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ABSTRACT

The existence of spurious correlations can prompt neural networks to depend heav-
ily on features that exhibit strong correlations with the target labels exclusively in
the training set, while such correlations may not persist in real-world scenarios. As
a consequence, this results in suboptimal performance within certain subgrouping
of the data. In this work, we leverage the theoretical insights of the Neural Tangent
Kernel (NTK) to investigate the group robustness problem in the presence of spuri-
ous correlations. Specifically, we identify that poor generalization is not solely a
consequence of statistical biases inherent in the dataset; rather, it also arises from
the disparity in complexity between spurious and core features. Building upon
this observation, we propose a method that adjusts the spectral properties of neural
networks to mitigate bias without requiring knowledge of the spurious attributes.

1 INTRODUCTION

Deep neural networks (DNNs) have become exceptionally powerful tools for various tasks, ranging
from image recognition to natural language processing. Their ability to learn intricate patterns and
extract high-level representations from complex data has revolutionized the field of machine learning.
However, despite their impressive capabilities, DNNs also pose challenges in several domains. One
such challenge is the presence of spurious correlation within DNNs. Spurious correlations refer
to the scenario where certain (potentially simpler) task-irrelevant attributes in the training set are
highly correlated with the target labels. For example, consider the scenario where a DNN is trained
to distinguish between images containing cars and bicycles. In the training dataset, an unintended
sampling bias might emerge, leading to a situation where the majority of car images happen to be
predominantly of a particular color, say blue, while the majority of bicycle images tend to have a
different color, like red. This sampling bias inadvertently introduces a spurious correlation between
the object category and the color attribute. Consequently, the trained DNN may mistakenly learn to
associate the presence of a certain color with a particular object class, leading to erroneous predictions
when faced with images featuring cars or bicycles of different colours.

Spurious correlations can have significant implications in real-world applications. Relying on these
false associations can result in flawed predictions, inaccurate analyses, and misguided actions, particu-
larly in critical domains such as healthcare (Oakden-Rayner et al., 2020) and social sciences (Dressel
& Farid, 2018). The awareness of the potential negative consequences resulting from spurious
correlations has captured significant attention within the machine learning community. Consequently,
there has been substantial interest in developing strategies to address the impact (Sohoni et al., 2020;
Sagawa et al., 2020; Nam et al., 2020; Liu et al., 2021; Zemel et al., 2013).

We acknowledge the gap in the existing research, which falls short in providing solutions from the
perspective of the model itself, specifically addressing the question of whether spurious correlation
can be overcome by applying a patch to the DNN itself. Our main objective in this work is to provide
an understanding of DNNs in the context of spurious correlation. Specifically, we aim to address the
following research questions:

(1) What factors contribute to the reliance of DNNs on spurious features during training? There is
a common intuition that DNNs often demonstrate a tendency to achieve lower loss for easily
learnable examples (i.e., samples whose labels can be inferred not only from task-relevant
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features) while experiencing higher loss for more challenging examples during the early stages
of training. Building upon this intuition, several methods have been developed to address bias in
DNNs. While this intuitive phenomenon serves as a guiding principle for several methods (Yang
et al., 2023a; Liu et al., 2021) aimed at mitigating bias in DNNs, the understanding of its
occurrence has not been established in those works. To our knowledge, Adnan et al. (2022)
is the first work that attempted to address this question through the information bottleneck
framework. However, their discovery lacks finer granularity as they did not identify the specific
factor(s) (e.g., complexity of the model, data distributions, optimization, etc.) that give rise to
this bias phenomenon, leaving this research question unresolved. In this work, we would like to
address this question through the lens of NTK, narrowing our investigation to the architecture
and learning algorithm (gradient descent).

(2) Can a procedural approach be developed to effectively tailor the DNN with the aim of enhancing
the robustness? Building upon the previous question, we would like to develop a novel approach
grounded in deep learning principles that surpasses the constraints imposed by the conventional
sample/feature paradigm (sample and feature paradigms are described in Section 2 below).

To answer those questions, we leverage the insights gained from relationship between neural networks
and kernel machines – Neural Tangent Kernels (NTKs) (Jacot et al., 2018). The NTK is a concept
in deep learning theory that characterizes the dynamics of learning when DNNs are trained using
gradient descent. This kernel is formally defined as the expected product of gradients between two
data points with respect to the weights initialization. The kernel matrix (also known as Gram matrix)
adeptly compresses the dataset, model architecture and the learning algorithm (gradient descent) into
a single compact representation (Shawe-Taylor & Cristianini, 2004). This compression allows us to
exploit the classical framework of kernel methods to conduct comprehensive analysis of a DNN.

Our contributions can be summarized as follows:

• Our findings reveal that low-frequency kernel eigenvectors are associated with features that
are inherently easier to learn and exhibit relatively stronger bias. When these features become
entangled in spurious correlations with the target labels, it adversely affects the generalization
capacity of DNNs.

• We introduce a novel approach that alleviates the impact of spurious correlations, all while
keeping input features, training distribution, and loss function unchanged, and without requiring
any knowledge of the spurious attributes.

The structure of the paper is outlined as follows: in Section 2, we delve into previous studies that
bear relevance to our research questions. Following this, in Section 3, we introduce the notations and
provide some background information. Subsequently, Section 4 covers the studies addressing research
question (1), which aims to uncover the underlying reasons behind generalization issues caused by
spurious correlations. Then, to address question (2), we proposed a solution in Section 5. Lastly, we
discuss the limitation and future directions in Section 6. Additional results and experimental details
can be found in the supplementary material.

