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ABSTRACT

Finetuning specialized generative evaluators has emerged as a popular paradigm
to meet the increasing demand for scalable evaluation during both training and
test-time. However, recent work has largely focused on applying new method-
ology, such as reinforcement learning (RL), to training evaluators, shying away
from large-scale, data-driven development. In this work, we focus on data scal-
ing, curating a set of 2.5M samples spanning five unique evaluation tasks (pair-
wise, step-level, reference-free and reference-based verification, and single rating)
and multiple domains focused on reasoning evaluation. With our data, we train
Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B
(with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling
supervised finetuning (SFT) approach. FARE-8B challenges larger specialized
RL-trained evaluators and FARE-20B sets the new standard for open-source eval-
uators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we
evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B
achieves near-oracle performance on MATH. As verifiers in RL training, FARE
improves the downstream RL-trained model performance by up to 14.1% vs.
string-matching verifiers. When initialized from FARE, a continually-finetuned
FARE-Code outperforms gpt-o0ss-20B by 65% on evaluating test-case quality.
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Figure 1: Overview of our work. We curate 2.5M multi-task, multi-domain training samples (left)
and use large-scale iterative rejection sampling SFT to train FARE, a family of automatic evaluators
(top right). We evaluate FARE on static benchmarks and on various real-world downstream tasks.
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1 INTRODUCTION

The past two years has seen the rapid adoption of large language models (LLMs) as automatic eval-
uators in response to demands for scalable evaluation of LLM outputs. LLM-based evaluators serve
as judges for popular benchmarks (Dubois et al.l | 2024; Zheng et al.|2023)), generative reward models
for preference optimization (Yuan et al., 2024; [Wu et al., [2024)), and verifiers/critics in inference-
time scaling settings (McAleese et al., [2024; Zhou et al., [2025b). The widespread integration of
evaluators into nearly every phase of the LLM development cycle (Wul [2025) demands evaluators
that can handle multiple evaluation tasks while operating effectively across diverse domains.

Different settings require different evaluation abilities: Alignment needs evaluators capable of com-
paring different responses, i.e., pairwise evaluation, whereas monitoring model outputs requires
finding minute mistakes, i.e., step-level evaluation. More recently, generative evaluators are tasked
with providing reward signals during reinforcement learning (RL) training (Team Kimi et al., 2025
Jiang et al.|, [2025b)), and are expected to grow in importance as RL moves towards unverifiable do-
mains (Gunjal et al.| 2025 Jayalath et al 2025) in complex reasoning settings (Ke et al., [2025aj
Ferrag et al., 2025)). As evaluators take central roles in training and evaluating the next generation
of models, they must be flexible enough to evaluate as the setting demands.

Compounding the challenges of multi-task evaluation is the expanding number of domains requir-
ing evaluation: RL-training has quickly moved from math reasoning (e.g., |Yu et al.| (2025b)) to
general-purpose reasoning (Ma et al.,[2025) (e.g., history or economics). Agentic settings introduce
additional wrinkles: With autonomously acting single agents (OpenAll [2025; [Nguyen et al., 2025}
Wei et al., 2025) and complex multi-agent workflows (Liang et al., 2025} |Alzubi et al., [2025)) now
being set free to browse the web and act on behalf of users with minimal oversight, evaluators must
assess not only agent reasoning, but also proposed tool-use. These systems, sometimes built with in-
tricate model-generated (Hu et al., 2024bj |Zhang et al., 2024a; |[Ke et al.,|2025b) interdependencies,
are bottlenecked, in part, by subpar evaluation (Cemri et al., [2025)).

Unfortunately, recent work in the open-source automatic evaluation community has failed to
meet these twin demands of multi-task, multi-domain evaluators, opting instead in training task-
specialized evaluators at relatively small data scales. We break this trend by scaling up data, curat-
ing 2.5M multi-task, multi-domain training samples that emphasize reasoning settings. As shown
in Fig. El, our data mix covers 5 distinct tasks and various domains like math, code, tool-use evalua-
tion, and natural language reasoning. With our data, we train, Foundational Automatic Reasoning
Evaluators (FARE), two best-in-class evaluators. As shown in Fig. I} our contributions are

* Multi-task, multi-domain dataset: We curate a large-scale, multi-task training set with an em-
phasis on reasoning-centric settings. We supplement existing human-and model-annotated data
with synthetic data created from challenging new seed datasets.

* Scalable learning via iterative rejection sampling: We show that iterative rejection sampling su-
pervised finetuning (RS-SFT) is a stable approach for training evaluators at scale. The semi-online
nature of RS-SFT avoids problematic teacher model distribution shifts while bringing computa-
tionally stable and efficient model updates. Through ablations, we quantify the impact of training
pipeline features like quantity of direct judgment data and the use of a continuous curriculum.

* The FARE family of evaluators: We train FARE-8B and FARE-20B and rigorously assess them
with 7 challenging benchmarks and 3 practical downstream settings: test-time response reranking,
RL-training verification, and domain-specific continual finetuning.

Our trained models are both well-rounded and high-performing. Out of the box, FARE improve
generator performance at test-time, achieving near oracle reranking performance on MATH, and
provide clear rewards during general-domain RL training, boosting downstream performance by
14.1% over typical string-matching verifiers. With minimal continual training, FARE can be adapted
to specific domains like code, beating gpt-0ss-20B by 65% in code test-case quality evaluation.

2 BACKGROUND AND RELATED WORK

An automatic evaluator (AE) 7y : X — ) maps input z = (p, ¢, R) € X tooutputy = (¢,j) € Y.
Input z consists of p, the evaluation protocol that specifies both the evaluation task (e.g., pairwise
comparison, verification) and evaluation rubric, ¢, the original question, and R, set of model re-
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sponses to be evaluated. The output y consists of a natural language critique c and final judgment j.
The AE may also be prompted to omit the critique ¢ and directly output the judgment j, which we
denote as y = (0, 7). The specific evaluation protocol p determines the elements of set R and the
exact form of judgment j. For example, in pairwise evaluation, R consists of two responses {71, 72}
and the judgment is a choice between the two (“A” or “B”), whereas in single-rating, R consists of
a single response 7 and the judgment is an integer on a 1-5 scale. In this work, we focus on training
automatic evaluators capable of the 5 evaluation tasks shown in Fig. [T}

* Pairwise comparisons: Given response set R = {ry, 2}, the AE selects the better of r; and 7.

* Step-level evaluation: Given response set R = {T[Steps]}, where 75cps) 1S a single model response
broken down into steps, the AE identifies step-level errors.

* Reference-based verification: Given response set R = {7cand, Tref }» Where 7cana is the candidate
and 7 18 the reference, the AE determines if r.,,q 1S correct based on 7.

* Reference-free verification: Given response set R = {r}, the AE determines if r is correct.

* Single rating: Given response set R = {r}, the AE assigns an integer score to 7.

Past work in generative automatic evaluators. Capable LLMs, like GPT-4, were originally
prompted as scalable evaluators (Wang et al., 2023aj Liu et al. [2023b} [Fu et al., 2024} (Chiang
& Lee, 2023). Subsequent analysis revealed pitfalls of prompted approaches, like biases with re-
spect to position (Wang et al., 2023bj [Li et al.,|2023)), length (Zeng et al., 2023} |Park et al., [2024)),
or self-preference (Panickssery et al.| [2024)). Finetuning specialized evaluators emerged as a result,
with early approaches using teacher model outputs to do supervised finetuning (SFT) (Kim et al.,
2023;2024b; |L1 et al., 2023} [Park et al.,|2024; Shiwen et al., [2024)) or direct preference optimization
(DPO) (Hu et al.l 2024c} |Ye et al.,[2024), often focusing only on one or two evaluation tasks. More
recent methods moved to reasoning models as teachers (Khalifa et al., [2025)).

Vu et al.| (2024); Wang et al.|(2024a)); Cao et al.| (2024); |/Alexandru et al.| (2025)) train foundational
evaluators at larger data scales with multi-protocol capabilities via offline training methods like
SFT or DPO. Such approaches take inspiration from general-purpose, large-scale multi-task learn-
ing (Sanh et al.| 2021} Raffel et al.| 2020; Wei et al., 2021)), which showed broad generalization
capabilities emerge with the scaling of training data. Foundational evaluators likewise were empiri-
cally shown to generalize to unseen evaluation tasks, prompts, and criteria while being more robust
to common biases (Vu et al.,[2024; Wang et al., 2024a)).

Recent work has focused on methodological advances, either using inference-time scaling (Liu et al.}
2025d; |Chan et al., 2025} [Zhao et al., 2025) or online training like reinforcement learning from
verifiable rewards (RLVR) (Chen et al.| 2025ajb; Whitehouse et al.| 2025} Xu et al., [2025b} Xiong
et al, [2025b) to improve evaluator performance. Because RLVR is computationally demanding
with relatively brittle training pipelines (Guo et al.| 2025} |Yang et al.| 2025), recent evaluators are
typically trained on a small amount of data for a single task. Our work bridges early work in training
foundational evaluators with more recent methodological advancements, demonstrating that a simple
semi-online training approach enables stable multi-task training at scale.

