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ABSTRACT

The growing interest in machine learning problems over graphs with additional
node information such as texts, images, or labels has popularized methods that
require the costly operation of processing the entire graph. Yet, little effort has been
made to the development of fast local methods (i.e. without accessing the entire
graph) that extract useful information from such data. To that end, we propose a
study of local graph clustering using noisy node labels as a proxy for additional
node information. In this setting, nodes receive initial binary labels based on cluster
affiliation: 1 if they belong to the target cluster and 0 otherwise. Subsequently,
a fraction of these labels is flipped. We investigate the benefits of incorporating
noisy labels for local graph clustering. By constructing a weighted graph with such
labels, we study the performance of graph diffusion-based local clustering method
on both the original and the weighted graphs. From a theoretical perspective, we
consider recovering an unknown target cluster with a single seed node in a random
graph with independent noisy node labels. We provide sufficient conditions on
the label noise under which, with high probability, using diffusion in the weighted
graph yields a more accurate recovery of the target cluster. This approach proves
more effective than using the given labels alone or using diffusion in the label-free
original graph. Empirically, we show that reliable node labels can be obtained
with just a few samples from an attributed graph. Moreover, utilizing these labels
via diffusion in the weighted graph leads to significantly better local clustering
performance across several real-world datasets, improving F1 scores by up to 13%.

1 INTRODUCTION

Given a graph and a set of seed nodes from the graph, the task of local graph clustering aims to
identify a small cluster of nodes that contains all or most of the seed nodes, without exploring the
entire graph (Spielman & Teng, 2013; Orecchia & Zhu, 2014). Because of their ability to extract
local structural properties within a graph and scalability to work with massive graphs, local graph
clustering methods are frequently used in applications such as community detection, node ranking,
and node embedding (Weng et al., 2010; Mahoney et al., 2012; Kloumann & Kleinberg, 2014; Perozzi
et al., 2014; Gleich, 2015; Macgregor & Sun, 2021; Choromanski, 2023; Fountoulakis et al., 2023).

Traditionally, the problem of local graph clustering is studied under a simple, homogeneous context
where the only available source of information is the connectivity of nodes, i.e. edges of the graph.
There is often little hope to accurately identify a well-connected ground-truth target cluster which
also has many external connections. Meanwhile, the emergence of heterogeneous data sources which
consist of a graph and any additional node information like texts, images, or ground-truth labels
offers new possibilities for improving existing clustering methods. This additional information can
significantly benefit clustering, especially when the graph structure does not manifest a tightly-knit
cluster of nodes. Yet, little effort has been made to formally investigate the benefits of combining
multiple data sources for local graph clustering. Only recently, the work of Yang & Fountoulakis
(2023) has studied the usage of node attributes under a strong homophily assumption. However, they
require separable node attributes—often impractical for real-world data—and neglect other forms of
node information that might be available. For example, in many cases, we also have access to the
ground-truth labels of a small set of nodes which reveal their cluster affiliation, such as when it is
known that certain nodes do not belong to the target cluster. While ground-truth label information
has been extensively used in (semi-)supervised learning contexts and proved vital in numerous
applications (Kipf & Welling, 2017; Hamilton et al., 2017), it is neither exploited by existing methods
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for local graph clustering nor analyzed in proper theoretical settings with regard to how and why they
can become helpful.

A challenge in designing local graph clustering algorithms that exploit additional sources of infor-
mation and analyze their performance lies in the fact that additional data sources come in different
forms. These can take the form of node or edge attributes, and even additional ground-truth labels
for some nodes. Alternatively, one may just have access to an oracle that outputs the likelihood of
a node belonging to the target cluster, based on all available information. Due to the variability of
attributed graph datasets in practice, a local graph clustering method and its analysis should ideally be
agnostic to the specific source or form of additional information. To that end, in order to investigate
the potential benefits that various additional sources of information can potentially bring to a local
graph clustering task, we propose a study in the following setting.

Local Graph Clustering with Noisy Node Labels: Given a graph and a set of seed nodes, the goal
is to recover an unknown target cluster around the seed nodes. Suppose that we additionally have
access to noisy node labels (not to be confused with ground-truth labels), which are initially set to 1
if a node belongs to the target cluster and 0 otherwise, and then a fraction of them is flipped. How
and when can these labels be used to improve clustering performance?

In this context, node labels may be viewed as an abstract aggregation of all additional sources of
information. The level of label noise, i.e. the fraction of flipped labels, controls the quality of the
additional data sources we might have access to. From a practical point of view, noisy labels may be
seen as the result of applying an imperfect classifier that predicts cluster affiliation of a node based
on its attributes.1 More generally, one may think of the noisy labels as the outputs of an encoder
function that generates a binary label for a node based on all the additional sources of information we
have for that node. The quality of both the encoder function and the data we have is thus represented
by the label noise in the abstract setting that we consider.

Due to their wide range of and successful applications in practice (Mahoney et al., 2012; Kloumann
& Kleinberg, 2014; Gleich, 2015; Eksombatchai et al., 2018; Fountoulakis et al., 2020), in this work,
we focus on graph diffusion-based methods for local clustering. Our contributions are:

1. Given a graph G and noisy node labels, we introduce a very simple yet surprisingly effective way
to utilize the noisy labels for local graph clustering. We construct a weighted graph Gw based on
the labels and employ local graph diffusion in the weighted graph.

2. From a theoretical perspective, we analyze the performance of flow diffusion (Fountoulakis et al.,
2020; Chen et al., 2022) over a random graph model, which is essentially a local (and more
general) version of the stochastic block model. We focus on flow diffusion in our analysis due to
its simplicity and good empirical performance (Fountoulakis et al., 2020; 2021). The diffusion
dynamics of flow diffusion are similar to that of approximate personalized PageRank (Andersen
et al., 2006) and truncated random walks (Spielman & Teng, 2013), and hence our results may
be easily extended to other graph diffusions. We provide sufficient conditions on the label noise
under which, with high probability, flow diffusion over the weighted graph Gw leads to a more
accurate recovery of the target cluster than flow diffusion over the original graph G.

3. We provide an extensive set of empirical experiments over 6 attributed real-world graphs, and we
show that our method, which combines multiple sources of additional information, consistently
leads to significantly better local clustering results than existing local methods. More specifically,
we demonstrate that: (1) reasonably good node labels can be obtained as outputs of a classifier that
takes as input the node attributes; (2) the classifier can be obtained with or without ground-truth
label information, and it does not require access to the entire graph; (3) employing diffusion in
the weighted graph Gw outperforms both the classifier and diffusion in the original graph G.

1.1 RELATED WORK

The local graph clustering problem is first studied by Spielman & Teng (2013) using truncated random
walks and by Andersen et al. (2006) using approximate personalized PageRank vectors. There is a
long line of work on local graph clustering where the only available source of information is the graph

1The classifier may be obtained in a supervised manner in the presence of limited ground-truth label
information, or in an unsupervised way without access to any ground-truth labels. If obtaining and applying such
a classifier is part of a local clustering procedure, then neither its training nor inference should require full access
to the graph. Our empirical results show that simple linear models can work surprisingly well in this context.
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and a seed node (Spielman & Teng, 2013; Andersen et al., 2006; Chung, 2009; Reid & Yuval, 2009;
Allen-Zhu et al., 2013; Andersen et al., 2016; Shi et al., 2017; Yin et al., 2017; Wang et al., 2017;
Fountoulakis et al., 2020; Liu & Gleich, 2020). Most of existing local clustering methods are based
on the idea of diffusing mass locally in the graph, including random walks (Spielman & Teng, 2013),
heat diffusion (Chung, 2009), maximum flow (Wang et al., 2017) and network flow (Fountoulakis
et al., 2020). We provide more details in Section 2 where we introduce the background in more depth.

Recently, Yang & Fountoulakis (2023) studies local graph clustering in the presence of node attributes.
Under a strong assumption on the separability of node attributes, the authors provide upper bounds
on the number of false positives when recovering a target cluster from a random graph model. The
assumption requires that the Euclidean distance between every intra-cluster pair of node attributes
has to be much smaller than the Euclidean distance between every inter-cluster pair of node attributes.
Such an assumption may not hold in practice, for example, when the distributions of node attributes
do not perfectly align with cluster affiliation, or when the node attributes are noisy. This restricts the
practical effectiveness of their method. Our work takes a very different approach in that we do not
restrict to a particular source of additional information or make any assumption on node attributes.
Instead, we abstract all available sources of additional information as noisy node labels.

Leveraging multiple sources of information has been extensively explored in the context of graph
clustering (Yang et al., 2013; Zhe et al., 2019; Sun et al., 2020), where one has access to both the
graph and node attributes, and in the context of semi-supervised learning on graphs (Zhou et al., 2003;
Kipf & Welling, 2017; Hamilton et al., 2017), where one additionally has access to some ground-truth
class labels. All of these methods require processing the entire graph and all data points, and hence
they are not suitable in the context of local graph clustering.

2 NOTATIONS AND BACKGROUND

We consider a connected, undirected, and unweighted graph G = (V,E), where V = {1, 2, . . . , n}
is a set of nodes and E ⊆ V × V is a set of edges. We focus on undirected and unweighted
graphs for simplicity in our discussion, but the idea and results extend to weighted and strongly
connected directed graphs. We write i ∼ j is (i, j) ∈ E and denote A ∈ {0, 1}n×n the adjacency
matrix of G, i.e. Aij = 1 is i ∼ j and Aij = 0 otherwise. The degree of a node i ∈ V is
degG(i) := |{j ∈ V : j ∼ i}|, i.e. the number of nodes adjacent to it. The volume of a subset
U ⊆ V is volG(U) :=

∑
i∈U degG(i). We use subscripts to indicate the graph we are working with,

and we omit them when the graph is clear from context. We write E(U,W ) := {(i, j) ∈ E : i ∈
U, j ∈ W} as the set of edges connecting two subsets U,W ⊆ V . The support of a vector x ∈ Rn is
supp(x) := {i : xi ̸= 0}. Throughout our discussion, we will denote K as the target cluster we wish
to recover, and write Kc := V \K. Each node i ∈ V is given a label ỹi ∈ {0, 1}. For c ∈ {0, 1} we
write Ỹc := {i ∈ V : ỹi = c}. Throughout this work, labels that provide ground-truth information
about cluster affiliation will be referred to as ground-truth labels. When the word labels is mentioned
without the modifier ground-truth, one should interpret those as the noisy labels ỹi.