2 RELATED WORK

Our work mainly involves three areas: subgroup robustness, spectral bias, and neural tangent kernels.
The discussion of NTKs is provided in Appendix A.

Subgroup robustness Existing approaches can primarily be categorized into two main perspectives:
sample level and feature level methods. The first perspective focuses on the sample level, taking into
account the fact that poor generalization to the minority class stems from the insufficient contribution
of samples from rare subgroups during empirical risk minimization (ERM). In this context, Sagawa
et al. (2020) proposed GDRO, which optimizes the model directly with respect to the worst subgroup
loss by leveraging full access to biased-attribute labels. On the other hand, approaches like Liu et al.
(2021); Nam et al. (2020); Sohoni et al. (2020); Kim et al. (2023); Kamiran & Calders (2012) do
not rely on biased-attribute labels but instead use proxies to identify rare samples and uplift their
sample probability or loss. Additionally, Kirichenko et al. (2023) employs a balanced validation set to
fine-tune the last layer of the DNN. The second perspective shifts its focus to the feature level, aiming
to address the impact of spurious features by either eliminating them completely or diminishing
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their influence. Zemel et al. (2013) and Arjovsky et al. (2020) explore the learning of alternative
features representations guided by specific learning objectives, Yao et al. (2022) utilizes the mixup
technique (Zhang et al., 2018) to mitigate the presence of the spurious feature, and Taghanaki et al.
(2022) adopts a selective feature removal approach followed by fine-tuning of the DNN. Tiwari
& Shenoy (2023) adjusts learned features by selectively fine-tuning subset of layers. In addition,
contributions in the realm of spurious correlation analysis have been made by Adnan et al. (2022)
and Yang et al. (2022b). In this work, we directly address the spurious correlation problem within
the target model without relying on auxiliary networks, modifying the loss function, or having
access to label information. It can be argued that approaches like Liu et al. (2021) which use a
partially-trained DNN to identify underperforming subgroups then upweight them during, can be
considered as addressing the problem to some extent from the model’s perspective. However, it’s
important to highlight that these methods primarily concentrate on resolving the issue either at the
individual sample level or the feature level.

Simplicity bias & spectral bias It was shown in Brutzkus et al. (2017) that DNNs trained with
stochastic gradient descent (SGD) possess an inductive bias towards linear interpolation for training
examples. Similarly, Nakkiran et al. (2019) discovered a progressive learning process in theses net-
works, wherein they learn functions of growing complexity, initially capturing low-complexity (linear)
representations and subsequently advancing towards high-complexity (non-linear) representations,
this behaviour is known as simplicity bias. Another line of works (Rahaman et al., 2019; Cao et al.,
2020; Xu et al., 2019; Xu, 2020) employed the principle of Fourier analysis to explore simplicity bias,
with complexity being characterized in terms of frequency, commonly referred to as spectral bias or
frequency bias. While beneficial in terms of robustness in certain contexts (Qian et al., 2020; Awasthi
et al., 2020), simplicity bias can also be detrimental in other situations, such as domain adaptation
where the simplistic representations do not faithfully represent the relevant features necessary for pre-
dictions in other domains, resulting in poor out-of-distribution performance (Shah et al., 2020). Yang
& Salman (2020) established a connection between spectral bias and the spectrum of the NTK. They
showed that the complexity of the eigenbases learned by the DNN is determined by the corresponding
eigenvalues, specifically, smaller eigenvalues indicate more complex functions and vice versa. This
aligns with result from Basri et al. (2019) that losses projected onto low-frequency target functions
converge to zero at a higher rate than that of high-frequency target functions. This finding motivated
several works aimed at accelerating the learning of higher-frequency target functions. Yang et al.
(2022a); Tancik et al. (2020) leveraged random Fourier features (Rahimi & Recht, 2007) to widen the
spectrum. Yu et al. (2023) uses the Sobolev norm to adjust the priority of learning functions with
specific bandwidths. Our work aims to leverage the phenomenon of spectral bias to fundamentally un-
derstand the impact of spurious correlation to DNNs. Specifically, we hypothesize that low-frequency
components in the functional space are associated to spurious features; as a consequence of spurious
correlations, the model latches onto these low-frequency components, impeding its ability to learn
more complex features which are more predictive beyond the training environment.

3 PRELIMINARIES

In this section, we provide a brief overview of the background and mathematical notation relevant to
our work. We use lowercase bold letters to denote vectors (e.g., y = (y1, . . . , yn) for the training
labels) and uppercase bold letters for the matrices (e.g., X = (x1, . . . , xn)

⊤ ∈ Rn×d where xi ∈ Rd

represent the complete training set with n samples), with (x, y) denoting individual data samples from
the dataset. A DNN is defined as a function fθ : X → Y , parameterized by θ, and the loss function is
defined as L : Y ×Y → R. In this context, X represents the input space, and Y represents the output
space. We write f(X) = (f(x1), . . . , f(xn)) as the vectorization over n samples. Additionally, we
introduce ḟ to denote the time derivative of f .