Desiderata for a new generation of evaluators. Here, we outline our design philosophy for FARE.
Beyond accuracy and robustness, we seek efficiency, as many evaluation settings like inference-time
reranking or RL rollout verification demand low latency. In contrast to recent long chain-of-thought
(CoT) evaluators (Chen et al., [2025b; |[Khalifa et al.| [2025]), we select base models with either no or
very compact “thinking” CoTs. We also explicitly avoid having the evaluator generate reference
answers. Past work has used evaluators to generate references during evaluation (Zheng et al., 2023
Li et al |2024) or training rollout (Chen et al.| |2025b). Not only does this risk severely degrading
performance when the reference is wrong (Krumdick et al., 2025), it also converts evaluation into
generation, turning a relatively easier task into a harder one (Zhou et al.| [2025a).

3 FARE: DATA AND TRAINING RECIPE

3.1 DATA CURATION

We use two data approaches for curating our final training mix: Using Existing high quality train-
ing datasets created for evaluator and preference finetuning and generating Synthetic datasets
through programmatic error injection and a generate-then-grade strategy.
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Figure 2: Breakdown of our curated training dataset of 2.5M samples by task (left), domain (center),
and curation approach (right). Domain breakdown excludes step-level data, which is entirely math.

Existing data consists of training samples from proven sources that have produced effective
evaluators (Vu et al.,|2024; |Cao et al.| [2024). These datasets consist of high quality annotations from
humans and frontier LLMs, and cover evaluation tasks like step-level, single-rating, and pairwise
evaluation and domains like chat quality, code, and safety. Following Wang et al.| (2024a), we
largely focus our data collection on modern (2024 and beyond) datasets, as these datasets contain
the most up-to-date model responses and fresh annotations. Beyond evaluator-specific training, we
take advantage of existing preference fine-tuning datasets used for RLHF (Ouyang et al.,|2022) and
DPO training (Rafailov et al, |2023)), converting these directly into pairwise evaluation samples. In
domains with objectively correct answers, e.g., math, we also create verification training data with
positive responses as correct/reference responses and negative responses as incorrect responses.

We hand-craft evaluation rubrics for each source dataset that follow annotation instructions given to
human annotators or models, if existing. If such original instructions do not exist, we write custom
evaluation rubrics for each source dataset based on the data composition and domain. App.
provides an example rubric. Existing data lays a solid foundation, with 1.4M samples already
dwarfing data scales found in recent work (e.g., 22K samples in [Whitehouse et al.| (2025) or 64K
samples in (Chen et al. (2025b))). However, upon inspection, we found three clear shortcomings:
(1) Newly relevant tasks, like verification, were underrepresented. (2) Existing pairwise task data
focused largely on chat-related topics and less-so on reasoning-relevant domains. (3) Questions and
responses from newer, challenging datasets produced to meet the needs of reasoning-focused RL
trainning were absent. To address these limitations, we supplement with synthetic data.

Synthetic datais generated from a diverse set of challenging seed datasets using two approaches:

* Programmatic error injection. We employ programmatic error injection when applicable, such
as tool-use and function-calling data. For example, to create pairwise tool-use data, we inject
errors (e.g., type error, extra argument, syntax errors) in correct function calls. This approach
increases the amount of tool-use evaluation data, adding both pairwise and verification samples.

* Generate-then-grade. Here, we leverage a mix of recent and established training datasets com-
prised of question ¢ and verifiable ground-truth answer a. We sample up to 20 responses per ¢
from various generator models, then grade each responses based on a. After grouping responses
by correctness, we create verification and pairwise. We use 12 unique generators from 6 model
families, covering reasoning and non-reasoning models. This ensures that FARE are trained on a
diverse array of model responses, enabling better generalization across distinct response distribu-
tions. Generate-then-grade enables us to incorporate problems from recent, challenging datasets
covering frontier math and reasoning tasks. This enhances the quality of our pairwise and verifi-
cation data with difficult-to-evaluate reasoning-focused samples.

Our final dataset comprises 2.5M training samples; an overview is shown in Fig.2] with breakdowns
by task, domain, and curation approach, and exact dataset sources are described in App. [B]

3.2 MODEL TRAINING

General training recipe. We aim to train an automatic evaluator my, which we call the policy
model parametrized by 6. Our data curation process yields a training dataset of N samples D =
{z,77}, where j* denotes the ground-truth judgment. Corresponding ground truth critiques c*
are not typically available in evaluator training data. As a result, past work has resorted to offline
teacher-model based approaches or online RL-based approaches, as discussed in § 2}
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These established approaches have their limitations: Teacher models introduce distribution shifts
with respect to the policy model, a common problem with imitation learning (Ross et al., [2011]),
with choice of teacher model having a large impact on downstream performance (Guha et al.l[2025).
On the other hand, RL training is compute and time-intensive, making it difficult to scale to large
data quantities, with past work (Liu et al.,|2025c) only exploring small (1.5B parameter) models via
ad-hoc interventions like reference policy resetting.

We borrow desirable qualities from both paradigms and use semi-online iterative rejection sampling
SFT (RS-SFT) (Touvron et al., 2023; |[Dong et al., [2023), which was recently shown to be competi-
tive with RLVR approaches (Xiong et al.l |2025a)). RS-SFT avoids sub-optimal distribution shift by
finetuning on correct evaluation traces produced by the policy model while employing a computa-
tionally lightweight policy update step. This enables simple yet stable scaling to millions of training
samples without sampling from a teacher model. An overview of our approach is shown in Fig.[T]

Concretely, we train my as follows. We split our N training samples into disjoint rollout batches
B = {xi4, j,z( .} of fixed size Nyouon and initialize the initial policy g, to be an existing post-
trained LLM (e.g., gpt-0ss-20B). Then for stept =0, ...,T — 1, we perform the following:

* Rollout from previous policy: For inputs x; ; from /3;, sample K responses per input from policy

. (K
g, , denoted {ygylt)7 . ,yl(,t )}.
* Rejection sampling: For each of the K responses {yg},}, cee g§ff>}, we determine correctness

with ground-truth judgment j7,. For inputs with correct responses, one randomly chosen response
is kept. Any inputs without correct responses are discarded. We denote the collected set of inputs
and corresponding correct responses as D;.

* Policy update: Use D, to update the policy weights via SFT, initializing with 6,:

011 =argmax > logmy(ylz) )
(z,y)€D:

Our approach draws inspiration from algorithms such as STaR (Zelikman et al) 2022) and
RAFT (Dong et al.l 2023)), with some key differences. STaR notably re-initializes training from
g, for each iteration ¢ and samples only one greedy response per input prompt, while RAFT relies
on an external reward model to rank generated outputs. Because the automatic evaluation setting is
inherently verifiable, i.e., the answer space of evaluators is closed vocabulary and discrete, like A/B
for pairwise comparisons or yes/no for verification, we omit the need for a reward model to rank
sampled responses.

Specific to evaluators, the Self-Taught Evaluator (STE) paradigm of Wang et al.|(2024b) and follow-
up EvalPlanner (Saha et al.,[2025)) are closely related to our approach. STE follows STaR with policy
re-initialization and EvalPlanner uses multiple SFT and DPO training runs per iteration ¢. Fur-
ther, these works use in-the-loop synthetic data generation, sampling responses to a small number
(< 25K) of seed questions from a fixed generator. Pairwise samples are then created from correc-
t/incorrect responses and used to train the model. This data generation approach cannot be adapted
to create data for other tasks, like step-level evaluation, fundamentally limiting the task abilities
of STE. A secondary concern is a lack of exposure to diverse response distributions; Evaluations
in [Wang et al.| (2024a) show that scaling training data with a simpler training recipe leads to better
generalization across benchmarks compared to STE.

Batch composition. For each rollout batch B;, we select unseen training samples from our curated
training dataset, ensuring the task mixture is consistent with global task composition. For example,
33% of our overall training data are pairwise tasks (Fig. [2), so 33% of the input prompts in B;
are sampled from unseen pairwise samples. We then sample K = 4 responses per sample with a
temperature of 0.9, and determine correctness based on final judgment.

Inclusion of direct judgment data. Past work (Wang et al., [20244a; [Cao et al., [2024) has showed
the importance of including direct judgment data samples to isolate judgment training signal. These
are samples where the critique c is omitted, and the input protocol p is modified to prompt directly
for a judgment. To precisely control the fraction of direct judgment data, we convert a fixed percent
of Dy to direct judgment data by dropping generated critiques and modifying the input prompt
accordingly. In App.[D] we ablate the proportion of direct judgment data and show such data enables
FARE to be prompted to exclude critiques for faster inference.
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Table 1: Pairwise evaluation results, with best and second-best performance in each section marked.
FARE achieve best-in-class performance, even outperforming frontier models in tool-use evaluation.
t indicates that benchmark uses consistent accuracy (25% random baseline).

