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Abstract

Hamiltonian neural networks (HNNs) inherit physical inductive biases but remain con-
strained by sequential computation which limits their scalability. We introduce an alge-
braic framework that embeds the Hamiltonian representation learned by the network into
a set of polynomial generators within a Poisson algebra, yielding a Lie group of flows
with inherently associative composition. This structural property directly enables paral-
lel scan (prefix-sum) algorithms, thereby reducing computational complexity from O(M)
to O(logM) while preserving symplectic consistency. Empirical results confirm signifi-
cant runtime and memory improvements over sequential baselines, with the scaling benefit
clearly observable over thousands of steps. Our approach highlights how Hamiltonian learn-
ing can be accelerated through parallel scan, supported by a Poisson algebraic structure.
Consequently, this establishes a scalable foundation for extended timescale simulation.

Keywords: Hamiltonian systems, Parallel scan, Acceleration, Lie group, Poisson algebra

1. Introduction

Hamiltonian dynamics offer a universal mathematical framework for describing the evolution
of physical systems in phase space, whose symplectic structure ensures that trajectories con-
serve invariants such as energy and volume (Arnold, 1989). Based on this principle, HNNs
were proposed as data-driven models that learn Hamiltonian function directly (Greydanus
et al., 2019). Unlike black-box dynamics models, HNNs inherit inductive biases aligned with
the underlying physics, which makes them appealing for AI4Science tasks where extrapola-
tion beyond training data is crucial. However, a critical bottleneck remains: HNNs rely on
classical ODE-based numerical integrators that advance solutions through sequential time
stepping (Chen et al., 2018). Predicting a horizon of M steps entails sequential dependence,
which fixes the computational cost to grow linearly with M . As a result, in domains such
as molecular dynamics (Vander Meersche, 2024) and astronomy simulations (Kim et al.,
2014), the cumulative cost of such sequential scaling quickly becomes prohibitive.

In this work, we address this limitation by applying the parallel scan algorithm (Hillis
and Steele, 1986; Blelloch, 1990) to Hamiltonian generation problems, thus enabling highly
efficient parallel computation across horizons ofM steps within a principled algebraic frame-
work. By decomposing the Hamiltonian into polynomial generators and embedding them
within a Poisson algebra, we construct a finite-dimensional Lie group of discretized flows
whose composition is inherently associative. From this algebraic perspective, long tra-
jectories can be viewed as successive compositions of short-time dynamics, which in our
formulation are realized as explicitly associative operations. This associativity naturally
makes it possible to apply parallel scan, reducing the computational depth to logarithmic
while still preserving the same total work. Moreover, under the governing dynamical laws,
each step remains a valid symplectomorphism (Marsden and Ratiu, 1999).

© 2025 .



Extended Abstract Track

Figure 1: Runtime Comparison. The graph shows the runtime spent for training (left) and inference
(right) time. As seen in the graph, our model shows O(log(M)) time complexity to timestep, while others
show O(M) time complexity.

Empirical evidence shown in Figure 1 highlights the pronounced runtime gap. While
classical numerical integrators exhibitO(M) scaling with respect to the number of timesteps,
our proposed method follows O(logM) scaling. This divergence is already evident in few
thousand timestep scales, substantiates the computational advantages of our framework.

2. Methodology

We construct Hamiltonian generators as polynomial expressions, thereby facilitating a sys-
tematic linear expansion over a finite polynomial basis that approximates the Hamiltonian
function and its induced flow. To further enhance expressiveness, we organize the con-
struction within a directed acyclic graph (DAG), which allows flexible combinations of
higher-order features. Building on this foundation, we lift the polynomial generators into
a Neural–Poisson Lie Group Walk. Its inherent associativity directly enables the use of
parallel scan algorithms for efficient computation of Hamiltonian flows at large scale.

2.1. Polynomization of Hamiltonian Generators and Directed Acyclic Graph

We first delineate the Hamiltonian Generator hypothesis space as H := Polyr ∋ gθ ≈ HTrue,
that all subsequent constructions rest on a clear and consistent foundation.