3.1 SPURIOUS CORRELATION

We consider the setting where the input space is composed of two distinct feature spaces: X :=
Xy × Xs, where Xy denotes the invariant feature space which is exclusively relevant to the task.
On the other hand, Xs denotes the irrelevant feature space associated with certain attribute(s) (e.g.,
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colour, background)1. The composition exhibits in many forms such as overlapping, superposition
or concatenation of Xy and Xs (Fig. 1 showcases several variants of the MNIST dataset for studying
spurious correlations). We use s ∈ S to denote the label for the spurious attribute while the subgroups
are represented by g ∈ G := Y × S. Formally, spurious correlation refers to the scenario where a
statistical dependency between the target Y and the attribute S is observed solely within the training
samples:

Ptrain(X,Y, S) ∝ Ptrain(Y |S)Ptrain(S) (1)

Ptest(X,Y, S) ∝ Ptest(Y )Ptest(S) (2)
where in the training set the target is entangled with the bias attribute Ptrain(Y |S) ̸= Ptrain(Y ).
However, this entanglement is either absent or significantly weakened when considering the test
environment. When machine learning models are trained on data with spurious correlations, they
may mistakenly learn to rely on these correlations instead of capturing the underlying true patterns.
Consequently, the models fail to generalize well to unseen data, leading to poor performance and
inaccurate predictions. Furthermore, if the spurious correlations align with sensitive information
such as race or gender, the models may inadvertently learn and propagate societal biases, leading
to unfair and discriminatory outcomes. Given this challenge, it is imperative to develop machine
learning models that exhibit robustness by effectively distinguishing between genuine correlations
and spurious correlations. By doing so, the adverse effects of spurious correlations can be mitigated,
and the robustness of the models can be improved.

We employ two key performance metrics in our evaluation. The first metric is the average accuracy:
E(x,y) [1 [f(x) = y]], which provides an assessment of the overall model performance. The second
metric is the worst-group accuracy (Sagawa et al., 2020) defined as the ’accuracy’ of the worst-
performing subgroup: ming′∈G E(x,y)|g=g′ [1 [f(x) = y]]. More formally, the worst-group accuracy
is known as the worst true positive rate of one group versus the other groups. This is a commonly
used evaluation measure in the field of subgroup robustness (Idrissi et al., 2022; Yang et al., 2023b).

3.2 NEURAL TANGENT KERNEL

DNNs are commonly trained using gradient descent, following the gradient flow:

θ̇t := θt+1 ← θt − η∇θtL (f(X),y) (3)
where η is the learning rate. For the sake of simplicity, moving forward we will omit the argument in
L. By applying the chain rule, we can derive the training evolution of f :

ḟt(X) = ∇θtf(X) θ̇t

= −η∇θtf(X)∇θtf(X)⊤∇f(X)L.
(4)

The NTK is defined as the product of gradients of the DNN with respect to its outputs evaluated with
θ at time t: κθt(x, x

′) = ∇θtf(x)∇θtf(x
′)⊤. Thus, the expression for the training evolution can be

written as follows:
ḟt(X) = −ηκθt (X,X)∇f(X)L. (5)

Under the infinite-width assumption (Jacot et al., 2018), the training falls in the lazy regime (Chizat
et al., 2020) where the NTK converges to a deterministic kernel at initialization κθt → κθ0 . In other
words, the NTK remains constant at the initialization, enabling us to predict the DNN’s behaviour
a priori without running gradient descent. Again, when the context is clear, we omit the subscript
of κ for simplicity and use H := κ (X,X) ∈ Rn×n to denote the Gram matrix of the training set.
Similarly, the evolution of f on an individual sample x can be described by the following ODE:

ḟt(x) = −κ (x,X)∇f(X)L. (6)

When an L2 loss L(ŷ, y) = 1
2∥ŷ − y∥2 is used, the ODEs can be solved analytically (Lee et al.,

2019),
ft(X) =

(
I − e−ηHt

)
y + e−ηHtf0(X) (7)

where f0 is the initial condition. In the asymptotic regime, as the training progresses indefinitely, the
evolution of f converges towards a kernel machine

f(x)
t→∞≈ κ(x,X)H−1y. (8)

1It is important to note that we make no assumptions about the spurious attribute(s). The framework
presented is not restricted to a single attribute and can be extended to incorporate multiple ones (e.g., race,
gender, etc.) (Wiles et al., 2021).
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4 UNDERSTANDING SPURIOUS FEATURE RELIANCE IN DNNS: SPECTRAL
INSIGHTS

In this section, we present an empirical analysis examining how spurious correlations impact DNNs.
The experimental details can be found in Appendix B.

4.1 DATASETS

We extend the datasets proposed in Kirichenko et al. (2023) and Taghanaki et al. (2022) by introducing
additional variations and complexities. The dataset details are as follows: for every dataset, within
the training set, the negative class is assigned a specific spurious attribute with a probability of α,
while the positive class is assigned the same attribute with a probability of 1− α, where α ∈ [0, 0.5]
(details can be found in Appendix B). In the test set, we use α = 0.5 to replicate a scenario where
spurious correlation is absent. We use bias-aligned to refer to samples from frequently represented
subgroups in the training set, and bias-conflicting for samples from rarely observed subgroups.

CMNIST (Fig. 1a): we establish binary classes by assigning
negative labels to digits 0-4 and positive labels to digits 5-9.
The spurious attribute is the foreground color: red and blue.

Biased-MNIST (Fig. 1b): similar to the setup in CMNIST but
with an additional white patch serves as the spurious attributes.

Biased-CIFAR (Fig. 1c): we use {airplanes,ships} as target
classes. A colored patch (red or blue) randomly appears in the
corners as the spurious attribute.

Fashion-MNIST (Fig. 1d): we use {pullovers,coats} as target
classes with digits zero and one as spurious attributes.

CIFAR-MNIST (Fig. 1e): the same task as CMNIST but with
cats and dogs as spurious attributes.

(a)

(b)

(c)

(d)

(e)

Figure 1: Datasets with spurious
features.