JudgeBench! RJBT  PPE Correctness RM-Bench When2Call

RISE-Judge-7B 44.57 34.73 61.3 77.2 47.22
EvalPlanner-8B 30.20 - 52.8 68.1 -

J1-8B 42.00 - 59.2 73.4 -

RM-R1-14B 46.86 43.70 64.0 79.6 19.89
CompassJudger-7B 49.14 37.76 60.9 82.2 41.67
Atla Selene 8B 21.14 12.41 53.3 71.9 56.00
CompassJudger-14B 50.29 37.69 62.0 71.7 44.56
FARE-8B 55.71 51.05 63.8 79.2 80.33
RISE-Judge-32B 46.86 4235 63.5 82.2 46.44
CompassJudger-32B 54.57 46.53 65.6 80.1 51.89
RM-R1-32B 54.29 46.39 65.9 81.5 23.89
Self-Taught-70B 48.3 38.64 - 73.6 -

EvalPlanner-70B 56.60 - 70.2 82.1 -

J1-70B 60.00 - 72.8 82.7 -

FARE-20B 64.29 57.05 74.4 90.5 76.67
Qwen3-8B-ColdStart 48.29 40.59 60.5 78.07 59.67
Qwen3-8B 52.27 43.56 64.8 79.9 64.78
gpt-0ss-20B 59.43 50.51 71.7 89.9 61.33
gpt-oss-120B 70.29 58.26 77.8 92.0 70.00
GPT-5-nano 59.71 51.52 80.7 92.3 50.02
GPT-5 84.86 79.57 87.0 93.8 75.78

Table 2: ProcessBench results, with best and second-best performance in each section marked.
FARE-20B almost matches GPT-5 with the same prompt, achieving best-in-class performance,
while FARE-8B beats comparably sized generative (Gen.) evaluators.

GSM8K MATH OlympiadBench OmniMATH  Overall

PRM  SkyworkPRM-1.5B 59.0 48.0 19.3 19.2 36.4
PRM  Math Shepherd-7B 479 29.5 24.8 23.8 315
PRM  SkyworkPRM-7B 70.8 53.6 229 21.0 42.1
PRM  ActPRM-7B 82.7 82.0 72.0 67.3 76.0
PRM  Qwen2.5-7B-PRM800K 68.2 62.6 50.7 443 56.5
PRM  Qwen2.5-Math-7B-PRM 824 77.6 67.5 66.3 735
PRM  Qwen2.5-Math-72B-PRM 87.3 80.6 74.3 71.1 78.3
Gen.  Qwen2.5-Math-7B 26.8 25.7 14.2 12.7 19.9
Gen. RL Tango-7B 53.1 482 37.8 36.3 43.9
Gen. StepWiser-1.5B 46.9 434 26.3 28.4 36.3
Gen. StepWiser-7B 724 68.3 544 524 61.9
Gen. FARE-8B 68.5 67.7 59.9 58.1 63.5
Gen. Llama-3.3-70B 82.9 59.4 46.7 43.0 58.0
Gen.  Qwen2.5-Coder-32B 68.9 60.1 48.9 46.3 56.1
Gen.  QwQ-32B 88.0 78.7 57.8 61.3 715
Gen. Qwen2.5-Math-72B 65.8 52.1 325 31.7 45.5
Gen. GPT-4o 79.2 63.6 514 535 61.9
Gen. FARE-20B 89.8 87.8 80.0 79.9 84.4
Gen.  Qwen3-8B-ColdStart 37.0 41.0 36.3 389 383
Gen. Qwen3-8B 63.2 64.0 51.5 48.2 56.7
Gen.  gpt-o0ss-20B 79.3 79.4 68.8 68.2 73.9
Gen.  gpt-0ss-120B 89.6 87.6 80.8 76.0 83.5
Gen.  GPT-5-nano 83.8 87.0 80.6 77.1 82.1
Gen. GPT-5 914 89.5 80.6 76.9 84.6

Per-batch continuous curriculum learning. We additionally use a continuous curriculum in train-
ing: For each (z,y) € D,, we compute the pass percentage from the K = 4 rollout generations for
x, then sort the dataset in descending order of pass percentage. That is, samples where all 4 sampled
outputs are correct are used to update the model first, and samples where only 1 of 4 sampled outputs
are correct are used to update the model last. We find this has negligible impact on pairwise domains
but large impacts in step-level evaluation, as we show in App.

Base models. We train two models starting from Qwen3-8B-Base (Yang et al., |2025) and gpt-oss-
20B (Agarwal et al} [2025), denoted FARE-8B and FARE-20B. We find Qwen3-8B (post-trained)
to be over-trained, and therefore cold-start Qwen3-8B-Base from SFT data from Qwen2.5-32B-
Instruct, which we denote Qwen3-8B-ColdStart. See App. B.2|for additional details.
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4 EXPERIMENTS

We evaluate FARE on both core benchmarks, static benchmarks for automatic evaluators, and in
downstream settings, which simulate real applications of evaluators. We provide descriptions of
benchmarks and baselines in App.[C|and additional ablations and analysis in App.

4.1 CORE BENCHMARKS

Setup. We evaluate along five diverse aspects: (i) reasoning with JudgeBench (Tan et al., [2024),
ReasoningJudgeBench (RJB) (Xu et al., 2025b)), and PPE Correctness (Frick et al. [2024), (ii) bias
and robustness with RM-Bench (Liu et al.,[2024b), (iii) tool-use with When2Call (Ross et al., 2025)),
(iv) step-level error identification with ProcessBench (Zheng et al., 2024), and (v) reference-based
verification with VerifyBench (Yan et al.| [2025).

For RM-Bench and PPE Correctness pairwise benchmarks, we adopt default evaluation setups, run-
ning each benchmark once with a fixed random ordering of responses. For other pairwise bench-
marks, we report consistent-accuracy (Tan et al.,|2024), where each test sample is run twice, swap-
ping the order of response A and response B. If the evaluator selects a different response between
runs (i.e., is positionally biased), then the sample is marked incorrect; if the evaluator is consis-
tent, the judgment is graded against the ground-truth. For ProcessBench and VerifyBench, we
report Fl—scorep_-] and accuracy, respectively. We compare FARE against other finetuned genera-
tive and prompted evaluators. We report official numbers from past benchmarks, reporting sources
in App. [C] If necessary, we run each baseline using its own prompt template. For ProcessBench, we
additionally compare against non-generative process reward models (PRMs).

Results. Tables [I] to [3] present our results on pairwise, step-level, and reference-based verification
benchmarks, respectively. Our prompts are provided in App. [E]

Table [I| shows that across diverse pair-

wise benchmarks, FARE exhi})it best-in-  Table 3: Ref.-based verification, with best and
class performance, outperforming compa- gecond-best performance marked per section. FARE

rably sized baselines. FARE-8B is the peat general-purpose verifiers in hard settings.
strongest small judge, outperforming re-

cently released RL-trained models like J1- VerifyBench _ VerifyBench-Hard
8B and RM-R1-14B by 13.71 and 6.57 ab- Math-Verify 45.90 32.50
solute points on JudgeBench, respectively. GPT40 mini 9285 7230
FARE-20B challenges strong judges at 20B Llama-3.1-8B 73.05 43.20
parameters, outperforming dense 70B-sized 19}‘1”{_313'43 Zg-gg %
judge models despite having 3.5x fewer to- Yi-1.5-9B 8770 61.40
tal parameters and nearly 20x fewer ac- FARE-8B 93.20 78.40
tive parameters. The strong performance GPT-4o 93.15 72.60
of FARE across reasoning benchmarks, Llama-4-Scout 90.01 48.50
. S . Llama3.3-70B 83.25 54.70
which span math to scientific domains to Qwen2.5-72B 92.35 62.40
causal reasoning, show that our models ex- Qwen3-32B 95.80 71.80
cel at discerning between objectively cor- FARE-208 2435 85.10
rect and incorrect responses. Beyond rea- 8¥:Eg:§g'comsm e Toe
soning settings, FARE are generally ro- opt-0ss-20B 91.95 83.60
bust to subtle, stylistic biases (RM-Bench) gpt-0ss-120B 95.35 88.30
while excelling in tool calling evaluation ggg-nano ggfg gg:gg

(When2Call), which is increasingly impor-
tant as agentic workflows grow in popularity.

FARE also are extremely strong step-level evaluators, as shown by ProcessBench performance in Ta-
ble[2] FARE-8B is the best small-sized generative critic model, outperforming the recently released
StepWiser-7B (Xiong et al.l 2025b), a RL-trained specialized step-level evaluator, by 1.6 points.
FARE-20B outperforms the specialized Qwen2.5-Math-72B-PRM by 6.1 points, even matching
GPT-5. Most notably, FARE excel on the two most challenging splits, OlympiadBench and Omni-
MATH, with FARE-8B beating StepWiser-7B by 5.6 points and FARE-20B beating Qwen2.5-Math-

'ProcessBench defines their reported F1-score differently from the traditional F1-score; See this link.
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Table 4: Scaling inference-time compute for FARE typically brings additional gains in performance:
The performance gaps between FARE-8B/DeepSeek-GRM and FARE-20B/J1-70B widens.

