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Abstract

Multivariate time series forecasting plays a crucial role in various fields such as fi-
nance, traffic management, energy, and healthcare. Recent studies have highlighted
the advantages of channel independence to resist distribution drift but neglect
channel correlations, limiting further enhancements. Several methods utilize mech-
anisms like attention or mixer to address this by capturing channel correlations,
but they either introduce excessive complexity or rely too heavily on the corre-
lation to achieve satisfactory results under distribution drifts, particularly with a
large number of channels. Addressing this gap, this paper presents an efficient
MLP-based model, the Series-cOre Fused Time Series forecaster (SOFTS), which
incorporates a novel STar Aggregate-Redistribute (STAR) module. Unlike tradi-
tional approaches that manage channel interactions through distributed structures,
e.g., attention, STAR employs a centralized strategy to improve efficiency and
reduce reliance on the quality of each channel. It aggregates all series to form
a global core representation, which is then dispatched and fused with individual
series representations to facilitate channel interactions effectively. SOFTS achieves
superior performance over existing state-of-the-art methods with only linear com-
plexity. The broad applicability of the STAR module across different forecasting
models is also demonstrated empirically. We have made our code publicly available
at https://github.com/Secilia-Cxy/SOFTS.

1 Introduction

Time series forecasting plays a critical role in numerous applications across various fields, including
environment [9], traffic management [15], energy [16], and healthcare [27]. The ability to accurately
predict future values based on previously observed data is fundamental for decision-making, policy
development, and strategic planning in these areas. Historically, models such as ARIMA and
Exponential Smoothing were standard in forecasting, noted for their simplicity and effectiveness in
certain contexts [2]. However, the emergence of deep learning models, particularly those exploiting
structures like Recurrent Neural Networks (RNNs) [14, 3, 29] and Convolutional Neural Networks
(CNN) [1, 8], has shifted the paradigm towards more complex models capable of understanding
intricate patterns in time series data. To overcome the inability to capture long-term dependencies,
Transformer-based models have been a popular direction and achieved remarkable performance,
especially on long-term multivariate time series forecasting [48, 28, 26].

Earlier on, Transformer-based methods perform embedding techniques like linear or convolution
layers to aggregate information from different channels, then extract information along the temporal
dimension via attention mechanisms [48, 35, 49]. However, such channel mixing structures were
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found vulnerable to the distribution drift, to the extent that they were often less effective than simpler
methods like linear models [45, 11]. Consequently, some studies adopted a channel-independence
strategy and achieved favorable results [28, 23, 34]. Yet, these methods overlooked the correlation
between channels, thereby hindering further improvements in model performance. Subsequent
studies captured this correlation information through mechanisms such as attention, achieving better
outcomes, and demonstrating the necessity of information transfer between channels [47, 33, 26].
However, these approaches either employed attention mechanisms with high complexity [26] or
struggled to achieve state-of-the-art (SOTA) performance [7]. Therefore, effectively integrating the
robustness of channel independence and utilizing the correlation between channels in a simpler and
more efficient manner is crucial for building better time series forecasting models.

In response to these challenges, this study introduces an efficient MLP-based model, the Series-cOre
Fused Time Series forecaster (SOFTS), designed to streamline the forecasting process while also
enhancing prediction accuracy. SOFTS first embeds the series on multiple channels and then extracts
the mutual interaction by the novel STar Aggregate-Redistribute (STAR) module. The STAR at the
heart of SOFTS ensures scalability and reduces computational demands from the common quadratic
complexity to only linear. To achieve that, instead of employing a distributed interaction structure,
STAR employs a centralized structure that first gets the global core representation by aggregating
the information from different channels. Then the local series representation is fused with the core
representation to realize the indirect interaction between channels. This centralized interaction not
only reduces the comparison complexity but also takes advantage of both channel independence and
aggregated information from all the channels that can help improve the local ones [40]. Our empirical
results show that our SOFTS method achieves better results against current state-of-the-art methods
with lower computation resources. Besides, SOFTS can scale to time series with a large number of
channels or time steps, which is difficult for many methods based on Transformer without specific
modification. Last, the newly proposed STAR is a universal module that can replace the attention in
many models. Its efficiency and effectiveness are validated on various current transformer-based time
series forecasters. Our contributions are as follows:

1. We present Series-cOre Fused Time Series (SOFTS) forecaster, a simple MLP-based model that
demonstrates state-of-the-art performance with lower complexity.

2. We introduce the STar Aggregate-Redistribute (STAR) module, which serves as the foundation of
SOFTS. STAR is designed as a centralized structure that uses a core to aggregate and exchange
information from the channels. Compared to distributed structures like attention, the STAR not
only reduces the complexity but also improves robustness against anomalies in channels.

3. Lastly, through extensive experiments, the effectiveness and scalability of SOFTS are validated.
The universality of STAR is also validated on various attention-based time series forecasters.

2 Related Work

Time series forecasting. Time series forecasting is a critical area of research that finds applications
in both industry and academia. With the powerful representation capability of neural networks, deep
forecasting models have undergone a rapid development [22, 38, 37, 4, 5]. Two widely used methods
for time series forecasting are recurrent neural networks (RNNs) and convolutional neural networks
(CNNs). RNNs model successive time points based on the Markov assumption [14, 3, 29], while
CNNs extract variation information along the temporal dimension using techniques such as temporal
convolutional networks (TCNs) [1, 8]. However, due to the Markov assumption in RNN and the local
reception property in TCN, both of the two models are unable to capture the long-term dependencies
in sequential data. Recently, the potential of Transformer models for long-term time series forecasting
tasks has garnered attention due to their ability to extract long-term dependencies via the attention
mechanism [48, 35, 49].

Efficient long-term multivariate forecasting and channel independence. Long-term multivariate
time series forecasting is increasingly significant in decision-making processes [9]. While Trans-
formers have shown remarkable efficacy in various domains [32], their complexity poses challenges
in long-term forecasting scenarios. Efforts to adapt Transformer-based models for time series with
reduced complexity include the Informer, which utilizes a probabilistic subsampling strategy for more
efficient attention mechanisms [48], and the Autoformer, which employs autocorrelation and fast
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Figure 1: Overview of our SOFTS method. The multivariate time series is first embedded along the
temporal dimension to get the series representation for each channel. Then the channel correlation is
captured by multiple layers of STAR modules. The STAR module utilizes a centralized structure that
first aggregates the series representation to obtain a global core representation, and then dispatches
and fuses the core with each series, which encodes the local information.

Fourier transforms to expedite computations [35]. Similarly, FEDformer applies attention within the
frequency domain using selected components to enhance performance [49]. Despite these innovations,
models mixing channels in multivariate series often exhibit reduced robustness to adapt to distribution
drifts and achieve subpar performance [45, 11]. Consequently, some researchers have adopted a
channel-independent approach, simplifying the model architecture and delivering robust results as
well [28, 23]. However, ignoring the interactions among variates can limit further advancements.
Recent trends have therefore shifted towards leveraging attention mechanisms to capture channel
correlations [47, 33, 26]. Even though the performance is promising, their scalability is limited on
large datasets. Another stream of research focuses on modeling time and channel dependencies
through simpler structures like MLP [46, 7, 42]. Yet, they usually achieve sub-optimal performance
compared to SOTA transformer-based methods, especially when the number of channels is large.

In this paper, we propose a new MLP-based method that breaks the dilemma of performance and
efficiency, achieving state-of-the-art performance with merely linear complexity to both the number
of channels and the length of the lookback window.

3 SOFTS

Multivariate time series forecasting (MTSF) deals with time series data that contain multiple variables,
or channels, at each time step. Given historical values X ∈ RC×L where L represents the length of
the lookback window, and C is the number of channels. The goal of MTSF is to predict the future
values Y ∈ RC×H , where H > 0 is the forecast horizon.

