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ABSTRACT

Off-policy learning and evaluation scenarios leverage logged bandit feedback
datasets, which contain context, action, propensity score, and feedback for each
data point. These scenarios face significant challenges due to high variance and
poor performance with low-quality propensity scores and heavy-tailed reward
distributions. We address these issues by introducing a novel estimator based on
the log-sum-exponential (LSE) operator, which outperforms traditional inverse
propensity score estimators. our LSE estimator demonstrates variance reduction
and robustness under heavy-tailed conditions. For off-policy evaluation, we derive
upper bounds on the estimator’s bias and variance. In the off-policy learning
scenario, we establish bounds on the regret—the performance gap between our
LSE estimator and the optimal policy—assuming bounded (1 + ϵ)-th moment
of weighted reward. Notably, we achieve a convergence rate of O(n−ϵ/(1+ϵ)),
where n is the number of training samples for the regret bounds and ϵ ∈ [0, 1].
Theoretical analysis is complemented by comprehensive empirical evaluations
in both off-policy learning and evaluation scenarios, confirming the practical
advantages of our approach.

1 INTRODUCTION

Off-policy learning and evaluation from logged data are important problems in Reinforcement
Learning (RL) theory and practice. The logged bandit feedback (LBF) dataset represents interaction
logs of a system with its environment, recording context, action, propensity score (i.e., the probability
of action selection for a given context under the logging policy), and feedback (reward). It is used in
many real applications, e.g., recommendation systems (Aggarwal, 2016; Li et al., 2011), personalized
medical treatments (Kosorok & Laber, 2019; Bertsimas et al., 2017), and personalized advertising
campaigns (Tang et al., 2013; Bottou et al., 2013). The literature has considered this setting from two
perspectives, off-policy evaluation (OPE) and off-policy learning (OPL). In off-policy evaluation, we
utilize the LBF dataset from a logging (behavioural) policy and an estimator, e.g., Inverse Propensity
Score (IPS), to evaluate (or estimate) the performance of a different target policy. In off-policy
learning we leverage the estimator and LBF dataset to learn an improved policy with respect to
logging policy.

In both scenarios, OPL and OPE, the IPS estimator is proposed (Thomas et al., 2015; Swaminathan
& Joachims, 2015a). However, this estimator suffers from significant variance in many cases
(Rosenbaum & Rubin, 1983). To address this, some improved importance sampling estimators
have been proposed, such as the IPS estimator with the truncated ratio of policy and logging policy
(Ionides, 2008b), IPS estimator with truncated propensity score (Strehl et al., 2010), self-normalizing
estimator (Swaminathan & Joachims, 2015b), exponential smoothing (ES) estimator (Aouali et al.,
2023), implicit exploration (IX) estimator (Gabbianelli et al., 2023) and power-mean (PM) estimator
(Metelli et al., 2021).

In addition to the significant variance issue of IPS estimators, there are two more challenges in real
problems: estimated propensity scores and heavy-tailed behaviour of weighted reward due to noise
or outliers. Previous works such as Swaminathan & Joachims (2015a), Metelli et al. (2021), and
Aouali et al. (2023) have made assumptions when dealing with LBF datasets. Specifically, these
works assume that rewards are not subject to perturbation (noise) and that true propensity scores are
available. However, these assumptions may not hold in real-world scenarios.
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Noisy or heavy-tailed reward: three primary sources of noise in reward of LBF datasets can be
identified as (Wang et al., 2020): (1) inherent noise, arising from physical conditions during feedback
collection; (2) application noise, stemming from uncertainty in human feedback; and (3) adversarial
noise, resulting from adversarial perturbations in the feedback process. Furthermore, In addition to
noisy (perturbed) reward, a heavy-tailed reward can be observed in many real life applications, e.g.,
financial markets (Cont & Bouchaud, 2000) and web advertising (Park et al., 2013), the rewards do
not behave bounded and follows heavy-tailed distributions.1

Noisy (estimated) propensity scores: The access to the exact values of the propensity scores may not
be possible, for example, when human agents annotate the LBF dataset. In this situation, one may
settle for training a model to estimate the propensity scores. Then, the propensity score stored in the
LBF dataset can be considered a noisy version of the true propensity score.

Therefore, there is a need for an estimator that can effectively manage the heavy-tailed condition and
noisy rewards or propensity scores in the LBF dataset.

1.1 CONTRIBUTIONS

In this work, we propose a novel estimator for off-policy learning and evaluation from the LBF dataset
that outperforms existing estimators when dealing with estimated propensity scores and heavy-tailed
or noisy weighted rewards. The contribution of our work is three-fold.

