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Abstract

Recent reasoning-focused language models achieve high accuracy by generating
lengthy intermediate reasoning paths before producing final answers. While this
approach is effective in solving problems that require logical thinking, long rea-
soning paths significantly increase memory usage and reduce throughput of token
generation, limiting the practical deployment of such models. We propose Reason-
ing Path Compression (RPC), a training-free method that accelerates inference by
leveraging the semantic sparsity of reasoning paths. RPC periodically compresses
the KV cache by retaining cache entries that receive high importance score, which
are computed using a selector window composed of recently generated queries.
Experiments show that RPC improves generation throughput of QwQ-32B by up to
1.60x compared to the inference with full KV cache, with an accuracy drop of 1.2%
on the AIME 2024 benchmark. Our findings demonstrate that semantic sparsity in
reasoning traces can be effectively exploited for compression, offering a practical
path toward efficient deployment of reasoning LLMs. Our code is available at
https://github.com/jiwonsong-dev/ReasoningPathCompression,

1 Introduction

Large language models (LLMs) equipped with reasoning capabilities have expanded the application
of LLMs beyond simple natural language processing tasks to complex problem-solving tasks such as
Science, Technology, Engineering, and Mathematics (STEM) reasoning and code generation. Early
reasoning approaches primarily focused on guiding LLMs through explicit step-by-step logic to
facilitate more interpretable and accurate outcomes [/1]. Recently, advanced reasoning LLMs, such
as OpenAl ol [2]], DeepSeek-R1 [3]], adopted the concept of test-time compute scaling [4,15]. This
method involves generating longer, iterative reasoning outputs, which significantly enhance accuracy.
Such iterative generation allows models to carefully evaluate intermediate reasoning steps, refine
outputs through internal reflection, and ultimately handle tasks requiring complex reasoning.

Though reasoning LLMs have been widely adopted due to their ability to handle complex tasks
through complicated reasoning processes, reasoning LLMs face challenges in inference efficiency
due to their tendency to generate long reasoning sequences. The long token sequences required for
detailed reasoning processes substantially increase the KV cache overhead during inference. For
example, the reasoning path of OpenAI’s 03-mini-high can exceed 50K tokens [6], and Claude 3.7
Sonnet [7]] supports reasoning sequences of up to 64K tokens. Such a long token generation imposes
critical memory and computational overhead, significantly slowing down inference. Consequently, it
is crucial to develop KV cache compression techniques to mitigate these inference efficiency issues
and support practical deployment of reasoning LLMs.
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Question: Four identical spin-1/2 particles are placed in a one-dimensional infinite potential well of length L. Calculate the energies of the
ground state, first excited state, and second excited state of the system in terms of energy E. (Here E= m*h?/2mL?)

Short Input (~200 Tokens)
Reasoning LLM @ (v
Long Output (10,000+ Tokens) Reasoning Path Example from QwQ-32B

[-++] Since there are four particles, the ground state should have the first two energy levels each filled with two particles. Wait, no,
actually, each n level can hold two particles, so for four particles, that would be n=1 and n=2 each filled with two particles? Wait, no, n=1
can have two, n=2 can have two, so total four. So the ground state would have two particles in n=1 and two in n=2?

Wait a second, but I need to be careful. Let me think again. [---] So for four particles, the lowest energy configuration is to fill up n=1
(two particles) and n=2 (another two particles). Therefore, the total energy would be 2E, + 2E,. Since E,, = n’E, so that would be 2(1°E)
+ 2(2°E) = 2E + 8E = 10E. Wait, but hold on, that seems like the total energy. Hmm, but let me confirm.

Wait, actually, each particle in the n=1 level contributes E; each [---] So total energy is 2E + 8E = 10E. So the ground state energy is 10E?

But wait, hold on. Let me check again. The energy levels for each particle are E, = n°E, so n=11is E, n=2 is 4E, n=3 is 9E, etc. So for two
particles in n=1, their total contribution is 2E. Two particles in n=2, their contribution is 2(4E) = 8E.
So total 10E. That seems right. [---]

Figure 1: Example of a reasoning path of a reasoning LLM. Redundant reasoning steps (e.g., repeated
checks and re-derivations) are visually highlighted, illustrating the semantic sparsity that motivates
our compression method. The parts highlighted in the same color are semantically identical.

Although there are several existing works on compressing KV cache for long sequences [8, 9, [10} [11]],
these works primarily focus on efficient handling of long input prompts. In contrast, the problem of
efficiently managing the KV cache for long generated sequences has received limited attention. Unlike
input prompts, whose importance can be easily assessed at prefill stage [8], generated tokens pose a
challenge because their future relevance is often unpredictable. As a token seemingly insignificant at
one point might become crucial later, naively discarding such tokens can substantially degrade model
accuracy.

However, as illustrated in Figure[I] we observe that sequences generated during reasoning processes
exhibit distinct properties compared to sequences generated in conventional LLM decoding. Specifi-
cally, reasoning sequences frequently revisit previous cases or repeat similar logic, so they have low
information density relative to their length. We refer to this phenomenon as the semantic sparsity of
reasoning paths. This sparsity highlights the inefficiency of retaining all KV entries and the possibility
to selectively remove KV cache corresponding to less important tokens without disrupting the overall
reasoning process.

Motivated by this observation, we propose Reasoning Path Compression (RPC), a method for accel-
erating inference in reasoning LLMs by compressing the KV cache associated with explicit thinking
tokens. RPC compresses KV cache periodically during decoding, significantly reducing overhead
compared to previous step-wise compression techniques which compress KV cache at each decoding
step. At each compression interval, it estimates token importance based on attention allocation over a
recent window and retains only the top-ranked entries according to a fixed compression ratio. This
design preserves recent context while discarding low-impact KV entries, mitigating performance
degradation. By applying RPC to QwQ-32B [12]], we reduce the KV cache size of generated tokens
by up to 75%, and improve decoding throughput by up to 1.60x, while keeping the pass@1 drop on
the AIME 2024 [13]] dataset within 1.2% compared to the inference with full KV cache.

2 Background

2.1 Reasoning LLMs

Reasoning LLMs solve problems by generating explicit intermediate steps, known as reasoning paths,
instead of directly producing an answer [2} 3} |12} [14]. This behavior is reinforced by the way such
models are trained: reasoning LLMs are typically fine-tuned with reinforcement learning objectives
that reward correct answers after multi-step inference, thereby encouraging longer generations.
Consequently, the lengths of generated sequences increase as training progresses [[15]. Allocating
up to 32K tokens for explicit reasoning has yielded steady accuracy gains across complex reasoning
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Figure 2: (a) Token generation throughput and (b) peak memory of QwQ-32B at different generation
lengths. The results are evaluated on 4x H100 GPUs with batch size 16.

benchmarks without showing signs of plateau, raising expectations of further improvements with even
larger thinking budgets [16]. Such extensive token generation significantly enlarges the KV cache,
increasing memory usage and reducing inference throughput. As shown in Figure[2] generating
sequences of 16K to 32K tokens dramatically reduces throughput while sharply increasing peak
memory usage.

To mitigate the overhead of generating long reasoning paths, a large body of work has fo-
cused on training-based approaches that encourage reasoning LLMs to produce shorter se-
quences [[17, [18l [19, 20l 21}, [22], relatively few attempts have been made to improve reasoning
efficiency at inference time [23]. These approaches utilize length-aware training objectives: either en-
couraging the generation of short sequences or introducing mechanisms to compress tokens into latent
representations [24]. However, their effectiveness typically remains limited when applied to complex
reasoning benchmarks widely used to evaluate modern reasoning LLMs (e.g. LiveCodeBench [25]]).
For example, although LightThinker [22] achieves competitive accuracy with shortened reasoning
paths on relatively simpler reasoning tasks like MMLU [26]] and BBH [27], our experimental results
in Section [4.3] indicate a significant performance degradation when evaluated on more complex
reasoning benchmarks. This discrepancy arises primarily due to the conflicting training objectives.
The reasoning-oriented objectives aim to promote detailed reasoning steps, whereas the length-aware
objectives encourage shorter outputs. Thus, effectively training reasoning LLMs to consistently
produce shorter reasoning paths remains challenging.