PPE MMLU-Pro  MATH GPQA MBPP+ IFEval Overall

J1-8B w/ SC@32 6565675 700766 5325557 53.1 546 5405549 592619
J1-70B w/ SC@32 79.0 +79.9 860+ 88.1 659 665 66.0 665 673 672 72.8 736
DeepSeek-GRM-27B w/ SC@32 64.8-565.5 688 5694 556 5560 50.1 5499 598 5610 59.8 604
DeepSeek-GRM-27B w/ MetaRM@32  64.8-5 68.1  68.8 +70.0 556 5569 50.1 —50.8 59.8 5704 59.8 > 63.2
FARE-$B w/ SC@32 693 5708 79.7 804 584 5584 557 5549 559 5567 63.8 642
FARE-20B w/ SC@32 80.3 +83.6 946 5973 685 >7L1 5935573 69.1 »7L1 744 — 766

72B-PRM by 7.3 points on average. Overall, FARE are not only capable outcome-level evaluators,
but are able to find subtle mistakes that manifest at the step-level.

FARE are also capable verifiers, as shown in Table [3] with both models outperforming all reported
baselines on VerifyBench-Hard (Yan et al 2025). In particular, FARE-20B excels beats the next
best model, GPT-40, by 12.5 absolute points. As we demonstrate in § [.2] when used as verifiers
during GRPO settings, FARE bring tangible benefits over typical string-matching verifiers.

Scaling inference-time compute. Recently, sampling parallel judgments and aggregating via ma-
jority vote, i.e., self-consistency (Wang et al., |2022), has been used to improve evaluator perfor-
mance. In Table[d] we use self-consistency with 32 responses (SC@32) on PPE, comparing with J1
and DeepSeek-GRM (Liu et al.| [2025d). DeepSeek-GRM also trains a MetaRM to perform judg-
ment re-ranking at test-time. Across most splits, using SC@32 improves performance, with up to
a 3.3 point improvement for FARE-20B on the MMLU-Pro split. Even without SC@32, FARE-8B
beats DeepSeek-GRM-27B + MetaRM, with the gap widening with extra compute. Similarly, the
gap between FARE-20B and J1-70B grows with extra compute. Interestingly, we see that across both
our models, performance on MBPP+ slightly degrades, indicating that SC may not be the optimal
way to use compute across all domains. Nonetheless, we observe gains in the aggregate.

4.2 DOWNSTREAM EVALUATION

Setup. We apply FARE on 3 downstream tasks: (i) Reward model for inference-time scaling,
(i) verifier for GRPO training, and (iif) initialization for continual finetuning for domain-specific
evaluation. We provide detailed explanations of our downstream evaluation settings in App.[C.2]

Reward model for inference-time scaling. We use the standardized setup in JETTS (Zhou et al.,
2025b)), which provides a set of 10 outputs from various generators and various benchmarks with
corresponding correctness labels. Here, automatic evaluators rerank the responses, and performance
is measured as the final performance of the evaluator-selected responses. We select the four most
challenging benchmarks used in JETTS: MATH (Hendrycks et al., 2021), CHAMP (Mao et al.,
2024), MBPP+ (Liu et all 2023a), and BigCodeBench (Zhuo et al.l 2024). We compare against
strong judge models benchmarked previously on JETTS: SFR-Judge-8B,70B (Wang et al., [2024al),
Skywork-Critic-8B,70B (Shiwen et al., 2024), Self-Taught-Evaluator-70B (Wang et al.,|2024b), and

MATH CHAMP MBPP+ BigCodeBench
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Figure 3: Best-of-10 performance for Llama-3.1-8B generator across 4 challenging benchmarks
with baseline (red line) and oracle (green line) performance with FARE and SFR-Judge (SFR),
Skywork Critic (SC), Compass-Judger (CJ), and Self-Taught Evaluator (STE) as baselines. FARE
are the best small (<14B) and large (> 20B) reranking models: FARE-20B achieves near oracle
re-ranking performance on MATH, while FARE-8B matches 70B judges.
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Figure 4: Performance of downstream GRPO-trained model with FARE as reference-based verifiers.
Moving from string based output matching or weaker verifiers to FARE brings tangible performance
gains across both natural-language based (e.g., GPQA) and math settings.

CompassJudger-7B,14B (Cao et al, [2024). We utilize the default pairwise reranking setup and
prompt FARE to produce a judgment directly without explanation, i.e., y = (0, 7).

Fig. 3] shows best-of-10 performance with Llama-3.1-8B as generator with baseline greedy (red
line) and oracle re-ranking performance (green line). FARE produce best-in-class reranking perfor-
mance, with FARE-8B roughly matching the performance of larger (70B) judges in math settings
and outperforming all similar sized judges in coding domains. FARE-20B excels in math domains,
approaching oracle-level reranking performance on MATH, beating SFR-Judge-70B and Skywork-
Critic-70B by 14 and 21 absolute points, respectively. Similarly, FARE-20B beats 70B+ judges by
large margins in challenging coding domains. As we show in App.[D.7] FARE improve the perfor-
mance of other generators and FARE-20B improves significantly over gpt-oss-20B as a reranker.

Verifer for GRPO training. We train with Weblnstruct-Verified (Ma et al.}|2025), a multi-domain
reasoning dataset, covering math, chemistry, etc. Verifier impact is measured via the downstream
performance of the trained policy model on a fixed evaluation suite of MMLU-Pro (Wang et al.,
2024c), GPQA-Diamond (Rein et al., 2024), MATH-500, Minerva-Math (Lewkowycz et al.,|2022),
OlympiadBench (He et al.|2024a)), and AIME24 (Avg@32). We start from Qwen2.5-7B-Base (Yang
et al.||2024)) with the default reward setup as|Ma et al.|(2025)) (see App. @), and we compare against
training with the string-matching and trained verifier (General-Verifier) from Ma et al.| (2025).

Training with FARE-20B as a verifier improves downstream performance from 34.3 to 45.2, a nearly
11 point absolute gain, with improvements coming uniformly across the six benchmarks, as shown
in Fig. Notably, with 77% fewer gradient updateﬂ our model was able to slightly beat the
performance of General-Reasoner-7B (Ma et al., [2025) on several benchmarks: 38.9 vs. 38.8 on
GPQA-Diamond, 38.4 vs 37.9 on OlympiadBench, and 13.9 vs. 13.8 on AIME24. This shows that
using FARE-20B can significantly improve RL training convergence. Further, using FARE-8B and
FARE-20B bring 8.8% and 14.1% relative gains over typically used string matching verifiers and
4.4% and 9.4% over General-Verifier, which has been trained with in-training-distribution verifica-
tion data. These gains appear for both natural language (MMLU-Pro, GPQA) and math domains,
showing that FARE can verify complex outputs across multiple challenging domains.

Initialization for domain-specific continual |

finetuning. We continually finetune FARE-20B * e — Py
for code evaluation with one round of RS-SFT
to produce FARE-20B-Code. We train with only
15K pairwise samples randomly chosen from Ace-
Coder (Zeng et al.l |2025). For evaluation, we use
the recently released CodingJudgeBench (Jiang
et al.,[2025a), a pairwise benchmark covering code
generation, code repair, and test-case quality eval- ]
uation tasks. Fig. [5] which reports consistent ac- Code Generation  Code Repair  Test Case Quality
curacy across the three splits from gpt-oss-20B, . .

FARE-20B, FARE-20B-Code, and gpt-oss-120B Figure 5: antmua.ll training of FARE-ZOB for
for reference, shows that the first two splits are code eva}uatlon with only 15K samples yields
relatively easy, whereas test case evaluation is ex- 1aTger gains over gpt-oss-20B/120B.
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2For the same group size, General-Reasoner-7B is trained for 700 steps with rollout batch size 768, whereas
we train for 120 update steps with rollout batch size 1024.
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tremely difficult: gpt-oss-120B achieves only 32%. On the last task, FARE-20B improves over
gpt-0ss-20B by 11.67 absolute points, highlighting the benefits of large-scale evaluation training.
Specialized continual training on coding tasks brings an additional 10.48 absolute point improve-
ment, with FARE-20B-Code outperforming even gpt-oss-120B on average. In all, FARE can be
readily adapted for specific applications with a small amount of domain-specific data.