First, we propose a novel non-linear estimator based on the Log-Sum-Exponential (LSE) operator
which can be applied to both OPE and OPL scenarios. This LSE estimator effectively reduces variance
and is applicable to, noisy propensity scores, heavy-tailed reward and noisy reward scenarios.

Second, we provide comprehensive theoretical guarantees for the LSE estimator’s performance in
OPE and OPL setup. In particular, we first provide bounds on the regret, i.e. the difference between
the LSE estimator performance and the true average reward, under mild assumptions. In particular,
our theoretical results hold under the heavy-tailed assumption on weighted reward. Furthermore, we
studied the convergence rate of regret under heavy-tailed assumption which also holds for unbounded
reward. Then, we studied bias and variance analysis for the LSE estimator and the robustness of the
LSE estimator under noisy and heavy-tailed reward scenarios.

Finally, we conducted a set of experiments on different datasets to show the performance of the LSE in
scenarios with true, estimated propensity scores and noisy reward in comparison with other estimators.
We observed an improvement in the performance of learning policy using LSE in comparison with
other state-of-the-art algorithms under different scenarios.

1.2 PRELIMINARIES

Notation: We adopt the following convention for random variables and their distributions in the
sequel. A random variable is denoted by an upper-case letter (e.g., Z), an arbitrary value of this
variable is denoted with the lower-case letter (e.g., z), and its space of all possible values with the
corresponding calligraphic letter (e.g., Z). This way, we can describe generic events like {Z = z}
for any z ∈ Z , or events like {g(Z) ≤ 5} for functions g : Z → R. PZ denotes the probability
distribution of the random variable Z. The joint distribution of a pair of random variables (Z1, Z2)
is denoted by PZ1,Z2

. The cardinality of set Z is denoted by |Z|. We denote the set of integer
numbers from 1 to n by [n] ≜ {1, · · · , n}. In this work, we consider the natural logarithm, i.e.,
log(x) := loge(x). For two probability measures P and Q defined on the space Z , The total variation
distance between two densities P and Q, is defined as TV(P,Q) :=

∫
X |P −Q|(dz).

2 LOG-SUM-EXPONENTIAL ESTIMATOR

Main Idea: Inspired by the log-sum-exponential operator with applications in multinomial linear
regression, naive Bayes classifiers and tilted empirical risk(Calafiore et al., 2019; Murphy, 2012;

1A heavy-tailed random variable has a tail distribution heavier than the exponential distribution. For some
heavy-tailed random variables, the variance is not well defined.
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Williams & Barber, 1998; Li et al., 2023), we define the LSE estimator with parameter λ < 0,

LSEλ(Z) =
1

λ
log
( 1
n

n∑
i=1

eλzi
)
, (1)

where Z = {zi}ni=1 are samples from the positive random variable Z. The key property of the LSE
operator is its robustness to noisy samples in a limited number of data samples. Here a noisy sample,
by intuition, is a point with abnormally large positive zi. Such points vanish in the exponential sum
as limzi→+∞ eλzi = 0 for λ < 0. Therefore the LSE operator ignores terms with large values for
negative λ. The robustness of LSE has also been explored in the context of supervised learning
by Li et al. (2023) from practical perspective. Furthermore, in Appendix (App) C, we discuss the
connection between the LSE and entropy regularization.

Motivating example: We provide a toy example to investigate the behaviour of LSE as a general
estimator and its difference from the Monte-Carlo estimator (a.k.a. simple average) for mean
estimation. Suppose that Z is distributed as a Pareto distribution2 with scale xm and shape ζ. Let
ζ = 1.5 and xm = 1

3 , then we have E[Z] = ζxm

ζ−1 = 1. The objective is to estimate E[Z] with n

independent samples drawn from the Pareto distribution. We set n ∈ {10, 50, 100, 1000, 10000} and
compute the Monte-Carlo (a.k.a. simple average) and LSE estimation of the expectation of Z. Table
1 shows that LSE (with λ = −0.1) effectively keeps the variance and MSE, (Bishop & Nasrabadi,
2006), low without significant side-effects on bias. We also observe that the LSE estimator works
well under heavy tail distributions.

Table 1: Bias, variance, and MSE of LSE (with λ = −0.1) and Monte-Carlo estimators. We run the
experiment 10000 times and report the variance, bias, and MSE of the estimations.