2.2 KV Cache Compression

The degradation of throughput and the increase in memory usage observed when processing long
sequences with LLMs primarily result from growth in KV cache size. Thus, there are many attempts
to directly compress the KV cache, but these works primarily focus on efficient handling of long
input prompts. For example, SnapKV [8] and HeadKV [9] are specifically designed to compress
KV cache associated with long input contexts. These methods do not address the compression of
generated tokens produced in reasoning paths.

Other techniques like H20 [10] and TOVA [11] attempt to extend KV cache compression mechanisms
to support basic levels of compression during generation. These methods maintain the KV cache
within a predefined budget by evicting tokens whenever the cache reaches this size limit during
decoding. However, their designs predominantly target scenarios involving long input sequences and
relatively short outputs, they are effective when identifying and evicting less relevant input tokens is
critical for efficient output generation. Hence, H20 and TOVA struggle to preserve accuracy when
applied to reasoning LLMs (see Section [4.3). Moreover, while setting a fixed KV cache budget
is straightforward in input-dominated scenarios, it is challenging to predefine cache budgets for
reasoning LL.Ms, as they inherently produce long output sequences of varying lengths. Overall, there
are currently no KV cache compression methods tailored to reasoning LLMs.

3 Reasoning Path Compression

3.1 Motivation: Semantic Sparsity of Reasoning Paths

Reasoning LLMs do not directly generate the final answer. Instead, they produce reasoning paths,
which often contain redundant segments offering little new information, such as repeated logical
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Figure 3: 3-gram Shannon entropy comparison between reasoning LLM and non-reasoning LLM.

steps or re-evaluations of previous generated reasoning. As previously presented in Figure[T} such
redundancy is frequently observed in model-generated reasoning paths. Additional examples are
provided in Appendix [A] We refer to this phenomenon, the presence of extended spans of generated
tokens that are semantically redundant, as semantic sparsity. To quantify semantic sparsity, we
compute the n-gram Shannon entropy using base-2 logarithm, defined as:

H,=—- plg)log, pg) €y

9€Gn

where G,, denotes the set of all unique n-grams of length n, and p(g) is the empirical probability of
each n-gram g.

To analyze semantic sparsity of reasoning paths, we compare the redundancy in sequences generated
by conventional LLMs and reasoning LLMs. For this comparison, we use 3-gram entropy to
measure phrase-level repetition and evaluate two models with identical architecture (LLaMA-3.1-
8B-Instruct [28])): DeepSeek-R1-Distill-Llama-8B [3], a reasoning-oriented model, is tested on
AIME 2024 [13]], and LongWriter-8B [29], tuned for long-form writing, is tested on a subset of
HelloBench [30] consisting of prompts that require generating outputs exceeding 8192 tokens.

As shown in Figure [3] DeepSeek-R1-Distill-Llama-8B consistently exhibits lower 3-gram entropy
than LongWriter-8B across output lengths from 1024 to 8192 tokens. This indicates higher phrase-
level repetition in reasoning paths compared to general long-form writing. These results provide
quantitative evidence of semantic sparsity, suggesting that large portions of the reasoning trace can
be compressed with minimal impact on overall coherence.

3.2 Overview of Reasoning Path Compression

We introduce Reasoning Path Compression (RPC), a KV cache compression framework tailored
for reasoning LLMs (Figured). RPC leverages the semantic sparsity inherent in reasoning paths to
efficiently eliminate KV entries. The key insight motivating RPC is that reasoning LLMs generate
explicit reasoning steps, and many of these reasoning steps lose relevance as reasoning process
progress. Exploiting this observation, RPC periodically compresses redundant KV entries during
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Figure 4: Illustration of RPC with compression 1nterva1 P = 4, selector window R = 2, and
compression ratio ¢ = 4. At each compression step, recent R tokens are used to evaluate the
importance of previously generated tokens.
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token generation. Moreover, since recently generated tokens inherently rely on the context provided
by preceding tokens, these recent tokens serve as essential indicators of contextual importance. Thus,
RPC assesses the relevance of previously generated tokens by analyzing how strongly they are
attended to by the most recent tokens, referred to as selector window. All compression decisions are
made dynamically during inference based solely on attention-derived statistics. Hence, RPC does not
require any model modification or additional training, and it is straightforward to integrate RPC into
existing inference pipelines of reasoning LLMs.

3.3 Periodic KV Cache Compression Dynamics of RPC

One of the unique features of RPC compared to other KV cache compression methods is its periodic
approach to KV cache compression. The KV cache compression dynamics of RPC is controlled by
two critical hyperparameters: the compression interval P, which represents how frequently KV cache
compression is triggered, and the size of the selector window R, which denotes the number of recent
tokens used to assess importance.

As illustrated in Figure |4} RPC waits for P + R tokens to be generated to start the first compression
cycle. At this point, the importance of the initial set of P tokens is evaluated using the selector
window composed of the most recent R tokens. Given a target compression ratio ¢, RPC retains only
the top % tokens based on their importance scores. Subsequent compression cycles are triggered
each time an additional P tokens have been generated.

It is important to note that during each periodic compres-
sion cycle, RPC evaluates a combined set comprising both
tokens retained from the previous cycle and newly generated
tokens, rather than compressing only newly generated ones.
By jointly reassessing all these tokens at each cycle, RPC nat-
urally allows outdated tokens to fade out as the reasoning path
progresses. As a result, the reasoning context remains prop-
erly updated and relevant throughout the inference process,
even after multiple cycles of KV cache compression.

# KV Cache Entries

Specifically, at the second compression cycle, the selector
window, now updated to include the latest R tokens, evalu-
ates the importance of the previously retained % tokens and
the newly generated set of P tokens. Among these % + P
tokens, RPC retains only the top % tokens with the highest # Decoding Steps
importance scores and discards the rest. Generalizing this Figure 5: KV cache size with and
procedure, at the N-th compression cycle, the total number . RPC

of tokens evaluated with the selector window is w + P.

RPC retains only the top % tokens with the highest importance scores from this set. As selector
tokens are always preserved, the total number of KV entries remaining after the N-th compression
cycle is % + R. As shown in Figure this periodic compression effectively regulates the size of
KV cache over time.

,I,: KV Pruning

To fully leverage the advantages of periodic compression, the compression interval P must be
carefully selected. A small P value may lead to accuracy degradation after compression, as the
semantic context is too limited. On the other hand, a large P provides a broader semantic context for
effective compression, while it introduces computational inefficiency and higher peak memory usage
by delaying the compression. Given the significance of the compression interval P, an ablation study
analyzing its impact and recommendations derived from the analysis are discussed in Section 4.5

3.4 Important Token Selection with Selection Window

Another unique feature of RPC is the concept of the selector window used for selecting important
tokens. Previous KV cache compression methods employ various strategies for calculating token
importance. For example, SnapKV computes attention scores relative to the final tokens in the input
prompt, based on the observation that the last segment of the input shows similar attention allocation
pattern to the generation stage. H20 averages attention scores across all preceding tokens, and TOVA
mimics RNN operations by reusing the attention scores calculated during token generation as gating



Algorithm 1: Important token selection algorithm of RPC

Input: generation step t, query of step ¢ g¢, KV cache C'iy, selector query cache C'g
Output: updated C'xy, updated Cg

// Cache selector queries
if (t — R) > 0and (t — R) mod P < R then
| Append ¢; to Cg

// Compress KV cache every P steps
if (t — R) > 0and (t — R) mod P = 0 then

5 <= Importance of tokens in Ciy ; // Compute importance score
Cimp < KV cache with top-¥ importance scores ; // Retain important KV cache
Ckv < Cimp U Ckv[—R ] // Retain KV cache of selector window
Co+1; // Reset selector query cache

return Ciy, Co

scores for the KV cache eviction. In contrast, RPC leverages the observation that recently generated
tokens in reasoning paths represent logical outputs derived from preceding contexts. Therefore,
attention scores relative to these recent tokens can effectively indicate the relevance of previously
generated tokens.