5 CONCLUSION

Using a curated multi-task, multi-domain training mix and RS-SFT, we train FARE, a family of
high performing and well-rounded automatic evaluators. FARE-8B challenges larger specialized
evaluators and FARE-20B sets a new standard for locally hosted evaluators. Our evaluations include
7 challenging benchmarks and 3 practical downstream settings where we show that FARE are (1)
effective reward models at inference-time, (2) effective verifiers for GRPO training, and (3) strong
initializations for continual, domain-specific finetuning.
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APPENDIX

Use of LLMs. We minimally used LLMs during the writing process to (1) brainstorm revisions
for short text snippets and (2) check for grammar, spelling, and writing mistakes.

Reproducibility Statement. We have released FARE checkpoints publicly and detailed training
data sources in App.[B]

Ethics Statement. The proliferation of LLM-based systems has raised concerns centered around
model biases, faithfulness (e.g., hallucinations), and accuracy. As a result, automatic evaluation with
LLMs has emerged as a popular paradigm for scalable evaluation of LLM outputs. Our work falls
under this paradigm, training foundational automatic evaluators for complex reasoning settings.

Despite empirical successes, automatic evaluators are not a panacea for unreliable generators: Au-
tomatic evaluators themselves may not be free from bias or inaccuracies. Towards quantifying any
bias in our evaluators, we evaluated FARE on RM-Bench, which aims to quantify how robust eval-
uators are to style and subtle mistakes in responses. However, we advise extensive bias testing and
corrective finetuning before deploying automatic evaluators in the wild. When feasible, we advocate
for having humans audit deployed evaluators for bias and systematic inaccuracies.

A EXTENDED RELATED WORK

Here, we cover recent advances in automatic evaluation that are non-generative. Scalar reward
models (RMs) (Cobbe et al., [2021), which output a single scalar score for a given question ¢ and
response r were popularized originally within the context of reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022; [Stiennon et al., 2020; [Ziegler et al.| 2019). Here, pairwise
human preferences were used to train a RM, which is then applied during RL-based alignment, e.g.,
with PPO (Schulman et al.,[2017) or DPO (Hosseini et al., [2024)). Past work has focused on dataset
curation (Jiang et al., [2023} |Liu et al.l 2024a; 2025a; Dong et al., [2024) and experimenting with
different loss formulations (Liu et al., 2024a; |Lou et al., [2024).

The above class of reward models operate at the outcome level, with the entire response being
assigned a single score. Step-level reward models, known as process reward models, attempt to
provide denser feedback by assigning each “step” in a response a score. Training PRMs relies on
step-level labels from humans (Lightman et al.} 2023)) or models (Duan et al.,[2025) or using Monte
Carlo simulation to estimate step-level quality (Wang et al., 2023c; |[Luo et al., 2024} Xiong et al.,
2025b; [Zhang et al.l [2025). Both approaches have associated drawbacks: Step-level annotation is
rarely scalable, while Monte Carlo simulation requires careful filtering to ensure high quality.

While RMs and PRMs remain popular paradigms, recent approaches have found that generative
evaluators can better leverage test-time compute for stronger evaluation performance (Zhang et al.,
2024bj; Mahan et al.| 2024; [Liu et al.,[2025d)), inspiring recent advances in generative evaluators, as
discussed in §

B DATA AND TRAINING DETAILS

B.1 TRAINING DATA

We enumerate our training data sources in Table [5] and present breakdowns by curation approach
in Table [6] We took efforts to decontaminate our training sets with N-gram matching approaches,
following |Guha et al| (2025). For the Synthetic data approach, we use 12 unique genera-
tors, covering a mixture of weak and strong models: Ministral-8B (Team) [2024), Mistral-Small
24B (Team,|2025a), Gemma 3 12B (Team et al.,|[2025), Qwen2.5 7B, 32B (Yang et al.,|2024)), Qwen-
QwQ (Teaml 2025b), Qwen3-30B-A3B (Yang et al.|, [2025), Llama-3.1-8B, Llama-3.3-70B (Dubey
et al., 2024), GPT-40 (Hurst et al., [2024)), and GPT-4.1-nano, 4.1 (OpenAl, 2025) for seed datasets
with verifiable answers. To increase diversity we randomly select a prompt template from a preset
list for each question in the seed dataset and sample multiple responses at varying temperatures (e.g.,
0.0, 0.3, 0.5, 0.7,...). For open-ended datasets, such as tool-use datasets, we enumerated common

19



Published as a conference paper at ICLR 2026

Table 5: Data sources used to create our training set.

Name Task Domain Curation
Approach

ActPRM Duan et al.|(2025) Step-Level Math Existing
Beavertails Preference Jietal.[(2023) Pairwise Safety Existing
Code Preference Pairs Vezora/Code-Preference-Pairs Pairwise Code Existing
DeepScaleR Luo et al.|(2025) Pairwise, Verification Math Synthetic
Folio Han et al.|(2022) Pairwise, Verification =~ NL Reasoning Synthetic
FoVer Kamoi et al.|(2025) Step-Level Math Existing
HelpSteer Wang et al.|(2023d) Single rating Chat Existing
HelpSteer2 ‘Wang et al.|(2024d) Single rating Chat Existing
HelpSteer3 Wang et al.|(2025aib) Pairwise Code, NL Reasoning Existing
HH-RLHF Harmless Bai et al.|(2022);|Ganguli et al.|(2022)  Pairwise Safety Existing
LAMP Chakrabarty et al.|(2025) Pairwise, Single rating  Chat Existing
MATH Hendrycks et al.|(2021) Pairwise, Verification =~ Math Synthetic
MemGPT MemGPT/MemGPT-DPO-Dataset Pairwise, Verification Tool-Use Existing
OffsetBias Park et al.|(2024) Pairwise Chat Existing
ReClor Yu et al.[(2020) Pairwise, Verification ~ NL Reasoning Synthetic
StepDPO Lai et al.|(2024) Pairwise, Verification Math Existing
StrategyQA Geva et al.[(2021) Pairwise, Verification =~ NL Reasoning Synthetic
SWEGym Pan et al.|(2024) Verification Code Existing
SWERank Reddy et al.|[(2025) Verification Code Existing
SynLogic Liu et al.|(2025b) Pairwise, Verification =~ NL Reasoning Synthetic
Tulu-V3-IF DPO data Lambert et al.|(2024) Pairwise Chat Existing
‘WebDPO WebDPO Pairwise, Verification NL Reasoning Existing
When2Call Preference Pairs  |Ross et al.|(2025) Pairwise Tool-Use Existing
XLam-60K Liu et al.|(2024c) Pairwise, Verification  Tool-Use Synthetic

Table 6: Breakdown of training data by curation approach.

Task Pairwise Step-level  Verification  Rating
Synthetic 45.2% - 54.8% -
Existing 27.2% 36.0% 19.7% 17.1%
Domain  General Reasoning Math Code Tool-use ~ Chat  Safety
Synthetic 28.3% 52.1% - 19.6% - -
Existing <1% 50.4% 14.7% 1% 257% 12%

errors found in tool calling outputs, such as invalid input types, missing arguments, malformed json
format, etc., and then programmatically injected errors into ground-truth correct responses.

B.2 TRAINING DETAILS

We train batch size 128 and a constant learning rate of le-6 and choose per-iteration rollout batch
sizes of 50,000 and 250,000 for FARE-8B and FARE-20B, respectively. In the latter case, we make
the practical trade-off of RS-SFT iterations for training speed, reducing the number of times we need
to reset the model for rollouts, etc. We use a modified version of the OpenRLHF framework (Hu
et al.| 20244a) for training.

Qwen3 cold-start SFT. Public discussion from members of the Qwen organization indicate that
post-trained versions of Qwen3 are difficult to continually finetune, and recommend starting from
base modelsﬂ Therefore, we opt to cold-start SFT with one iteration of rejection sampling data
collected from Qwen2.5-32B-Instruct. As we show in App. while this cold-start model does
not match Qwen3-8B, FARE-8B outperforms the non-thinking Qwen3-8B on many static evaluation
benchmarks.

We hypothesize that a relatively short, general-purpose alignment phase prior to evaluation-specific
finetuning could further improve performance. While we did not attempt this, we believe this line
of experimentation is of interest for future work.

3See, for example, this Twitter/X post: “...Instruct models after RL will pose difficulty for finetuning, but
base models I don’t think so...”
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C BENCHMARK AND BASELINE DETAILS

C.1 CORE BENCHMARKS

For core benchmarks, we select a set of challenging and contemporary benchmarks for evaluating
automatic evaluators:

JudgeBench (Tan et al.|,|2024): A pairwise benchmark focused on evaluating LLM-as-judge
models in reasoning settings, covering math, code, logical reasoning, and knowledge-based
reasoning. Responses are generated using GPT-4o.

ReasoningJudgeBench (Xu et al., [2025b): A pairwise benchmark that covers more diverse
reasoning settings, such as multi-hop, causal, and domain-specific reasoning. Responses
are generated using GPT-4o.