3.1 Overview

Our Series-cOre Fused Time Series forecaster (SOFTS) comprises the following components and its
structure is illustrated in Figure 1.

Reversible instance normalization. Normalization is a common technique to calibrate the distribu-
tion of input data. In time series forecasting, the local statistics of the history are usually removed to
stabilize the prediction of the base forecaster and restore these statistics to the model prediction [17].
Following the common practice in many state-of-the-art models [28, 26], we apply reversible instance
normalization which centers the series to zero means, scales them to unit variance, and reverses the
normalization on the forecasted series. For PEMS dataset, we follow Liu et al. [26] to selectively
perform normalization according to the performance.

Series embedding. Series embedding is an extreme case of the prevailing patch embedding in time
series [28], which is equivalent to setting the patch length to the length of the whole series [26]. Unlike
patch embedding, series embedding does not produce extra dimension and is thus less complex than
patch embedding. Therefore, in this work, we perform series embedding on the lookback window.
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Figure 2: The comparison of the STAR module and several common modules, like attention, GNN
and mixer. These modules employ a distributed structure to perform the interaction, which relies on
the quality of each channel. On the contrary, our STAR module utilizes a centralized structure that
first aggregates the information from all the series to obtain a comprehensive core representation.
Then the core information is dispatched to each channel. This kind of interaction pattern reduces not
only the complexity of interaction but also the reliance on the channel quality.

Concretely, we use a linear projection to embed the series of each channel to S0 = RC×d, where d is
the hidden dimension:

S0 = Embedding(X). (1)

Channel interaction. The series embedding is refined by multiple layers of STAR modules:

Si = STAR(Si−1), i = 1, 2, . . . , N. (2)

The STAR module utilizes a star-shaped structure that exchanges information between different
channels, as will be fully described in the next section.

Linear predictor. After N layers of STAR, we use a linear predictor (Rd 7→ RH ) to produce the
forecasting results. Assume the output series representation of layer N to be SN , the prediction
Ŷ ∈ RC×H is computed as:

Ŷ = Linear(SN ).

3.2 STar Aggregate-Redistribute Module

Our main contribution is a simple but efficient STar Aggregate-Redistribute (STAR) module to
capture the dependencies between channels. Existing methods employ modules like attention to
extract such interaction. Although these modules directly compare the characteristics of each pair,
they are faced with the quadratic complexity related to the number of channels. Besides, such a
distributed structure may lack robustness when there are abnormal channels for the reason that they
rely on the extract correlation between channels. Existing research on channel independence has
already proved the untrustworthy correlations on non-stationary time series [45, 11]. To this end,
we propose the STAR module to solve the inefficiency of the distributed interaction modules. This
module is inspired by the star-shaped centralized system in software engineering, where instead of
letting the clients communicate with each other, there is a server center to aggregate and exchange
the information [30, 10], whose advantage is efficient and reliable. Following this idea, the STAR
replaces the mutual series interaction with the indirect interaction through a core, which represents
the global representation across all the channels. Compared to the distributed structure, STAR takes
advantage of the robustness brought by aggregation of channel statistics [11], and thus achieves even
better performance. Figure 2 illustrates the main idea of STAR and its difference between existing
models like attention [32], GNN [19] and Mixer [31].

Given the series representation of each channel as input, STAR first gets the core representation of the
multivariate series, at the heart of our SOFTS method. We define the core representation as follows:
Definition 3.1 (Core Representation). Given a multivariate series with C channels {s1, s2, . . . , sC},
the core representation o is a vector generated by an arbitrary function f with the following form:

o = f(s1, s2, . . . , sC)
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The core representation encodes the global information across all the channels. To obtain such repre-
sentation, we employ the following form, which is inspired by the Kolmogorov-Arnold representation
theorem [20] and DeepSets [43]:

oi = Stoch_Pool(MLP1(Si−1)) (3)

where MLP1 : Rd 7→ Rd′
is a projection that projects the series representation from the series hidden

dimension d to the core dimension d′, composing two layers with hidden dimension d and GELU [13]
activation. Stoch_Pool is the stochastic pooling [44] that get the core representation o ∈ Rd′

by
aggregating representations of C series. Stochastic pooling combines the advantages of mean and
max pooling. The details of computing the core representation can be found in Appendix B.2. Next,
we fuse the representations of the core and all the series:

Fi = Repeat_Concat(Si−1,oi) (4)

Si = MLP2(Fi) + Si−1 (5)
The Repeat_Concat operation concatenate the core representation o to each series representation,
and we get the Fi ∈ RC×(d+d′). Then another MLP (MLP2 : Rd+d′ 7→ Rd) is used to fuse the
concatenated presentation and project it back to the hidden dimension d, i.e., Si ∈ RC×d. Like many
deep learning modules, we also add a residual connection from the input to the output [12].

3.3 Complexity Analysis

We analyze the complexity of each component of SOFTS step by step concerning window length
L, number of channels C, model dimension d, and forecasting horizon H . The complexity of the
reversible instance normalization and series embedding is O(CL) and O(CLd) respectively. In
STAR, assuming d′ = d, the MLP1 is a Rd 7→ Rd mapping with complexity O(Cd2). Stoch_Pool
computes the softmax along the channel dimension, with complexity O(Cd). The MLP2 on the
concatenated embedding has the complexity O(Cd2). The complexity of the predictor is O(CdH).
In all, the complexity of the encoding part is O(CLd+Cd2+CdH), which is linear to C, L, and H .
Ignoring the model dimension d, which is a constant in the algorithm and irrelevant to the problem,
we compare the complexity of several popular forecasters in Table 1.

Table 1: Complexity comparison between popular time series forecasters concerning window length
L, number of channels C and forecasting horizon H . Our method achieves only linear complexity.

SOFTS (ours) iTransformer PatchTST Transformer

Complexity O(CL+CH) O(C2 + CL+ CH) O(CL2 + CH) O(CL+ L2 +HL+ CH)

4 Experiments

Datasets. To thoroughly evaluate the performance of our proposed SOFTS, we conduct extensive
experiments on 6 widely used, real-world datasets including ETT (4 subsets), Traffic, Electricity,
Weather [48, 35], Solar-Energy [21] and PEMS (4 subsets) [24]. Detailed descriptions of the datasets
can be found in Appendix A.

4.1 Forecasting Results

Compared methods. We extensively compare the recent Linear-based or MLP-based methods,
including DLinear [45], TSMixer [7], TiDE [6]. We also consider Transformer-based methods
including FEDformer [49], Stationary [25], PatchTST [28], Crossformer [47], iTransformer [26] and
CNN-based methods including SCINet [24], TimesNet [36].

Forecasting benchmarks. The long-term forecasting benchmarks follow the setting in In-
former [48] and SCINet [24]. The lookback window length (L) is set to 96 for all datasets. We set the
prediction horizon (H) to {12, 24, 48, 96} for PEMS and {96, 192, 336, 720} for others. Performance
comparison among different methods is conducted based on two primary evaluation metrics: Mean
Squared Error (MSE) and Mean Absolute Error (MAE). The results of PatchTST and TSMixer are
reproduced for the ablation study and other results are taken from iTransformer [26].
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Implementation details. We use the ADAM optimizer [18] with an initial learning rate of 3×10−4.
This rate is modulated by a cosine learning rate scheduler. The mean squared error (MSE) loss
function is utilized for model optimization. We explore the number of STAR blocks N within the
set {1, 2, 3, 4}, and the dimension of series d within {128, 256, 512}. Additionally, the dimension
of the core representation d′ varies among {64, 128, 256, 512}. Other detailed implementations are
described in Appendix B.3.