Given an arbitrary phase space with coordinates z = (q1, . . . , qn, p1, . . . , pn) ∈ R2n, for
the ith unit vector ei, let the polynomial multi-indices α,β ∈ Nn and coefficient neural
network {cα,β := cα,β(z, t; θ)} ⊂ Cθ, the Hamiltonian dynamics can be explicitly defined as

ż = J∇zgθ(z) =

q̇i = ∂gθ
∂pi

=
∑
α,β

cα,ββiq
αpβ−ei , ṗi = −∂gθ

∂qi
= −

∑
α,β

cα,βαiq
α−eipβ

T

By embedding our polynomial model space P θ
≤ into Poisson algebra, which naturally sup-

ports closed operations like pointwise product f ⋆θ g := π≤r(fg) and the cannonical Poisson
bracket {f, g}θ := π≤r

(
{f, g}

)
, one can get more expressive and powerful representation

of space
(
P θ
≤r, ⋆θ, {·, ·}θ

)
named Neural Poisson Algebra1. The closure of two operations

guarantees that the result still remains in P θ
≤r with finite application of operations.

1. Note the projection π≤r : C
∞(M) → P≤r simply discards every monomial whose total degree exceeds r.
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With this algebra, we organize the procedure to create a directed acyclic graph (DAG)
of Hamiltonian generators, that collects all possible combinations of Neural Poisson Algebra
while assuring the strict closure in P θ

≤r. From the base set G(0) = P θ
≤, constructing each

depth-k layer with applying exactly two operations (⋆θ, {·, ·}θ) to every ordered pair in the
previous layer, yielding G(k). The procedure can be written with the formal definition

G(k) =
{
{π≤r(f ⋆θ g)}

⋃
{π≤r({f, g}θ)} / ∼

∣∣∣ ∀f, g ∈ G(k−1)
}
, G(0) = P θ

≤r,

following three properties below for elimination due to algebraic equivalence and cutoff r.

f ⋆θ g ∼ g ⋆θ f, {f, g}θ ∼ −{g, f}θ, {f, {g, h}θ}θ + {g, {h, f}θ}θ + {h, {f, g}θ}θ ∼ 0.

With unions of G(k), we obtain G(≤K) :=
⋃K

k=0 G(k), naming the DAG of depth K.

2.2. Neural–Poisson Lie Group Walk and Parallel Scanning

To systematically leverage our DAG-indexed structure G(≤K) as Hamiltonian generators
to approximate arbitrary Hamiltonian dynamics, we introduce the truncated Lie operator
Lg,≤rf := π≤r

{
f, g

}
. Building on this, we can formally define the resulting family of DAG-

indexed Lie transforms, a genuine Lie group , indexed by elements of the G(≤K) as

Tr,K :=
{
Φϵ,g := exp

(
ϵLg,≤r

)
=

r∑
j=0

ϵj

j!L
j
g,≤r

∣∣∣ g ∈ G(≤K)
}
.

From DAG G(≤K), we construct an ordered sequence of Hamiltonian generators g =[
g1, . . . , gm, . . . , gM

]
with |G(≤K)|/M random selections for each generator gm. Each gm

corresponds to small-time symplectomorphism Φϵ,gm representing a tiny update that in-
crementally captures the Hamiltonian evolution over finite time horizons. We can inter-
pret the ordered application of each small-time flow Φϵ,gm∈g as a discrete walk on Tr,K as
Wg : {0, 1, . . . ,M} → Tr,K with Wg(0) := Id,Wg(m) := Φϵ,gm ◦Wg(m−1) for 1 ≤ m ≤ M .

Let z0 = (q0, p0) be the initial phase–space state and fix a finite, ordered dictionary g.
The discrete time-evolution is then realized by successively applying the exact time ϵ flows
generated by each gj and its corresponding phase-space state zj as follows:

z0 z1 z2 . . . zM−1 zM
Φϵ,g1 Φϵ,g2 Φϵ,gM

Wg(M)

zm = Φϵ,gmzm−1,

zM =
(
Φϵ,gM ◦ · · · ◦ Φϵ,g1

)
z0,

zM = Wg(M)z0 = (qM , pM ).