PPE Correctness (Frick et al.l 2024): A pairwise benchmark that covers reasoning and
instruction following tasks with objectively correct answers, using seed datasets like
MATH |Hendrycks et al.| (2021), GPQA (Rein et al., [2024), MBPP+ (Liu et al.| 2023a),
MMLU-Pro (Wang et al.|2024c)), and IFEval (Zhou et al.| 2023)). Responses are generated
using a variety of weaker models, e.g., Gemma-2-9B.

RM-Bench (Liu et al.| 2024b): A pairwise benchmark that evaluates how robust evaluators
are to stylistic biases by evaluating on pairs of responses with subtle yet critical differences.

When2Call (Ross et al.| [2025): A pairwise benchmark that covers appropriate selection
of tools (or refusals) in response to a user prompt. We use the LLM-as-judge test split,
which comprises 300 unique prompts. Each prompt has four candidate answers (refusal,
direct response, tool call, follow-up question), of which one response is correct. We form
all pairs, yielding 900 total pairwise comparisons.

ProcessBench (Zheng et al., [2024): A step-level benchmark that evaluates the ability to
identify step-level errors in mathematical reasoning across easy (GSM8K and MATH) and
hard (Omni-Math and OlympiadBench) questions.

VerifyBench (Yan et al| [2025): A reference-based verification benchmark, comprised of
Easy and Hard splits, that evaluates verifier ability to identify equivalent final answers.

For all core benchmarks, we utilize officially reported numbers when available. Otherwise, we run
the corresponding baseline ourselves, using any prompt templates released with evaluators.

For pairwise benchmarks, we select our baselines from (1) existing multi-task foundational evalua-
tors, (2) recently released RL-trained judge models, and (3) strong-performing specialized judges:

RISE-Judge (Yu et al. 2025a): Pairwise judges trained with SFT then DPO to perform
pairwise evaluation. Initialized from Qwen2.5 models.

Self-Taught Evaluators (Wang et al., |2024b): A pairwise judge trained with iterative SFT
with training data generated in the loop. Initialized from Llama-3.1-70B.

EvalPlanner (Saha et al.| 2025): Pairwise judges trained with iterative SFT and DPO on a
small seed dataset, with an emphasis on learning how to plan for evaluation tasks. Initial-
ized from Llama-3.3-70B.

RM-RI (Chen et al., 2025b): A family of pairwise judges trained with GRPO, initialized
from DeepSeek-distilled Qwen models.

J1 (Whitehouse et al., 2025): A pairwise and single-rating judge trained with GRPO. Ini-
tialized from Llama-3.1/3.3 models.

CompassJudger (Cao et al}2024): A family of foundational evaluators trained with large-
scale SFT. Initialized from Qwen2.5 models.

Atla Selene (Alexandru et al.| |2025): A foundational evaluator trained with large-scale
preference optimization. Initialized from Llama-3.1-8B.

We run gpt-oss variants with low reasoning, as (1) FARE-8B is trained initialized from gpt-oss-20B-
low, and (2) evaluation often demands low-latency, making long CoT undesirable if they can be
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avoided. For GPT-5, we use the default API settings (medium reasoning). For pairwise benchmarks,
we use reported scores from |Whitehouse et al.| (2025); Xu et al.| (2025b); [Liu et al.|(2025d).

For ProcessBench, we use officially reported numbers in |Zheng et al.| (2024), which includes Sky-
workPRMs (He et al., [2024b), Math Shepherd PRM (Wang et al.| [2023c), ActPRM (Duan et al.,
20235)), and Qwen-Math PRMs (Zhang et al., [2025)). We additionally report results from generative
baselines: RL Tango (Zha et al [2025) and StepWiser (Xiong et al., [2025b)). For VerifyBench, we
use reported scores from the original paper (Yan et al., [2025).

C.2 DOWNSTREAM SETTINGS

Reward model for inference-time scaling. We compare our models against the following base-
lines, representing best-in-class performers as reported in JETTS. We utilize reported numbers di-
rectly except for CompassJudger, which was not included in the original JETTS evaluation. As such,
we run CompassJudger ourselves.

» SFR-Judge-8B, 70B (Wang et al.| [2024a): A family of multi-task evaluators. Among the
highest performing small and large judges on JETTS. Initialized from Llama-3.1 models.

» Skywork-Critic-8B, 70B (Shiwen et al., [2024): Two pairwise-specfic evaluators that do
not output explanations. Among the highest performing small and large judges on JETTS.
Initialized from Llama-3.1 models.

o Self-Taught-Evaluator-70B (Wang et al.,|2024b): A strong performing large judge model.
Initialized from Llama-3.1 models.

* CompassJudger-7B, 14B (Cao et al.,2024): As described above.

Verifier during GRPO training. We adopt the settings of [Ma et al.| (2025), which train General-
Reasoner, a family of reasoning LLMs of varying model sizes using the WeblInstruct-Verified train-
ing dataset. In particular, we train with standard GRPO, i.e., without dynamic sampling or clip
higher modifications, initializing from Qwen2.5-7B-Base. We the same conditional reward setup as
General-Reasoner:

* If the solution parsing fails, then reward is set to —0.5.

* If asolution successfully parsed and is deemed correct by the verifier, it is assigned a reward
of 1 plus a length penalty of:

—0.05 x min{10, |1len (ground_-truth) - len(model_response) |}.

The training framework is based on the[ver 1] (Sheng et al.l [2024). We use rollout batch size 1024,
max response length of 4096, group size of 8, a temperature of 1.0, a KL coefficient of 0.001, and a
learning rate of Se-7.

Initialization for domain-specific finetuning. We randomly sample 15,000 pairwise samples from
AceCoder (Zeng et al., |2025) and perform one round of rejection sampling. We adopt training
setup of FARE-20B: a direct judgment ratio of 60% and continuous curriculum. We train for 3
epochs with batch size 256 and cosine decay learning rate peaking at le-5. We then evaluate on
CodingJudgeBench, reporting consistency accuracy.

Note that CodingJudgeBench reports an unconventional pairwise metric, employing Z-score nor-
malization between the two consistency runs. Their implementation is not publicly available, and
their paper lacks concrete implementation details. As such, we resort to consistent accuracy, which
is more commonly used in pairwise benchmarks, e.g., (Tan et al., 2024; [Li et al.| 2023} | Xu et al.,
2025asb).

D ABLATIONS, ANALYSIS, AND ADDITIONAL RESULTS

D.1 TRAINING RECIPE ABLATIONS.

In Table [/} we ablate three components of our training recipe and report the average on our five
pairwise benchmarks and ProcessBench. First, we train multiple checkpoints using RS-SFT varying
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Figure 6: Pairwise positional robustness emerges as at large data scales, as shown with training
FARE-8B and an earlier development run initialized with Qwen2.5-7B-Instruct.

the proportion of direct judgment data from 30% to 70%. Direct judgment data affects FARE-8B
and FARE-20B differently: endpoints (30% or 60-70%) show the best performance for FARE-20B,
whereas performance peaks at 40% for FARE-8B. As such, we choose 40% and 60% to train FARE-
8B and FARE-20B.

We also ablate different strategies for training with direct judgment data specific to gpt-oss, which
is trained to output an intermediate CoT before responding. We can either keep this CoT with direct
judgment data or remove the intermediate CoT by going directly to the assistant turn. The former
more closely mimics the training distribution of gpt-oss, but undermines the intended purpose of
direct judgment data of isolating outcome correctness training signal, as discussed in § The
latter is out-of-training-distribution but more effectively isolates training signal. As seen in Table
(bottom right), removing the intermediate CoT leads to gains in both pairwise and step-level settings.

Finally, we measure the impact of the continuous curriculum as compared to a random data shuffling
strategy with FARE-8B. As shown in Table [/| (bottom left), the continuous curriculum leads to
minimal drops in pairwise performance but large gains in ProcessBench.

D.2 HOW DOES DIRECT JUDGMENT PROMPTING AFFECT PERFORMANCE?

Many settings demand low latency, such as inference-time reranking or evaluating rollouts during
RL training. Here, we study how performance varies when FARE are prompted to skip the cri-
tique c and directly output a judgment j. For FARE-20B, this involves additionally skipping the
intermediate CoT, directly outputting from the assistant turn, making out-of-distribution relative to
gpt-0ss-20B’s original training setup. We see that performance improves for FARE-8B, but de-
grades for FARE-20B. Such results for FARE-8B are in-line with prior work, which finds that direct
judgment-like inference leads to minimal drops in performance. For FARE-20B, we hypothesize
that the post-training of gpt-0ss-20B instills a strong prior in favor of generating intermediate CoT.
Even training with direct judgment data, removing such CoT is detrimental. Nonetheless, perfor-
mance does not universally degrade, with When2Call performance increasing by nearly 13 points.

D.3 ROBUSTNESS TO PAIRWISE POSITIONAL BIAS EMERGES WITH DATA SCALE.