4.2 DECOMPOSITION OF f(x)

Since the kernel matrix H for the training set is positive definite, it can be factorized as H = UΛU⊤,
where U = (u1, . . . ,un) is an orthogonal matrix whose columns are the eigenvectors of H, and
Λ = diag {λ1, . . . , λn} with λ1 ⩾ λ2 ⩾ · · · ⩾ λn is a diagonal matrix containing the corresponding
eigenvalues in decreasing order. Then, we can rewrite Eq. (7) as

ft(X)− y = Ue−ηΛtU⊤ (f0(X)− y) , (9)

by applying a change of basis, we obtain

U⊤ (ft(X)− y) = e−ηΛtU⊤ (f0(X)− y) . (10)

The above expression implies that the update during training is performed along the directions defined
by the eigenbasis where the magnitudes are scaled by the corresponding eigenvalues. In other words,
each basis function in U converges with an exponential decay rate of ηλit.

Based on the decomposition in Eq. (10), training a DNN with gradient descent is akin to sequentially
fitting multiple functions, where the rate of fitting is governed by the associated eigenvalues. Moreover,
we can interpret the eigenfunctions as distinct hypotheses that serve to separate examples in the input
space. These hypotheses can manifest in various forms, with some relying on low-level features while
others depend on higher-level features (Tsilivis & Kempe, 2022). Furthermore, we can establish a
connection between this interpretation and the well-known fact that DNNs tend to exhibit a strong
reliance on spurious attributes during the early stages of training, which prompts the following
question: given that eigenfunctions with large eigenvalues are fitted more rapidly, does this imply that

2The first eigenfunction f1(x), being a constant classifier, is excluded as its gradient is directly proportional
to the input.
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Figure 2: Input images are shown on the left, the middle column displays saliency maps for various
eigenfunctions with higher activation in the spurious feature region, and the right column displays the
core feature region. The indices of the fi(x) are displayed on the top2. Top row: Fashion-MNIST
dataset; bottom row: Biased-MNIST dataset. The Biased-CIFAR example is illustrated in Fig. C.3.

they are inherently tied to the spurious attributes? The prediction score made by f(x) (in Eq. (8))
(e.g., as a binary classification score ranging from zero to one) for a given sample x is obtained by a
weighted (by eigenvalues) sum of scores given by multiple unique3 functions fi(x). That is:

f(x) =

n∑
i=1

fi(x) , fi(x) =
1

λi
κ(x,X)(ui ⊗ ui)y. (11)

We can interpret fi(x) as functions that correspond to specific features in the input space. To under-
stand the role of individual eigenfunctions, we evaluate the influence of the input on the prediction
for each fi(x) by computing the derivative of the loss with respect to the input: ∇xL(fi(x), y). This
gradient map, also known as the saliency map (Simonyan et al., 2014), is a standard attribution
technique used to interpret the importance of features for DNNs in making predictions. The saliency
maps presented in Fig. 2 highlight two categories: saliency maps for fi(x) that rely on spurious
features Xs and saliency maps for fi(x) that rely on core features Xy . We observe that the lower-order
eigenfunctions tend to exhibit a greater reliance on the spurious features, while the higher-order
eigenfunctions demonstrate a stronger dependence on the core features.

4.3 FEATURE COMPLEXITY

0 0.5 1
95

99

Figure 3: Training accuracy of Hk.
x-axis: normalized index k.

One quantitative method for assessing feature complexity is
by evaluating the number of eigenbases required to model the
training samples. In this context, simpler features demand
fewer basis functions for an accurate fit, while more complex
features tend to necessitate a larger number of basis functions
to effectively capture the data.

Fig. 3 visualizes the performance when considering a subset of
eigenbases (or a truncated spectrum) i.e., Hk = (u1, . . . ,uk)×
diag{λ1, . . . , λk} × (u1, . . . ,uk)

⊤. We observe that the sim-
plest feature, distinguishing between digit zero and digit one (ZeroOne), achieves 100% training
accuracy with just a few of the top eigenbases. As the complexity of the features increases, such as in
the case of binarized MNIST, approximately the top 20% of the basis functions are needed to attain a
99% accuracy rate. For distinguishing between pullover and coat (PulloverCoat), the top 30% is
required, and in the case of distinguishing between cats and dogs, the top 90% are necessary.

This measure highlights the potential challenge in learning the task when the feature domain consists
of multiple features that vary significantly in complexity. For instance, the feature of dataset
Fashion-MNIST is composed of ZeroOne and PulloverCoat. Subjected to spurious correlations,
we observe a decline in performance especially the worst-group performance (in Table C.2) when

3The uniqueness stems from the orthogonality of the eigenvectors.
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Figure 4: Alignment Ai(M) (y-axis) of eigenvectors and target labels y (red dots), and alignment of
eigenvectors and bias labels s (blue dots) is shown across frequency spectrums (x-axis) on both biased
and unbiased datasets. Top row: low-frequency to mid-frequency, bottom row: mid-frequency to
high-frequency. Only on the unbiased dataset, the eigenvectors from the low-frequency band exhibit
a higher alignment with the target (red dots), particularly in the cases of CMNIST and Biased-MNIST.
We attribute this to the fact that the spurious features being considerably simpler compared to the
core feature. However, the components from the mid-frequency band consistently display a stronger
alignment with the target, irrespective of the presence of spurious correlation.

the feature complexity of the target (PulloverCoat) exceeds that of the bias (ZeroOne). However,
when the situation is reversed (with ZeroOne as the target and PulloverCoat as the bias), we
observed no generalization issue. In a more extreme scenario where the bias is completely correlated
with the target (α = 0) on CIFAR-MNIST, there are no generalization issues until roles are reversed.
These findings provide an insight into our research question by revealing that poor robustness can be
attributed not only to statistical bias (spurious correlations) in the dataset but also to discrepancies in
feature complexity.