Let Um := Φϵ,gm denote the m-th elementary Lie group update in the walk Wg(m).
Then, a parallel prefix-scan Blelloch (1990) seeks the inclusive prefixes within O(logM)
parallel depth, with utilizing the assosiativity property on the operator.

Wg(m) := Um ◦ Um−1 ◦ · · · ◦ U1, m = 1, . . . ,M,

The Lie group composition is associative, so we can evaluate all walks simultaneously by
constructing a balanced binary tree of temporary composites as follows:

V (0)
m := Um, V (1)

m := U2m ◦ U2m−1, V (ℓ)
m := V

(ℓ−1)
2m ◦ V (ℓ−1)

2m−1 , ℓ = 2, . . . , ⌈log2M⌉,
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Recursively evaluating these composites up to ℓ = ⌈log2M⌉ yields every prefix in parallel
while preserving all symplectic invariants. With these computational acceleration tools,
we now turn to the training methodology supporting proposed model. With given initial
conditions ẑ0 ∼ Pinit and corresponding observed trajectory data ẑt ∼ Pt>0, the objective
is to globally infer the generator gθ. Formally, our training objective can be expressed as:

L(θ) = min
gθ∈G

Eẑ0,t

[
Eẑt∥zt(gθ)− ẑt∥2

∣∣ẑ0] = min
θ

Eẑ0,t

[
Eẑt∥Wg(⌈T/t⌉)ẑ0 − ẑt∥2

∣∣ẑ0]
The model trains an optimal hamiltonian generator gθ ∈ G, not on comparing hamil-

tonians but by an objective function that minimizes the expected squared error between
predicted trajectory zt(gθ) = Wg([T/t])ẑ0 and true trajectory ẑt.

3. Experiments

We consider the harmonic oscillator system with H(q, p) = p2

2m + 1
2mω2q2, comparing with

HNN model applying Euler menthod, Störmer–Verlet integrator (Verlet, 1967), Forest–Ruth
4th-order integrator (Forest and Ruth, 1990), and Gauss–Legendre 4th-order Runge–Kutta
integrator (Sanz-Serna, 1988). Table 1 shows the overall result of our experiments.

Integrator / Method Train / Infer GPU Mem ADE / FDE ↓ ∆E ↓ ∆ω ↓

(A) Hamiltonian Neural Networks + Classical (Symplectic) Integrators

Euler 86.0 / 159.8 12.6 3.1×10−3/3.3×10−3 2.0×10−1 4.8×10−1

Störmer–Verlet 87.4 / 179.8 13.6 3.1×10−3/3.3×10−3 2.0×10−3 4.8×10−2

Forest–Ruth 4th 93.8 / 184.8 14.2 7.4×10−4/8.9×10−4 4.0×10−4 2.0×10−2

Gauss–Legendre 4th 145.7 / 199.7 24.3 6.1×10−4/7.1×10−4 1.3×10−4 6.3×10−3

(B) Hamiltonian Neural Networks + Poisson-Algebraic Parallel Scan

Ours 1.5 / 1.8 4.7 2.9×10−5/3.8×10−5 8.9×10−4 1.3×10−2

Table 1: Quantitative Comparison of Computational Efficiency, Accuracy, and Physical Consistency

All models were trained with training step M = 2000 and inference step M = 5000.
As shown in Figure 1, unlike conventional integrators whose runtime grows linearly with
time steps, our framework maintains logarithmic time growth while preserving physical
consistency, supported by comparable ∆E and ∆ω.