In the traditional setting for local graph clustering, we are given a seed node s which belongs to an
unknown target cluster K, or sometimes more generally, we are given a set of seed nodes S ⊂ V
such that S ∩K ̸= ∅. It is often assumed that the size of the target cluster K is much smaller than
the size of the graph, and hence a good local clustering method should ideally be able to recover
K without having to explore the entire graph. In fact, the running times of nearly all existing local
clustering algorithms scale only with the size of K instead of the size of the graph (Spielman & Teng,
2013; Andersen et al., 2006; 2016; Wang et al., 2017; Fountoulakis et al., 2020; Martı́nez-Rubio
et al., 2023). This distinguishes the problem of local graph clustering from other problems which
require processing the entire graph. In order to obtain a good cluster around the seed nodes, various
computational routines have been tested to locally explore the graph structure. One of the most
widely used ideas is local graph diffusion. Broadly speaking, local graph diffusion is a process
of spreading certain mass from the seed nodes to nearby nodes along the edges of the graph. For
example, approximate personalized PageRank iteratively spreads probability mass from a node to its
neighbors (Andersen et al., 2006), heat kernel PageRank diffuses heat from the seed nodes to the
rest of the graph (Chung, 2009), capacity releasing diffusion spreads source mass by following a
combinatorial push-relabel procedure (Wang et al., 2017), and flow diffusion routes excess mass out
of the seed nodes while minimizing a network flow cost (Fountoulakis et al., 2020). In a local graph
diffusion process, mass tends to spread within well-connected clusters, and hence a careful look at
where mass spreads to in the graph often yields a good local clustering result.
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Our primary focus is the flow diffusion (Fountoulakis et al., 2020) and in particular its ℓ2-norm
version (Chen et al., 2022). We choose flow diffusion due to its good empirical performance and its
flexibility in initializing a diffusion process. The flexibility allows us to derive results that are directly
comparable with the accuracy of given noisy labels. In what follows, we provide a brief overview of
the ℓ2-norm flow diffusion. For a more in-depth introduction, we refer the readers to Fountoulakis
et al. (2020) and Chen et al. (2022). In a flow diffusion, we are given ∆s > 0 units of source mass
for each seed node s. Every node i ∈ V has a capacity, Ti ≥ 0 which is the maximum amount of
mass it can hold. If ∆i > Ti at some node i, then we need to spread mass from i to its neighbors in
order to satisfy the capacity constraint. Flow diffusion spreads mass along the edges in a way such
that the ℓ2-norm of mass that is passed over the edges is minimized. In particular, given a weight
vector w ∈ R|E| (i.e., edge e has resistance 1/we), the ℓ2-norm flow diffusion and its dual can be
formulated as follows (Chen et al., 2022):

min
1

2

∑
e∈E

f2
e /we s.t. BT f ≤ T −∆, (1)

min xTLx+ xT (T −∆) s.t. x ≥ 0, (2)

where B ∈ R|E|×|V | is the signed edge incidence matrix under an arbitrary orientation of the graph,
and L = BTWB is the (weighted) graph Laplacian matrix where W is the diagonal matrix of w.
If the graph is unweighted, then we treat w as the all-ones vector. In the special case where we
set ∆s = 1 for some node s and 0 otherwise, Tt = 1 for some node t and 0 otherwise, the flow
diffusion problem (1) reduces to an instance of electrical flows (Christiano et al., 2011). Electrical
flows are closely related to random walks and effective resistances, which are useful for finding good
global cuts that partition the graph. In a flow diffusion process, one has the flexibility to choose
source mass ∆ and sink capacity T so that the entire process only touches a small subset of the
graph. For example, if Ti = 1 for all i, then one can show that the optimal solution x∗ for the dual
problem (2) satisfies |supp(x∗)| ≤

∑
i∈V ∆i, and moreover, the solution x∗ can be obtained in time

O(|supp(x∗)|) which is independent of either |V | or |E| (Fountoulakis et al., 2020). This makes flow
diffusion useful in the local clustering context. The solution x∗ provides a scalar embedding for each
node in the graph. With properly chosen ∆ and T , Fountoulakis et al. (2020) showed that applying a
sweep procedure on the entries of x∗ returns a low conductance cluster, and Yang & Fountoulakis
(2023) showed that supp(x∗) overlaps well with an unknown target cluster in a contextual random
graph model with very informative node attributes.

3 LABEL-BASED EDGE WEIGHTS IMPROVE CLUSTERING ACCURACY

In this section, we discuss the problem of local graph clustering with noisy node labels. Given a graph
G = (V,E) and noisy node labels ỹi ∈ {0, 1} for i ∈ V , the goal is to identify an unknown target
cluster K around a set of seed nodes. We primarily focus on using the ℓ2-norm flow diffusion (2) for
local clustering, but our method and results should easily extend to other diffusion methods such as
approximate personalized PageRank.2 Let x∗ denote the optimal solution of (2), we adopt the same
rounding strategy as Ha et al. (2021) and Yang & Fountoulakis (2023), that is, we consider supp(x∗)
as the output cluster and compare it against the target K. Specific diffusion setup with regard to the
source mass ∆ and sink capacity T is discussed in Section 3.1. Occasionally we write x∗(T,∆) or
x∗(∆) to emphasize its dependence on the source mass and sink capacity, and we omit them when
they are clear from the context. Whenever deemed necessary for the sake of clarity, we use different
superscripts x∗ and x† to distinguish solutions of (2) obtained under different edge weights.

We will denote
a1 := |K ∩ Ỹ1|/|K|, a0 := |Kc ∩ Ỹ0|/|Kc|, (3)

which quantify the accuracy of labels within K and outside K, respectively. If a0 = a1 = 1, then the
labels perfectly align with cluster affiliation. We say that the labels are noisy if at least one of a0 and
a1 is strictly less than 1. In this case, we are interested in how and when the labels can help local
graph diffusion obtain a more accurate recovery of the target cluster. In order for the labels to provide
any useful information at all, we will assume that the accuracy of these labels is at least 1/2.
Assumption 3.1. The label accuracy satisfies a0 ≥ 1/2 and a1 ≥ 1/2.

2We demonstrate this through a comprehensive empirical study in Appendix D.2.
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To exploit the information provided by noisy node labels, we consider a straightforward way to
weight the edges of the graph G = (V,E) based on the given labels. Denote Gw = (V,E,w) the
weighted graph obtained by assigning edge weights according to w : E → R. We set

w(i, j) = 1 if ỹi = ỹj , and w(i, j) = ϵ if ỹi ̸= ỹj , (4)

for some small ϵ ∈ [0, 1). This assigns a small weight over cross-label edges and maintains unit
weight over same-label edges. The value of ϵ interpolates between two special scenarios. If ϵ = 1
then Gw reduces to G, and if ϵ = 0 then all edges between Ỹ1 and Ỹ0 are removed in Gw. In
principle, the latter case can be very helpful if the labels are reasonably accurate or the target cluster
is well-connected. For example, in Section 3.1 we will show that solving the ℓ2-norm flow diffusion
problem (2) over the weighted graph Gw by setting ϵ = 0 can lead to a more accurate recovery of
the target cluster than solving it over the original graph G. In practice, one may also choose a small
nonzero ϵ to improve robustness against very noisy labels. In our experiments, we find that the results
are not sensitive to the choice of ϵ, as we obtain similar clustering accuracy for ϵ ∈ [10−2, 10−1] over
different datasets with varying cluster sizes and label accuracy. We use the F1 score to measure the
accuracy of cluster recovery. Suppose that a local clustering algorithm returns a cluster C ⊂ V , then

F1(C) =
|K|

|K|+ |C\K|/2 + |K\C|/2
.

Even though the edge weights (4) are fairly simple and straightforward, they lead to surprisingly
good local clustering results over real-world data, as we will show in Section 4. Before we formally
analyze diffusion over Gw, let us start with an informal and intuitive discussion on how such edge
weights can be beneficial. Consider a step during a generic local diffusion process where mass is
spread from a node within the target cluster to its neighbors. Suppose this node has a similar number
of neighbors within and outside the target cluster. An illustrative example is shown in Figure 1a.
In this case, since all edges are treated equally, diffusion will spread a lot of mass to the outside.
This makes it very difficult to accurately identify the target cluster without suffering from excessive
false positives and false negatives. On the other hand, if the labels have good initial accuracy, for
example, if a1 > a0, then weighting the edges according to (4) will generally make more boundary
edges smaller while not affecting as many internal edges. This is illustrated in Figure 1b. Since a
diffusion step spreads mass proportionally to the edge weights (Xing & Ghorbani, 2004; Xie et al.,
2015; Yang & Fountoulakis, 2023), a neighbor that is connected via a lower edge weight will receive
less mass than a neighbor that is connected via a higher edge weight. Consequently, diffusion in such
a weighted setting forces more mass to be spread within the target cluster, and hence less mass will
leak out. This generally leads to a more accurate recovery of the target cluster.

Diffusion 
leaks 
mass 

Target
cluster

(a) Diffusion in the original graph

Target
cluster

Diffusion 
keeps 
mass 

ϵ
ϵ

ϵ
ϵ

(b) Diffusion in the weighted graph

Figure 1: Label-based edge weights avoid mass leakage by attenuating more boundary edges than
internal edges. This helps local diffusion more accurately recover the target cluster.

3.1 GUARANTEED IMPROVEMENT UNDER A RANDOM GRAPH MODEL

Following prior work on statistical analysis of local graph clustering algorithms (Ha et al., 2021;
Yang & Fountoulakis, 2023), we assume that the graph and the target cluster are generated from the
following random model, which can be seen as a localized stochastic block model.

Definition 3.2. [Local random model (Ha et al., 2021; Yang & Fountoulakis, 2023)] Given a set of
nodes V and a target cluster K ⊂ V . For every pair of nodes i and j, if i, j ∈ K then we draw an
edge (i, j) with probability p; if i ∈ K and j ∈ Kc then we draw an edge (i, j) with probability q;
otherwise, if both i, j ∈ Kc then we allow any (deterministic or random) model to draw an edge.
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Let k = |K| and n = |V |. For a node i ∈ K, the expected number of internal connections is p(k− 1)
and the expected number of external connections is q(n− k). We will denote their ratio by

γ :=
p(k − 1)

q(n− k)
.

The value of γ can be seen as a measure of the structural signal of the target cluster K. When γ is
small, a node within K is likely to have more external connections than internal connections; when γ
is large, a node within K is likely to have more internal connections than external connections.

Recall our definition of the weighted graph Gw whose edge weights are given in (4) based on node
labels. We will study the effect of incorporating noisy labels by comparing the clustering accuracy
obtained by solving the flow diffusion problem (2) over the original graph G and the weighted
graph Gw, respectively. For the purpose of the analysis, we simply set ϵ = 0 as this is enough to
demonstrate the advantage of diffusion over Gw. Determining an optimal and potentially nonzero
ϵ ∈ [0, 1] that maximizes accuracy is an interesting question and we provide additional discussion in
Appendix B. For readers familiar with the literature on local clustering by minimizing conductance, if
p and q are reasonably large, e.g., p ≥ 4 log k/k and q ≥ 4 log k/(n− k), then a simple computation
invoking the Chernoff bound yields that

cutGw(K) ≍ (a1(1− a0) + a0(1− a1)) · cutG(K), with high probability,

volGw[K](K) ≍ (a21 + (1− a1)
2) · volG[K](K), with high probability,

where G[C] denotes the subgraph induced on C ⊆ V , so volG[K](K) measures the overall internal
connectivity of K. Since a1(1− a0) + a0(1− a1) < a21 + (1− a1)

2 as long as a0, a1 > 1/2, the
target cluster K will have a smaller conductance in Gw as long as the label accuracy is larger than
1/2. As a result, this potentially improves the detectability of K in Gw. Of course, a formal argument
requires careful treatments of diffusion dynamics in G and Gw, respectively.