A known issue in pairwise evaluation is inconsistency (Wang et al., | 2023b)), a form of positional bias
where the evaluator judgment changes based on the order of responses in the input prompt. During
training, we observed that our judges become more consistent as a function of data scale; Fig. [f]

Table 7: Ablation study varying proportion of direct judgment data, use of continuous curriculum
(8B model), and ablating strategies for using direct judgment data for gpt-oss (20B model).

% direct Qwen3-8B-ColdStart Models gpt-0ss-20B Models

judgment data  Pairwise ProcessBench Average Pairwise ProcessBench Average

30 61.36 52.10 56.73 72.51 83.64 78.08

40 61.14 58.03 59.59 70.82 82.50 76.66

50 61.56 56.85 59.21 71.97 83.00 77.49

60 62.31 54.73 58.52 72.58 84.40 78.49

70 62.67 56.49 59.58 71.59 84.72 78.16
Curriculum Pairwise ProcessBench Average = Keep CoT? Pairwise ProcessBench Average

Yes 61.14 58.03 59.59 Yes 67.80 81.64 74.72

No 61.49 53.43 57.46 No 69.81 82.55 76.18
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Table 8: Performance with and without critiques (and CoT for FARE-20B) for pairwise benchmarks
(left) and ProcessBench (right). Directly prompting for a verdict universally improves performance
for FARE-8B, but degrades performance for FARE-20B.

PPE RM Olympiad ~ Omni

JudgeBench  RIB Correctness  Bench When2Call Average GSMS8K MATH Bench MATH Average
FARE-8B 55.71 51.05 63.8 79.2 80.33 66.0 68.5 67.7 59.9 58.1 63.5
FARE-8B, no critique 60.00 52.60 64.9 81.8 86.55 69.2 68.5 68.6 59.0 585 63.7
FARE-20B 64.29 57.05 74.4 90.5 76.67 72.6 89.8 87.8 80.0 79.9 84.4
FARE-20B, no critique or CoT 62.00 55.23 68.9 855 89.11 72.1 79.8 732 70.0 70.3 733

Table 9: Ablation comparing training task-specific evaluators against training a single multi-task
evaluator. All models initialized from Qwen2.5-7B-Instruct.

JudgeBench ReasoningJudgeBench ProcessBench

Pairwise only 53.71 48.78 -
Step-level only - - 55.32
Multi-task 58.00 SL.11 55.81

shows the progression of pairwise consistency on the five pairwise benchmarks in § @.1] over the
course of training for FARE-8B and an earlier training run which was initialized from Qwen2.5-
7B-Instruct. Both models steadily become positionally robust over the course of training, with
the weaker Qwen2.5-7B-Instruct showing substantial gains. This reveals that scaling evaluator
training data can mitigate common judge biases, complementing mitigation strategies that use data
augmentation (Saha et al.| [2025), label balancing (Cao et al., [2024; Wang et al.| [2024a), and RL-
based reward or algorithmic methods (Whitehouse et al., 2025} |Xu et al., 2025b).

D.4 MULTI-TASK EVALUATOR TRAINING OUTPERFORMS SINGLE-TASK TRAINING.

Here, we compare training evaluators with a multi-task data mix against training per-task evaluators.
We initialize train from Qwen2.5-7B-Instruct, and train a pairwise only evaluator, a step-level only
evaluator, and one with pairwise and step-level data. We train all models for an equivalent number of
training input samples with RS-SFT on an earlier version of our final data mixture. We report results
on JudgeBench, ReasoningJudgeBench, and ProcessBench in Table 0] We observe that multi-task
training leads to significant gains over single-task evaluators, especially pairwise evaluators, with
larger gains coming in pairwise evaluation settings that step-level evaluation. This result is intuitive:
The skill of identifying errors at a granular (step) level improves pairwise evaluation by endowing
the evaluator with the ability to catch more subtle mistakes in each response within the pair.

D.5 SINGLE-RATING EVALUATION.

We additionally evaluate FARE on Single Rating tasks with BiGGen-Bench (Kim et al.||2024a) and
FLASK (Ye et al.||2023)), two chat-centric evaluation datasets with human annotated 1-5 ratings. We
measure Pearson correlation with human annotations, and report results in Table Single-rating
is widely used evaluation task in reasoning settings, and thus constituting the smallest proportion of
our training data, as shown in Fig.[2] Nonetheless, FARE are competitive with chat-focused judge
models, with FARE-8B outperforming foundational judge models like SFR-Judge-8B and 12B and
FARE-20B approaching the performance of SFR-Judge-70B. We use reported values from baseline
papers, including LMUnit (Saad-Falcon et al) [2024), Atla Selene (Alexandru et al., |2025), and
SFR-Judge (Wang et al., [2024a).

D.6 COMPARISON AGAINST GENERAL-PURPOSE MODELS

Here, we compare FARE against general-purpose LLMs, selecting popular reasoning and non-
reasoning models. Table [TT] shows our results. Our cold-start SFT for Qwen3-8B produces the
weakest Qwen3 variant, as expected. However, after undergoing iterative SFT, FARE-8B surpasses
Qwen3-8B on multiple benchmarks, improving from 43.56 to 51.05 on ReasoningJudgeBench and
56.7 to 63.5 on ProcessBench. Likewise, we are able to improve gpt-oss-20B across the board,
yielding substantial improvements in reasoning, tool-calling, and step-level evaluation. The result-
ing checkpoint approaches gpt-oss-120B on a number of benchmarks.
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Table 10: Single rating performance, with best and second-best performance in each section marked.
Despite being trained with a focus on reasoning settings, FARE perform competitively in single-
rating evaluation in chat settings.

FLASK BiGGen Bench  Average

GPT-40-mini 0.630 0.600 0.615
Glider-3.8B 0.615 0.604 0.610
FlowAI-Judge-3.8B  0.400 0.460 0.430
Prometheus-2-7B 0.470 0.500 0.485
Auto-J-13B 0.350 0.300 0.325
Themis-8B 0.540 0.580 0.560
SFR-Judge-8B 0.520 0.590 0.555
SFR-Judge-12B 0.590 0.570 0.580
Atla Selene 8B 0.613 0.584 0.599
LMUnit-8B 0.600 0.645 0.623
FARE-8B 0.611 0.616 0.591
GPT-40 0.690 0.650 0.670
Prometheus-8x7B 0.540 0.520 0.530
SFR-Judge-70B 0.660 0.650 0.655
LMUnit-70B 0.720 0.677 0.699
FARE-20B 0.649 0.616 0.633

Table 11: Comparison of FARE against their initial models and other popular general-purpose mod-
els. T indicates some results reported in|Whitehouse et al.| (2025) or|Zheng et al.[(2024).

JudgeBench ReasoningJudgeBench PPE Correctness RM-Bench  When2Call ~ Avg. consistency  ProcessBench

Qwen3-8B-ColdStart 48.29 40.59 60.5 78.07 59.67 72.55 383
Qwen3-8B-non-thinking 52.27 43.56 64.8 79.9 64.78 74.04 56.7
FARE 8B 55.71 51.05 63.8 79.2 80.33 82.28 63.5
gpt-0ss-20B (low) 59.43 50.51 71.7 89.9 61.33 77.83 73.9
FARE 20B 64.29 57.05 74.4 90.5 76.67 82.92 84.4
gpt-0ss-120B (low) 70.29 58.26 77.8 92.0 70.00 84.09 834
Deepseek-R1-671B1 68.90 58.53 76.5 88.6 81.00 - -

GPT-4.1 66.29 59.68 78.4 87.8 64.00 85.54 77.8
GPT-40 50.29 45.25 68.9 80.1 67.44 78.02 61.9
ol-minif 64.20 - 71.3 80.8 - - 879

Table 12: Full results on JETTS. Numbers in bold indicate that the judge reranking was helpful, i.e.,
performance is greater than baseline (greedy) performance.