Main results. As shown in Table 2, SOFTS has provided the best or second predictive outcomes in
all 6 datasets on average. Moreover, when compared to previous state-of-the-art methods, SOFTS
has demonstrated significant advancements. For instance, on the Traffic dataset, SOFTS improved
the average MSE error from 0.428 to 0.409, representing a notable reduction of about 4.4%. On the
PEMS07 dataset, SOFTS achieves a substantial relative decrease of 13.9% in average MSE error,
from 0.101 to 0.087. These significant improvements indicate that the SOFTS model possesses robust
performance and broad applicability in multivariate time series forecasting tasks, especially in tasks
with a large number of channels, such as the Traffic dataset, which includes 862 channels, and the
PEMS dataset, with a varying range from 170 to 883 channels.

Table 2: Multivariate forecasting results with horizon H ∈ {12, 24, 48, 96} for PEMS and H ∈
{96, 192, 336, 720} for others and fixed lookback window length L = 96. Results are averaged from
all prediction horizons. Full results are listed in Table 6.

Models SOFTS (ours) iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ECL 0.174 0.264 0.178 0.270 0.189 0.276 0.186 0.287 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296

Traffic 0.409 0.267 0.428 0.282 0.454 0.286 0.522 0.357 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340

Weather 0.255 0.278 0.258 0.278 0.256 0.279 0.256 0.279 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314

Solar-Energy 0.229 0.256 0.233 0.262 0.236 0.266 0.260 0.297 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381

ETTm1 0.393 0.403 0.407 0.410 0.396 0.406 0.398 0.407 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456

ETTm2 0.287 0.330 0.288 0.332 0.287 0.330 0.289 0.333 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347

ETTh1 0.449 0.442 0.454 0.447 0.453 0.446 0.463 0.452 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537

ETTh2 0.373 0.400 0.383 0.407 0.385 0.410 0.401 0.417 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516

PEMS03 0.104 0.210 0.113 0.221 0.137 0.240 0.119 0.233 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224 0.213 0.327 0.147 0.249

PEMS04 0.102 0.208 0.111 0.221 0.145 0.249 0.103 0.215 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337 0.127 0.240

PEMS07 0.087 0.184 0.101 0.204 0.144 0.233 0.112 0.217 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283 0.127 0.230

PEMS08 0.138 0.219 0.150 0.226 0.200 0.275 0.165 0.261 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358 0.201 0.276

Model efficiency. Our SOFTS model demonstrates efficient performance with minimal memory
and time consumption. Figure 3b illustrates the memory and time usage across different models on
the Traffic dataset, with lookback window L = 96, horizon H = 720, and batch size 4. Despite
their low resource usage, Linear-based or MLP-based models such as DLinear and TSMixer perform
poorly with a large number of channels. Figure 3a explores the memory requirements of the three
best-performing models from Figure 3b. This figure reveals that the memory usage of both PatchTST
and iTransformer escalates significantly with an increase in channels. In contrast, our SOFTS model
maintains efficient operation, with its complexity scaling linearly with the number of channels,
effectively handling large channel counts.

4.2 Ablation Study

In this section, the prediction horizon (H) is set to {12, 24, 48, 96} for PEMS and {96, 192, 336, 720}
for others. All the results are averaged on four horizons. If not especially concerned, the lookback
window length (L) is set to 96 as default.

Comparison of different pooling methods. The comparison of different pooling methods in STAR
is shown in Table 3. The term "w/o STAR" refers to a scenario where an MLP is utilized with the
Channel Independent (CI) strategy, without the use of STAR. Mean pooling computes the average
value of all the series representations. Max pooling selects the maximum value of each hidden feature
among all the channels. Weighted average learns the weight for each channel. Stochastic pooling
applies random selection during training and weighted average during testing according to the feature
value. The result reveals that incorporating STAR into the model leads to a consistent enhancement
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Figure 3: Memory and time consumption of different models. In Figure 3a, we set the lookback
window L = 96, horizon H = 720, and batch size to 16 in a synthetic dataset we conduct.
In Figure 3b, we set the lookback window L = 96, horizon H = 720, and batch size to 4 in
Traffic dataset. Figure 3a reveals that SOFTS model scales to large number of channels more
effectively than Transformer-based models. Figure 3b shows that previous Linear-based or MLP-
based models such as DLinear and TSMixer perform poorly with a large number of channels. While
SOFTS model demonstrates efficient performance with minimal memory and time consumption.

in performance across all pooling methods. Additionally, stochastic pooling deserves attention as it
outperforms the other methods across nearly all the datasets.

Table 3: Comparison of the effect of different pooling methods. The term "w/o STAR" refers to a
scenario where an MLP is utilized with the Channel Independent (CI) strategy, without the use of
STAR. The result reveals that incorporating STAR into the model leads to a consistent enhancement
in performance across all pooling methods. Apart from that, stochastic pooling performs better than
mean and max pooling. Full results can be found in Table 7.

Pooling Method ECL Traffic Weather Solar ETTh2 PEMS04

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
w/o STAR 0.187 0.273 0.442 0.281 0.261 0.281 0.247 0.272 0.381 0.406 0.143 0.245

Mean 0.174 0.266 0.420 0.277 0.261 0.281 0.234 0.262 0.379 0.404 0.106 0.212

Max 0.180 0.270 0.406 0.271 0.259 0.280 0.246 0.269 0.379 0.401 0.116 0.223

Weighted 0.184 0.275 0.440 0.292 0.263 0.284 0.264 0.280 0.379 0.403 0.109 0.218

Stochastic 0.174 0.264 0.409 0.267 0.255 0.278 0.229 0.256 0.373 0.400 0.102 0.208

Universality of STAR. The STar Aggregate-Redistribute (STAR) module is an embedding adap-
tation function [39, 41] that is replaceable to arbitrary transformer-based methods that use the
attention mechanism. In this paragraph, we test the effectiveness of STAR on different existing
transformer-based forecasters, such as PatchTST [28] and Crossformer [47]. Note that our method
can be regarded as replacing the channel attention in iTransformer [26]. Here we involve substituting
the time attention in PatchTST with STAR and incrementally replacing both the time and channel
attention in Crossformer with STAR. The results, as presented in Table 4, demonstrate that replacing
attention with STAR, which deserves less computational resources, could maintain and even improve
the models’ performance in several datasets.

Influence of lookback window length. Common sense suggests that a longer lookback window
should improve forecast accuracy. However, incorporating too many features can lead to a curse
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Table 4: The performance of STAR in different models. The attention replaced by STAR here are
the time attention in PatchTST, the channel attention in iTransformer, and both the time attention
and channel attention in modified Crossformer. The results demonstrate that replacing attention with
STAR, which requires less computational resources, could maintain and even improve the models’
performance in several datasets. †: The Crossformer used here is a modified version that replaces the
decoder with a flattened head like what PatchTST does. Full results can be found in Table 8.

Model Component ECL Traffic Weather PEMS03 PEMS04 PEMS07

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PatchTST Attention 0.189 0.276 0.454 0.286 0.256 0.279 0.137 0.240 0.145 0.249 0.144 0.233
STAR 0.185 0.272 0.448 0.279 0.252 0.277 0.134 0.233 0.136 0.238 0.137 0.225

Crossformer† Attention 0.202 0.301 0.546 0.297 0.254 0.310 0.100 0.208 0.090 0.198 0.084 0.181
STAR 0.198 0.292 0.549 0.292 0.252 0.305 0.100 0.204 0.087 0.194 0.080 0.175

iTransformer Attention 0.178 0.270 0.428 0.282 0.258 0.278 0.113 0.221 0.111 0.221 0.101 0.204
STAR 0.174 0.264 0.409 0.267 0.255 0.278 0.104 0.210 0.102 0.208 0.087 0.184

of dimensionality, potentially compromising the model’s forecasting effectiveness. We explore
how varying the lengths of these lookback windows impacts the forecasting performance for time
horizons from 48 to 336 in all datasets. As shown in Figure 4, SOFTS could consistently improve
its performance by effectively utilizing the enhanced data available from an extended lookback
window. Also, SOFTS performs consistently better than other models under different lookback
window lengths, especially in shorter cases.
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Figure 4: Influence of lookback window length L. SOFTS performs consistently better than other
models under different lookback window lengths, especially in shorter cases.