Estimator n = 10 n = 50 n = 100 n = 1000 n = 10000

Bias Monte-Carlo 0.0154 0.0155 0.0083 0.0061 0.0044
LSE 0.1576 0.1606 0.1616 0.1624 0.1629

Variance Monte-Carlo 1.5406 1.5289 1.3229 1.0203 0.8384
LSE 0.1038 0.0616 0.0443 0.0335 0.0268

MSE Monte-Carlo 1.5409 1.5292 1.3229 1.0203 0.8384
LSE 0.1287 0.0874 0.0704 0.0598 0.0534

3 RELATED WORKS

We categorize the estimators based on their approach to reward estimation. Estimators that incorporate
reward estimation techniques are classified as model-based estimators. In contrast, those that
work without reward estimation are termed model-free estimators. Below, we review model-based
estimators, and model-free estimators. Furthermore, we study the estimators which are designed for
unbounded reward (heavy-tailed) scenarios in general RL scenarios.

Model-free Estimators: In model-free estimators, e.g., IPS estimators, we have many challenges,
including, high variance and heavy-tailed scenarios. Recently, many model-free estimators have
been proposed for high variance problems in model-free estimators (Strehl et al., 2010; Ionides,
2008b; Swaminathan & Joachims, 2015b; Aouali et al., 2023; Metelli et al., 2021; Neu, 2015; Aouali
et al., 2023; Metelli et al., 2021; Sakhi et al., 2024). However, under heavy-tailed or unbounded
reward scenario, the performance of these estimators degrade. In this work, our proposed LSE esti-
mator demonstrates robust performance even under heavy-tailed assumptions, backed by theoretical
guarantees.

Model-based Estimators: The direct method for off-policy learning from the LBF datasets is
based on the estimation of the reward function, followed by the application of a supervised learning
algorithm to the problem. However, this approach does not generalize well, as shown by Beygelzimer
& Langford (2009). A different approach where the direct method and the IPS estimator are
combined, i.e., doubly-robust, is introduced by Dudík et al. (2014). A different approach based
on policy optimization and boosted base learner is proposed to improve the performance in direct

2For Z ∼ Pareto(xm, ζ) as a heavy-tailed distribution, we have fZ(z) =
ζxζ

m

zζ+1

3
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methods (London et al., 2023). Our approach differs from this area, as we do not estimate the reward
function in the LSE estimator. A combination of the LSE estimator with direct method is presented in
App. G.3 . Furthermore, the optimistic shrinkage (Su et al., 2020) and Dr-Switch (Wang et al., 2017)
as other model-based estimators. In this work, we focus on model-free approach.

Unbounded Reward: Unbounded rewards (or returns) have been observed in various domains,
including finance (Lu & Rong, 2018) and robotics (Bohez et al., 2019). In the context of multi-
arm bandit problems, unbounded rewards can emerge as a result of adversarial attacks on reward
distributions (Guan et al., 2020). Within the broader field of Reinforcement Learning (RL), researchers
have investigated poisoning attacks on rewards and the manipulation of observed rewards (Rakhsha
et al., 2020; 2021; Rangi et al., 2022). These studies highlight the importance of considering
unbounded reward scenarios in RL and bandits algorithms. In particular, in our work, we focus on
off-policy learning and evaluation under heavy-tailed (unbounded reward) assumption, employing a
bounded (1 + ϵ)-th moment of weighted-reward assumption for ϵ ∈ [0, 1].

4 PROBLEM FORMULATION

Let X be the set of contexts and A the set of actions . We consider policies as conditional distributions
over actions, given contexts. For each pair of context and action (x, a) ∈ X ×A and policy πθ ∈ Πθ,
where ΠΘ is defined as the set of all policies (policy set) which are parameterized by θ ∈ Θ, where Θ
is the set of parameters, e.g., the parameters of a neural network. Furthermore, the πθ(a|x) is defined
as the conditional probability of of choosing an action given context x under the policy πθ.3

A reward function 4 r : X ×A → R+, which is unknown, defines the expected reward (feedback) of
each observed pair of context and action. In particular, r(x, a) = EPR|X=x,A=a

[R] where R ∈ R+ is
random reward and PR|X=x,A=a is the conditional distribution of reward R given the pair of context
and action, (x, a). Note that, in the LBF setting, we only observe the reward (feedback) for the chosen
action a in a given context x, under the known logging policy π0(a|x). We have access to the LBF
dataset S = (xi, ai, pi, ri)

n
i=1 with n i.i.d. data points where each ‘data point’ (xi, ai, pi, ri) contains

the context xi which is sampled from unknown distribution PX , the action ai which is sampled from
the known logging policy π0(·|xi), the propensity score pi ≜ π0(ai|xi), and the observed feedback
(reward) ri as a sample from distribution PR|X=xi,A=ai

under logging policy π0(ai|xi).