4. Conclusion

We introduced a Hamiltonian construction grounded in Lie group and Poisson algebra
structures. This design endows modern neural Hamiltonian models with associative flow
composition, which enables parallel scan algorithms. The result is a shift from sequential
long-horizon simulation to logarithmic-depth computation. Our experiments confirm that
the benefits are already evident at practical horizons, with reduced runtime and memory
overhead while maintaining strict symplectic consistency. These findings show that algebraic
organization of learned dynamics offers a scalable path for Hamiltonian learning. Looking
forward, the framework can be extended to large-scale physical simulations, where the cost
of sequential integration has long been a major bottleneck, which in turn highlights its
potential as a general tool for accelerating scientific discovery.
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Appendix A. Mathematical Background

This appendix is for outlining the algebraic framework that underlies our approach. By
adopting the Poisson algebra perspective on (R2n, ω), we describe dynamics in a form where
Hamiltonians act as generators through the bracket structure. Projecting these generators
into a finite polynomial space provides a controlled approximation that retains essential
algebraic relations while remaining tractable for analysis. The induced flows continue with
respecting symplectic geometry, that is, it ensures fundamental invariants are preserved
despite truncation. These properties together lead to the construction of the Neural–Poisson
Lie Group Walk, with algebraic closure and symplecticity for robustness and associativity
for combining components to enable reliable parallel computation of local dynamics. In this
way, the abstract algebraic setting connects directly to our algorithmic design, highlighting
both its mathematical grounding and its role in parallel scanning.

A.1. Hamiltonian and Poisson Algebra

Poisson Bracket In Hamiltonian mechanics, the phase space observables naturally form
a Poisson algebra. In this perspective, the Hamiltonian function is distinguished as the
generator of dynamics. So one can interpret the Hamiltonian as a distinguished element of
the Poisson algebra, and determine the temporal evolution of any observable via the bracket
operation. Let (R2n, ω) be a 2n-dimensional symplectic space with canonical coordinates

z := (q,p) = (q1, . . . , qn, p1, . . . , pn),

and standard Darboux form ω =
∑n

i=1 dqi ∧ dpi. For a sufficiently smooth function g ∈
C∞(R2n) (a Hamiltonian generator), the Hamiltonian vector field Xg is defined by ιXgω =
dg, which in canonical coordinates reads

Xg =

n∑
i=1

∂g

∂pi
∂qi −

∂g

∂qi
∂pi .

The associated canonical Poisson bracket on R2n is

{f, g} :=
n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
= ⟨∇zf, J ∇zg⟩, J =

[
0 In

−In 0

]
.

In particular, for the coordinate map z one has {z, g} = J∇zg, so the Hamiltonian flow
generated by g satisfies ż = {z, g}.

Hamiltonian neural networks (HNNs) approximate an unknown scalar Hamiltonian
Htrue : R2n → R by a neural model gθ : R2n → R. The learned Hamiltonian generator
gθ induces the Hamiltonian dynamics via the Poisson structure:

ż = {z, gθ} = J∇zgθ(z) ≈ J∇zHtrue(z) = {z,Htrue}.

Thus, the bracket {·, ·} provides the map from a candidate Hamiltonian to its induced vector
field, and learning gθ means learning a generator whose Poisson-induced flow matches the
observed dynamics, approximating the original Hamiltonian.

7



Extended Abstract Track
Projection and Truncation Since g ∈ C∞(R2n) is placed in the infinite dimensional
space, the need for projecting and truncating the function into a finite-dimensional space
arises. Let the phase space variable z = (q1, . . . , qn, p1, . . . , pn) ∈ R2n and use multi-indices
α,β ∈ Nn with

qα :=
n∏

i=1

qαi
i , pβ :=

n∏
i=1

pβi
i , deg(qαpβ) := |α|+ |β|.

For a fixed cutoff r ∈ N, define the finite-dimensional polynomial space

P≤r := span
{
qαpβ : |α|+ |β| ≤ r

}
.

The degree-r projection π≤r : C
∞(M) → P≤r acts as

π≤r

∑
α,β

cα,β qαpβ

 :=
∑

|α|+|β|≤r

cα,β qαpβ.

We then define truncated algebraic operations on P≤r by post-composition with π≤r:

f ⋆θ g := π≤r(fg), {f, g}θ := π≤r({f, g}), f, g ∈ P≤r.

By construction, P≤r is closed under both ⋆θ and {·, ·}θ.
On this truncated space, we introduce neural coefficients {ck := ck(z, t; θ)} ⊂ Cθ to

parameterize a degree-r Hamiltonian:

P θ
≤r := spanCθ

{
qαpβ : |α|+ |β| ≤ r

}
, basis size

(
2n+ r

r

)
.