The algorithm for selecting important tokens in RPC is presented in Algorithm[I] RPC evaluates
token importance using attention scores aggregated across a selector window of the R most recent
tokens and all attention heads. Then, to promote coherent token selection and reduce token-level
noise, RPC applies local average pooling. Formally, the importance of each past token ¢ at each layer
is defined as:

1 1 w R

H
Importance(t) = 1R H Z Z ZAttni (@r, kiti) @

i=—w r=1h=1

Here, Attnfl(q,., k:1i) denotes the attention weight from the r-th selector token to token generated
at t 4 ¢-th generation step at head h of layer ¢. The pooling window size w controls the smoothing
level, encouraging contiguous retention of semantically related tokens. To eliminate redundant
computations and efficiently compute these importance scores, RPC caches the query vectors of
selector tokens.

The selector window size R determines how many recent tokens RPC uses to assess the importance
of previously generated tokens. A smaller R may lead to unstable or noisy importance estimations,
as scoring can be dominated by a limited number of tokens. In contrast, larger values of R increase
memory overhead by requiring additional caching of query vector. Thus, choosing an appropriate
value for R involves balancing the robustness in token scoring with computational overhead. A
detailed ablation study and recommendation for optimal R values are provided in Section[4.5]

4 Experiments

4.1 Experimental Setup

Models and Datasets. We evaluate RPC using two open-source reasoning LLMs with different
model sizes: DeepSeek-R1-Distill-Qwen-7B with 7B parameters [3] and QwQ-32B with 32B
parameters [[12]. All outputs are generated using nucleus sampling with temperature = 0.6 and
top-p = 0.95. For QwQ-32B, we additionally set top-k = 40 following the model’s recommended
decoding configuration. The maximum number of generated tokens is capped at 32768, following the
default settings of tested models.

Datasets. Our evaluation covers three reasoning-intensive benchmarks: American Invitational
Mathematics Examination (AIME) 2024 for mathematical reasoning, LiveCodeBench [25]] for coding
tasks, and IFEval [31]] for instruction following. We sample k£ completions per instance to compute
pass@1, where k = 8 for AIME 2024, k = 4 for LiveCodeBench, and k = 1 for IFEval, respectively.
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Figure 6: Redundancy rate comparison between full KV and RPC.
Table 1: Accuracy (%) comparison between baselines and RPC.
| DeepSeek-R1-Distill-Qwen-7B | QwQ-32B
Method AIME 2024 LiveCodeBench IFEval | AIME 2024 LiveCodeBench IFEval
(pass@1) (pass@1) (pass@1) | (pass@1) (pass@1) (pass@1)
Full KV Cache 55.5 37.6 55.1 79.5 63.4 83.9
H20 42.5 22.5 51.8 75.0 54.2 74.3
TOVA 42.5 21.5 48.8 70.0 43.8 50.6
LightThinker 6.7 0.7 25.1 - - -
RPC (P = 4096) 52.9 35.9 56.6 78.3 62.2 82.6
RPC (P = 1024) 50.4 33.5 57.3 78.3 61.2 81.7

Implementation Details. Our implementation uses FlashAttention-2 [32] as the attention kernel for
all decoding layers and is built on top of HuggingFace Transformers v4.45 [33]]. Unless otherwise
specified, we use the following default RPC hyperparameters: We set the selector window size R to
32 and apply local pooling with window size w = 3 for importance smoothing. The compression
interval P is set to 1024 or 4096. The target compression ratio is set to 4x by default.

Baselines. We compare our proposed RPC with a training-based reasoning path compression method,
LightThinker [22], and previous KV cache compression techniques, H20 [10] and TOVA [11]. To
ensure a fair comparison with H20 and TOVA, we set their KV cache budgets to match the overall
compression ratio (4x) of RPC. For each of the evaluation datasets, we profile the average generation
length of the original reasoning LLMs with full KV caches, and allocate 25% of this average length
as a fixed KV cache budget for all prompts within that dataset. Meanwhile, LightThinker does not
offer direct control over the compression ratio, so we measure its effective compression ratio after
inference.

4.2 Redundancy Reduction

We quantitatively evaluate the redundancy-reducing effect of RPC using an embedding-based simi-
larity analysis. For each model, we generate outputs on the AIME 2024 dataset using both the full
KV baseline and RPC. The generated outputs are segmented into sentences and pairwise cosine
similarities are computed between all sentence embeddings within the same output. Two sentences
are considered semantically similar if their cosine similarity exceeds 0.75. We define the redundancy
rate as the proportion of sentences that have more than N semantically similar counterparts within
the same output, where N € {1,2,4}.

As shown in Figure 6] the redundancy rate significantly decreases after applying RPC, across all
models. Specifically, the proportion of semantically repetitive sentences (i.e., N=1) is reduced by
nearly half, and the gap widens for higher redundancy thresholds (N=2,4). This indicates that
RPC not only removes verbatim repetitions but also suppresses subtle paraphrased duplications that
frequently appear in reasoning trajectories. These results provide strong evidence that RPC effectively
leverages semantic sparsity to maintain concise yet coherent reasoning sequences.

Additional details of the embedding-based redundancy analysis and visualized examples of RPC’s
token selection are provided in Appendix [B]

4.3 Accuracy Evaluation

Table [T| compares the accuracy between RPC and the baseline methods. LightThinker, a training-
based reasoning path compression approach, shows the lowest accuracy across all benchmarks despite
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Figure 7: (a) Throughput (tokens/s) and (b) peak memory usage (GB) comparison between RPC
(P = 4096) and full KV cache inference.

operating with mild compression ratio (1.49x, 1.41x, 1.57x for AIME 2024, LiveCodeBench,
IFEval, respectively). This result highlights the limited effectiveness of length-aware training
approaches for reasoning LLMs.

Other KV cache compression baselines, such as H20 and TOVA, achieve higher accuracy than
LightThinker but still exhibit a significant gap compared to full KV inference. Moreover, their
requirement of a predefined KV cache budget limits applicability in real-world scenarios where the
total generation length cannot be known in advance.

In contrast, RPC achieves accuracy comparable to full KV inference without any additional training
or prior knowledge of the output length. With a compression interval of P = 4096, RPC successfully
limits the accuracy drop to within 2.6% for DeepSeek-R1-Distill-Qwen-7B and 1.2% for QwQ-32B
on AIME 2024. A shorter interval (P = 1024) slightly reduces accuracy while providing stronger
compression and efficiency. Therefore, careful selection of P is important, and we provide an ablation
study analyzing its impact in Section 4.5

4.4 Efficiency Evaluation

We evaluate the efficiency of RPC in terms of token-generation throughput and peak memory usage.
All experiments are conducted using an input prompt with 128 tokens and measure throughput for
generating sequences of 8192, 16384, 32768 tokens, with a batch size of 16. The compression interval
P is set to 4096. Throughput and memory measurements for DeepSeek-R 1-Distill-Qwen-7B are
obtained on a single NVIDIA H100 SXM GPU, while QwQ-32B evaluations are conducted on four
H100 SXM GPUs. Figure[/|presents the throughput and peak memory improvements achieved by
RPC relative to the original models with full KV cache. Additional analyses on the efficiency are
also provided in Appendix [C.3]

Throughput. As shown in Figure[7(a), RPC consistently improves token generation throughput
with particularly large gains observed for long generation length (e.g. 32768 tokens), a scenario
commonly encountered with reasoning LLMs. RPC achieves 1.68 x throughput improvement when
generating 32768 tokens with DeepSeek-R1-Distill-Qwen-7B, and 1.60x throughput improvement
when generating 16384 tokens with QwQ-32B. Notably, QwQ-32B with full KV cache cannot handle
reasoning tasks with generation lengths of 32768 tokens as it runs out of memory. However, RPC
successfully enables token generation at this length.

