using FliPS by conditioning on the flexibility profiles.
See caption to Tab. 2 for other details.

MD of top samples BackFlip on all samples

r (↑) MAE [Å] (↓) Novelty (↓) r (↑) MAE [Å] (↓) Novelty (↓)

4 hand-drawn profiles
FliPS 0.79 (0.01) 0.21 (0.00) 0.61 (-) 0.76 (0.00) 0.27 (0.00) 0.57 (0.01)
RFdiffusion-BFS 0.41 (0.02) 0.31 (0.00) 0.57 (-) -0.00 (0.00) 0.32 (0.00) 0.58 (0.01)
FoldFlow2-BFS 0.35 (0.02) 0.34 (0.00) 0.48 (-) -0.00 (0.00) 0.33 (0.00) 0.48 (0.00)
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Figure A.5. Target profiles for benchmarking FliPS as in Tab. 2 and Tab. 3. (A) 10 realistic profiles (BackFlip-predictions of natural
proteins outside the training set), (B) 10 hand-drawn profiles. Local RMSF computed from MD simulation of the generated samples is
depicted in purple, and the target profile in green.

Figure A.6. scRMSD values of FliPS samples or naturally existing SCOPe proteins for a given set of flexibility profiles. Means and errors
are computed as in Tab. 3 by bootstrapping the samples and selecting top 10-best ranked backbones 100 times.

19



Flexibility-conditioned protein structure design with flow matching

A.13. BackFlip guidance strategy and its ablation

We train FliPS model akin classifier-free guidance approach (Ho & Salimans, 2022), which requires the presence of
interesting conditioning information at training time. We achieve this by flexibility-annotating the PDB dataset with
BackFlip (Section 4.1) and passing flexibility profiles of the respective proteins to the model as a feature. The model then
learns to approximate a conditional flow vector field (Eq. 6). A more general, training-free sampling strategy is classifier
guidance (Dhariwal & Nichol, 2021), which combines the unconditional model score with a gradient term computed from
a pre-trained classifier at test time. This allows to approximate the same conditional flow vector field as described above.
Multiple studies have shown that classifier guidance-derived gradients might conflict with the unconditional generative
direction (Dinh et al., 2023), which leads to non-convergence (Lou & Ermon, 2023) and quality-condition trade-off. We
sought to investigate how classifier-guidance would compare to the FliPS model that is trained to directly approximate
conditional flow vector field.

As described in Section 4.1, we implement BackFlip-guidance (BG) for flexibility-conditioned backbone generation by
updating the prediction of the flow vector field made by unconditional model with a gradient computed by BackFlip w.r.t
to intermediate structure Tt at inference time t (Eq. 9). We select the flexibility profile in the lower right corner in Fig. 4
as target and sample 100 backbones for each length N ∈ {200, 215, . . . , 300} using FliPS in unconditional model setting
(see A.9) but with BG. For comparison, we also sample backbones unconditionally and using FliPS conditional model
without BG. We assess the impact of various BackFlip-guidance (BG) parameters—including absolute BG scales (5 and
10), a linear scheduling scheme, and length-dependent scaling on performance across flexibility metrics (Section 4.2),
secondary structure composition, and scRMSD of the generated backbones. In addition, we implemented BG within another
unconditional model FrameFlow (Yim et al., 2024) and evaluated its performance with the same settings as described above.

Tab. A.4 reports results of the experiment. Indeed, application of BG significantly outperforms the unconditional sampling
on flexibility metrics, but does underperform compared to FliPS sampling with conditional flow (FliPS⋆) regardless of the
hyperparameters tested. We observe that the BG approach with a high absolute scale can significantly compromise backbone
physical validity in favor of flexibility metrics, as indicated by high scRMSD values and illustrated in Fig. A.7. Although
favorable flexibility metrics are achieved, there is a clear trend of over-representation of α-helices when BG is applied. The
optimal performance regards to both target flexibility, physical validity and secondary structure composition is achieved
when the the effective BG scale is scaled with protein length. For FrameFlow-BG, we report inference results using the
best-performing length-scaling schedule, and find similar performance when applying the same settings within the GAFL
architecture. We also find that BG is approximately 20% slower than FliPS sampling with conditional flow.

Table A.4. Ablation of the BackFlip-Guidance (BG) strategy implemented either within FliPS or FrameFlow code. As the target we
defined the flexibility profile in the lower right corner in Fig. 4 and sampled 100 backbones for each length N ∈ {200, 215, . . . , 300}.
A BG scale in linear schedule is computed as scale(t) = scalemax · (t/tmax) with scalemax set as 5. We report metrics averaged over 10
top-ranked samples per profile. Standard deviations are computed by bootstrapping all generated samples 10 times before ranking them as
described above. Unconditional flow means that the flexibility profile is not passed as a condition during inference. For more details see
caption to Tab. 3.

Med. scRMSD r (↑) MAE (↓) Helix pct. Strand pct. Coil pct.

Static schedule∗ 2.78 (0.13) 0.73 (0.01) 0.30 (0.01) 0.74 (0.13) 0.05 (0.07) 0.22 (0.02)
Static schedule† 7.58 (0.53) 0.78 (0.00) 0.26 (0.01) 0.65 (0.11) 0.02 (0.03) 0.33 (0.03)
Linear schedule 1.60 (0.07) 0.71 (0.01) 0.31 (0.00) 0.70 (0.15) 0.07 (0.07) 0.22 (0.02)
Length scaling 1.80 (0.11) 0.76 (0.00) 0.25 (0.01) 0.52 (0.20) 0.07 (0.08) 0.40 (0.04)
FrameFlow-length scaling 3.23 (0.14) 0.78 (0.01) 0.25 (0.01) 0.46 (0.09) 0.08 (0.06) 0.46 (0.02)

FliPS‡ 1.15 (0.04) 0.47 (0.05) 0.33 (0.01) 0.51 (0.24) 0.21 (0.17) 0.28 (0.03)
FliPS⋆ 2.78 (0.12) 0.89 (0.00) 0.24 (0.00) 0.49 (0.08) 0.19 (0.05) 0.32 (0.00)

∗BGscale = 5 †BGscale = 10 ‡Unconditional flow ⋆Conditional flow
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Figure A.7. (A) Example of a backbone generated with BackFlip guidance with a static schedule set as 10 from Tab. A.4 with distorted,
unphysical structure (scRMSD 15.1 Å). Especially prominent are improper torsional angles of the helix in green and a discontinuous
helix in yellow. (B) Undesignable sample generated with FliPS using conditional flow with no BackFlip guidance (scRSMD 4.1 Å). The
backbone does not display obvious physical violations or clashes, in contrast to (A).
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