We consider local clustering with a single seed node using flow diffusion processes where the sink
capacity is set to Ti = 1 for all i ∈ V . Although discussed earlier, we summarize below the key steps
of local clustering with noisy labels using flow diffusion:

Input: Graph G = (V,E), seed node s ∈ V , noisy labels ỹi for i ∈ V , source mass parameter θ.
1. Create weighted graph Gw based on (4). Set source mass ∆i = θ if i = s and 0 otherwise.
2. Solve the ℓ2-norm flow diffusion problem (2) over Gw. Obtain solution x†(θ).
3. Return a cluster C = supp(x†(θ)).

Remark 3.3 (Locality). In a practical implementation of the method, Step 1 and Step 2 can be carried
out without accessing the full graph. This is because computing the solution x† only requires access
to nodes (and their labels) that either belong to supp(x†) or are neighbors of a node in supp(x†).
See, for example, Algorithm 1 from Yang & Fountoulakis (2023) which provides a local algorithm
for solving the ℓ2-norm flow diffusion problem (2). Recall that the amount of source mass controls
the size of supp(x†). In the above setup, θ controls the amount of source mass, and since Ti = 1 for
all i, we have |supp(x†)| ≤ θ. Applying the complexity results in Fountoulakis et al. (2020); Yang &
Fountoulakis (2023), we immediately get that the total running time of the above steps are O(d̄θ)
where d̄ is the maximum node degree in supp(x∗). This makes the running time independent of |V |.

Given source mass θ ≥ 0 at the seed node, let x∗(θ) and x†(θ) denote the solutions obtained from
solving (2) over G and Gw, respectively. Theorem 3.4 provides a lower bound on the F1 score
obtained by supp(x†(θ†)) with appropriately chosen source mass θ†. In addition, it gives a sufficient
condition on the label accuracy a0 and a1 such that flow diffusion over Gw with source mass θ† at
the seed node results in a more accurate recovery of K than flow diffusion over G with any possible
choice of source mass. For the sake of simplicity in presentation, Theorem 3.4 has been simplified
from the long and more formal version provided in Appendix A (see Theorem A.1). The long version
requires weaker assumptions on p, q and provides exact terms without involving asymptotics.

Theorem 3.4 (Simplified version). Suppose that p = ω(
√
log k√
k

) and q = ω( log k
n−k ). With probability

at least 1− 1/k, there is a set K ′ ⊆ K with cardinality at least |K|/2 and a choice of source mass
θ†, such that for every seed node s ∈ K ′ we have

F1(supp(x†(θ†))) ≥
[
1 +

(1− a1)

2
+

(1− a0)

2γ
+

(1− a0)
2

2a1γ2

]−1

− ok(1). (5)
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Furthermore, if the accuracy of noisy labels satisfies

a0 ≥ 1−
(√

(p/γ + 2a1 − 1) a1 − a1

)
γ + ok(1), (6)

then we have F1(supp(x†(θ†))) > maxθ≥0 F1(supp(x∗(θ))).

Theorem 3.4 requires additional discussion. First, the lower bound in (5) increases with a0, a1 and γ.
This naturally corresponds to the intuition that, as the label accuracy a0 and a1 become larger, we can
expect a more accurate recovery of K; while on the other hand, as the local graph structure becomes
noisy, i.e. as γ becomes smaller, it generally becomes more difficult to accurately recover K. Note
that when a0 = a1 = 1, the labels perfectly align with cluster affiliation, and in this special case the
lower bound on the F1 score naturally becomes 1− ok(1). This means that the solution x† over the
weighted graph Gw fully leverages the perfect label information. Finally, notice from (5) that the
F1 is lower bounded by a constant as long as γ = Ωn(1), even if a0 is as low as 1/2. In comparison,
under a typical local clustering context where k ≪ n, the F1 score obtained from directly using the
noisy labels can be arbitrarily close to 0, i.e. we have F1(Ỹ1) ≤ on(1), as long as a0 is bounded away
from 1. This demonstrates the importance of employing local diffusion. Even when the initial labels
are deemed fairly accurate based on a0 and a1, e.g. a1 = 1, a0 = 0.99, the F1 score of the labels can
still be very low. In the next section, over both synthetic and real-world data, we show empirically
that flow diffusion over the weighted graph Gw can result in surprisingly better F1 even when the F1
of labels is very poor.

Second, if a1 = 1 then (6) becomes

a0 ≥ 1−
(√

1 + p/γ − 1
)
γ + ok(1). (7)

Observe that: (i) The function
√
γ2 + pγ − γ is increasing with γ, therefore the left-hand side of (7)

increases as γ decreases. This corresponds to the intuition that, as the external connectivity of the
target cluster becomes larger (i.e. as γ decreases), we need more accurate labels to prevent a lot of
mass from leaking out. (ii) When q ≥ Ω( k

n−k ), we have p/γ ≥ Ω(1), and (7) further simplifies to
a0 ≥ 1−Ω(γ). In this case, if γ is also constant, we can expect that flow diffusion over Gw to give a
better result even if a constant fraction of labels is incorrect. Here, the required conditions on q and γ
may look a bit strong because we did not assume anything about the graph structure outside K. One
may obtain much weaker conditions than (6) or (7) under additional assumptions on Kc.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of employing flow diffusion over the label-weighted
graph Gw whose edge weights are given in (4) for local clustering. We will refer to it as Label-
based Flow Diffusion (LFD). We compare the results with the standard ℓ2-norm flow diffusion
(FD) (Fountoulakis et al., 2020; Chen et al., 2022). Whenever a dataset includes node attributes, we
also compare with the weighted flow diffusion (WFD) from Yang & Fountoulakis (2023). Due to
space constraints, we only report experiments involving flow diffusion in the main paper. We carried
out extensive experiments comparing Label-based PageRank (LPR) on the weighted graph Gw with
PageRank (PR) on the original graph G. The results are similar: LPR consistently outperforms PR.
Experiments and results that involve PageRank can be found in Appendix D. In addition, we show
that our method is not very sensitive to hyperparameter choice (see Appendix C.1) and that our
method maintains the fast running time of traditional local diffusion algorithms (see Appendix C.2).

We use both synthetic and real-world data to evaluate the methods. The synthetic data is used to
demonstrate our theory and show how local clustering performance improves as label accuracy
increases in a controlled environment. For the real-world data, we consider both supervised (i.e.
we have access to both node attributes and some ground-truth labels) and unsupervised (i.e. we
have access to only node attributes) settings. We show that in both settings, one may easily obtain
reasonably good node labels such that, leveraging these labels via diffusion over Gw leads to
consistently better results across all 6 datasets, improving the F1 score by up to 13%.

4.1 EXPERIMENTS ON SYNTHETIC DATA

We generate a synthetic graph using the stochastic block model with cluster size k = 500 and number
of clusters c = 20. The number of nodes in the graph equals n = kc = 10, 000. Two nodes within
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the same cluster are connected with probability p = 0.05, and two nodes from different clusters
are connected with probability q = 0.025. For edge weights (4) in Gw we set ϵ = 0.05. We vary
the label accuracy a0 and a1 as defined in (3) to demonstrate the effects of varying label noise. We
consider 3 settings: (i) fix a0 = 0.7 and vary a1 ∈ [1/2, 1); (ii) fix a1 = 0.7 and vary a0 ∈ [1/2, 1) ;
(iii) vary both a0, a1 ∈ [1/2, 1) at the same time. For each pair of (a0, a1), we run 100 trials. For
each trial, we randomly select one of the 20 clusters as the target cluster. Then we generate noisy
labels according to a0 and a1. For each trial, we randomly select a node from the target cluster as the
seed node. We set the sink capacity Ti = 1 for all nodes. For the source mass at the seed node, we
set it to αk for α = 2, 2.25, . . . , 4, out of which we select the one that results in the highest F1 score
based on supp(x∗), where x∗ is the optimal solution of the flow diffusion problem (2).3

We compare the F1 scores achieved by FD and LFD over varying levels of label accuracy. Recall
that FD does not use and hence is not affected by the labels at all, whereas LFD uses label-based
edge weights from (4). The results of over 100 trials are shown in Figure 2. In addition to the results
obtained from flow diffusion, we also include the F1 scores obtained from the labels alone (Labels),
i.e. we compare Ỹ1 = {i ∈ V : ỹi = 1} against K. Not surprisingly, as predicted by (5), the F1
of LFD increases as at least one of a0, a1 increases. Moreover, LFD already outperforms FD at
reasonably low label accuracy, e.g. when a0, a1 = 0.7 and the F1 of the labels alone is as low as
0.2. This shows the effectiveness of incorporating noisy labels and employing diffusion over the
label-weighted graph Gw. Even fairly noisy node labels can boost local clustering performance.

0.5 0.6 0.7 0.8 0.9 1.0
a1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F1

FD
LFD
Labels

0.5 0.6 0.7 0.8 0.9 1.0
a0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
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FD
LFD
Labels

0.5 0.6 0.7 0.8 0.9 1.0
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0.5
0.6
0.7
0.8
0.9

F1
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LFD
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Figure 2: F1 scores obtained by employing flow diffusion over the original graph (FD) and the label-
weighted graph (LFD). For comparison, we also plot the F1 obtained by the noisy labels (Labels).
The solid line and error bar show mean and standard deviation over 100 trials, respectively. As
discussed in Section 3.1, even fairly noisy labels can already help boost local clustering performance.

4.2 EXPERIMENTS ON REAL-WORLD DATA

We carry out experiments over the following 6 real-world attributed graph datasets. We include all 3
datasets used in Yang & Fountoulakis (2023)—namely, Amazon Photo (McAuley et al., 2015), Coau-
thor CS, and Coauthor Physics (Shchur et al., 2018)—to ensure compatibility of results. Additionally,
we use 3 well-established graph machine learning benchmarks: Amazon Computers (Shchur et al.,
2018), Cora (McCallum et al., 2000) and Pubmed (Sen et al., 2008). We provide the most informative
results in this section. Detailed empirical setup and additional results are found in Appendix D.

We divide the experiments into two settings. In the first, we assume access to a selected number of
ground-truth labels, evenly sampled from both the target and non-target classes. These nodes are
utilized to train a classifier (without graph information). The predictions of the classifier are then used
as noisy labels to construct the weighted graph Gw as defined in (4), and we set ϵ = 0.05 as in the
synthetic experiments. We use all the positive nodes, i.e. nodes that belong to the target cluster based
on the given ground-truth labels, as seed nodes during the diffusion process. For each cluster in each
dataset, we compare LFD against FD and WFD over 100 trials. For each trial, a classifier is trained
using randomly sampled positive and negative nodes which we treat as ground-truth information.
Figure 3 shows the average F1 obtained by each method versus the number of samples used for
training the classifier. As illustrated in Figure 3, using the outputs from a weak classifier (e.g. with
an F1 score as low as 40%) as noisy labels already enhances the diffusion process, obtaining an
improvement as high as 13% over other methods (see Coauthor Physics with 25 positive and negative

3We do this for our synthetic experiments to illustrate how label accuracy affects local clustering performance.
In practice, without the ground-truth information, one may fix a reasonable α, e.g. α = 2, and then apply a
sweep-cut procedure on x∗. We adopt the latter approach for experiments on real-world data.
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Figure 3: F1 scores for local clustering using Flow Diffusion (FD), Weighted Flow Diffusion (WFD),
Label-based Flow Diffusion (LFD), and Logistic Regression (Classifier) with an increasing number
of positive and negative ground-truth samples.

nodes). The increasing availability of ground-truth positive nodes typically benefits all diffusion
processes. However, as seen in Cora, additional seed nodes can also increase the risk of mass leakage
outside the target class and hence result in lower accuracy. In such cases, the learned classifier
mitigates this problem by reducing inter-edge weights.