Memory Consumption. As shown in Figure[7[b), RPC effectively reduces peak memory usage
by periodically compressing the KV cache. Since peak memory usage includes contributions from
model parameters, intermediate activations, and the KV cache, the reduction in peak memory is not
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directly proportional to the KV cache compression ratio. Nevertheless, as the KV cache becomes
the dominant factor in peak memory usage for longer generation lengths, RPC provides increasingly
substantial memory savings as generation length grows. For DeepSeek-R1-Distill-Qwen-7B, RPC
reduces peak memory usage from 75.7GB to 36.2GB when generating 32768 tokens, thereby RPC
achieves over 50% memory reduction. Similarly, for QwQ-32B, RPC reduces the overall memory
requirement by over 50%, thereby resolving the out-of-memory issue for the generation of 32768
tokens. These results demonstrate that RPC effectively mitigates the memory bottleneck inherent in
long-sequence generation of reasoning LLLMs by compressing KV cache.

4.5 Ablation Studies

To better understand the effect of key hyperparameters in RPC, we perform ablation studies on
DeepSeek-R1-Distill-Qwen-7B using the AIME 2024 dataset. We analyze two critical components:
the compression interval P, which determines how often KV-cache compression is applied, and
the selector window size R, which controls the number of recent tokens used for attention-based
importance scoring.

Compression Interval. We evaluate compression interval P from 4 to 16384 to examine the trade-off
between compression interval, reasoning accuracy, and inference efficiency (throughput and peak
memory). As shown in Figure [8| reasoning accuracy improves as P increases. It indicates that
overly frequent compression can disrupt the reasoning process by prematurely evicting tokens critical
for subsequent reasoning steps. However, when P becomes excessively large (e.g. P = 8192),
throughput declines and peak memory usage rises significantly, as large P delays the KV cache
compression. Therefore, selecting an appropriate P value is essential to balance accuracy preservation
and efficiency gains. Here, the configurations P = 4096 and P = 1024 represent practical choices
that offer strong balance between performance and efficiency in reasoning-intensive scenarios.

Table 2: Effect of selector window size R.

P Metric R=1 8 32 128
AIME 2024 (pass@1) 49.2 48.3 52.9 49.2

4096 Throughput (tokens/s) 662.54 662.84 671.38 673.26
Peak Memory (GB) 28.72 28.72 28.72 29.38
AIME 2024 (pass@1) 45.8 49.2 50.4 50.0

1024 Throughput (tokens/s) 746.21 745.08 751.69 742.46
Peak Memory (GB) 24.62 24.62 25.15 27.37

Selector Window Size. We evaluate the impact of the selector window size R on the RPC algorithm
by evaluating R € {1,8,32,128}. As shown in Table [2| small R values such as 1 and 8 yield
relatively low accuracy (e.g. below 50% with P = 4096), because small R values can result in
unstable selection of semantically critical tokens. This effect is more pronounced for P = 1024 than
P = 4096, as tokens are evicted more frequently with smaller P. Therefore, R must be sufficiently
large to ensure robust importance estimation. However, excessively large R (e.g. 128) can negatively
impact accuracy, as older selector tokens may not reflect the current reasoning context effectively.
Because varying R has only marginal effects on throughput and peak memory usage, accuracy is



the primary consideration when selecting R. Based on our results, R = 32 is the best choice as it
provides the highest accuracy.

5 Conclusion

We introduce Reasoning Path Compression (RPC) for compressing KV cache of reasoning LLMs. We
observe that reasoning paths often contain redundant segments and inherent semantic sparsity. RPC
leverages this characteristic by periodically compressing the KV cache and employs an importance
scoring mechanism based on a selector window composed of recent queries. As RPC does not
require any additional training or model modifications, it can be applied to a broad range of reasoning
LLMs. Experimental results demonstrate that RPC compress the KV cache by 4 x with accuracy
degradation limited to 1.2%. This aggressive KV cache compression results in up to 1.60x throughput
improvement. Moreover, RPC successfully resolves the out-of-memory issue encountered by large
reasoning models with 32B parameters when generating long reasoning paths of up to 32K tokens,
by achieving over 50% reduction of overall memory requirement.
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A Examples of Redundant Reasoning Paths

In this section, we provide additional redundant reasoning examples from the models that we used for
evaluations. These examples clearly illustrate the semantic sparsity present in the generation outputs
of reasoning LLMs. Ellipses ([...]) indicate omitted portions of the lengthy original output.

In Example [A7T] QwQ-32B [12] identifies the correct answer early but redundantly re-derives it
multiple times, leading to excessive token generation. Each redundant derivation is highlighted with
a box to illustrate the inefficiency. The problem is sampled from AIME 2024 dataset [13].

Example A.1

Problem. There exist real numbers x and y, both greater than 1, such that
log, (y*) = logy(a:4y) =10.
Find zy.

QwQ-32B Output. <think> Okay, so I have this problem here: there exist real
numbers x and y, both greater than 1, such that log, (y*) = 10, and log, (2*¥) = 10. I need
to find the product zy. Hmm, logarithms with variables in the base and the argument. Let me
try to unpack this step by step.

First, let’s recall some logarithm properties. [...] So now, I have two equations:

1. z-a=10
4

2. ¥ _1p
a

So maybe I can solve for a from one equation and substitute into the other?
From equation 1: a = 13:—0
Plugging into equation 2:

4y T 4xy
— 104y —=10= —2 =10 =4y =1 =2
10/ 0= dy- 5 =10= —= =10 = day 00 = [wy = 25]

Wait, hold on, that seems too straightforward. But let me check.

Wait, step by step:

Equation 2 after substitution:

4y divided by (12) is equal to 10. So dividing by (12) is multiplying by <. Therefore,

T 4xy
dy — =10= —2 =10 = day = 1 —9
Y 10 0= 0 0= 4xy 00:>

Hmm, so is that the answer? Wait, but let me make sure I didn’t skip any steps where
assumptions might be wrong. Let’s check if this holds. [...]

Let’s check the original equations.

First equation: logy (5°). Wait, logs (5°) is 5, but the problem says it should be 10. So that’s
not good. Hmm. So x = 5 and y = 5 is not a solution. Hmm, so maybe my assumption that
xy = 25 is correct but x and y individually aren’t integers?

Alternatively, maybe I made an error in the substitution. Let me check again. [...]

Let me denote Equation 1 as ** = 10 and Equation 2 as 497'“ =10.

Let me multiply these two equations together:

T-v 4y -u
— - =10-10 = 4zy = 100 = =25
(=) (%) o [zy =25

Therefore, despite the complication with substitution, the product xy is indeed . However,
the problem states that such real numbers x and y exist, so even if we can’t find exact values

for x and y, the product is .
Wait, but maybe we need to confirm that there actually exist such x and y? [...]

Therefore, even though we can’t get exact values for x and y, the product xy = 25 is indeed
correct, and such numbers exist. Therefore, the answer is .
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Wait, but the problem says "Find zy", so maybe 25 is the answer, and the existence is given,
so even without finding = and y, through the algebra we can get that xy = 25. So maybe the

answer is . [...]