0 0.05 0.1 0.15 0.2

CMNIST
Fashion-MNIST
Biased-MNIST
Biased-CIFAR

unbiased
biased

Figure 5: The y-axis is the function
1
k

∑k
j=1 1

[
Ai(yy

⊤) > Ai(ss
⊤)

]
and the x-axis is k, the normalized
frequency index.

Alignment Here, we measure the alignment between the
Gram matrix H and the target labels y, as well as between
the spurious labels s (Cristianini et al., 2001):

A(M) =
⟨H,M⟩F√

⟨H,H⟩F⟨M,M⟩F
(12)

where M ∈
{
yy⊤, ss⊤

}
. Using the decomposition of H,

we can express the alignment as a sum of contributions from
individual eigenvectors:

A(M) =

n∑
i=1

Ai(M) , Ai(M) =
λi⟨ui ⊗ ui,M⟩F√∑n

i=1 λi

√
⟨M,M⟩F

(13)

The alignment quantity can be used as a proxy for evaluating the extent to which each target function,
derived from the eigenbasis, effectively captures the label information. In other words, by measuring
the relative angle between each component and the training labels, we can assess their contribution to
the overall loss, as defined in Eq. (10). As observed in Fig. 4, low-order components (eigenvectors
with larger eigenvalues) are more strongly associated with spurious labels s compared to target labels
y when there is a presence of spurious correlation in the dataset.

More specifically, Fig. 5 shows the (normalized) overall alignment when considering the top k (sorted
by descending order of associated eigenvalues) eigenbases. The slope indicates the extent to which
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the top k components align with y rather than s. The slopes for unbiased datasets are consistently
steeper compared to that of biased datasets which implies that components associated with strong
bias (characterized by larger eigenvalues) tend to align more with s in the biased scenarios, indicating
that DNNs rely more on the bias attribute in the presence of spurious correlation.

5 ADDRESSING SPURIOUS FEATURE RELIANCE WITH SPECTRUM
MODIFICATION

20 21 22 23 24
55

60

65

Figure 6: Worst-group
accuracy with varying
depth on CMNIST and
Fashion-MNIST.

Ideally, our aim is to design a network architecture that is immune to
spurious corrections. However, in practice, the design is challenged by a
lack of well-defined principles, primarily due to our limited understanding
of which specific neural architecture can provide effective solutions. Our
empirical analysis reveals that spurious features are prioritized in learning
and inference due to their simplicity. Furthermore, the strong correlation
between spurious attributes and target labels in the training data leads to
a stronger alignment, causing predictions to focus on spurious features
and resulting in poor generalization. As visually depicted in Fig. C.1,
shallow (underparameterized) networks exhibit narrower spectra, while
deeper (overparameterized) networks showcase broader spectra. Illustrated in Fig. 6, there is a
non-monotonic trend indicating that increasing network depth (or increasing spectral width) enhances
subgroup robustness but starts deteriorating after reaching an optimal depth. This observation aligns
with the findings of Yang & Salman (2020), highlighting that while deeper networks can learn more
complex features, excessive depth may lead to deterioration in performance.

Moreover, based on our discovery that eigenfunctions associated with Xs and Xy lie within different
spectral ranges, a strategy to mitigate spurious correlation involves raising the values of λi for
eigenfunctions associated with Xy which essentially results in a wider spectrum. The duality of
kernel states that stretching the spectrum of a kernel corresponds to shrinking the kernel in the spatial
space, thereby enhancing the capability to capture high-frequency features. As the spectrum widens,
the kernel tends to the behaviour of the Dirac delta function such that two points are considered
close only when they possess finely detailed (high-frequency) features in common. Consequently,
a kernel with an extensive spectrum tends to incorporate noisy features resulting in a diagonally
dominant kernel causing overfitting. With these observations, we seek to approach this issue from a
different angle – specifically, can we reverse engineer a kernel that promotes high generalization to
uncover the corresponding neural architecture? However, directly constructing such a kernel can be
practically challenging and may require heuristic computations on the holdout dataset. Instead, we
adopt an alternative approach to construct a new kernel by manipulating the kernel spectrum. Given
that κ(x, x′) =

∑∞
i=1 λiϕi(x)ϕi(x

′), where ϕ is the eigenfunction of κ, we introduce a new kernel κ̃
from the eigenspace of κ by modifying the eigenvalues: κ̃(x, x′) =

∑∞
i=1 ν(λi)ϕi(x)ϕi(x

′), with
ν : R→ R>0 ensuring positive definiteness. Empirically, we can modify the existing Gram matrix
H:

κ̃(X,X) = H̃ = UΛ̃U⊤ (14)

where Λ̃ = diag {ν(λ1), . . . , ν(λn)}. This approach can be interpreted as changing the spectral
characteristics of NTK. By tuning the spectrum λ via ν, we aim to strike a better balance between
core and spurious features, ultimately improving the generalization of the model. Here we use the
following ν:

ν(λi) = λi

(
e−γi + β

)
(15)

where i ∈
[
1
n , 1

]
is the normalized frequency index, and the parameters γ > 0 and β ≥ 0 determine

the spectrum of k̃. Original eigenvalues λ are scaled by the factor
(
e−γi + β

)
which is greater than 1

when β > 0 for low-order components (small i) and tends to β for high-order components (larger i),
while γ controls the decay rate of the eigenvalues, in other words, the shape of the spectrum.