Hyperparameter sensitivity analysis. We investigate the impact of several key hyperparameters
on our model’s performance: the hidden dimension of the model, denoted as d, the hidden dimension
of the core, represented by d′, and the number of encoder layers, N . Analysis of Figure 5 indicates
that complex traffic datasets (such as Traffic and PEMS) require larger hidden dimensions and more
encoding layers to handle their intricacies effectively. Moreover, variations in d′ have a minimal
influence on the model’s overall performance.

Series embedding adaptation of STAR. The STAR module adapts the series embeddings by
extracting the interaction between channels. To give an intuition of the functionality of STAR, we
visualize the series embeddings before and after being adjusted by STAR. The multivariate series is
selected from the test set of Traffic with look back window 96 and number of channels 862. Figure 6
shows the series embeddings visualized by T-SNE before and after the first STAR module. Among the
862 channels, there are 2 channels embedded far away from the other channels. These two channels
can be seen as anomalies, marked as (⋆) in the figure. Without STAR, i.e., using only the channel
independent strategy, the prediction on the series can only achieve 0.414 MSE. After being adjusted
by STAR, the abnormal channels can be clustered towards normal channels by exchanging channel
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Figure 5: Impact of several key hyperparameters: the hidden dimension of the model, denoted as
d, the hidden dimension of the core, represented by d′, and the number of encoder layers, N . Full
results can be seen in Appendix C.5.
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Figure 6: Figure 6a 6b: T-SNE of the series embeddings on the Traffic dataset. 6a: the series
embeddings before STAR. Two abnormal channels (⋆) are located far from the other channels.
Forecasting on the embeddings achieves 0.414 MSE. 6b: series embeddings after being adjusted
by STAR. The two channels are clustered towards normal channels (△) by exchanging channel
information. Adapted series embeddings improve forecasting performance to 0.376. Figure 6c:
Impact of noise on one channel. Our method is more robust against channel noise than other methods.

information. An example of the normal channels is marked as (△). Predictions on the adapted series
embeddings can improve the performance to 0.376, a 9% improvement.

Impact of channel noise. As previously mentioned, SOFTS can cluster abnormal channels towards
normal channels by exchanging channel information. To test the impact of an abnormal channel on
the performance of three models—SOFTS, PatchTST, and iTransformer—we select one channel from
the PEMS03 dataset and add Gaussian noise with a mean of 0 and a standard deviation representing
the strength of the noise. The lookback window and horizon are set to 96 for this experiment. In
Figure 6c, we observe that the MSE of PatchTST increases sharply as the strength of the noise grows.
In contrast, SOFTS and iTransformer can better handle the noise. This indicates that suitable channel
interaction can improve the robustness against noise in one channel using information from the
normal channels. Moreover, SOFTS demonstrates superior noise handling compared to iTransformer.
This suggests that while the abnormal channel can affect the model’s judgment of normal channels,
our STAR module can mitigate the negative impact more effectively by utilizing core representation
instead of building relationships between every pair of channels.

5 Conclusion

Although channel independence has been found an effective strategy to improve robustness for
multivariate time series forecasting, channel correlation is important information to be utilized
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for further improvement. The previous methods faced a dilemma between model complexity and
performance in extracting the correlation. In this paper, we solve the dilemma by introducing the
Series-cOre Fused Time Series forecaster (SOFTS) which achieves state-of-the-art performance with
low complexity, along with a novel STar Aggregate-Redistribute (STAR) module to efficiently capture
the channel correlation.

Our paper explores the way of building a scalable multivariate time series forecaster while maintaining
equal or even better performance than the state-of-the-art methods, which we think may pave the way
to forecasting on datasets of more larger scale under resource constraints [50].
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A Datasets Description

We detail the description plus the link to download them here:

1. ETT (Electricity Transformer Temperature) [48] 3 comprises two hourly-level datasets
(ETTh) and two 15-minute-level datasets (ETTm). Each dataset contains seven oil and load
features of electricity transformers from July 2016 to July 2018.

2. Traffic4 describes the road occupancy rates. It contains the hourly data recorded by the
sensors of San Francisco freeways from 2015 to 2016.

3. Electricity5 collects the hourly electricity consumption of 321 clients from 2012 to 2014.

4. Weather includes 21 indicators of weather, such as air temperature, and humidity. Its data
is recorded every 10 min for 2020 in Germany.

5. Solar-Energy [21] records the solar power production of 137 PV plants in 2006, which is
sampled every 10 minutes.

6. PEMS 6 contains public traffic network data in California collected by 5-minute windows.

Other details of these datasets have been concluded in Table 5.

Table 5: Detailed dataset descriptions. Channels denotes the number of channels in each dataset.
Dataset Split denotes the total number of time points in (Train, Validation, Test) split respectively.
Prediction Length denotes the future time points to be predicted and four prediction settings are
included in each dataset. Granularity denotes the sampling interval of time points.
Dataset Channels Prediction Length Dataset Split Granularity Domain
ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy

PEMS03 358 {12, 24, 48, 96} (15617,5135,5135) 5min Transportation

PEMS04 307 {12, 24, 48, 96} (10172,3375,281) 5min Transportation

PEMS07 883 {12, 24, 48, 96} (16911,5622,468) 5min Transportation

PEMS08 170 {12, 24, 48, 96} (10690,3548,265) 5min Transportation

B Implement Details

B.1 Overall architecture of SOFTS

The overall architecture of SOFTS is detailed in Algorithm 1. Initially, a linear layer is employed to
obtain the embedding for each series (Lines 1-2). Subsequently, several encoder layers are applied.
Within each encoder layer, the core representation is first derived by applying an MLP to the series
embeddings and pooling them (Line 4). This core representation is then concatenated with each series
(Line 5), and another MLP is used to fuse them (Line 6). After passing through multiple encoder
layers, a final linear layer projects the series embeddings to the predicted series (Line 8).

3https://github.com/zhouhaoyi/ETDataset
4http://pems.dot.ca.gov
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
6https://pems.dot.ca.gov/
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Algorithm 1 Series-cOre Fused Time Series forecaster (SOFTS) applied to multivariate time series.

Require: Look back window X ∈ RL×C ;
1: X = X. transpose ▷ X ∈ RC×L

2: S0 = Linear(X) ▷ Get series embedding, S0 ∈ RC×d

3: for l = 1 . . . L do
4: oi = Stoch_Pool(MLP(Si−1)) ▷ Get core representation, oi ∈ Rd′

5: Fi = Repeat_Concat(Si−1,oi) ▷ Fi ∈ RC×(d+d′)

6: Si = MLP(Fi) + Si−1 ▷ Fuse series and core, Si ∈ RC×d

7: end for
8: Ŷ = Linear(SL) ▷ Project series embedding to predicted series, Ŷ ∈ RC×H

9: Ŷ = Ŷ . transpose ▷ Ŷ ∈ RH×C

10: return Ŷ

B.2 Details of Core Representation Computation

Core representation. Recall that the core representation for the multivariate time series is defined
in Definition 3.1 with the following form:

o = f(s1, s2, . . . , sC)

To obtain the representation, we draw inspiration from the two theorems:
Theorem B.1 (Kolmogorov-Arnold representation [20]). Let f : [0, 1]M → R be an arbitrary
multivariate continuous function iff it has the representation

f (x1, . . . , xM ) = ρ

(
M∑

m=1

λmϕ (xm)

)
with continuous outer and inner functions ρ : R2M+1 → R and ϕ : R → R2M+1. The inner function
ϕ is independent of the function f .
Theorem B.2 (DeepSets [43]). Assume the elements are from a compact set in Rd, i.e. possibly
uncountable, and the set size is fixed to M . Then any continuous function operating on a set X , i.e.
f : Rd×M → R which is permutation invariant to the elements in X can be approximated arbitrarily
close in the form of

ρ

(∑
x∈X

ϕ(x)

)
,

for suitable transformations ϕ and ρ.