In the second set of experiments, we consider the setting where we are only given a single seed with
no access to ground-truth labels or a pre-trained classifier. To demonstrate the effectiveness of our
method, a heuristic approach is adopted. First, we solve the flow diffusion problem (2) over the
original graph G and get a solution x∗. Then, we select 100 nodes with the highest and lowest values
in x∗, which are designated as positive and negative nodes, respectively. We use these nodes to train
a binary classifier. As demonstrated in prior work (Fountoulakis et al., 2020; Yang & Fountoulakis,
2023), nodes with the highest values in x∗ typically belong to the target cluster, whereas nodes with
the lowest values in x∗ — typically zero — are outside of the target cluster. We use the outputs of the
classifier as noisy node labels to construct the weighted graph Gw. We test this approach against the
standard and weighted flow diffusion, both in the single and multi-seed settings. In the multi-seed
setting, the 100 (pseudo-)positive nodes are used as seed nodes. Additionally, for each dataset, we
compare LFD with the best-performing baseline and report the improvement in Table 1. The results
demonstrate a consistent improvement of LFD over other methods across all datasets.

Table 1: Comparison of F1 scores across datasets for Flow Diffusion (FD), Weighted Flow Diffusion
(WFD), and Label-based Flow Diffusion (LFD) in the absence of ground-truth information

Dataset FD
(single-seed)

WFD
(single-seed)

FD
(multi-seed)

WFD
(multi-seed) LFD Improv. (±) Improv. (%)

Coauthor CS 43.8 39.9 50.5 47.1 63.1 +12.6 +24.9
Coauthor Physics 62.8 57.0 55.5 51.1 72.9 +10.1 +16.1
Amazon Photo 54.5 57.4 62.1 62.6 66.8 +4.2 +6.7
Amazon Computers 56.2 53.3 58.2 54.6 60.4 +2.2 +3.8
Cora 33.3 33.7 55.4 55.4 56.5 +1.1 +1.9
Pubmed 53.0 53.2 53.9 53.9 55.3 +1.4 +2.7

AVERAGE 50.6 49.1 55.9 54.1 62.5 +5.3 +9.3

5 CONCLUSION

We introduce the problem of local graph clustering with access to noisy node labels. This new
problem setting serves as a proxy for working with real-world graph data with additional node
information. Moreover, such setting allows for developing local methods that are agnostic to the
actual sources and formats of additional information which can vary from case to case. We propose a
simple label-based edge weight scheme to utilize the noisy labels, and we show that performing local
clustering over the weighted graph is effective both in theory and in practice.
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A FORMAL STATEMENT OF THEOREM 3.4 AND PROOFS

For convenience let us remind the reader the notations that we use. We use K ⊂ V to denote the
target cluster and we write Kc := V \K. Each node i ∈ V comes with a noisy label ỹi ∈ {0, 1}.
For c ∈ {0, 1} we write Ỹc := {i ∈ V : ỹi = c}. The label accuracy are characterized by
a0 = |Kc ∩ Ỹ0|/|Kc| and a1 = |K ∩ Ỹ1|/|K|. Given a graph G = (V,E) and a target cluster K
generated by the random model in Definition 3.2, let n := |V |, k := |K|, and γ := p(k−1)

q(n−k) . Given

edge weight w : E → R+ or equivalently a vector w ∈ R|E|
+ , let Gw denote the weighted graph

obtained by assigning edge weights to G according to w. In our analysis we consider edge weights
given by (4), that is w(i, j) = 1 if ỹi = ỹj , and w(i, j) = ϵ if ỹi ̸= ỹj , and we set ϵ = 0.

Recall that the ℓ2-norm flow diffusion problem (2) is set up as follows. The sink capacity is set to
Ti = 1 for all i ∈ V . We set Ti = 1 instead of Ti = degG(i) as used in Fountoulakis et al. (2020)
because it allows us to derive bounds on the F1 score in a more direct way. In practice, both can be
good choices. For a given seed node s ∈ K, we set source mass ∆s = θ at node s for some θ > 0,
and we set ∆i = 0 for all other nodes i ̸= s. Given source mass θ at the seed node, let x∗(θ) and
x†(θ) denote the solutions of the ℓ2-norm flow diffusion problem (2) over G and Gw, respectively.
We write x∗(θ) and x†(θ) to emphasize their dependence on θ. When the choice of θ is clear from
the context, we simply write x∗ and x†.

We state the formal version of Theorem 3.4 below in Theorem A.1. First, let us define two numeric
quantities. Given 0 < δ1, δ2, δ3 ≤ 1, let

r :=
(1 + δ1)(1 + δ1 +

2
p(k−1) )

(1− δ1)(1− δ2))
, and r′ := r/(1− δ3).

Theorem A.1 (Formal version of Theorem 3.4). Suppose that p ≥ max( (6+ϵ1)
δ21

log k
k−2 ,

(
√
8+ϵ2)

δ2
√
1−δ1

√
log k√
k−2

)

and q ≥ (3+ϵ3)
δ23

log k
n−k for some ϵ1, ϵ2, ϵ3 > 0 and 0 < δ1, δ2, δ3 ≤ 1. Then with probability at least

1− 3k−ϵ1/6 − k−ϵ2 − k−ϵ3/3, there is a set K ′ ⊆ K with cardinality at least |K|/2 and a choice of
source mass θ†, such that for every seed node s ∈ K ′ with source mass θ† at the seed node, we get

F1(supp(x†(θ†))) ≥

1 + a1
2


a1γ

(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

2

r − 1

+
1− a1

2


−1

. (8)

In this case, if the accuracy of noisy labels satisfies,

a0 ≥ 1− (k − 2)

(k − 1)

(√(
p/γ

r′
+

2a1 − 1

r

)
a1 − a1

)
γ, (9)

then we have
F1(supp(x†(θ†))) > max

θ≥0
F1(supp(x∗(θ))).

Outline: The proof is based on (1) lower bounding the number of false positives incurred by
supp(x∗) (Proposition A.2), (2) upper bounding the number of false positives incurred by supp(x†)
(Proposition A.3), and (3) combine both lower and upper bounds.

We will use some concentration results concerning the connectivity of the random graphs G and
Gw. These results are mostly derived from straightforward applications of the Chernoff bound. For
completeness we state these results and provide their proofs at the end of this section.

Let x̂ denote a generic optimal solution of the flow diffusion problem (2), which is obtained over
either G or Gw. We will heavily use the following two important properties of x̂ (along with its
physical interpretation). We refer the reader to Fountoulakis et al. (2020) for details.

1. The solution x̂ ∈ Rn defines a flow diffusion over the underlying graph such that, for all i, j ∈ V ,
the amount of mass that node i sends to node j along eege (i, j) is given by w(i, j) · (x̂i − x̂j).

2. For all i ∈ V , x̂i > 0 only if the total amount of mass that node i has equals Ti, i.e., ∆i +∑
j∼i w(i, j) · (x̂j − x̂i) = Ti.
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3. For all i ∈ V , x̂i > 0 if and only if the total amount of mass that node i receives exceeds Ti, i.e.,
∆i +

∑
j∼i,x̂j>x̂i

w(i, j) · (x̂j − x̂i) > Ti.

Using these properties we may easily obtain a lower bound on the number of false positives incurred
by supp(x∗). Recall that x∗ denotes the optimal solution of (2) over G, with sink capacity Ti = 1
for all i. We state the result in Proposition A.2.

Proposition A.2. If q ≥ (3+ϵ)
δ2

log k
n−k for some ϵ > 0 and 0 < δ ≤ 1, then with probability at least

1− k−ϵ/3, for every seed node s ∈ K, if |supp(x∗)| ≥ 2 then we have that

|supp(x∗) ∩Kc| > (1− δ)
p

γ
(k − 1)

Proof. If |supp(x∗)| ≥ 2 it means that x∗
s > 0 as otherwise we must have x∗ = 0. Moreover, let

i ∈ V be such that i ̸= s and x∗
i ≥ x∗

j for all j ̸= s. Then we must have that i is a neighbor of s.
Because ∆i = 0, x∗

i > 0 and x∗
i ≥ x∗

j for all j ̸= s, we know that the amount of mass that node s
sends to node i is strictly larger than 1, and hence x∗

s > x∗
i + 1 > 1. But then this means that we

must have x∗
ℓ > 0 for all ℓ ∼ s. By Lemma A.4 we know that with probability at least 1− k−ϵ/3,

every node i ∈ K has more than (1 − δ)q(n − k) neighbors in Kc. This applies to s which was
chosen arbitrarily from K. Therefore we have that with probability at least 1− k−ϵ/3, for every seed
node s ∈ K, if |supp(x∗)| ≥ 2 then |supp(x∗) ∩Kc| > (1− δ)q(n− k). The required result then
follows from our definition that γ = p(k−1)

q(n−k) .

On the other hand, Proposition A.3 provides an upper bound on the number of false positives incurred
by supp(x†) under appropriately chosen source mass θ† at the seed node. Its proof is based on upper
bounding the total amount of mass that leaks to the outside of the target cluster during a diffusion
process, similar to the strategy used in the proof of Theorem 3.5 in Yang & Fountoulakis (2023).

Proposition A.3. If p ≥ max( (6+ϵ1)
δ21

log k
k−2 ,

(
√
8+ϵ2)

δ2
√
1−δ1

√
log k√
k−2

) for some 0 < δ1, δ2 ≤ 1 and ϵ1, ϵ2 > 0,

then with probability at least 1− 3k−ϵ1/6 − k−ϵ2 , for every seed node s ∈ K ∩ Ỹ1 with source mass

θ† =

a1γ
(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

2

ra1k,

we have that K ∩ Ỹ1 ⊆ supp(x†) and

|supp(x†) ∩Kc| ≤


a1γ

(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

2

r − 1

 a1k.

Proof. To see that K ∩ Ỹ1 ⊆ supp(x†), let us assume for the sake of contradiction that x†
i = 0 for

some i ∈ K ∩ Ỹ1. This means that node i receives at most 1 unit mass, because otherwise we would
have x†

i > 0. We also know that i ̸= s because ∆s > 1. Denote F := {j ∈ K ∩ Ỹ1 : j ∼ s}. We
will consider two cases depending on if i ∈ F or not.