Table 1 highlights a substantial enhancement in generalization performance through the modification
of the kernel spectrum. We observed a significant decrease in the average-worst performance gap
∆ coinciding with an increase in overall average performance. This improvement underscores the
potential of tuning the spectrum to guide the model away from learning overly simple features
that could otherwise impair overall performance. Moreover, Fig. 7 illustrates the dynamics of the
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Figure 7: Average accuracy (dashed line) and the accuracy for every subgroup (four color lines) with
original NTK κ (top row) and the modified NTK κ̃ (bottom row). The x-axis corresponds to the time
in the ODE Eq. (7). Subgroups with aligned biases (red and purple lines) achieved faster optimal
performance than those with conflicting biases (blue and green lines). After spectrum modification,
all subgroups converged to similar performance levels.

performance. Subgroups with aligned biases reached optimal performance quicker than those with
conflicting biases, while subgroups with conflicting biases eventually converged to performance
levels below the average. However, following the spectrum modification, all subgroups converged
to similar performance levels. The choice of hyperparameter selection for γ and β is discussed in
Appendix C.1.

κ κ̃

avg. worst ∆ avg. worst ∆

CMNIST 83.8±0.4 67.5±0.7 16.3±0.4 93.1±0.5 88.5±1.3 4.6±0.8

Fashion-MNIST 83.2±0.9 66.2±2.6 16.9±1.9 85.1±0.2 76.8±1.9 8.3±1.8

Biased-MNIST 83.8±1.8 67.1±3.8 16.7±2.1 96.9±0.4 95.9±0.9 1.0±0.6

Biased-CIFAR 80.6±1.4 64.6±1.2 16.0±0.9 83.0±1.5 75.9±1.0 7.1±0.6

Table 1: Performance of NTK κ and NTK with modified spectrum κ̃ on various datasets. Here, ∆
corresponds to the gap between the average performance and the worst-group performance (a smaller
gap indicates that the model exhibits less preference for any specific subgroups).

6 CONCLUSIONS AND FUTURE WORK

In this work, we establish a fundamental connection between the phenomenon of spectral bias
in DNNs and subgroup robustness. In the first part of our studies, we discovered that spurious
correlations within the dataset negatively impact DNN generalization only when the bias attributes’
complexity significantly lags behind that of the core attributes. Specifically, we demonstrate that
low-frequency components correspond to simplistic features. When these simplistic features become
entangled with the target, despite lacking predictive power, DNNs will overly rely on them during
inference.

Building upon this insight, we introduce a novel approach involving the modification of the NTK
spectrum to address the subgroup robustness issue. We empirically show that this modification
effectively guides DNNs to bypass simplistic features, thereby improving the robustness. This
approach solely alters network properties, eliminating the requirement for knowledge of spurious
attributes, auxiliary networks, specific loss functions, or the privilege of changing training samples.
One shortcoming of the method is the computational constraint: constructing a Gram matrix requires
O(n2) operations and the decomposition requires O(n3) operations, which can be a significant
challenge for larger datasets. In future work, one could explore more practical approaches to adapt
the modification of network spectra, such as controlling the spectrum during the feature learning
process (Tancik et al., 2020; Tiwari & Shenoy, 2023).
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SUPPLEMENTARY MATERIAL

This is the supplementary material for the paper titled “UNDERSTANDING AND ADDRESSING
SPURIOUS CORRELATION VIA NEURAL TANGENT KERNELS: A SPECTRAL BIAS PERSPECTIVE”.
Section A provides additional discussion on the NTK. Further information regarding the experiments,
including details on the inference method, network architecture, and datasets, can be found in
Section B. Additional results are presented in Section C, while the process of hyperparameter
selection is discussed in Section C.1. Results related to the dynamical aspect are provided in
Section C.2 and Section C.3, and Section C.4 provides results for finite networks trained with SGD.

A DISCUSSION ON NEURAL TANGENT KERNELS

The NTK have emerged as a significant area of research within the deep learning community. Initially
introduced by Jacot et al. (2018), NTKs provide a mathematical framework to analyze the behavior
of deep neural networks during training. On the theoretical front, works such as Lee et al. (2019)
have explored the NTK’s connection to the infinite-width limit of neural networks, shedding light on
the linear behavior of these models. Additionally, several studies have investigated the role of NTKs
in understanding optimization dynamics during training (Arora et al., 2019a; Chizat et al., 2020; Cao
& Gu, 2019; Arora et al., 2022). Furthermore, Arora et al. (2019b) has extended the application of
NTKs to convolutional neural networks (CNNs), expanding their relevance to various deep learning
architectures. Overall, the growing body of work on NTKs underscores their significance in advancing
our understanding of deep learning theory and enhancing practical training methods. Our study
utilizes this framework to address spurious feature reliance in deep learning

B EXPERIMENTAL DETAILS

For the stationary setup, we follow a similar experimental setup to that described in Lee et al. (2020),
where we compute the prediction using the exact inference (in Eq. (8)) which corresponds to the mean
prediction of infinitely many ensembles. While in the dynamical setup, we compute the prediction by
solving the ODE (in Eq. (6)). The finite-width network is trained using a SGD optimizer with a fixed
learning rate of 10−3 and a momentum of 0.9 for 10,000 training steps.

Architectures By default, we use the standard parametrization (Sohl-Dickstein et al., 2020), the
rectified linear unit (ReLU) non-linearity and initialization with variance σ2

W = 2 and σ2
b = 0.1. The

abbreviation “CNN” refers to convolutional neural networks, with the number indicating the depth of
the network. All experiments were conducted using the Neural Tangents library (Novak et al., 2020)
and JAX (Bradbury et al., 2018). The finite-width network architecture (in Section C.4) consists of 4
blocks of {Conv2d, BatchNorm2d, ReLU, MaxPool2d} as the backbone and one linear layer as the
classifier.