The two formulations are very similar, except for the dependence of inner transformation on the coor-
dinate through λm. The existence of λ determines whether the formulation is permutation invariant
or not. In this paper, we find in Table 4 that the permutation invariant expression (Theorem B.2)
performs much better than the permutation variant one Theorem B.1. This may be attributed to
the characteristics of channel series being enough to induce the index of each channel (coordinate).
Introducing extra parameters specific to each channel may enhance the dependency channel coordi-
nate and reduce the dependence on the history, therefore causing low robustness when encountering
unknown series. Consequently, we utilize DeepSets form to express the core representation:

o = ρ

(∑
s∈S

ϕ(s)

)
.

We propose two modifications to the expression:

1. We generalize the mean pooling over the inner transformation by arbitrary pooling methods.
2. We remove the outer transformation ρ because it is redundant with the MLP during the

fusion process.

For 1., we tested several common pooling methods and found that the mean pooling and max pooling
outperform each other in different cases. Stochastic pooling (described in the following paragraph)
can achieve the best results in averaged cases (Table 3). So, the core is computed as Equation (3).
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Stochastic pooling. Stochastic pooling is a pooling method that combines the characteristics of
max pooling and mean pooling [44]. In stochastic pooling, the pooled map response is selected
by sampling from a multinomial distribution formed from the activations of each pooling region.
Specifically, we first calculate the probabilities p for each dimension j by normalizing the softmax
activations within the dimension:

pij =
eAij∑C

k=1 e
Akj

(6)

During training, we sample from the multinomial distribution based on p to pick a channel c within
the dimension j. The pooled result is then simply Acj :

oj = Acj where c ∼ P (p1j , p2j , ..., pCj) (7)

At test time, we use a probabilistic form of averaging:

oj =

C∑
i=1

pijAij (8)

This approach allows for a more robust and statistically grounded pooling mechanism, which can
enhance the generalization capabilities of the model across different data scenarios.

B.3 Experiment Details

All the experiments are conducted on a single NVIDIA GeForce RTX 3090 with 24G VRAM. The
mean squared error (MSE) loss function is utilized for model optimization. Performance comparison
among different methods is conducted based on two primary evaluation metrics: Mean Squared Error
(MSE) and Mean Absolute Error (MAE). We use the ADAM optimizer [18] with an initial learning
rate of 3× 10−4. This rate is modulated by a cosine learning rate scheduler. We explore the number
of STAR blocks N within the set {1, 2, 3, 4}, and the dimension of series d within {128, 256, 512}.
Additionally, the dimension of the core representation d′ is searched in {64, 128, 256, 512}, with the
constraint that d′ does not exceed d.

Mean Squared Error (MSE):

MSE =
1

H

H∑
i=1

(Yi − Ŷi)
2 (9)

Mean Absolute Error (MAE):

MAE =
1

H

H∑
i=1

|Yi − Ŷi| (10)

where Y, Ŷ ∈ RH×C are the ground truth and prediction results of the future with H time points
and C channels. Yi denotes the i-th future time point.

C Full Results

C.1 Full Results of Multivariate Forecasting Benchmark

The complete results of our forecasting benchmarks are presented in Table 6. We conducted experi-
ments using six widely utilized real-world datasets and compared our method against ten previous
state-of-the-art models. Our approach, SOFTS, demonstrates strong performance across these tests.

C.2 Full Results of Pooling Method Ablation

The complete results of our pooling method ablation are presented in Table 7. The term "w/o STAR"
refers to a scenario where an MLP is utilized with the Channel Independent (CI) strategy, without
the use of STAR. Mean pooling computes the average value of all the series representations. Max
pooling selects the maximum value of each hidden feature among all the channels. Weighted average
learns the weight for each channel. Stochastic pooling applies random selection during training and
weighted average during testing according to the feature value. The result reveals that incorporating
STAR into the model leads to a consistent enhancement in performance across all pooling methods.
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Table 6: Multivariate forecasting results with prediction lengths H ∈ {12, 24, 48, 96} for PEMS
and H ∈ {96, 192, 336, 720} for others and fixed lookback window length L = 96. The results
of PatchTST and TSMixer are reproduced for the ablation study and other results are taken from
iTransformer [26].

Models SOFTS (ours) iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.325 0.361 0.334 0.368 0.329 0.365 0.323 0.363 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398
192 0.375 0.389 0.377 0.391 0.380 0.394 0.376 0.392 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444
336 0.405 0.412 0.426 0.420 0.400 0.410 0.407 0.413 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464
720 0.466 0.447 0.491 0.459 0.475 0.453 0.485 0.459 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516

Avg 0.393 0.403 0.407 0.410 0.396 0.406 0.398 0.407 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456

E
T

T
m

2

96 0.180 0.261 0.180 0.264 0.184 0.264 0.182 0.266 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274
192 0.246 0.306 0.250 0.309 0.246 0.306 0.249 0.309 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339
336 0.319 0.352 0.311 0.348 0.308 0.346 0.309 0.347 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361
720 0.405 0.401 0.412 0.407 0.409 0.402 0.416 0.408 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413

Avg 0.287 0.330 0.288 0.332 0.287 0.330 0.289 0.333 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347

E
T

T
h1

96 0.381 0.399 0.386 0.405 0.394 0.406 0.401 0.412 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491
192 0.435 0.431 0.441 0.436 0.440 0.435 0.452 0.442 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504
336 0.480 0.452 0.487 0.458 0.491 0.462 0.492 0.463 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535
720 0.499 0.488 0.503 0.491 0.487 0.479 0.507 0.490 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616

Avg 0.449 0.442 0.454 0.447 0.453 0.446 0.463 0.452 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537

E
T

T
h2

96 0.297 0.347 0.297 0.349 0.288 0.340 0.319 0.361 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458
192 0.373 0.394 0.380 0.400 0.376 0.395 0.402 0.410 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493
336 0.410 0.426 0.428 0.432 0.440 0.451 0.444 0.446 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551
720 0.411 0.433 0.427 0.445 0.436 0.453 0.441 0.450 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560

Avg 0.373 0.400 0.383 0.407 0.385 0.410 0.401 0.417 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516

E
C

L

96 0.143 0.233 0.148 0.240 0.164 0.251 0.157 0.260 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273
192 0.158 0.248 0.162 0.253 0.173 0.262 0.173 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286
336 0.178 0.269 0.178 0.269 0.190 0.279 0.192 0.295 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304
720 0.218 0.305 0.225 0.317 0.230 0.313 0.223 0.318 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321

Avg 0.174 0.264 0.178 0.270 0.189 0.276 0.186 0.287 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296

Tr
af

fic

96 0.376 0.251 0.395 0.268 0.427 0.272 0.493 0.336 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338
192 0.398 0.261 0.417 0.276 0.454 0.289 0.497 0.351 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340
336 0.415 0.269 0.433 0.283 0.450 0.282 0.528 0.361 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328
720 0.447 0.287 0.467 0.302 0.484 0.301 0.569 0.380 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355

Avg 0.409 0.267 0.428 0.282 0.454 0.286 0.522 0.357 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340

W
ea

th
er

96 0.166 0.208 0.174 0.214 0.176 0.217 0.166 0.210 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223
192 0.217 0.253 0.221 0.254 0.221 0.256 0.215 0.256 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285
336 0.282 0.300 0.278 0.296 0.275 0.296 0.287 0.300 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338
720 0.356 0.351 0.358 0.347 0.352 0.346 0.355 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410

Avg 0.255 0.278 0.258 0.278 0.256 0.279 0.256 0.279 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314