_ 1 S5 _ _1 5 _ =z
log,, (z) = Tog, () ~ 2y — 10/z — 29 — 10

Cross-multiplying: 5 - 10 = 2y - x = 50 = 22y =

Oh! Wait, this is a much simpler way! I didn’t need to go through all the substitutions and
transcendental equations. Since logy(x) is 10&%’ substituting the expressions from both
equations gives directly the relation. So indeed,

5 = 15 = 50 = 20y = [oy = 25],

So that’s straightforward. The earlier complication was because I tried to substitute variables
and ended up in a loop, but this reciprocal relationship is key here.

Therefore, the answer is . So I think that’s solid.

**Final Answer**

</think> [...]

A similar pattern is observed in Example[A.2] where DeepSeek-R1-Distill-Qwen-7B [3]] repeatedly
re-computes the correct solution despite having already reached it. Each redundant derivation is
highlighted with a box to illustrate the inefficiency. The problem is sampled from GSM8k dataset [34]].

Example A.2

Problem. Alice has 20 quarters. She wants to exchange them for nickels and so she goes to
the bank. After getting back from the bank, she discovers that 20% of the nickels are iron
nickels worth $3 each. What is the total value of her money now?

DeepSeek-R1-Distill-Qwen-7B Output. <rhink> Alright, so Alice has 20 quarters,
and she wants to exchange them for nickels. Hmm, okay, let me think about this. First, I need
to figure out how much money Alice has initially. Quarters are worth 25 cents each, right?
So, if she has 20 quarters, I can calculate the total value by multiplying 20 by 25 cents. Let
me write that down: 20 quarters * $0.25 per quarter. So, 20 * 0.25 equals... hmm, 20 divided
by 4 is 5, so 20 * 0.25 is $5.00. Okay, so Alice has $5.00 in quarters. [...]

So, now I need to calculate the total value of her money now. That would be the
value of the iron nickels plus the value of the regular nickels.

First, the iron nickels: 20 nickels * $3 each. Let me compute that: 20 * 3 = $60.00.

Then, the regular nickels: there are 100 total nickels, minus 20 iron nickels, so 80 regular
nickels. Each regular nickel is worth $0.05, so 80 * 0.05 = $4.00. So, adding those together,

$60 + $4 =[ $64.00 |

Wait, that seems like a big jump from $5.00 to $64.00. Let me double-check my
calculations.

She started with 20 quarters, which is 20 * $0.25 = $5.00. Exchanged them all for nickels, so
100 nickels. 20% of 100 is 20, so 20 iron nickels at $3 each is 20 * 3 = $60. The remaining

80 nickels are regular, so 80 * 0.05 = $4. So, total is $60 + $4 = . That seems correct.
But let me think again about the exchange. [...]

So, 20% of her nickels are iron nickels worth $3 each, so she effectively has 20
coins worth $3 each and 80 coins worth $0.05 each. So, total value is indeed 203 + 800.05 =

60 +4 =564

Wait, but in reality, exchanging quarters for nickels should just be a different form
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of the same money. So, why is the total value increasing? [...] Wait, maybe I'm
overcomplicating. The key is that she exchanges all her quarters into nickels, which would
give her 100 nickels, but 20% of them are iron nickels worth $3 each, so 20 nickels at $3 and

80 at $0.05. So, the total value is 203 + 800.05 =60 + 4 = . So, that’s the total value.

But let me think again, is this possible? Because exchanging 20 quarters for nick-
els should just be a different form of the same money, so why would the total value increase?
[...] But in this case, 20 of them are worth $3 each, so total value is 203 + 800.05 =60 + 4 =

$64.00 |. So, in effect, she’s getting more money by exchanging her quarters into nickels
where some are worth more. So, this seems to be the case.

So, maybe the answer is | $64.00 |

But just to make sure, let me recast the problem.
Total initial value: 20 quarters * $0.25 = $5.00.
After exchanging, she has 100 nickels. But 20% of those are iron nickels worth $3. So, 20

nickels * $3 = $60, and 80 nickels * $0.05 = $4. So, total is $60 + $4 = .

Yes, that seems correct. Alternatively, maybe the question is trying to trick me into
thinking that the total value is still $5, but no, since 20% of the nickels are worth more, so the
total value increases.

Therefore, the total value of her money now is | $64.00 |.

Final Answer The total value of her money now is dollars. </think> [...]

\.

.

In Example [A.3] QwQ-32B exhibits a similar pattern to Figure [T} repeating stating previously
mentioned priors or revisiting earlier examined cases during the problem-solving process. The

problem is sampeled from GPQA-Diamond dataset [33].

Example A.3

Problem. You perform a high-throughput experiment on white lupine to find genes contribut-
ing to resistance to the fungal disease anthracnose. As a result, you receive three candidate
genes of unknown function — G1, G2, and G3. You create three knock-out mutants, g1, g2,
and g3, and a set of double-mutants, glg2, glg3, and g2g3. You know that at least one
of these genes is a transcription factor acting upstream of (an)other gene(s). You start to
test those mutant plants: do they have a higher sensitivity to anthracnose than the wild-type
because they cannot produce certain gene products? After tests with the pathogen, you receive
the following results where 100% is the level of resistance to the pathogen in control; 50% is
half of the control’s resistance; 25% is a quarter of the control’s resistance; 0% — all plants
show signs of infection:

* resistance of gl: 75% of control
* resistance of g2: 0% from control
* resistance of g3: 50% from control
* resistance of glg3: 10% from control
* resistance of g2g3: 0% from control
* resistance of glg2: 0% from control
Which conclusion regarding those genes’ interaction can you draw from this experiment?

QwQ-32B Output. <think> Okay, so I have this problem about white lupine genes and their
resistance to anthracnose. Let me try to figure this out step by step.

First, the setup: There are three genes, G1, G2, G3. They made knockout mutants for each
(g1, g2, g3), and all the double mutants (glg2, glg3, g2¢3). The question is about their
interactions, especially since at least one is a transcription factor upstream of others. The
resistance levels are given for each mutant and double mutant. The resistance percentages are
as follows:
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e gl: 75%

e 22: 0%

* 23: 50%

e glg3: 10%

e g223: 0%

e glg2: 0%
Hmm. Let me think about how these genes might interact. Since a transcription factor is
upstream, it probably controls the expression of another gene. If a gene is a transcription

factor, knocking it out would prevent the downstream gene from being expressed, leading to
a loss of function. Looking at the single mutants first:

* g2 has 0% resistance. That’s the lowest, so losing G2 completely breaks resistance.
e gl is 75%, so it’s still somewhat resistant.
e 23 is 50%, so halfway.
Now, the double mutants:
e glg2is 0%: same as g2 alone.
* 9293 is also 0%: same as g2.
e glg3is 10%: which is worse than either gl (75%) or g3 (50%).

Wait, so when you knock out G1 and G3 together, the resistance drops further to 10%, which
is worse than either single knockout. That suggests that G1 and G3 might be acting in parallel
pathways? Because their combined loss is worse than either alone.

But then looking at g2g3 and glg2, both are 0%, same as g2. So maybe G2 is
epistatic over the others? Because when you have g2, it’s already 0%, so adding another
mutation doesn’t make it worse. That might mean that G2 is the main gene, and the others
are downstream or in a different pathway that doesn’t matter once G2 is gone.

Alternatively, maybe G2 is the transcription factor, and it’s required for the expres-
sion of G1 and/or G3. If G2 is a transcription factor, then knocking it out would prevent
expression of the downstream genes. So if G2 is upstream of G1 and G3, then in the g2
mutant, both G1 and G3 wouldn’t be expressed either. But then why does the gl mutant still
have 75% resistance? That seems contradictory.