Datasets For all datasets, the training set consists of 10,000 samples, while both the test and
validation sets consist of 2,000 samples, with the exception of Biased-CIFAR, which contains 1,000
samples in each set. All datasets are constructed using various existing datasets (LeCun & Cortes,
2010; Xiao et al., 2017; Krizhevsky & Hinton, 2009). We used different values of α for each dataset:
α = 0.05 for CMNIST, α = 0.1 for Fashion-MNIST, α = 0.03 for Biased-MNIST, and α = 0.2 for
Biased-Fashion. The samples are normalized to the range [0, 1] before being fed into the network.

C ADDITIONAL RESULTS

To assess the reliance of predictions on spurious attributes, we conduct an experiment where we
manipulate the training labels during the inference process. In Table C.2 we report the average
accuracy and the worst group accuracy of the NTKs on the unbiased test set across different datasets.
Initially, we use the target classes Y as the training labels and keep the spurious attributes S unchanged.
This configuration resulted in a substantial discrepancy between the average performance and the
worst group performance. However, when we reverse the roles and use the spurious attributes as
the training labels while assigning the target classes as spurious attributes, we observe a significant
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reduction in the performance gap, indicating a strong reliance on spurious attributes. Our NTK results
are consistent with the findings presented in Nam et al. (2020), demonstrating that by appropriately
choosing the attributes for Y and S, the degradation of the worst group performance can be alleviated,
and on all synthetic datasets, the degradation is entirely eliminated.

Dataset Target Bias Biased Unbiased
Avg. Worst ∆ Avg. Worst ∆

CMNIST digit color 83.8±0.4 67.5±0.7 16.3±0.4 97.0±0.3 96.1±0.6 0.8±0.3

color digit 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 0.0±0.0

Fashion-MNIST fashion digit 83.2±0.9 66.2±2.6 16.9±1.9 91.8±0.7 90.3±1.2 1.6±0.6

digit fashion 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 99.0±0.1 0.0±0.1

Biased-MNIST digit patch 83.8±1.8 67.1±3.8 16.7±2.1 97.7±0.4 96.9±0.5 0.8±0.2

patch digit 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 0.0±0.0

Biased-CIFAR object color patch 80.6±1.4 64.6±1.2 16.0±0.9 86.3±1.0 83.7±0.7 2.6±0.5

color patch object 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 0.0±0.0

Table C.2: Performance of NTK across multiple datasets, considering the presence or absence of
spurious correlations in the training set, and varying the target and bias.

Characteristics of NTKs in relation to group robustness One aspect we investigate is the gradient
similarities among subgroups. As shown in Fig. C.1, we observe that subgroups having the same
spurious attributes exhibit higher gradient similarities than that of subgroups belonging to the same
target classes. This suggests that DNNs place greater emphasis on the (dis)similarity of examples
based on the spurious features rather than the core features. As the depth of DNNs increases, the
distinguishability of samples in terms of gradients becomes less discernible which explains the
observed drop in performance. Another explanation can be drawn from the spectrum (Fig. C.1, right)
where deeper networks induce wider spectrum which capture wider input bandwidths (Tancik et al.,
2020; Yang et al., 2022a). Consequently, the poor generalization performance can be attributed to the
fitting of high-frequency features (at the tail of spectrum), which often contain noise.
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Figure C.1: Left: Gradient similarity over different subgroups. The subscript of y represents the
target class (“−” denotes digits < 5 and “+” otherwise) and the color represents spurious class (red
and blue). Despite not belonging to the same target class, the spuriously correlated subgroups exhibit
high gradient similarity. Right: kernel spectra, the width grows as the depth increases.

Figure C.2: Test accuracy (average) of minority subgroups with
mixture of core and spurious eigenfunctions. We rank the rele-
vance of eigenfunctions with respect to the core attributes based
on the alignment difference between the target labels and the
spurious labels, denoted as Ai(yy

⊤) − Ai(ss
⊤). We observe a

proportional deterioration in performance as the number of spuri-
ous eigenfunctions used in the prediction increases. The saliency
maps for core and spurious eigenfunctions based on the alignment
difference are displayed in Fig. C.5.
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L
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2nd 3rd 4th 6th 9th 5th 7th 14th 25th 36th

Figure C.3: Additional visualizations complementing Fig. 2 for the Biased-CIFAR dataset. Note that
there are certain low-frequency components, specifically those at 5 and 7, exhibit higher activation
within the core feature region. This is due to the overlapping feature complexity between Xx and Xs,
which explains the entanglement in the alignment with respect to y and s within the low-frequency
spectrum in Fig. 4.

Figure C.4: Performance on Cifar-MNIST with
a complete correlation (α = 0) between the tar-
get and the bias. No deterioration in performance
when the feature complexity of bias is larger than
that of the target.

Target Bias Avg. Worst ∆

digit animal 96.1±0.6 93.6±0.9 2.6±0.4

animal digit 52.1±0.9 5.0±1.0 47.0±0.8

· · ·

· · ·

Ai(yy>)−Ai(ss>)

Figure C.5: Saliency maps of eigenfunctions ranked by the alignment gap Ai(yy
⊤)−Ai(ss

⊤): most
left depicts eigenfunctions highly aligned with s while most right represents eigenfunctions highly
aligned with y. Particularly in the case of Biased-MNIST that the activation of Xs is prominently
higher than that of Xy for eigenfunctions associated with spurious attribute. This might be due to the
fact that in Fashion-MNIST Xy and Xs share common components, so certain eigenfunctions will
rely on features from both domains.