So
la

r-
E

ne
rg

y 96 0.200 0.230 0.203 0.237 0.205 0.246 0.221 0.275 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.215 0.249
192 0.229 0.253 0.233 0.261 0.237 0.267 0.268 0.306 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.254 0.272
336 0.243 0.269 0.248 0.273 0.250 0.276 0.272 0.294 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.290 0.296
720 0.245 0.272 0.249 0.275 0.252 0.275 0.281 0.313 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.285 0.200

Avg 0.229 0.256 0.233 0.262 0.236 0.266 0.260 0.297 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381

PE
M

S0
3 12 0.064 0.165 0.071 0.174 0.073 0.178 0.075 0.186 0.090 0.203 0.178 0.305 0.085 0.192 0.122 0.243 0.066 0.172 0.126 0.251 0.081 0.188

24 0.083 0.188 0.093 0.201 0.105 0.212 0.095 0.210 0.121 0.240 0.257 0.371 0.118 0.223 0.201 0.317 0.085 0.198 0.149 0.275 0.105 0.214
48 0.114 0.223 0.125 0.236 0.159 0.264 0.121 0.240 0.202 0.317 0.379 0.463 0.155 0.260 0.333 0.425 0.127 0.238 0.227 0.348 0.154 0.257
96 0.156 0.264 0.164 0.275 0.210 0.305 0.184 0.295 0.262 0.367 0.490 0.539 0.228 0.317 0.457 0.515 0.178 0.287 0.348 0.434 0.247 0.336

Avg 0.104 0.210 0.113 0.221 0.137 0.240 0.119 0.233 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224 0.213 0.327 0.147 0.249

PE
M

S0
4 12 0.074 0.176 0.078 0.183 0.085 0.189 0.079 0.188 0.098 0.218 0.219 0.340 0.087 0.195 0.148 0.272 0.073 0.177 0.138 0.262 0.088 0.196

24 0.088 0.194 0.095 0.205 0.115 0.222 0.089 0.201 0.131 0.256 0.292 0.398 0.103 0.215 0.224 0.340 0.084 0.193 0.177 0.293 0.104 0.216
48 0.110 0.219 0.120 0.233 0.167 0.273 0.111 0.222 0.205 0.326 0.409 0.478 0.136 0.250 0.355 0.437 0.099 0.211 0.270 0.368 0.137 0.251
96 0.135 0.244 0.150 0.262 0.211 0.310 0.133 0.247 0.402 0.457 0.492 0.532 0.190 0.303 0.452 0.504 0.114 0.227 0.341 0.427 0.186 0.297

Avg 0.102 0.208 0.111 0.221 0.145 0.249 0.103 0.215 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337 0.127 0.240

PE
M

S0
7 12 0.057 0.152 0.067 0.165 0.068 0.163 0.073 0.181 0.094 0.200 0.173 0.304 0.082 0.181 0.115 0.242 0.068 0.171 0.109 0.225 0.083 0.185

24 0.073 0.173 0.088 0.190 0.102 0.201 0.090 0.199 0.139 0.247 0.271 0.383 0.101 0.204 0.210 0.329 0.119 0.225 0.125 0.244 0.102 0.207
48 0.096 0.195 0.110 0.215 0.170 0.261 0.124 0.231 0.311 0.369 0.446 0.495 0.134 0.238 0.398 0.458 0.149 0.237 0.165 0.288 0.136 0.240
96 0.120 0.218 0.139 0.245 0.236 0.308 0.163 0.255 0.396 0.442 0.628 0.577 0.181 0.279 0.594 0.553 0.141 0.234 0.262 0.376 0.187 0.287

Avg 0.087 0.184 0.101 0.204 0.144 0.233 0.112 0.217 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283 0.127 0.230

PE
M

S0
8 12 0.074 0.171 0.079 0.182 0.098 0.205 0.083 0.189 0.165 0.214 0.227 0.343 0.112 0.212 0.154 0.276 0.087 0.184 0.173 0.273 0.109 0.207

24 0.104 0.201 0.115 0.219 0.162 0.266 0.117 0.226 0.215 0.260 0.318 0.409 0.141 0.238 0.248 0.353 0.122 0.221 0.210 0.301 0.140 0.236
48 0.164 0.253 0.186 0.235 0.238 0.311 0.196 0.299 0.315 0.355 0.497 0.510 0.198 0.283 0.440 0.470 0.189 0.270 0.320 0.394 0.211 0.294
96 0.211 0.253 0.221 0.267 0.303 0.318 0.266 0.331 0.377 0.397 0.721 0.592 0.320 0.351 0.674 0.565 0.236 0.300 0.442 0.465 0.345 0.367

Avg 0.138 0.219 0.150 0.226 0.200 0.275 0.165 0.261 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358 0.201 0.276

1st Count 40 47 2 4 6 8 1 0 3 0 0 0 1 2 1 0 5 4 4 0 0 0
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Table 7: Comparison of the effect of different pooling methods. The term "w/o STAR" refers to a
scenario where an MLP is utilized with the Channel Independent (CI) strategy, without the use of
STAR. The result reveals that incorporating STAR into the model leads to a consistent enhancement
in performance across all pooling methods. Apart from that, stochastic pooling performs better than
mean and max pooling.

Pooling Method w/o STAR Mean Max Weighted Stochastic

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL

96 0.161 0.248 0.146 0.239 0.150 0.241 0.156 0.247 0.143 0.233
192 0.171 0.259 0.166 0.258 0.165 0.256 0.173 0.264 0.158 0.248
336 0.188 0.276 0.175 0.269 0.188 0.280 0.190 0.284 0.178 0.269
720 0.228 0.311 0.211 0.300 0.216 0.304 0.217 0.305 0.218 0.305

Avg 0.187 0.273 0.174 0.266 0.180 0.270 0.184 0.275 0.174 0.264

Traffic

96 0.414 0.266 0.380 0.255 0.386 0.261 0.410 0.275 0.376 0.251
192 0.428 0.272 0.406 0.268 0.397 0.267 0.434 0.288 0.398 0.261
336 0.446 0.284 0.442 0.293 0.406 0.273 0.447 0.295 0.415 0.269
720 0.480 0.303 0.453 0.293 0.433 0.284 0.470 0.308 0.447 0.287

Avg 0.442 0.281 0.420 0.277 0.406 0.271 0.440 0.292 0.409 0.267

Weather

96 0.179 0.217 0.174 0.213 0.172 0.211 0.180 0.222 0.166 0.208
192 0.227 0.259 0.227 0.260 0.226 0.260 0.226 0.261 0.217 0.253
336 0.281 0.299 0.281 0.299 0.280 0.298 0.284 0.302 0.282 0.300
720 0.357 0.348 0.361 0.352 0.360 0.350 0.360 0.351 0.356 0.351

Avg 0.261 0.281 0.261 0.281 0.259 0.280 0.263 0.284 0.255 0.278

Solar

96 0.215 0.250 0.202 0.238 0.206 0.243 0.219 0.260 0.200 0.230
192 0.246 0.271 0.238 0.260 0.245 0.266 0.255 0.272 0.229 0.253
336 0.263 0.282 0.248 0.277 0.267 0.284 0.292 0.294 0.243 0.269
720 0.263 0.283 0.247 0.271 0.265 0.284 0.290 0.293 0.245 0.272

Avg 0.247 0.272 0.234 0.262 0.246 0.269 0.264 0.280 0.229 0.256

ETTh2

96 0.298 0.349 0.298 0.348 0.296 0.347 0.292 0.344 0.297 0.347
192 0.375 0.398 0.376 0.396 0.378 0.396 0.387 0.401 0.373 0.394
336 0.420 0.431 0.417 0.430 0.423 0.428 0.428 0.435 0.410 0.426
720 0.433 0.448 0.423 0.442 0.421 0.435 0.409 0.433 0.411 0.433
Avg 0.381 0.406 0.379 0.404 0.379 0.401 0.379 0.403 0.373 0.400