Wait, maybe G2 is not the transcription factor here. Let me think again.

Alternatively, maybe G3 is the transcription factor. Let’s see. If G3 is a transcription factor
that controls G1 and/or G2. Then, in the g3 mutant, both G1 and G2 might be downregulated.
But then the g3 single mutant has 50% resistance. The g2 mutant has 0

Alternatively, G1 might be a transcription factor. Let’s consider that. If G1 is a transcription
factor, and it’s controlling G2 or G3.

Looking at the double mutants:

glg3 has 10%. Since G1 alone is 75%, and G3 alone is 50%, combining them gives 10%,
which is a significant drop. So maybe G1 and G3 are in parallel pathways, and their combined
loss is more severe. [...]

Alternatively, maybe G2 is a transcription factor that’s needed to activate G1 and G3. Let me
think through that. If G2 is a transcription factor, then in the g2 mutant, neither G1 nor G3
would be expressed. But then why does the g1 mutant still have 75% resistance? If G1 is not
expressed in the g2 mutant, but the g1 mutant (which still has G2) has 75%, that suggests that
G1 can function even if G2 is present. Wait, this is getting confusing.

Alternatively, perhaps G3 is a transcription factor that activates G2. Let’s see: If
G3 is a transcription factor for G2, then in the g3 mutant, G2 might not be expressed. Then,
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the g3 single would have no G2, so resistance would be 0%, but in reality g3 is 50%, so that
can’t be right.
Hmm. Let’s try another approach. [...]
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B Redundancy Reduction

B.1 Details of Embedding-based Redundancy Measurements

This section provides details of the embedding-based analysis described in Section f.2] used to
demonstrate the redundancy-reducing effect of RPC.

For this analysis, we generated outputs for each sample in the AIME 2024 dataset using both the
full KV baseline and RPC. Generation was stopped after the 4128 decoding step, where the first
compression of RPC is completed, given P = 4096 and R = 32. The generated outputs are separated
into individual sentences, and each sentence is embedded using the all-MiniLM-L6-v2 model with
Sentence Transformers library [36]. The model maps each token sequence to a 384-dimensional
vector.

Pairwise cosine similarities were computed between all sentence embeddings within the same
generated output. Two sentences with cosine similarity above 0.75 were considered semantically
similar. Finally, we defined the redundancy rate as the proportion of sentences that have more than
N semantically similar counterparts within the same output, where N € 1,2, 4.

B.2 Visualized Examples of Token Selection with RPC

In this section, we provide qualitative examples illustrating how RPC selects tokens to be retained in
the KV cache.

In the following examples, token colors indicate how frequently each token is retained across layers:
tokens preserved by a larger proportion of layers appear in warmer colors, following the scale defined
in the color legend below.

Legend:
¢ Black: Unselected or low selection (<40%)
. : Medium selection (40-60%)
. : High selection (60-80%)

* Red: Very high selection (>80%)

Examples [B.T|and [B.2]are sampled from outputs of DeepSeek-R 1-Distill-Qwen-7B [3] and QwQ-
32B [12], respectively, on the AIME 2024 dataset.

While it is natural that recent tokens tend to exhibit higher retention frequencies due to LLMs’
tendency to assign larger attention weights to local tokens, the selection pattern from a semantic
perspective can be broadly categorized into two types:

(1) Information-bearing tokens: Tokens containing critical information that advances the
reasoning process, such as conclusions of intermediate steps.

(2) Transition tokens: Tokens indicating shifts or boundaries between reasoning stages, which,
although not semantically rich on their own, play an important contextual role through the
attention mechanism by aligning and integrating information across reasoning steps.

This qualitative analysis demonstrates that RPC effectively preserves essential reasoning content
while filtering out redundant or outdated derivations, thereby maintaining the continuity and integrity
of the reasoning trajectory.

Example B.1

Problem. Let AABC have circumcenter O and incenter I with TA 1 OI, circumradius
R = 13, and inradius » = 6. Find AB - AC.

DeepSeek-R1-Qwen-7B Output. so I need to find the product AB
times that the circumradius i 13. the the
segment IA is perpendicular to OI, where O is the circumcenter and I is the incenter. Hmm,
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that seems a bit involved, but let me try to break it down step by

me recall some properties and formulas related to triangle centers, circum-
radius, inradius, and maybe some coordinate geometry. Since the problem involves
perpendicularity between IA and OI, maybe coordinate geometry could be a good approach
here. Alternatively, there might be some formula that connects these elements directly. Let
me think.

I know that in any triangle, the distance between the incenter and circumcenter can
be expressed by the formula R where R is the circumradius and r is the
inradius.

Wait, is that correct? Let me verify. Hmm, actually, I think the formula is OI? = R2?
- 2Rr. Yes, that’s right. So OI squared equals R squared minus 2 times R times r. So
substituting the given values, R is 13 and r is 6, so O = 132 - 2#13%6 = 169 - 156 = 13.
Therefore, Ol is sqrt(13). Hmm, but the problem states that IA is perpendicular to OI. Maybe
this can help relate IA and OI? [...]

The inradius r is related to the area and s=(a+
b + ¢)/2. The circumradius R is related to the sides by the formula a = 2R sin A,
and similar for other sides. Also, the distance between O and I is given by OI? =
R? - 2Rr, which we already computed as 13. So OI = sqrt(13). But we also have that
IA is perpendicular to OL. So maybe we can use vectors or coordinate geometry to relate these.

Alternatively, perhaps using the formula for the distance from the incenter to a ver-
tex. The length IA can be expressed in terms of the angles and inradius. Let me recall that in
a triangle, the distance from the incenter to vertex A is IA =\{}sqrt{ (s

a\{}

that correct? Let me see. The formula for the distance from the incenter to
vertex A: yes, in triangle ABC, the distance from I to A is sqrt(r2 + (s - a)?), where s is the
semiperimeter and a is the side BC. Similarly for other vertices. [...]

But since A is a vertex of the triangle on the circumradius of 1 =13,s0x_A%+y_A?
=132=169.
Hmm, this might get complicated with . Maybe there is a better

O is the circumcenter, coordinates can be set such that triangle

is inscribed in a circle of radius 13. Let me perhaps place point A at (13, 0) for

simplicity, so coordinates of A are (13, 0). Then O is at (0, 0). Then points B and C are
somewhere on the circle x2 + y2 = 169. [...]

Expressed as vectors, Ol is (I - O) and IA is (A - I). Since O is the origin, OI is just the
coordinates of I, and IA is (A - I). So their dot productis I (A - 1) = 0.

Therefore, | = A

Therefore A = [[2. Hmm, that’s an equation relating the coordinates of I and A.
Since A is on the circumcircle, [Al=R =13. [...]

Therefore, IA2 = 169 - 13 = 156, so TA = sqrt(156) = 2*sqrt(39). Hmm, seems useful.

IA is sqrt(156). But we also have IA = r / sin(a/2). Since sqrt(156) =
6/ sin(a/2)
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Therefore, sin(a/2) = 6 / sqrt(156) = 6 / (2*sqrt(39)) ) = 3 / sqrt(39) = sqrt(39)/

again:
Wait ¢ divided by sqrt(156) is equal to 6 divided by (sqrt(4*39)) = 6/(2*sqrt(39)) =
3/sqrt(39). 3/sqrt(39) = 3*sqrt(39)/39 = sqrt(39)/13. So
sin(a/2) = sqrt(39)/13.

Therefore, sin(a/2) = sqrt(39)/13. Let me note that sqrt(39)/13 is equal to sqrt(39)/13, which
is approximately 6.245/13 ~ 0.48, which is plausible.