Suppose that i ∈ F . Then we have that x†
s − x†

i ≤ 1 because node i receives at most 1 unit mass
from node s. This means that x†

s ≤ 1 + x†
i = 1. It follows that the total amount of mass which flows

out of node s is∑
ℓ∼s

(x†
s − x†

ℓ) ≤
∑
ℓ∼s

x†
s ≤ degGw(s) ≤ (1 + δ)(p(a1k − 1) + (1− a0)q(n− k)),
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where the last inequality follows from Lemma A.5. Therefore, we get that the total amount of source
mass is at most

θ† ≤ (1 + δ)(p(a1k − 1) + (1− a0)q(n− k)) + 1

= (1 + δ)p(a1k − 1)
a1p(k − 1/a1) + (1− a0)q(n− k)

a1p(k − 1/a1)
+ 1

= (1 + δ)p(a1k − 1)
a1γ

(k−1/a1)
(k−1) + (1− a0)

a1γ
(k−1/a1)
(k−1)

+ 1

≤ (1 + δ)p(a1k − 1)
a1γ

(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

+ 1

≤ (1 + δ)(1 + 2/k)

a1γ
(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

 a1k < θ†,

where the second last inequality follows from a1 ≥ 1/2. This is a contradiction, and hence we must
have i ̸∈ F .

Now, suppose that i ̸∈ F . Then we know that the total amount of mass that node i receives from its
neighbors is at most 1. In particular, node i receives at most 1 unit mass from nodes in F . This means
that ∑

j∼i
j∈F

x†
j =

∑
j∼i
j∈F

(x†
j − x†

i ) ≤ 1.

By Lemma A.6, we know that with probability at least 1 − 2k−ϵ1/6 − k−ϵ2 , node i has at least
(1− δ1)(1− δ2)p

2(a1k − 1) neighbors in F , and thus∑
j∈F
j∼i

x†
j ≤ 1 =⇒ min

j∈F
x†
j ≤

1

(1− δ1)(1− δ2)p2(a1k − 1)

Therefore, let j ∈ F a node such that x†
j ≤ x†

ℓ for all ℓ ∈ F , then with probability at least
1− 2k−ϵ1/6 − k−ϵ2 ,

x†
j ≤

1

(1− δ1)(1− δ2)p2(a1k − 1)
. (10)

By Lemma A.6, with probability at least 1 − 2k−ϵ1/6 − k−ϵ2 , node j has at least (1 − δ1)(1 −
δ2)p

2(a1k − 1)− 1 neighbors in F . Since x†
j ≤ x†

ℓ for all ℓ ∈ F and x†
j ≤ x†

s, we know that

|{ℓ ∈ V : ℓ ∼ j and x†
ℓ ≥ x†

j}| ≥ (1− δ1)(1− δ2)p
2(a1k − 1). (11)

Therefore, with probability at least 1− 3k−ϵ1/3 − k−ϵ2 , the total amount of mass that node j sends
out to its neighbors is at most∑

ℓ∼j

(x†
j − x†

ℓ) ≤
∑
ℓ∼j

x†
ℓ≤x†

j

(x†
j − x†

ℓ) ≤
∑
ℓ∼j

x†
ℓ≤x†

j

x†
j

(i)
≤
(
(1 + δ1)(p(a1k − 1) + (1− a0)q(n− k))− (1− δ1)(1− δ2)p

2(a1k − 1)
)
x†
j

(ii)
≤ (1 + δ1)

(1− δ1)(1− δ2)

(
p(a1k − 1) + (1− a0)q(n− k)

p2(a1k − 1)

)
− 1.

where (i) follows from Lemma A.5 and (11), and (ii) follows from (10). Since node j settles 1 unit
mass, the total amount of mass that node j receives from its neighbors is therefore at most

(1 + δ1)

(1− δ1)(1− δ2)

(
p(a1k − 1) + (1− a0)q(n− k)

p2(a1k − 1)

)
.
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Recall that the amount of mass that node j receives from node s is given by x†
s − x†

j , and hence we
get

x†
s ≤

(1 + δ1)

(1− δ1)(1− δ2)

(
p(a1k − 1) + (1− a0)q(n− k)

p2(a1k − 1)

)
+ x†

j . (12)

Apply the same reasoning as before, we get that with probability at least 1− 3k−ϵ1/6 − k−ϵ2 , the
total amount of mass that is sent out from node s is

∑
ℓ∼s

(x†
s − x†

ℓ) < degGw(s) · x†
s

(i)
≤ (1 + δ1)(p(a1k − 1) + (1− a0)q(n− k)) · x†

s

(ii)
≤ (1 + δ1)

(1− δ1)(1− δ2)

(
(1 + δ1)

(p(a1k − 1) + (1− a0)q(n− k))2

p2(a1k − 1)2

+
p(a1k − 1) + (1− a0)q(n− k)

p2(a1k − 1)2

)
(a1k − 1)

(iii)
≤

(1 + δ1)(1 + δ1 +
2

p(k−1) )

(1− δ1)(1− δ2)

(
p(a1k − 1) + (1− a0)q(n− k)

p(a1k − 1)

)2

(a1k − 1)

(iv)
=

(1 + δ1)(1 + δ1 +
2

p(k−1) )

(1− δ1)(1− δ2)

a1γ
(k−1/a1)
(k−1) + (1− a0)

a1γ
(k−1/a1)
(k−1)

2

(a1k − 1)

(v)
≤

(1 + δ1)(1 + δ1 +
2

p(k−1) )

(1− δ1)(1− δ2)

a1γ
(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

2

(a1k − 1),

where (i) follows from Lemma A.5, (ii) follows from (10) and (12), (iii) and (v) uses a1 ≥ 1/2, and
(iv) follows from the definition γ = p(k−1)

q(n−k) . This implies that the total amount of source mass is

θ† <
(1 + δ1)(1 + δ1 +

2
p(k−1) )

(1− δ1)(1− δ2)

a1γ
(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

2

a1k = θ†

which is a contradiction. Therefore we must have i ̸∈ K∩ Ỹ1, but then this contradicts our assumption
that i ∈ K ∩ Ỹ1. Since our choice of i, s ∈ K1 were arbitrary, this means that x†

i > 0 for all i ∈ K1

and for all s ∈ K1.

Finally, the upper bound on |supp(x†)∩Kc| follows directly from the fact that x†
i > 0 only if node i

settles 1 unit mass.

By Proposition A.2, the F1 score for supp(x∗) is at most

F1(supp(x∗)) <
2k

2k + (1− δ3)p(k − 1)/γ
.

By Proposition A.3, the F1 score for supp(x†) is at least

F1(supp(x†)) ≥ 2k

2k +


a1γ

(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

2

r − 1

 a1k + (1− a1)k

.
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Therefore, a sufficient condition for F1(supp(x†)) ≥ F1(supp(x∗)) is
a1γ

(k−2)
(k−1) + (1− a0)

a1γ
(k−2)
(k−1)

2

r − 1

 a1 + (1− a1) ≤ (1− δ3)
p

γ

(k − 1)

k

⇐⇒

a1γ
(k−2)
(k−1) + (1− a0)

γ (k−2)
(k−1)

2

≤ a1
r

(
(1− δ3)

p

γ

(k − 1)

k
+ 2a1 − 1

)

⇐⇒ a1γ
(k − 2)

(k − 1)
+ 1− a0 ≤ γ

(k − 2)

(k − 1)

√
a1
r

(
(1− δ3)

p

γ

(k − 1)

k
+ 2a1 − 1

)

= γ
(k − 2)

(k − 1)

√(
p/γ

r′
+

2a1 − 1

r

)
a1

⇐⇒ a0 ≥ 1− (k − 2)

(k − 1)

(√(
p/γ

r′
+

2a1 − 1

r

)
a1 − a1

)
γ.

Finally, setting K ′ = K ∩ Ỹ1 completes the proof of Theorem A.1.

A.1 CONCENTRATION RESULTS

Lemma A.4 (External degree in G). If q ≥ (3+ϵ)
δ2

log k
n−k for some ϵ > 0 and 0 < δ ≤ 1, then with

probability at least 1− k−ϵ/3 we have that for all i ∈ K,

|E({i},Kc)| ≥ (1− δ)q(n− k).

Proof. This follows directly by noting that, for each i ∈ K, |E({i},Kc)| is the sum of independent
Bernoulli random variables with mean q(n − k). Applying a multiplicative Chernoff bound on
|E({i},Kc)| and then a union bound over i ∈ K gives the result.

Lemma A.5 (Node degree in Gw). If p ≥ (6+ϵ)
δ2

log k
k−2 for some ϵ > 0 and 0 < δ ≤ 1, then with

probability at least 1− k−ϵ/6 we have that for all i ∈ K ∩ Ỹ1,

degGw(i) ≤ (1 + δ)(p(a1k − 1) + (1− a0)q(n− k)).

Proof. For each node i ∈ K ∩ Ỹ1, since K ∩ Ỹ1 = a1k and Kc ∩ Ỹ1 = (1 − a0)(n − k), its
degree in Gw, that is degGw(i), is the sum of independent Bernoulli random variables with mean
E(degGw(i)) = p(a1k− 1) + (1− a0)q(n− k) ≥ p(a1k− 1) ≥ (3+ϵ/2)

δ2 log k. Apply the Chernoff
bound we get

P (degGw(i) ≥ (1 + δ)E(degGw(i))) ≤ exp(−δ2E(degGw(i))/3) ≤ exp(−(1 + ϵ/6) log k).

Taking a union bound over all i ∈ K ∩ Ỹ1 gives the result.

Lemma A.6 (Internal connectivity in Gw). If p ≥ max( (6+ϵ1)
δ21

log k
k−2 ,

(
√
8+ϵ2)

δ2
√
1−δ1

√
log k√
k−2

), then with

probability at least 1− 2k−ϵ1/6 − k−ϵ2 , we have that for all i, j ∈ K ∩ Ỹ1 where i ̸= j, there are at
least (1− δ1)(1− δ2)p

2(a1k− 1) distinct paths connecting node i to node j such that, each of these
paths consists of at most 2 edges, and each edge from Gw appears in at most one of these paths.

Proof. Let Fi denote the set of neighbors of a node i in K ∩ Ỹ1. By our assumption that p ≥
(6+ϵ1)

δ21

log k
k−2 , we may take a Chernoff bound on the size of Fi and a union bound over all i ∈ K ∩ Ỹ1

to get that, with probability at least 1− 2k−ϵ1/6,

(1− δ1)p(a1k − 1) ≤ |Fi| ≤ (1 + δ1)p(a1k − 1), ∀i ∈ K ∩ Ỹ1.
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If j ̸∈ Fi, then since |E({j}, Fi)| is a sum of independent Bernoulli random variables with mean
|Fi|p, we may apply the Chernoff bound and get that, with probability at least 1− 2k−ϵ1/6 (under
the event that (1− δ1)p(a1k − 1) ≤ |Fi| ≤ (1 + δ1)p(a1k − 1)),

P(|E({j}, Fi)| ≤ (1− δ2)|Fi|p) ≤ exp(−δ22 |Fi|p/2) ≤ exp(−δ22(1− δ1)p
2(a1k − 1)/2))

≤ exp(−(2 + ϵ2) log k). (13)

The last inequality in the above follows from our assumption that p ≥ (
√
8+ϵ2)

δ2
√
1−δ1

√
log k√
k−2

. If j ∈ Fi,

then the edge (i, j) is a path of length 1 connecting j to i, and moreover, let ℓ ∈ K ∩ Ỹ1 be such that
ℓ ̸∈ Fi and ℓ ̸= i, we have that

P(|E({j}, Fi\{j})|+ 1 ≤ (1− δ2)|Fi|p) ≤ P(|E({ℓ}, Fi)| ≤ (1− δ2)|Fi|p)
≤ exp(−(2 + ϵ2) log k),

where the last inequality follows from (13). Note that, for a node j in K ∩ Ỹ1 such that j ̸= i,
each edge (j, ℓ) ∈ E({j}, Fi\{j}) identifies a unique path (j, ℓ, i) and none of these paths has
overlapping edges. Therefore, denote P (i, j) the set of mutually non-overlapping paths of length at
most 2 between i and j, and take union bound over all i, j ∈ K ∩ Ỹ1, we get that

P(∃i, j ∈ K ∩ Ỹ1, i ̸= j, s.t. P (i, j) ≤ (1− δ2)|Fi|p) ≤ k−ϵ2 .