The truncation fixes the polynomial model class, while the neural coefficients make it data-
dependent.

Parameterization and Hamiltonian Vector Field We parameterize gθ ∈ P θ
≤r as

gθ(z, t) =
∑

|α|+|β|≤r

cα,β(t; θ) q
αpβ,

where the coefficients cα,β are neural network outputs depending on t (and optionally other
inputs). Since the z-dependence appears only through monomials qαpβ, spatial derivatives
act exactly as in the classical polynomial case. The induced Hamiltonian dynamics (q̇, ṗ) =
J∇zgθ read, for i = 1, . . . , n,

q̇i =
∂gθ
∂pi

=
∑
α,β

cα,β(t; θ)βi q
αpβ−ei , ṗi = −∂gθ

∂qi
= −

∑
α,β

cα,β(t; θ)αi q
α−eipβ.
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A.2. Sympleticity in Neural–Poisson Lie Group Walk

To compare results of created with our structure fairly with other Hamiltonian Neural
Network model, our model must keep simplecticity over all Poisson-induced flow, which
provides physical consistency for the Hamiltonian evolution. For any ordered dictionary g,
let Tr,K be the inclusive prefixes of the Neural–Poisson Lie Group Walk, which preserves
the following three distinctive symplectic properties:

W∗
gω = ω︸ ︷︷ ︸

structure

, H(Wgz) = H(z)︸ ︷︷ ︸
energy

, detDWg = 1︸ ︷︷ ︸
volume

, ∀m ≤ M, z ∈ M.

The discrete trajectory zm = Wg(m)z0 preserves the symplectic form, the Liouville measure
µω = ω∧n/n!, and the energy exactly at every step.

This equation implies that physical consistencies are preserved in the Neural–Poisson
integrator, such as the energies or the overall volume at the phase-space state for the whole
Hamiltonian evolution done by Neural–Poisson Lie Group Walk.

Associativity and Lie Group The weightly point of our structure is associativity for
parallel scan. Let X(M) denote the Lie algebra of smooth vector fields on the symplectic
manifold with standard Lie bracket.

tr,K := span
{
Lg,≤r

∣∣∣ g ∈ G(≤K)
}
⊂ X(M).

By construction, tr,K is finite linear span due to cutoff r and k, and thus finite dimensional.
From Poisson-Jacobi identity, and from the fact that G(≤K) is closed under the truncated
Poisson bracket, the closure relation [Lg1,≤r, Lg2,≤r] = L{g1,g2},≤r ∈ tr,K . Thus tr,K is a Lie
subalgebra of X(M). This is the keypoint for associativity since exp(tr,K) is an embedded
Lie subgroup by the standard Lie theory (Hilgert and Neeb, 2012), and it’s sufficient to
show that

Tr,K :=
{
Φϵ,g := exp

(
ϵLg,≤r

)
=

r∑
j=0

ϵj

j!L
j
g,≤r

∣∣∣ g ∈ G(≤K)
}

is the Lie subgroup, and since the Lie subgroup inherits the original Lie group’s associativity
property for the combining operator ◦, follows as

(Lie Group Associativity):
(
Φϵ,gm ◦ Φϵ,gm−1

)
◦ Φϵ,gm−2 = Φϵ,gm ◦

(
Φϵ,gm−1 ◦ Φϵ,gm−2

)
.

Note that we confine the hypothesis space H to finite-degree polynomials, forcing all Hamil-
tonian generators and their combinations to remain closed in a finite-dimensional algebra.

This Tr,K ’s associativity property allows to rearrange the order of operations arbitrarily
while preserving all symplectic invariants, ensuring that any regrouping of flow maps leaves
the symplecticity unchanged. The parallel scanning algorithm can be used thanks to this
property, since it assures the physical consistency while calculating the compositions in
arbitrary order.
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Appendix B. Examples and Experiments

B.1. DAG examples

The toy example provided underneath with parameter r = 2, n = 2, the directed acyclic
graph (DAG) grows repeatedly by pairing elementary polynomials with Poisson bracket and
product. The canceled representations indicate eliminated terms due to the rules according
to algebraic equivalence; commutativity, antisymmetry and Jacobi Identity.