Then, cos(a/2) would be sqrt(1 - (39/169)) = sqrt(130/169) = sqrt(130)/13.
Therefore, cos(a/2) = sqrt(130)/13.
Then a =2 sin(a/2) cos(a/2) = 2*(sqrt(39)/13)*(sqrt(130)/13) = 2*sqrt(39*130)/( 1 3?).

Compute 39%130: 39*100 = 3900, 39%30 = 1170, so total 3900 + 1170 = 5070. So
sqrt(5070

5070 factors: 5070 = 10*507 = 10*3*13*13. Wait, 507 divided by 13 is 39,
s0 507 = 13*%39 = 13*3*13.

Wait, 39 is 3*13, so 5070 = 10*3*13*13. Therefore sqrt(5070) = sqrt(10¥3*132) )
= 13*sqrt(30). Because 10*3 = 30. So sqrt(5070) = 13*sqrt(30

Therefore, sin 2*(13*sqrt(30))/(157) ) = (2 sqrt(30))/13.
Thus sin « = ( 30))/13.
Hmm, so angle A has sine equal to 2V/30/] 3.

Therefore, the found the Sines:
a= =2R sin o = 2*13*(2\/30/13) =4 /30. [...]

Example B.2

2 2
Problem. Let A, B, C, and D be points on the hyperbola ;—0 — g—4 = 1 such that ABCD is

a rhombus whose diagonals intersect at the origin. Find the greatest real number that is less
than BD? for all such rhombi.

QwQ-32B Output. <rhink> Okay, so I have this problem here about a hyperb

rhombus inscribed . The hyperbola equation as x%/20 - y?/24 = 1. The
rhombus ABCD has its diagonals intersecting at the origin, and I need to greatest real
number that is less than such rhombi. Hmm, okay. let me break this down
[...]
let me points A and C as ( ) and (-x1,
-y1), and points B and D as (x2, y2) and (-x2, -y2). Since all four points lie on the bola,
satisfy 2/20 - y?2/24 = 1. So for points A and C, (x1)%/20 - (y1)¥/24 =
1, and similarly for points B and D, (x2)%/22 - (y2)?/24 = 1. [...]
Let me consider hyperbola. The hyperbola is x2/20 - y?/24
=1. For hyperbola parametrization, we can use . Let me recall that a
standard hyperb 2/b? =1 can be parametrized as 0, b tan?)), or using hyperbola
parameters. Alternatively coordinates:
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20) sec = sqrt(24 That
perhaps using coordinates in terms S A

since the hyperbola is symmetric, maybe we can set point A as (X, y)

and point B as (u, v), such that x%/20 - y*/24 =1 and 17/20 - v¥/2/ =1. the condition is
Xu+ 1x2 + yly2 = would be the squared distance between
B u, -v), BD is the distance between (u, v) and (-u, -v), which is

sqrt[(2u)*2 + (2v)*2] so BD squared is (2u)2 + (2v)"2 =4(u2 + v2). [...]
use Lagrange multipliers to minimize u? + v2 subject to the constraints:

1. u2/20 - v¥/241 =1,
2.xu+yv=0,

and also x%/20 - y?/ 1.

But with multiple variables. Let see if I can express
variables in terms

Let me suppose ) and OB is (u,v). Since OA and OB are perpendic-
ular, u= for some scalar k. Wait, because i1 (x,y) and (u,v) are perpendicular,
then (u,v) is a scalar multiple of (-y, x) or (y, -x). Let me check:

If OA (x,y), then a perpendicular vector would be (-y, x) or (y, -x). So. (u,v)
must be a scalar multiple of that suppose (u,v) = A*(-y. x). Then, substituting into
the hyperbola equation for B:

u/20 - v¥24 = (N2 y?)/20 ) - (A2 x2)/24 ) = X2 (y%/20 - x3/24 ) 1.

Wait, but hyperbola equation for point A is x%20 - 0
-1). Hmm, so let me rearrange that.

Wait, let me see:
Given ) = A*(-y, x). Then, substituting into the hyperbola equation:

U220 - v2/24 = (A2 y2)/20 - (N2 x2)/24 = X2 ( y2/20 - x2/24 ) 1.

But from point A’s equation, x/20 - y% , which can be rearranged to y%/24 =
(x%/20 Therefore 20 -1). Let me that into the expression above.

So, y2/20 - x2/24 = (24*(x%20 -1))/20 - x?/24.
Wait compute step by step.
First, compute y2/20:
y2/20 = [24*(x?%/20 -1)] /20 = 24/(20)*(x%/20 -1) = (24/20)*(x%20 -1
‘Wait, perhaps this is getting too convoluted. Let me think differently.
Let me denote S = u? + v2. Since BD squared
given that (u,v) lies on the hyperbola and (u,v) is perpendicular to (x,y)

also on the hyperbola.

Alternatively, (u,v) is along the direction to (x,y), let parametrise
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(u,v) as a scalar multiple of (- write u
the hyperbola

u/20 - v2/24 = (\2 y2)/20 - (A2 x2)/24 = N2 ( y2/20 - x2/24 )

point A’s /20 - y?/24 =1, so rearranged
-1,s0y2=2 0 -1). Let me substitute expression

First, compute y2/20 - x3/24:
y2/20 = [24*(x%/20 -1)] /20 = (24/20)*(x%/20 -1) = (6/5)*(x?/20 - 1)
x?/ x%/24.
Therefore, y2/20 - 6/5)(x2/20 -1) - x2/2
Let me compute this term:
First, (6/5)(x420 -1) = (6x2)/(100) - 6/5 = (3x2)/50 - 6/
2/24:

(3xY/50 - 6/5) - x2/24 = (3x2/50 - x2/24) -6/° [...]

uting into

4 = x%
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C Extra Experimental Results

C.1 Output Length Statistics across Evaluation Datasets

Table [3] summarizes the output length statistics of DeepSeek-R1-Distill-Qwen-7B [3] and QwQ-
32B [12], measured under the full KV cache setting. For both models, AIME 2024 [13] and
LiveCodeBench [25] exhibit long reasoning outputs (over 10K tokens on average), whereas IFEval
produces much shorter outputs. Accordingly, compression in RPC is triggered multiple times for
long-context benchmarks but rarely for short ones, which justifies using a consistent P value (1024
or 4096) across all datasets to prevent excessive KV cache growth.

Table 3: Output length distribution under full KV cache setting.

Dataset DeepSeek-R1-Distill-Qwen-7B QwQ-32B

Mean Min Max Std Mean Min Max Std
AIME 2024 13668.6 2413 32768  9356.4 13834.6 2747 32768  7365.5
LiveCodeBench 11889.1 809 32768  7066.2 13454.6 491 32768  9692.1
IFEval 1778.4 190 32768  5073.3 1336.9 144 32768 1844.3

C.2 Granularity of Attention Score Aggregation for Token Selection

To examine how the granularity of attention score aggregation for token selection impacts accuracy,
we compare three aggregation schemes: layer-wise, group-wise (key—value group), and head-wise
(no aggregation). In our approach, attention scores are aggregated at the layer level, meaning that
saliency is averaged across all heads within each layer.

Table [] presents results for DeepSeek-R1-Distill-Qwen-7B on AIME 2024 dataset under different
aggregation granularities. The results show that layer-wise aggregation consistently yields the highest
accuracy, indicating that averaging attention scores across heads helps stabilize the estimation of
token importance and preserve overall performance after compression.

Table 4: AIME 2024 (pass@ 1) results for DeepSeek-R1-Distill-Qwen-7B with different attention
score aggregation granularities.

P Layer Aggregation = Group Aggregation Head (No Aggregation)
4096 52.9 50.8 49.6
1024 50.4 50.4 47.5

Layer-wise aggregation offers a coarser yet more reliable estimation of token saliency than head-level
aggregation, which often suffers from high variance and instability across heads. This observation is
consistent with previous work. TOVA [L1] reported that layer-level token selection outperformed
head-level selection in terms of perplexity.