Benchmark ~ Generator Baseline Oracle FARE-8B FARE-20B FARE-20B gpt-0ss-20B
Model Performance Performance [CritiquePrompt] [CritiquePrompt]
MATH Llama-3.1-8B-Instruct 24.70 53.47 35.73 50.83 49.85 29.83
Llama-3.1-70B-Instruct 43.81 68.35 53.47 65.41 64.66 51.06
Qwen2.5-32B-Instruct 57.10 78.17 65.03 74.32 74.24 61.56
Qwen2.5-72B-Instruct 62.99 82.78 70.17 79.98 78.70 70.32
GSMS8K Llama-3.1-8B-Instruct 85.67 96.44 92.04 94.77 94.77 93.78
Llama-3.1-70B-Instruct 95.53 98.48 96.37 96.74 96.74 96.06
Qwen2.5-32B-Instruct 95.22 98.56 96.21 96.29 96.74 95.75
Qwen2.5-72B-Instruct 95.68 97.88 95.98 95.75 95.98 95.53
CHAMP Llama-3.1-8B-Instruct 29.26 60.00 34.07 44.07 42.22 35.93
Llama-3.1-70B-Instruct 47.41 71.48 51.85 58.52 56.67 55.56
Qwen2.5-32B-Instruct 75.19 85.56 70.00 77.78 79.26 74.81
Qwen2.5-72B-Instruct 71.48 85.56 70.00 73.70 74.81 67.78
MBPP Llama-3.1-8B-Instruct 54.50 76.46 59.79 68.78 68.25 63.49
Llama-3.1-70B-Instruct 65.08 83.07 62.17 67.72 68.78 67.99
Qwen2.5-32B-Instruct 75.40 84.13 76.72 80.42 79.37 79.10
Qwen2.5-72B-Instruct 76.19 84.66 75.40 78.31 78.31 78.04
HumanEval Llama-3.1-8B-Instruct 63.35 79.88 64.02 74.39 74.39 68.29
Llama-3.1-70B-Instruct 75.61 90.85 76.83 88.42 85.98 84.76
Qwen2.5-32B-Instruct 81.10 93.29 83.54 91.46 90.24 87.80
Qwen2.5-72B-Instruct 82.32 93.90 86.59 90.24 90.85 86.59
BCB Llama-3.1-8B-Instruct 31.67 56.84 34.82 41.84 41.23 39.30
Llama-3.1-70B-Instruct 45.44 62.63 43.86 46.93 47.54 45.88
Qwen2.5-32B-Instruct 45.53 65.18 47.02 49.39 48.95 48.25
Qwen2.5-72B-Instruct 46.67 60.18 47.54 49.04 49.30 48.25
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D.7 ADDITIONAL JETTS RESULTS.

In Table[I2] we present results full results on JETTS. Concretely, we present (a) a prompt ablation,
denoted [CritiquePrompt ], where we prompt FARE-20B and gpt-0ss-20B for an critique and
judgment. We additionally report results for different generators than Llama-3.1-8B-Instruct. Note
that unlike FARE-20B, gpt-o0ss-20B does not natively support prompting without intermediate CoT,
making an even comparison with our results presented in Fig. 3] unfeasible. Notably, FARE-20B is
the only judge to improve performance over greedy across all generators and benchmarks, regardless
of prompt. While FARE-8B is a relatively strong judge, it does not improve generator performance
universally, struggling with larger generators on harder benchmarks. The trend of small evaluators
struggling in helping larger generators was noted originally in JETTS. Across the board, FARE-20B
improves in performance over gpt-oss-20B, sometimes by significant margins (e.g., 49.85 vs 29.93
for Llama-3.1-8B-Instruct MATH performance).

E PROMPTS AND EXAMPLES

E.1 OUR EVALUATION PROMPTS

Below we provide our evaluation prompts for pairwise, step-level, and verification evaluation, along
with our direct judgment evaluation prompt for pairwise.

Pairwise evaluation prompt for FARE

### System Prompt

Please act as an impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user prompt displayed
below. You will be given assistant A’s answer and assistant B’s
answer. Your Jjob is to determine which assistant’s answer is better.
If assistant A is better, output [A]. If assistant B is better,
output [B].

Here are some rules for evaluation

(1) When evaluating the assistants’ answers, identify any mistakes
or inaccurate information. Focus on the content each response and
select the response that is logically sound and error free.

(2) If both responses contain inaccurate information, select the
response that arrives at the correct response

(3) Avoid any biases, such as order of responses, length, or
stylistic elements like formatting

Before outputting your final judgment, provide an explanation of your
judgment. Your explanation should discuss why your chosen response
is better based on the evaluation criteria. The explanation should
concretely discuss strengths and weaknesses of both answers.

After outputting your explanation, provide your final judgment. Use
the following format:

Explanation: Your explanation here
Verdict: Your final verdict

### User Prompt

[User Question]

{question}

[The Start of Assistant A’s Answer]
{response_a}

[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]
{responseb}
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[The End of Assistant B’s Answer]
g J

Direct judgment pairwise evaluation prompt for FARE

### System Prompt

Please act as an impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user prompt displayed
below. You will be given assistant A’s answer and assistant B’s
answer. Your job is to determine which assistant’s answer is better.
If assistant A is better, output [A]. If assistant B is better,
output [B].

Here are some rules for evaluation

(1) When evaluating the assistants’ answers, identify any mistakes
or inaccurate information. Focus on the content each response and
select the response that is logically sound and error free.

(2) If both responses contain inaccurate information, select the
response that arrives at the correct response

(3) Avoid any biases, such as order of responses, length, or
stylistic elements like formatting

Output your final judgment directly. Do not output any explanation
or rationale for your decision. Use the following format:

Verdict: Your final judgment

### User Prompt

[User Question]

{question}

[The Start of Assistant A’s Answer]
{response_a}

[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]
{response b}

[The End of Assistant B’s Answer]
. J

Step-level evaluation prompt for FARE

### System Prompt

Please act as an impartial judge and evaluate the quality of the
response provided by an AI assistant to the user prompt displayed
below. You will be given the assistant’s solution to a math problem,
which is split into steps, starting with a <step [step number]> tag,
where [step number] is indexed from 0. Your job is to identify which
step an error occurs, if an error is present. When evaluating the
solution, consider each step separately. Evaluate the content of
each step for correctness. If you encounter a mistake at <step [step
number] >, output [step number] as your Verdict. If the full response
is error free, then select step number -1. Avoid any biases, such as
length of step, or stylistic elements like formatting.

Here are some rules for evaluation.

(1) The assistant’s answer does not need to be complete or arrive
at a final solution. You may receive a partially complete response.
Your job is to assess the quality of each step.
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(2) When evaluating the assistant’s answer, identify any mistakes or
inaccurate information. Focus on the content each step and determine
if the step is logically valid.

(3) For each step, you should provide an explanation of your
assessment. If you find an error, describe the nature and cause
of the error.

(4) Avoid any biases, such as answer length, or stylistic elements
like formatting.

Before providing an your final verdict, think through the judging
process and output your thoughts as an explanation After providing
your explanation, you must output the corresponding step number with
an error. Use the following format:

Explanation: Your explanation here

Verdict: The step number with the error or -1 if no error occurs
### User Prompt

[User Question]

{question}

[The Start of Assistant’s Answer]

{response}

[The End of Assistant’s Answer]

- J

Reference-based verification evaluation prompt for FARE

### System Prompt

Please act as an impartial judge and evaluate if a response provided
by an AI assistant (candidate answer) is consistent with a provided
reference answer. Your Jjob is to determine is the assistant’s
response 1s consistent with the reference answer.

If the response is consistent, output [A].
If the response is incorrect, output [B].
Here are some rules for evaluation.

(1) Refer to the given reference answer and determine if the
candidate’s answer is consistent with the reference answer.

(2) The reference answer is always correct and the question is
perfectly valid. Take the reference answer as the ground truth.

(3) When determining if the candidate’s answer is consistent with
the reference answer, only compare the final answer. Ignore any
potential errors in the reasoning processes.

(4) Some answers may be expressed in different ways, such as some
answers may be a mathematical expression, some answers may be a
textual description, as long as the meaning expressed is the same.
Before making a judgment, please understand the question and the
reference answer first, and then judge whether the candidate’s answer
is consistent with the reference answer.

(5) Some answers may consist of multiple items, such as
multiple-choice questions, multiple-select questions,
fill-in-the-blank questions, etc. Regardless of the question type,
the final answer will be considered correct as long as it matches
the standard answer, regardless of whether the reasoning process

is correct. For multiple-select questions and multiple-blank
fill-in-the-blank questions, all corresponding options or blanks
must be answered correctly and match the standard answer exactly to
be deemed correct.
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Before outputting your final judgment, provide an explanation of
your judgment. Your explanation should discuss why the response

is correct, incorrect, or invalid. The explanation should
concretely discuss reasons for your judgment. After outputting your
explanation, provide your final judgment. Use the following format:

Explanation: Your explanation here
Verdict: Your final judgment of [A] or [B]
### User Prompt

<|User Prompt|>

{question}

<|The Start of Assistant’s Answer|>
{response}

<|The End of Assistant’s Answer|>

<|The Start of Reference Answer|>
{reference}

<|The End of Reference Answer|>

(& J

E.2 SAMPLE EVALUATION RUBRIC

Here, we provide a sample rubric that was hand-written for SWE-Rank (Reddy et al.l 2025). SWE-
Rank data consists of contrastive pairs for training retrieval models. We re-purposed this data into
a binary verification task, asking the evaluator if the retrieved code snippet was relevant for editing
given a user request. “Positive” samples were assigned “Correct” labels, and “Negative” samples
were assigned “Incorrect” labels.

Example hand-written rubric for code retrieval samples

Here are some rules for evaluation

(1) Determine if the function provided by the assistant is a relevant
candidate for editing given the user’s instruction

(2) A relevant function is one means that needs to be modified in
order to address the issue described in the user’s instruction

(3) Modifying a relevant function does not mean is is sufficient
to resolve the user’s issue. That is, it is ok if modifying the
function does not completely resolve the user issue, but it should
make progress towards issue resolution.

N J
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