Finally, taking a uninon bound over the above event and the event that there is i ∈ K ∩ Ỹ1 such that
|Fi| < (1− δ1)p(a1k − 1) gives the required result.

B DISCUSSION: HOW TO SET EDGE WEIGHT ϵ IN Gw UNDER THE LOCAL
RANDOM MODEL (DEFINITION 3.2)

Given a graph G = (V,E) generated from the local random model described in Definition 3.2, noisy
labels ỹi for node i ∈ V , recall from (4) that the edge weights in Gw are such that w((i, j)) = 1 if
ỹi = ỹj and w((i, j)) = ϵ otherwise. Our analysis in Section 3 takes ϵ = 0. While understanding
diffusion in Gw with ϵ = 0 already provides us with some insights with regard to how noisy labels can
be useful, a natural extension of our analysis is to determine an “optimial” ϵ given model parameters
n, k, p, q and label accuracy a0, a1.

To see why this is an interesting problem, consider the case when a1 is low. In this case, if we set
ϵ = 0 and start diffusing mass from a seed node s ∈ K with ỹs = 1, then diffusion in Gw cannot
reach a node i ∈ K such that ỹi = 0, because the graph Gw is disconnected with two components
Ỹ1 = {i ∈ V : ỹi = 1} and Ỹ0 = {i ∈ V : ỹi = 0}. Consequently, the recall of the output cluster
is at most a1. On the other hand, if we instead set ϵ > 0, this allows diffusion in Gw to reach node
i ∈ K whose label is ỹi = 0, however, at the same time, diffusion in Gw incurs the risk of reaching
a node i /∈ K whose label is ỹi = 0. Therefore, setting ϵ > 0 allows for discovering more true
positives at the expense of incurring more false positives. Whether one should set ϵ = 0 will depend
on n, k, p, q, a0, a1 and the accuracy metric (e.g. precision, recall, or the F1) one aims to maximize. If
the objective is to maximize recall, then it is easy to see that one should set ϵ > 0 to allow recovering
nodes in K that receive different noisy labels. In general, it turns out that rigorously characterizing
an “optimal” ϵ that maximizes other accuracy metrics such as the F1 is nontrivial. In what follows we
discuss intuitively the potential conditions under which one should set ϵ = 0 or ϵ > 0 to obtain a
better clustering result which balances precision and recall, i.e. attains a higher F1. In addition, we
empirically demonstrate these conditions over synthetic data.

Conjecture 1: A sufficient condition to favor ϵ > 0 is (1− a1)pk > a0q(n− k).

Conjecture 2: A sufficient condition to favor ϵ = 0 is (1− a1)p
2k < a0q

2(n− k).

We provide an informal explanation for these conditions. Note that if a seed node s is drawn uniformly
at random from K, then with probability a1 ≥ 1/2 we get that s ∈ K ∩ Ỹ1. Therefore let us assume
that a seed node is selected from K ∩ Ỹ1. In this case, since the diffusion of mass starts from within
K ∩ Ỹ1, excess mass needs to get out of K ∩ Ỹ1 along the cut edges of K ∩ Ỹ1. Let us focus
on the edges between K ∩ Ỹ1 and Ỹ0 since these are the edges affected by ϵ. The edges between
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K ∩ Ỹ1 and Kc ∩ Ỹ1 are not affected by ϵ. In expectation, every node in K ∩ Ỹ1 has (1 − a1)pk

number of neighbors in K ∩ Ỹ0 and a0q(n − k) number of neighbors in Kc ∩ Ỹ0. Therefore, in
a diffusion step when we push excess mass from a node in K ∩ Ỹ1 to its neighbors, for every
(1 − a1)pk unit mass that is pushed into K ∩ Ỹ0, on average a0q(n − k) unit mass is pushed into
Kc ∩ Ỹ0. If (1−a1)pk > a0q(n− k), then this means that K ∩ Ỹ0 receives more mass than Kc ∩ Ỹ0.
Consequently, as a result of K ∩ Ỹ0 receiving more mass than Kc ∩ Ỹ0 from a diffusion step within
K ∩ Ỹ1, we can expect that by setting ϵ > 0, we obtain more true positives as the diffusion process
covers nodes in K ∩ Ỹ0 at the expense of fewer false positives as the diffusion process covers less
nodes in Kc ∩ Ỹ0. This leads to our first conjecture on the condition to favor ϵ > 0 over ϵ = 0.

For the condition in our second conjecture, note that even when K ∩ Ỹ0 receives less mass from
K ∩ Ỹ1 than the amount of mass that Kc ∩ Ỹ0 receives from K ∩ Ỹ1, it does not necessarily imply
that we would get more number of false negatives from Kc ∩ Ỹ0 and fewer number of true positives
from K ∩ Ỹ0. Recall that we use supp(x∗) as the output cluster where x∗ is the optimal solution of
the diffusion problem (2). For a node i ∈ V , we know that x∗

i > 0 only if node i receives more than
1 unit mass. Consider the following two average diffusion dynamics. First, as discussed before, for
every (1−a1)pk unit mass that is pushed into K ∩ Ỹ0 from the a1pk nodes in K ∩ Ỹ1, on average (i.e.
averaged over multiple nodes) a0q(n− k) unit mass is pushed into Kc ∩ Ỹ0. Second, in expectation,
every node in K ∩ Ỹ0 has a1pk neighbors in K ∩ Ỹ1 and every node in Kc ∩ Ỹ0 has a1qk neighbors
in K ∩ Ỹ1. For every unit mass that moves from K ∩ Ỹ1 to K ∩ Ỹ0, a node in K ∩ Ỹ0 on average (i.e.
averaged over multiple nodes and multiple diffusion steps) receives pa1k/a1k = p unit and a node in
Kc ∩ Ỹ0 on average receives qa1k/a1k = q unit. Combining the above two points, we get that on
average, for every (1− a1)p

2k unit mass received by a node in K ∩ Ỹ0, a node in Kc ∩ Ỹ0 receives
a0q

2(n− k) unit mass. Therefore, if (1− a1)p
2k < a0q

2(n− k), then setting ϵ > 0 would make a
node i ∈ Kc ∩ Ỹ0 generally receive less mass than a node in j ∈ Kc ∩ Ỹ0. Consequently, a node
j ∈ Kc ∩ Ỹ0 is more likely to receive more than 1 unit mass. This implies that, by setting ϵ > 0 we
would get fewer number of true positives from K ∩ Ỹ0 at the expense of incurring more number of
false positives from Kc ∩ Ỹ0. This leads to our second conjecture.

Of course, a rigorous argument to justify both conjectures will require a much more careful analysis
of the diffusion dynamics and additional assumptions on p, q so that the average behaviors described
in the above hold with high probability. In addition, there is a gap of order p/q between the two
conditions. It is also an interesting question to determine a good strategy to set ϵ in that “gap regime”.
Addressing these questions are nontrivial and we leave it for future work.

B.1 EMPIRICAL DEMONSTRATION OF OUR CONJECTURES

We demonstrate our conjectures on when to set ϵ = 0 or ϵ > 0 over synthetic data. As in Section 4.1,
we generate synthetic graphs using the stochastic block model with cluster size k = 500 an number
of clusters c = 20. The number of nodes in the graph equals n = kc = 10, 000. Two nodes within
the same cluster are connected with probability p and two nodes from different clusters are connected
with probability q. We consider different choices for q, a0, a1 such that the condition in either
Conjecture 1 or Conjecture 2 is satisfied. Other empirical settings are the same as in Section 4.1.

In Table 2 we report the F1 scores obtained by setting ϵ = 0 and ϵ = 0.2, respectively. We average
over 100 trials for each setting. For comparison purposes we also include the results obtained by
employing Flow Diffusion (FD) over the original graph. Note that FD is equivalent to setting ϵ = 1.
Observe that, when (1− a1)pk > a0q(n− k) as required by Conjecture 1, setting ϵ = 0.2 leads to
a higher F1, whereas when (1− a1)p

2k < a0q
2(n− k) as required by Conjecture 2, setting ϵ = 0

leads to a higher F1. This demonstrates both conjectures.

From a practical point of view, we would like to remark that real networks often have much more
complex structures than the synthetic graphs. Therefore the same conditions may not generalize to
the real networks that one would work with in practice. To that end, in Section C.1 we provide an
empirical study on the robustness of our method with respect to different values of ϵ. Our empirical
results in Section C.1 indicate that, over real networks, the local clustering accuracy remains similar
for different choices of ϵ, ranging from 0.01 to 0.2.
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Table 2: Empirical demonstration of our conjectures: F1 scores for local clustering in the local
random graph model with different model parameters and label accuracy

Empirical Setting FD LFD (ϵ=0) LFD (ϵ=0.2)

Conjecture 1 p=0.05, q=0.0015, a0=0.7, a1=0.6 69.2 64.5 77.8
p=0.05, q=0.0015, a0=0.6, a1=0.65 69.2 64.2 74.6

Conjecture 2 p=0.05, q=0.0075, a0=0.8, a1=0.7 9.7 48.8 37.3
p=0.05, q=0.0075, a0=0.9, a1=0.9 9.7 76.7 61.1

C FURTHER EVALUATIONS AND COMPARISONS

C.1 HYPERPARAMETER ANALYSIS

In this section, we test the robustness of our method against various choices of hyperparameters.
There are 2 hyperparameters in our method. The first hyperparameter is the edge weight ϵ ∈ [0, 1)
from (4), and the second hyperparameter is the total amount of source mass θ > 0 at the seed node(s)
to initialize the flow diffusion process.

We conduct a detailed case study using the Coauthor CS dataset. Similar trends and results are seen
in the experiments using other datasets. We focus on the one of the empirical settings considered in
Section 4.2, where we are given 10 positive and 10 negative ground-truth node labels. Apart from the
choices for ϵ and θ, we keep all other empirical settings the same as in Section 4.2. We report the
average local clustering result over 100 trails.