PEMS04

12 0.084 0.189 0.075 0.177 0.078 0.182 0.077 0.180 0.074 0.176
24 0.113 0.220 0.090 0.196 0.095 0.204 0.094 0.203 0.088 0.194
48 0.164 0.266 0.117 0.225 0.126 0.236 0.120 0.231 0.110 0.219
96 0.209 0.304 0.142 0.250 0.164 0.269 0.147 0.258 0.135 0.244

Avg 0.143 0.245 0.106 0.212 0.116 0.223 0.109 0.218 0.102 0.208
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C.3 Full Results of STAR Ablation

The complete results of our ablation on universality of STAR are presented in Table 8. The STar
Aggregate-Redistribute (STAR) module is a set-to-set function [39] that is replaceable to arbitrary
transformer-based methods that use the attention mechanism. In this paragraph, we test the ef-
fectiveness of STAR on different existing transformer-based forecasters, such as PatchTST [28]
and Crossformer [47]. Note that our method can be regarded as replacing the channel attention
in iTransformer [26]. Here we involve substituting the time attention in PatchTST with STAR
and incrementally replacing both the time and channel attention in Crossformer with STAR. The
results, as presented in Table 8, demonstrate that replacing attention with STAR, which deserves
less computational resources, could maintain and even improve the models’ performance in several
datasets.

C.4 More Results of Lookback Ablation

In this section, we extend the lookback ablation in section 4.2 to L ∈ [48, 720]. Figure 7 shows
the results in MSE. SOFTS performs almost consistently better than other models under different
lookback window lengths. However, we also warn about the potential overfitting when the lookback
length is very large, i.e. L = 512 or L = 720.
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Figure 7: Influence of lookback window length L ∈ {48, 96, 192, 336, 512, 720}. SOFTS performs almost
consistently better than other models under different lookback window lengths.

C.5 Full Results of Hyperparameter Sensitivity Experiments

We investigate the impact of several key hyperparameters on our model’s performance: the hidden
dimension of the model, denoted as d, the hidden dimension of the core, represented by d′, and the
number of encoder layers, N . Figure 8 and Figure 10 indicate that complex traffic datasets (such
as Traffic and PEMS) require larger hidden dimensions and more encoding layers to handle their
intricacies effectively. Moreover, Figure 9 shows that variations in d′ don’t influence the model’s
overall performance so much.
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Figure 8: Influence of the hidden dimension of series d. Traffic datasets (such as Traffic and PEMS)
require larger hidden dimensions to handle their intricacies effectively.
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Table 8: The performance of STAR in different models. The attention replaced by STAR here are
the time attention in PatchTST, the channel attention in iTransformer, and both the time attention
and channel attention in modified Crossformer. The results demonstrate that replacing attention with
STAR, which requires less computational resources, could maintain and even improve the models’
performance in several datasets. †: The Crossformer used here is a modified version that replaces the
decoder with a flattened head like what PatchTST does.

Model iTransformer PatchTST Crossformer

Component Attention STAR Attention STAR Attention STAR

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity

96 0.148 0.240 0.143 0.233 0.164 0.251 0.160 0.248 0.156 0.259 0.166 0.263
192 0.162 0.253 0.158 0.248 0.173 0.262 0.169 0.257 0.182 0.284 0.182 0.277
336 0.178 0.269 0.178 0.269 0.190 0.279 0.187 0.275 0.203 0.305 0.200 0.296
720 0.225 0.317 0.218 0.305 0.230 0.313 0.225 0.308 0.267 0.358 0.243 0.334
Avg 0.178 0.270 0.174 0.264 0.189 0.276 0.185 0.272 0.202 0.301 0.198 0.292

Traffic

96 0.395 0.268 0.376 0.251 0.427 0.272 0.423 0.265 0.508 0.275 0.520 0.277
192 0.417 0.276 0.398 0.261 0.454 0.289 0.434 0.271 0.519 0.281 0.535 0.285
336 0.433 0.283 0.415 0.269 0.450 0.282 0.447 0.278 0.556 0.304 0.551 0.292
720 0.467 0.302 0.447 0.287 0.484 0.301 0.489 0.301 0.600 0.329 0.591 0.315
Avg 0.428 0.282 0.409 0.267 0.454 0.286 0.448 0.279 0.546 0.297 0.549 0.292

Weather

96 0.174 0.214 0.166 0.208 0.176 0.217 0.170 0.214 0.174 0.245 0.174 0.239
192 0.221 0.254 0.217 0.253 0.221 0.256 0.215 0.251 0.219 0.283 0.220 0.282
336 0.278 0.296 0.282 0.300 0.275 0.296 0.273 0.296 0.271 0.327 0.272 0.324
720 0.358 0.347 0.356 0.351 0.352 0.346 0.349 0.346 0.351 0.383 0.343 0.376
Avg 0.258 0.278 0.255 0.278 0.256 0.279 0.252 0.277 0.254 0.310 0.252 0.305

PEMS03

12 0.071 0.174 0.064 0.165 0.073 0.178 0.071 0.173 0.067 0.170 0.065 0.165
24 0.093 0.201 0.083 0.188 0.105 0.212 0.101 0.206 0.081 0.187 0.081 0.184
48 0.125 0.236 0.114 0.223 0.159 0.264 0.157 0.256 0.109 0.220 0.109 0.216
96 0.164 0.275 0.156 0.264 0.210 0.305 0.205 0.296 0.142 0.255 0.147 0.250

Avg 0.113 0.222 0.104 0.210 0.137 0.240 0.134 0.233 0.100 0.208 0.100 0.204

PEMS04

12 0.078 0.183 0.074 0.176 0.085 0.189 0.082 0.184 0.069 0.171 0.071 0.174
24 0.095 0.205 0.088 0.194 0.115 0.222 0.108 0.214 0.082 0.190 0.079 0.185
48 0.120 0.233 0.110 0.219 0.167 0.273 0.155 0.258 0.097 0.207 0.091 0.200
96 0.150 0.262 0.135 0.244 0.211 0.310 0.198 0.297 0.111 0.222 0.106 0.218

Avg 0.111 0.221 0.102 0.208 0.145 0.249 0.136 0.238 0.090 0.198 0.087 0.194

PEMS07

12 0.067 0.165 0.057 0.152 0.068 0.163 0.065 0.160 0.056 0.151 0.055 0.150
24 0.088 0.190 0.073 0.173 0.102 0.201 0.098 0.195 0.070 0.166 0.067 0.165
48 0.110 0.215 0.096 0.195 0.170 0.261 0.162 0.250 0.090 0.192 0.088 0.183
96 0.139 0.245 0.120 0.218 0.236 0.308 0.222 0.294 0.120 0.215 0.110 0.203

Avg 0.101 0.204 0.087 0.184 0.144 0.233 0.137 0.225 0.084 0.181 0.080 0.175

20



64 128 256 512 1024

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

M
SE

Dimension of Core

 ETTm1  ETTm2  ETTh1  ETTh2

64 128 256 512 1024

0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42

M
SE

Dimension of Core

 ECL  Traffic  Weather  Solar

64 128 256 512 1024
0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
SE

Dimension of Core

 PEMS03  PEMS04  PEMS07  PEMS08

Figure 9: Influence of the hidden dimension of the core d′. Variations in d′ have a minimal influence
on the model’s overall performance
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Figure 10: Influence of the number of the encoder layers N . Traffic datasets (such as Traffic and
PEMS) require more encoding layers to handle their intricacies effectively.

D Error Bar

In this section, we test the robustness of SOFTS. We conducted 5 experiments using different random
seeds, and the averaged results are presented in Table 9. It can be seen that SOFTS have robust
performance over different datasets and different horizons.