C.1 HYPERPARAMETERS

Figures C.6 and C.7 depict the performance across a parameter sweep, measured in terms of average
accuracy, worst-class accuracy, and worst-group accuracy. The worst-class accuracy is defined as
the accuracy of the poorest-performing class, calculated as miny′∈Y E(x,y)|y=y′ [1 [f(x) = y]].

We observed a consistent trend where larger values of γ and 0 < β < 1 lead to the most significant
enhancement in robustness. As recommended by Yang et al. (2023b), the results presented in Table 1
are based on worst-class accuracy on the validation set as the criteria.

Selection CMNIST Fashion-MNIST Biased-MNIST Biased-CIFAR

average 88.5±1.3 76.8±1.9 95.9±0.9 75.9±1.0

worst-class 88.5±1.3 76.8±1.9 95.9±0.9 75.9±1.0

worst-group 90.8±1.0 78.5±1.7 96.3±0.7 79.6±1.8

oracle 90.8±1.0 78.8±1.5 96.3±0.7 79.6±1.8

Table C.3: Test worst-group accuracy with different selection strategies on the validation set, where
’oracle’ refers the best worst-group accuracy achieved on the test. In
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Figure C.6: Performance on the validation set with varying γ (x-axis) and β (y-axis).

CMNIST Fashion-MNIST Biased-MNIST Biased-CIFAR

10−1 100.5 102
0.0

0.5

1.0

β

γ

0 20 40 60 80 100

W
or

st
G

ro
up

W
or

st
C

la
ss

Av
er

ag
e

Figure C.7: Performance on the test set with varying γ (x-axis) and β (y-axis).
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C.2 DYNAMICAL SETTING

This section provides visualizations of the dynamics of training loss (Fig. C.8), training accuracy
(Fig. C.9), test loss (Fig. C.10), and test accuracy (Fig. C.11) with an infinite-width network. In the
presence of spurious correlations, all bias-conflicting subgroups tend to converge slowly on the loss
compared to the bias-aligned subgroups, ultimately resulting in suboptimal performance on the test
set.
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Figure C.8: training loss
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Figure C.9: training accuracy
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Figure C.10: test loss
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Figure C.11: test accuracy

C.3 DYNAMICAL SETTING WITH MODIFIED SPECTRUM

This section provides the complete results of the dynamical setting (Eq. (7)) with the spectrum
modification. Figures C.12 and C.13 present the performance on the training set, while Figs. C.14
and C.15 present the performance on the test set.
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Figure C.12: training loss (with modified spectrum)
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Figure C.13: training accuracy (with modified spectrum)
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Figure C.14: test loss (with modified spectrum)
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Figure C.15: test accuracy (with modified spectrum)

C.4 FINITE WIDTH NEURAL NETWORKS

The learning curves depicted below align with the trends observed in Section C.2. Specifically,
they illustrate that bias-aligned subgroups exhibit much faster convergence compared to the bias-
conflicting subgroups and ultimately achieve performance levels above the average, while the latter
tend to perform below the average. Table C.4 corresponds to Table C.2, in which we evaluate the
performance of a finite-width DNN using its kernel representation. Figures C.16 to C.19 depict the
corresponding results of Section C.2.

Dataset Target Bias Biased Unbiased
Avg. Worst ∆ Avg. Worst ∆

CMNIST digit color 83.9±1.1 67.2±1.2 16.7±0.7 95.9±0.4 94.8±0.3 1.1±0.3

color digit 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 0.0±0.0

Fashion-MNIST fashion digit 76.0±1.6 51.2±2.7 24.7±1.8 84.3±0.6 81.5±1.5 2.7±1.0

digit fashion 100.0±0.0 99.9±0.1 0.0±0.1 99.9±0.1 99.8±0.2 0.1±0.1

Biased-MNIST digit patch 82.8±2.2 62.2±6.4 20.6±4.3 97.5±0.5 96.6±0.9 0.8±0.4

patch digit 99.6±0.5 98.5±2.0 1.1±1.5 99.9±0.2 99.7±0.3 0.2±0.2

Biased-CIFAR object color patch 72.5±2.6 59.1±1.7 13.4±2.5 74.6±2.6 71.7±1.5 2.9±1.8

color patch object 99.7±0.3 99.1±0.6 0.5±0.3 99.6±0.4 99.1±0.5 0.5±0.2

Table C.4: Performance with the empirical NTK.

Dataset Target Bias Biased Unbiased
Avg. Worst ∆ Avg. Worst ∆

CMNIST digit color 86.7±1.3 72.2±2.1 14.5±1.1 97.6±0.3 96.7±0.3 0.9±0.4

color digit 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 0.0±0.0

Fashion-MNIST fashion digit 84.7±0.8 69.3±2.4 15.5±2.6 92.5±0.6 90.8±1.1 1.6±0.8

digit fashion 100.0±0.0 99.9±0.1 0.0±0.1 99.9±0.1 99.8±0.2 0.1±0.1

Biased-MNIST digit patch 87.5±1.6 73.5±4.0 14.0±2.5 98.0±0.3 97.5±0.5 0.6±0.4

patch digit 100.0±0.0 100.0±0.1 0.0±0.1 100.0±0.0 100.0±0.0 0.0±0.0

Biased-CIFAR object color patch 83.9±0.3 71.1±2.1 12.7±2.2 88.6±2.0 85.9±2.2 2.7±0.6

color patch object 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 0.0±0.0

Table C.5: Performance with SGD training.
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Figure C.16: training loss
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Figure C.17: training accuracy
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Figure C.18: test loss
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Figure C.19: test accuracy
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