Example: Polynomial expansions in DAG construction (r = 2, n = 2)

G(0) :
{
c1q1 + c2q2 + c3p1 + c4q1q2 + c5q1p2 + c6q2p1 + c7q2p2 ++c8p1p2 + c9p

2
2, . . .

}
:= P θ

≤r

G(1) :
{
c12q1 ⋆θ q2,(((((c21q2 ⋆θ q1, c23{q2, p1}, c24q22 ⋆θ p2, c34{q21 , q1q2}, . . .

}
, Equivalence in Product

G(2) :
{
(((((((
c123{{q1, q2}, p1}, c231{{q2, p1}, q1}, c312{{p1, q1}, p2}, . . .

}
, Equivalence in Jacobi Identity

Formally, given arbitrary neural vector coefficients ck(z, t; θ), cl(z, t; θ
′) ∈ Rd, the 2nd-

order and 3rd-order coefficients ckl ∈ Rd×d, cklu ∈ Rd×d×d can be defined as:

ckl(z, t; θ, θ
′) = ck(z, t; θ)cl(z, t; θ

′)⊤ − cl(z, t; θ
′)ck(z, t; θ)

⊤,

cklu(z, t; θ, θ
′, θ′′) = ckl(z, t; θ, θ

′)cu(z, t; θ
′′)⊤ − cu(z, t; θ

′′)ckl(z, t; θ, θ
′)⊤.

As can be seen, neural coefficients that begin as simple first- and second-order monomials
are recursively blended through successive products and Poisson brackets into progressively
richer higher-order features, so that by depth k the graph already encodes all mixed inter-
actions of order k + 1 while automatically pruning algebraically redundant terms.

B.2. Parallel Scan

Figure 2: Schematic Diagram of Parallel Scanning.

The accompanying figure demonstrates the
parallel scanning procedure more explicitly.
In the figure, each leaf node depicted in dif-
ferent color represents a discretized Hamil-
tonian generator taken from an ordered
Hamiltonian dictionary. Each generator is
shown only in part for clarity.

In the V
(0)
m , each generator is paired

with its adjacent generator through the de-
fined scanning operator. For instance, the

red and blue blocks in V
(1)
m are stacked to-

gether after the operation. This merging
continues layer by layer, effectively reducing
the computational complexity from O(M)
to O(logM), halving the nodes per one-
layer advance. By running the parallel scanning algorithm, the Hamiltonian flow is com-
puted progressively, with each layer contributing directly to its construction in real time.
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Time step 100 250 500 1000 2000 5000

(A) Training Runtime

Euler 1.7 4.3 8.4 17.6 34.5 86.0
Störmer–Verlet 1.8 4.4 9.0 17.7 34.2 87.4
Forest–Ruth 4th 1.7 4.6 8.6 18.3 36.7 93.8
Gauss–Legendre 4th 2.5 5.8 12.1 24.4 48.8 145.7
Ours (scan) 1.0 1.1 1.0 1.3 1.3 1.8

(B) Inference Runtime

Euler 7.0 19.2 38.1 77.5 159.8 –
Störmer–Verlet 8.2 20.5 44.2 90.1 179.8 –
Forest–Ruth 4th 14.5 23.4 45.8 89.5 184.8 –
Gauss–Legendre 4th 16.4 26.0 47.3 94.7 199.7 –
Ours (scan) – 1.9 1.2 1.5 1.5 –

Table 2: Runtime (seconds) across timesteps for training (top) and inference (bottom).

B.3. Experimental details

We evaluate the computational efficiency of our method on a canonical harmonic oscillator
system with

H(q, p) =
p2

2m
+ 1

2mω2q2

a standard benchmark for testing Hamiltonian dynamics. All models are trained with
M = 5000 steps and evaluated on inference trajectories up to M = 2000 timesteps. For a
fair comparison, we implement classical symplectic integrators as baselines, and report both
training and inference runtime across increasing timesteps from M = 100 to M = 5000.
Table 2 shows the runtime spent for each timestep scale.
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