We vary the total amount of source mass θ as follows. Set θ = αvolG(K) and we let α ∈ {2, 3, 4, 5}.
Recall that K denotes the target cluster. Therefore picking α in the range of [2, 5] results in very
large variations in θ. The experiments in Section 4.2 use α = 2 and ϵ = 0.05. Here, we present
results using different combinations of values for α and ϵ. Observe that for a fixed α ∈ {2, 3, 4}, the
maximum change in the F1 score across ϵ ∈ [10−2, 10−1] is 1.2. Moreover, for all combinations of ϵ
and α, our method has a much higher F1, highlighting the effectivess and robustness to incorporate
noisy labels for local clustering.

Table 3: F1 scores for different values of source mass and inter-edge weight

LFD

α FD WFD ϵ = 0.01 ϵ = 0.025 ϵ = 0.05 ϵ = 0.075 ϵ = 0.1 ϵ = 0.2

2 62.8 56.4 73.0 73.1 72.6 72.4 72.2 70.8
3 67.5 58.3 74.8 74.1 74.1 74.0 74.0 73.0
4 68.1 57.6 73.4 72.7 72.1 72.3 72.2 72.0
5 66.1 55.4 71.8 70.8 70.0 69.5 69.3 68.7

C.2 RUNTIME ANALYSIS

We report the running time of our Label-based Flow Diffusion (LFD) along with other flow diffusion-
based local methods. The experiments are run on an Intel i9-13900K CPU with 36MB Cache and 2
x 48GB DDR5 RAM. We highlight the fast running time of LFD. Fast running times are typically
seen in local methods and are due to the fact that these methods do not require processing the entire
graph. The runtimes reported in Table 4 are based on the experiments using the Coauthor CS dataset,
averaged over 10 trials across 15 clusters.

C.3 COMPARISON WITH GRAPH CONVOLUTIONAL NETWORKS (GCNS)

Within the task of clustering or node classification in the presence of ground-truth node labels, it is
natural to extend the comparison to other types of methods which exploit both the graph structure
and node information. To that end, we provide an empirical comparison with the performance of
GCNs in our problem setting. Note that both the training and the inference stages of GCNs require
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Table 4: Average runtimes for different local diffusion methods

FD(Fountoulakis et al., 2020) WFD (Yang & Fountoulakis, 2023) LFD (ours)

Train model - - 0.09± 0.01 s
Calculate weights - 1.11± 0.77 s 0.03± 0.02 s
Diffusion process 0.01± 0.01 s 0.01± 0.01 s 0.01± 0.01 s

TOTAL 0.01± 0.01 s 1.12± 0.78 s 0.13± 0.03 s

accessing every node in the graph, and this makes GCNs (and more generally other global methods
that require full graph processing) unsuitable for local graph clustering. In contrast, local methods
only explore a small portion of the graph around the seed node(s).

To highlight the strengths of our local method against global methods such as GCNs, we carried out
additional experiments to compare both runtime and accuracy. Again, we fix the same empirical
setting as before, that is, we use the Coauthor CS dataset and select 10 nodes each from positive
and negative ground-truth categories. Let us remind the reader that, here, a positive ground-truth
label means that a node selected from the target cluster K is given a label 1. Similarly, a negative
ground-truth label means that a node selected from the rest of the graph is given a label 0.

Table 5: Comparison between Label-based Flow Diffusion (LFD) and Graph Convolutional Network
(GCN)

LFD GCN

F1-score 73.0 46.9
Runtime 0.13± 0.03 s 3.68± 0.31 s

We use a two-layer GCN architecture with a hidden layer size of 16. When training the GCN model,
we terminate the training process after 100 epochs. In our approach, each class is treated separately
in a one-vs-all classification framework during training. We replicate this procedure for each class
across 10 independent trials. The results are shown in Table 5. Observe that our method not only
runs substantially faster (i.e. 28 times faster) than a GCN but also obtains a much higher F1. The
poor performance of GCNs is due to the scarcity of ground-truth data in our setting, where we only
have 20 samples. GCNs generally require a much greater number of ground-truth labels to work
well. In order to make GCN achieve a better accuracy than LFD, we had to increase the number of
ground-truth labels to 600 samples, which is not very realistic for local clustering contexts.

D EXPERIMENTS

D.1 REAL-WORLD DATASET DESCRIPTION

• Coauthor CS is a co-authorship graph based on the Microsoft Academic Graph from the
KDD Cup 2016 challenge (Shchur et al. (2018)). Each node in the graph represents an
author, while an edge represents the co-authorship of a paper between two authors. The
ground-truth node labels are determined by the most active research field of each author. The
Coauthor CS graph consists of 18,333 computer science authors with 81,894 connections
and 15 ground-truth clusters.

• Coauthor Physics is a co-authorship graph also extracted from the Microsoft Academic
Graph and used in the KDD Cup 2016 challenge (Shchur et al. (2018)). Its structure is
similar to Coauthor CS with a focus on Physics research. The dataset has 34,493 physics
researchers and 247,962 connections among them. Each physics researcher belongs to one
of the 5 ground-truth clusters.

• Amazon Photo is a co-purchasing graph from Amazon (McAuley et al. (2015)), where
nodes represent products and an edge indicates whether two products are frequently bought
together. Labels of the nodes are determined by the product’s category, while node attributes
are bag-of-word encodings of product reviews. The dataset consists of 7,487 photographic
equipment products, 119,043 co-purchasing connections, and 8 categories
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• Amazon Computers is another co-purchasing graph extracted from Amazon (Shchur et al.
(2018)), with the same structure as Amazon Photo. It has 13,752 computer equipment
products, 245,861 connections, and 10 categories.

• Cora (McCallum et al. (2000)) is a citation network where each node denotes a scientific
publication in Computer Science. An edge from node A to B indicates a citation from work
A to work B. Despite their directed nature, we utilize an undirected version of these graphs
for our analysis. The graph includes 2,708 publications, 5,429 edges, and 7 classes denoting
the paper categories. The node features are bag-of-words encodings of the paper abstract.

• Pubmed (Sen et al. (2008)) is a citation network with a similar structure as Cora. We also
adopt an undirected version of the graph. The dataset categorizes medical publications into
one of 3 classes and comprises 19,717 nodes and 44,338 edges. Node features are TF/IDF
encodings from a selected dictionary.

D.2 BEYOND FLOW DIFFUSION: EMPIRICAL VALIDATIONS WITH PAGERANK

In this section, we extend the comparisons beyond just flow diffusion, considering another local graph
clustering technique, namely PageRank. We employ the ℓ1-regularized PageRank (Fountoulakis
et al., 2017), demonstrating that the outcomes align consistently with those of flow diffusion. In the
next sections, findings are reported for both Flow Diffusion (FD) and PageRank (PR).

SYNTHETIC EXPERIMENTS
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Figure 4: F1 scores obtained by employing ℓ1-regularized PageRank (Fountoulakis et al. (2017)) over
the original graph (PR) and the label-weighted graph (LPR). For comparison, we also plot the F1
obtained by the noisy labels (Labels). The solid line and error bar show mean and standard deviation
over 100 trials, respectively.

REAL-WORLD EXPERIMENTS: LABEL-BASED PAGERANK WITH GROUND-TRUTH DATA
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Figure 5: F1 scores across datasets for ℓ1-regularized PageRank, Label-based PageRank (LPR), and
Logistic Regression (Classifier) with an increasing number of positive and negative ground truth
samples

REAL-WORLD EXPERIMENTS: SINGLE SEED LABEL-BASED PAGERANK WITH NO
GROUND-TRUTH LABELS
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Table 6: Comparison of F1 scores across datasets for PageRank (PR) and Label-based PageRank
(LPR) in the absence of supervised data.

Dataset PR
(single-seed)

PR
(multi-seed) LPR Improv. (±) Improv. (%)

Coauthor CS 52.8 56.4 66.2 +9.8 +17.3
Coauthor Physics 63.4 61.9 72.1 +8.7 +13.6
Amazon Photo 64.2 63.8 67.6 +3.4 +5.3
Amazon Computers 57.7 60.4 63.2 +2.8 +4.7
Cora 55.7 58.5 60.6 +2.1 +3.5
Pubmed 56.1 54.9 58.8 +2.7 +4.8
AVERAGE 58.3 59.3 64.7 +4.9 +8.2

D.3 DETAILED RESULTS OF EXPERIMENT WITH GROUND-TRUTH DATA

In this subsection, we present detailed results from the first experiment with real-world data. We
report the performance of the setting with 25 positive and 25 negative nodes. We employ a Logistic
Regression model with ℓ2 regularization for binary classification. During inference, labels form
a weighted graph as described in 4, with ϵ = 0.05, applied only over existing edges. In flow
diffusion, the source mass of each seed node is assigned to be twice the volume of the target cluster.
For PageRank, the starting scores of the source nodes are proportional to their degrees. The ℓ1-
regularization parameter for PageRank is set to be the inverse of the total mass dispersed in flow
diffusion. Additionally, we execute a line search process to determine the optimal teleportation
parameter for PageRank. After finishing each diffusion process, a sweep-cut procedure is conducted
on the resulting embeddings using the unweighted graph.

Table 7: F1 scores for the Coauthor CS dataset with 25 positive and 25 negative nodes.

Cluster CLF FD WFD LFD PR LPR
1 Bioinformatics 85.5 45.8 55.6 61.9 51.6 65.5
2 Machine Learning 26.8 50.2 49.6 63.9 54.1 61.3
3 Computer Vision 79.4 64.8 38.5 82.4 60.9 71.2
4 NLP 16.7 58.2 73.5 73.0 68.6 76.6
5 Graphics 52.8 76.8 75.5 85.7 74.1 79.2
6 Networks 79.5 67.7 64.4 80.7 64.2 73.3
7 Security 38.3 49.4 58.5 62.5 57.3 62.7
8 Databases 39.6 73.0 72.0 81.0 75.2 75.1
9 Data mining 49.4 43.4 42.6 63.0 46.0 55.1
10 Game Theory 7.6 92.0 92.3 91.9 91.2 90.9
11 HCI 43.0 89.1 86.5 91.6 87.9 88.1
12 Information Theory 79.3 77.2 35.1 83.6 73.0 76.0
13 Medical Informatics 26.9 86.6 85.0 89.2 85.3 85.6
14 Robotics 91.4 86.7 55.8 93.4 79.2 87.5
15 Theoretical CS 57.0 84.2 75.5 89.6 84.3 84.1

AVERAGE 51.5 69.7 64.0 79.6 70.2 75.5
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Table 8: F1 scores for the Coauthor Physics dataset with 25 positive and 25 negative nodes.

Cluster CLF FD WFD LFD PR LPR

1 Particles, fields, gravitation, and
cosmology

87.5 87.2 74.2 91.9 87.7 89.6

2 Atomic, molecular, and optical
physics and quantum information

69.2 69.5 63.7 82.7 73.8 77.9

3 Condensed matter and materials
physics

90.5 81.1 88.1 95. 89.9 93.3

4 Nuclear physics 55.2 81.6 79.4 87.3 82.6 84.6

5 Statistical, nonlinear, biological,
and soft matter physics

60.4 46.9 48.3 74. 58.8 72.6

AVERAGE 72.6 73.2 70.7 86.2 78.6 83.6

Table 9: F1 scores for the Amazon Photo dataset with 25 positive and 25 negative nodes.