Table 9: Robustness of SOFTS. Results are averaged over 5 experiments with different random seeds.
Dataset ETTm1 Weather Traffic

Horizon MSE MAE MSE MAE MSE MAE

96 0.325± 0.002 0.361± 0.002 0.166± 0.002 0.208± 0.002 0.376± 0.002 0.251± 0.001
192 0.375± 0.002 0.389± 0.003 0.217± 0.003 0.253± 0.002 0.398± 0.002 0.261± 0.002
336 0.405± 0.004 0.412± 0.003 0.282± 0.001 0.300± 0.001 0.415± 0.002 0.269± 0.002
720 0.466± 0.004 0.447± 0.002 0.356± 0.002 0.351± 0.002 0.447± 0.002 0.287± 0.001

Dataset PEMS03 PEMS04 PEMS07

Horizon MSE MAE MSE MAE MSE MAE

12 0.064± 0.002 0.165± 0.002 0.074± 0.000 0.176± 0.000 0.057± 0.000 0.152± 0.000
24 0.083± 0.002 0.188± 0.002 0.088± 0.000 0.194± 0.000 0.073± 0.003 0.173± 0.004
48 0.114± 0.004 0.223± 0.003 0.110± 0.001 0.219± 0.002 0.096± 0.002 0.195± 0.002
96 0.156± 0.001 0.264± 0.001 0.135± 0.003 0.244± 0.003 0.120± 0.003 0.218± 0.003
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E Showcase

E.1 Visualization of the Core

In this section, we present a visualization of the core. The visualization is generated by employing a
frozen state of our trained model to capture the series embeddings from the final encoder layer. These
embeddings are then utilized as inputs to a two-layer MLP autoencoder. The primary function of
this autoencoder is to map these high-dimensional embeddings back to the original input series. The
visualization is shown in Figure 11. Highlighted by the red line, this core captures the global trend of
all cross all the channels in

Figure 11: Visualization of the core, represented by the red line, alongside the original input channels.
We freeze our model and extract the series embeddings from the last encoder layer to train a two-layer
MLP autoencoder. This autoencoder maps the embeddings back to the original series, allowing us to
visualize the core effectively.

E.2 Visualization of Predictions

To provide a more intuitive demonstration of our model’s performance, we present prediction
showcases on the ECL (Figure 12), ETTh2 (Figure 13), Traffic (Figure 14), and PEMS03 (Figure 15)
datasets. Additionally, we include prediction showcases from iTransformer and PatchTST on these
datasets. The lookback window length and horizon are set to 96.

(a) SOFTS (ours) (b) iTransformer (c) PatchTST

Figure 12: Visualization of Prediction on ECL dataset with lookback window 96, horizon 96.

E.3 More Results on Adaptation of Series Embedding

In this section, we show more results on the series embedding adaptation of our STAR module,
similar to showcases in figure 6a and figure 6b. The number of channels should be large enough to
show the relationship between channels in the embedding space. Therefore, we select the datasets
ECL, PEMS03, and Traffic with channels 321, 358, and 862 respectively. Figure 16 shows the results
on these datasets.
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(a) SOFTS (ours) (b) iTransformer (c) PatchTST

Figure 13: Visualization of Prediction on ETTh2 dataset with lookback window 96, horizon 96.

(a) SOFTS (ours) (b) iTransformer (c) PatchTST

Figure 14: Visualization of Prediction on Traffic dataset with lookback window 96, horizon 96.

E.4 Visualization of Predictions on Abnormal Channels

As stated in Section 4.2, after being adjusted by STAR, the abnormal channels can be clustered
towards normal channels by exchanging channel information. In this section, we choose two abnormal
channels in the ECL and PEMS03 datasets to demonstrate our SOFTS model’s advantage in handling
noise from abnormal channels. As shown in Figure 17, the value of channel 160 in PEMS03
experiences a sharp decrease followed by a smooth period. In this case, SOFTS is able to capture
the slowly increasing trend effectively. Similarly, in Figure 18, the signal of channel 298 in ECL
resembles the sum of an impulse function and a step function, which lacks a continuous trend. Here,
our SOFTS model provides a more stable prediction compared to the other two models.

F Limitations and Future Works

While the Series-cOre Fused Time Series (SOFTS) forecaster demonstrates significant improvements
in multivariate time series forecasting, several limitations must be acknowledged, providing directions
for future work.

Dependence on core representation quality. The effectiveness of the STAR module heavily
depends on the quality of the global core representation. If this core representation does not accurately
capture the essential features of the individual series, the model’s performance might degrade.
Ensuring the robustness and accuracy of this core representation across diverse datasets remains a
challenge that warrants further research.

Limited exploration of alternative aggregate-redistribute strategies. Although the STAR module
effectively aggregates and redistributes information, the exploration of alternative strategies is
limited. Future work could investigate various methods for aggregation and redistribution to identify
potentially more effective approaches, thereby enhancing the performance and robustness of the
model.
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(a) SOFTS (ours) (b) iTransformer (c) PatchTST

Figure 15: Visualization of Prediction on PEMS03 dataset with lookback window 96, horizon 96.
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M S E = 0 . 1 6 1
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B e f o r e  S T A R

S e r i e s  E m b e d d i n g

M S E = 0 . 4 1 4

(b) Traffic

B e f o r e  S T A R
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M S E = 0 . 0 7 2

(c) PEMS03
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(d) ECL
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(e) Traffic
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M S E = 0 . 0 6 4

(f) PEMS03

Figure 16: t-SNE visualization of series embeddings before and after STAR adjustment for ECL with
a lookback window of 96 and horizon of 96, Traffic with a lookback window of 96 and horizon of
96 and for PEMS03 with a lookback window of 96 and horizon of 12. (a)-(d), (b)-(e), (c)-(f): The
abnormal channel (⋆) is initially located far from the other channels. After adjustment by STAR,
the abnormal channel clusters towards the normal channels (△) by exchanging channel information.
Adapted series embeddings consistently improve forecasting performance based on the MSE metric.
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(a) SOFTS (ours) (b) iTransformer (c) PatchTST

Figure 17: Visualization of Prediction on abnormal channel in PEMS03 dataset with lookback
window 96, horizon 96.

(a) SOFTS (ours) (b) iTransformer (c) PatchTST

Figure 18: Visualization of Prediction on abnormal channel in ECL dataset with lookback window
96, horizon 96.

G Societal Impacts

The development of the Series-cOre Fused Time Series (SOFTS) forecaster has the potential to
significantly benefit various fields such as finance, traffic management, energy, and healthcare by
improving the accuracy and efficiency of time series forecasting, thereby enhancing decision-making
processes and optimizing operations. However, there are potential negative societal impacts to
consider. Privacy concerns may arise from the use of personal data, especially in healthcare and
finance, leading to possible violations if data is not securely handled. Additionally, biases in the data
could result in unfair outcomes, perpetuating or exacerbating existing disparities. Over-reliance on
automated forecasting models might lead to neglect of important contextual or qualitative factors,
causing adverse outcomes when predictions are incorrect. To mitigate these risks, robust data
protection protocols should be implemented, and continuous monitoring for bias is necessary to
ensure fairness. Developing ethical use policies and maintaining human oversight in decision-making
can further ensure that the deployment of SOFTS maximizes its positive societal impact while
minimizing potential negative consequences.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the novel SOFTS module, which
is supported by experimental results demonstrating its superior performance and efficiency.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided all the information needed to reproduce the main experi-
mental results of the paper in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided an anonymous code for review along with the scripts
processing the data. The code will be made public once the paper is accepted. The datasets
for the main experimental is already open, as mentioned in Appendix A.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have included all the training and test details in Appendix A and Ap-
pendix B.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have provided results accompanied by error bars in Table 9.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on computer resources in Appendix B.3, and mem-
ory/time consumption of our model in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed both potential positive societal impacts and negative societal
impacts of our work in Appendix G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper for all the baselines in Section 4.1, and give the
URL of the datasets in Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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