Moreover, in models using grouped-query attention (GQA) [37]], multiple attention heads share a
single KV head. Performing token selection separately for each head in such architectures would
require maintaining distinct KV caches per head, introducing significant memory overhead and
defeating the purpose of compression. Therefore, even aside from accuracy, head-level selection is
impractical for GQA-based models.

Overall, the layer-level token selection strategy adopted in RPC offers a practical and stable solution
for compressing the KV cache of reasoning LLMs.

C.3 Efficiency Evaluation

We evaluate the efficiency gains of RPC by comparing decoding throughput and peak memory
usage against the inference with full KV cache. Specifically, we report results for the default 4 x
compression setting of RPC with two compression intervals, P = 1024 and P = 4096. Throughput
is measured in tokens per second, and peak memory reflects the maximum GPU memory consumption
during generation.

23



Measurements were conducted using two reasoning models: DeepSeek-R1-Distill-Qwen-7B and
QwQ-32B. For DeepSeek-R1-Distill-Qwen-7B, evaluations were performed on a single NVIDIA
H100 SXM GPU, while QwQ-32B was tested using 4 NVIDIA H100 SXM GPUs in parallel. We fix
the input length to 128 tokens and vary the generation length across 4096, 8192, 16384, and 32768
tokens. Batch size is varied across 8, 16, and 32 to assess scalability under different workloads.

Results for DeepSeek-R1-Distill-Qwen-7B are shown in Table[5] and the corresponding results for
QwQ-32B are reported in Table 6]

Table 5: DeepSeek-R1-Distill-Qwen-7B’s throughput and peak memory usage by batch size and
generation length.

Metric Batch Size 4096 8192 16384 32768

Full KV Cache

8 401.50 368.72 330.41 256.92

Throughput (tokens/s) 16 669.53 653.04 504.50 342.88
32 1328.58 1031.51 671.83 OOM

8 19.20 22.95 30.47 45.50

Peak Memory (GB) 16 23.09 30.60 45.63 75.70
32 30.86 45.89 75.96 OOM

RPC (P = 1024)

8 448.19 428.31 407.00 385.00

Throughput (tokens/s) 16 848.75 794.62 751.69 650.20
32 1504.40 1499.80 1288.51 977.11

8 17.08 18.02 20.27 24.75

Peak Memory (GB) 16 18.86 20.74 25.15 34.20
32 22.40 26.16 35.00 53.08

RPC (P = 4096)

8 406.43 420.62 385.75 362.75

Throughput (tokens/s) 16 753.11 708.95 671.38 575.21
32 1318.33 1247.44 1064.05 883.43

8 19.20 20.14 22.02 25.71

Peak Memory (GB) 16 23.09 24.96 28.72 36.24
32 30.86 34.62 42.13 57.16

The results show that RPC consistently improves decoding efficiency over full KV cache inference
across various batch sizes and generation lengths. As the batch size increases, both the throughput
gains and peak memory reductions become more pronounced. This is because larger batches amplify
the memory bottleneck imposed by the growing KV cache, allowing RPC’s compression to better
utilize available GPU compute resources. Notably, full KV cache inference results in out-of-memory
(OOM) errors for DeepSeek-R1-Distill-Qwen-7B when the batch size is 32 and the generation length
reaches 32768, and for QwQ-32B when the batch size is 16 at 32768 tokens or 32 at 16384 tokens or
longer. In contrast, RPC enables successful generation under all of these settings.

When comparing compression intervals, P = 1024 achieves slightly higher throughput and lower
peak memory than P = 4096 across both models. While P = 1024 offers stronger compression, it
may come at a modest accuracy cost, as shown in Section@ Therefore, P = 1024 and P = 4096
can be considered complementary settings: the former prioritizes efficiency, and the latter provides a
more balanced trade-off between performance and accuracy.
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Table 6: QwQ-32B’s throughput and peak memory usage by batch size and generation length.

Metric Batch Size 4096 8192 16384 32768
Full KV Cache

8 128.79 109.80 93.28 64.85
Throughput (tokens/s) 16 213.75 173.99 117.51 OOM
32 351.34 228.59 OOM OOM
8 83.40 100.58 134.94 203.66
Peak Memory (GB) 16 101.14 135.50 204.22 OOM
32 136.61 205.33 OOM OOM

RPC (P = 1024)
8 135.79 131.97 124.45 111.84
Throughput (tokens/s) 16 238.76 229.22 176.73 178.06
32 411.42 392.04 328.56 246.81
8 73.75 78.42 89.19 111.84
Peak Memory (GB) 16 81.81 91.24 112.77 155.81
32 97.95 116.70 159.78 245.94

RPC (P = 4096)
8 126.59 113.32 115.75 102.57
Throughput (tokens/s) 16 214.27 207.28 187.97 147.26
32 345.02 314.67 279.34 208.48
8 83.40 87.70 96.28 114.53
Peak Memory (GB) 16 101.14 109.73 126.90 163.40
32 136.61 153.79 188.14 261.13

C.4 Effect of Aggressive Compression

To assess the robustness of RPC under extreme compression, we evaluate its performance with a
target compression ratio of 8 x. This setting represents a highly aggressive compression scenario
where only one-eighth of the generated tokens’ KV entries are retained over time. Table[/|shows the
resulting performance across the three benchmark datasets.

Table 7: Accuracy (%) of RPC 8x compared to RPC 4x and full KV cache.

| DeepSeek-R1-Distill-Qwen-7B | QwQ-32B
Method AIME 2024 LiveCodeBench IFEval | AIME 2024 LiveCodeBench IFEval
(pass@1) (pass@1) (pass@1) | (pass@]1) (pass@1) (pass@1)
Full KV Cache 55.5 37.6 55.1 79.5 63.4 83.9
RPC 4x Best 52.9 35.9 57.3 78.3 62.2 82.6
RPC 8x (P = 4096) 47.5 32.8 55.1 72.1 57.2 84.3
RPC 8x (P =1024) 37.5 27.2 58.4 72.1 57.4 82.8

Both models exhibit a notable performance drop on AIME 2024 and LiveCodeBench under 8x
compression, compared to the default 4 x setting, indicating the difficulty of preserving reasoning
fidelity under extreme compression. Nevertheless, the stronger reasoning model QwQ-32B demon-
strates greater robustness, maintaining pass@1 scores close to the results of RPC 4x across both
benchmarks. In contrast, on IFEval, a benchmark characterized by lower reasoning difficulty, the
performance remains stable or even improves slightly for both models, suggesting that light-weight
instruction-following tasks are less sensitive to aggressive KV cache compression.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Section[.3|discusses modest accuracy decline when RPC is applied.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results that require formal proofs. The
paper focuses on the empirical evaluations of the proposed method.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The model, dataset and information on generation settings are provided in
Section d.11

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides comprehensive details on the experimental settings, in-
cluding models used, datasets and evaluation metrics. The steps to reproduce the results are
clear.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section[.T] provides dataset and hyperparameter informations. Section[.5]
provides how the parameters are chosen.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not report error bars and information about the statistical
significane of the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information about the compute resources used
for the experiments, mentioning the use of NVIDIA H100 SXM GPUs.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The paper targets to improve inference efficiency of reasoning LLMs and does
not raise ethical concerns; no privacy-sensitive data is used.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper briefly discusses benefits in LLM inference efficiency, while ac-
knowledging trade-offs in accuracy due to aggressive compression.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose high risks for misuse that would require specific
safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits existing assets, such as datasets and models, and
follows appropriate licenses and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets including datasets or pretrained models.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM was only used for writing assistance, editing, and formatting
purposes. It was not involved in the core methodology, scientific rigorousness, or originality
of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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