Cluster CLF FD WFD LFD PR LPR
1 Film Photography 37.2 89.9 82.6 90.0 87.8 89.1
2 Digital Cameras 69.5 81.6 76.9 82.0 79.5 79.8
3 Binoculars 59.2 97.4 96.7 96.9 96.6 97.1
4 Lenses 62.7 64.9 66.2 73.0 64.9 70.4
5 Tripods & Monopods 65.7 82.8 83.1 90.4 78.2 84.1
6 Video Surveillance 71.4 98.3 98.1 98.7 98.3 98.3
7 Lighting & Studio 66.4 47.3 62.6 46.6 80.4 82.9
8 Flashes 30.9 56.5 60.2 67.8 48.2 55.1

AVERAGE 57.9 77.3 78.3 80.7 79.2 82.1

Table 10: F1 scores for the Amazon Computers dataset with 25 positive and 25 negative nodes.

Cluster CLF FD WFD LFD PR LPR
1 Desktops 23.5 60.5 70.8 68.6 72.2 80.3
2 Data Storage 52.2 39.0 41.1 44.2 54.7 58.7
3 Laptops 62.3 93.1 87.6 91.9 89.1 88.6
4 Monitors 36.3 61.1 64.5 81.1 59.7 74.0
5 Computer Components 72.7 79.9 75.2 79.7 76.0 79.2
6 Video Projectors 45.3 95.2 95.2 95.0 94.5 94.3
7 Routers 27.9 59.3 53.4 60.9 58.0 59.4
8 Tablets 43.4 89.8 85.7 89.1 87.9 86.6
9 Networking Products 57.2 64.3 55.5 70.1 61.6 65.4
10 Webcams 25.8 89.6 83.4 89.7 86.7 86.8

AVERAGE 44.7 73.2 71.2 77.0 74.1 77.3

D.4 DETAILED RESULTS OF EXPERIMENT WITH SAMPLING HEURISTIC

This subsection outlines the second experiment conducted with real-world data. In this experiment, a
single seed node is provided without any access to ground-truth data or a pre-trained classifier. As
outlined in section 4.2, our adopted heuristic approach begins with executing an initial flow diffusion
process from the provided seed node. In all reported single-seed diffusion processes, we increase
the amount of mass used from twice to ten times the volume of the target cluster. The 100 nodes
with the highest and lowest flow diffusion embeddings are designated as positive and negative nodes,
respectively. This data is used to train a classifier, as described in the previous experimental setting,
and diffusion is then run from the positive nodes, followed by a sweep-cut procedure. The following
tables report the results for each dataset, broken-down by their clusters.
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Table 11: F1 scores for the Cora dataset with 25 positive and 25 negative nodes.

Cluster CLF FD WFD LFD PR LPR
1 Case Based 44.1 70.3 70.7 70.4 71.0 69.2
2 Genetic Algorithms 60.0 91.8 91.8 92.6 90.5 90.5
3 Neural Networks 57.1 69.4 69.6 68.2 67.9 67.5
4 Probabilistic Methods 48.6 66.0 66.5 68.8 72.7 72.5
5 Reinforcement Learning 44.5 77.4 77.2 77.2 76.4 75.0
6 Rule Learning 32.4 71.5 71.5 71.1 69.8 69.4
7 Theory 41.5 60.8 60.5 60.0 60.3 60.4

AVERAGE 46.9 72.5 72.5 72.6 72.7 72.1

Table 12: F1 scores for the Pubmed dataset with 25 positive and 25 negative nodes.

Cluster CLF FD WFD LFD PR LPR
1 Diabetes Mellitus

(Experimental)
75.9 49.3 49.4 61.7 53.2 58.9

2 Diabetes Mellitus
Type 1

70.1 77.8 77.9 77.2 74.5 75.5

3 Diabetes Mellitus
Type 2

65.2 66.1 66.1 66.8 64.1 65.7

AVERAGE 70.4 64.4 64.5 68.6 63.9 66.7

Table 13: F1 scores for the Coauthor CS dataset in the absence of ground-truth data

Cluster FD
(single-seed)

WFD
(single-seed)

FD
(multi-seed)

WFD
(multi-seed)

LFD PR
(single-seed)

PR
(multi-seed)

LPR

1 Bioinformatics 34.1 35.5 23.7 28.3 34.1 31.6 26.5 45.2
2 Machine Learning 29.0 22.5 21.5 26.9 25.6 30.8 28.9 44.3
3 Computer Vision 34.5 18.5 39.2 28.0 63.5 48.0 49.2 59.0
4 NLP 53.5 58.1 37.8 47.8 54.5 46.3 43.0 66.5
5 Graphics 28.6 43.2 60.5 61.5 72.0 58.2 63.1 69.8
6 Networks 42.1 32.5 46.3 48.2 71.6 50.7 54.5 62.3
7 Security 31.9 34.0 27.8 31.0 34.3 30.7 31.1 53.4
8 Databases 27.5 23.1 56.8 61.0 73.5 60.0 67.3 74.3
9 Data mining 26.6 17.4 12.9 19.5 21.4 30.0 28.1 40.7
10 Game Theory 83.1 82.0 83.0 81.0 83.0 58.8 84.4 85.6
11 HCI 68.7 83.6 79.9 81.0 87.6 75.6 82.0 86.4
12 Information Theory 36.3 12.3 56.2 26.0 78.0 61.5 65.9 70.3
13 Medical Informatics 80.9 76.4 73.9 72.2 83.4 75.3 78.1 83.6
14 Robotics 36.9 32.0 68.0 27.1 82.9 64.8 67.7 73.0
15 Theoretical CS 43.9 28.1 70.6 67.0 81.3 69.5 76.6 78.7

AVERAGE 43.8 39.9 50.5 47.1 63.1 52.8 56.4 66.2
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Table 14: F1 scores for the Coauthor Physics dataset in the absence of ground-truth data

Cluster FD
(single-seed)

WFD
(single-seed)

FD
(multi-seed)

WFD
(multi-seed)

LFD PR
(single-seed)

PR
(multi-seed)

LPR

1 Particles, fields, gravitation, and
cosmology

78.5 60.8 65.5 48.8 80.9 72.9 72.5 80.7

2 Atomic, molecular, and optical
physics and quantum information

38.2 35.1 45.8 40.9 58.9 48.9 50.5 57.5

3 Condensed matter and materials
physics

81.5 84.0 81.8 81.6 87.4 84.9 85.4 87.6

4 Nuclear physics 63.5 68.6 60.6 58.9 77.7 68.7 68.0 72.1

5 Statistical, nonlinear, biological,
and soft matter physics

52.3 36.4 23.5 25.6 59.4 41.8 33.2 62.5

AVERAGE 62.8 57.0 55.5 51.1 72.9 63.4 61.9 72.1

Table 15: F1 scores for the Amazon Photo dataset in the absence of ground-truth data

Cluster FD
(single-seed)

WFD
(single-seed)

FD
(multi-seed)

WFD
(multi-seed)

LFD PR
(single-seed)

PR
(multi-seed)

LPR

1 Film Photography 69.4 69.3 80.5 67.1 82.3 77.1 78.5 82.6
2 Digital Cameras 43.8 61.4 64.1 59.7 67.2 69.3 69.2 69.8
3 Binoculars 97.2 94.6 87.0 81.7 80.4 86.8 83.0 86.2
4 Lenses 33.5 35.2 36.0 37.7 45.5 41.3 42.2 49.7
5 Tripods & Monopods 34.3 36.6 53.6 69.8 71.9 50.0 54.0 61.9
6 Video Surveillance 98.3 98.1 98.3 97.9 98.8 98.1 98.2 97.0
7 Lighting & Studio 39.3 46.7 46.8 54.1 50.7 58.7 56.9 59.1
8 Flashes 19.8 17.2 30.3 33.1 38.1 32.1 28.8 34.4

AVERAGE 54.5 57.4 62.1 62.6 66.8 64.2 63.8 67.6

Table 16: F1 scores for the Amazon Computers dataset in the absence of ground-truth data

Cluster FD
(single-seed)

WFD
(single-seed)

FD
(multi-seed)

WFD
(multi-seed)

LFD PR
(single-seed)

PR
(multi-seed)

LPR

1 Desktops 43.1 47.6 40.7 41.7 44.3 41.6 43.1 44.3
2 Data Storage 28.8 32.1 30.6 30.1 32.2 38.0 35.6 40.0
3 Laptops 77.6 69.6 73.5 69.8 80.3 71.1 74.8 78.7
4 Monitors 32.8 32.6 38.7 41.0 53.8 31.0 37.1 50.2
5 Computer Components 54.1 57.3 73.4 58.7 73.1 68.1 68.5 68.8
6 Video Projectors 95.1 94.2 95.1 94.9 94.9 92.6 94.3 94.4
7 Routers 40.5 33.1 36.9 33.4 34.4 42.4 46.6 47.6
8 Tablets 79.0 67.4 72.9 68.8 71.6 69.5 73.3 73.7
9 Networking Products 27.4 29.8 37.9 31.1 36.7 46.2 48.2 50.2
10 Webcams 83.4 69.1 82.0 76.0 82.6 76.7 82.2 84.0

AVERAGE 56.2 53.3 58.2 54.6 60.4 57.7 60.4 63.2
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Table 17: F1 scores for the Cora dataset in the absence of ground-truth data

Cluster FD
(single-seed)

WFD
(single-seed)

FD
(multi-seed)

WFD
(multi-seed)

LFD PR
(single-seed)

PR
(multi-seed)

LPR

1 Case Based 36.0 36.4 55.1 55.4 58.4 49.0 53.4 60.9
2 Genetic Algorithms 30.8 31.6 88.7 88.9 90.5 82.8 88.1 89.5
3 Neural Networks 45.9 46.3 43.8 43.7 40.3 56.4 59.0 55.9
4 Probabilistic Methods 33.7 34.0 37.6 38.0 38.2 41.9 39.4 41.6
5 Reinforcement Learning 25.3 26.2 67.7 67.7 68.0 64.4 69.2 69.4
6 Rule Learning 34.4 33.9 52.4 52.3 57.3 48.5 55.0 59.6
7 Theory 27.2 27.2 42.3 42.2 42.8 46.7 45.7 47.4

AVERAGE 33.3 33.7 55.4 55.4 56.5 55.7 58.5 60.6

Table 18: F1 scores for the Pubmed dataset in the absence of ground-truth data

Cluster FD
(single-seed)

WFD
(single-seed)

FD
(multi-seed)

WFD
(multi-seed)

LFD PR
(single-seed)

PR
(multi-seed)

LPR

1 Diabetes Mellitus
(Experimental)

34.8 35.0 37.0 37.0 43.9 43.9 42.1 49.8

2 Diabetes Mellitus
Type 1

69.7 69.8 71.6 71.6 69.7 70.2 69.5 71.3

3 Diabetes Mellitus
Type 2

54.6 55.0 53.1 53.1 52.4 54.1 53.1 55.2

AVERAGE 53.0 53.2 53.9 53.9 55.3 56.1 54.9 58.8
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