We define the expected reward of a learning policy, πθ ∈ Πθ, which is called the value function
evaluated at the learning policy, as

V (πθ) = EPX
[Eπθ(A|X)[r(A,X)|X]] = EPX

[Eπθ(A|X)[EPR|X,A
[R]]]. (2)

We denote the importance weighted reward as wθ(A,X)R, where wθ(A,X) is the weight,

wθ(A,X) =
πθ(A|X)

π0(A|X)
.

As discussed by Swaminathan & Joachims (2015b), the IPS estimator is applied over the LBF dataset
S (Rosenbaum & Rubin, 1983) to get an unbiased estimator of the value function by considering the
weighted reward as,

V̂ (πθ, S) =
1

n

n∑
i=1

riwθ(ai, xi), (3)

where wθ(ai, xi) =
πθ(ai|xi)
π0(ai|xi)

.

The IPS estimator as an unbiased estimator has bounded variance if the πθ(A|X) is absolutely
continuous with respect to π0(A|X) (Strehl et al., 2010; Langford et al., 2008). Otherwise, it suffers
from a large variance.

3In more details, consider an action space A with a σ-algebra and a σ-finite measure µ. For any policy π and
context x, let π(.|x) be a probability measure on A that is absolutely continuous with respect to µ, with density
π(.|x) = dπc(a|x)

dµ
where πc(a|x) is absolute continuous with respect to µ.

4The reward can be viewed as the opposite (negative) of the cost. Consequently, a low cost (equivalent
to maximum reward) signifies user (context) satisfaction with the given action, and conversely. For the cost
function, we have c(x, a) = −r(x, a) as discussed in (Swaminathan & Joachims, 2015a).
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LSE in OPE and OPL scenarios: The LSE estimator is defined as

V̂λ
LSE(S, πθ) := LSEλ(S) =

1

λ
log
( 1
n

n∑
i=1

eλriwθ(ai,xi)
)
, (4)

where λ < 0 is a tunable parameter which helps us to recover the IPS estimator for λ → 0.
Furthermore, the LSE estimator is an increasing function with respect to λ.

OPE scenario: One of the evaluation metrics for an estimator in OPE scenarios is the mean squared
error (MSE) which is decomposed into squared bias and the variance of the estimator. In particular,
for the LSE estimator, we consider the following MSE decomposition in terms of bias and variance,

MSE(V̂λ
LSE(S, πθ)) = B(V̂λ

LSE(S, πθ))
2 + V(V̂λ

LSE(S, πθ)),

B(V̂λ
LSE(S, πθ)) = E[wθ(A,X)R]− E[V̂λ

LSE(S, πθ)],

V(V̂λ
LSE(S, πθ)) = E[(V̂λ

LSE(S, πθ)− E[V̂λ
LSE(S, πθ)])

2],

(5)

where B(V̂λ
LSE(S, πθ)) and V(V̂λ

LSE(S, πθ)) are bias and variance of the LSE estimator, respectively.

OPL scenario: Our objective in OPL scenario is to find an optimal πθ⋆ , one which maximize V (πθ),
i.e.,

πθ⋆ = argmax
πθ∈ΠΘ

V (πθ). (6)

We define the generalization error (or concentration), as the difference between the value function
and the LSE estimator for a given learning policy πθ ∈ Πθ, i.e.,

genλ(πθ) := V (πθ)− V̂λ
LSE(S, πθ). (7)

For the OPL scenario, we also define πθ̂ as the maximizer of the LSE estimator for a given dataset S,

πθ̂(S) = arg max
πθ∈ΠΘ

V̂λ
LSE(S, πθ). (8)

Finally, we define regret, as the difference between the value function evaluated at πθ∗ and πθ̂,

Rλ(πθ̂, S) := V (πθ∗)− V (πθ̂(S)). (9)

More discussion regarding the LSE properties is provided in App. C.

5 THEORETICAL FOUNDATIONS OF THE LSE ESTIMATOR

In this section, we study the regret, bias-variance and robustness of the LSE estimator. We compare
our LSE estimator with other model-free estimators in Table 2. All the proof details are deferred to
App.D.

Non-linearity of LSE: The LSE estimator is a non-linear model-free estimator with respect to the
weighted reward or reward, which is different from linear model-free estimators. In particular, most
of estimators can be represented as the weighted average of reward (feedback),

V̂ (πθ, S) =
1

n

n∑
i=1

rig
(
wθ(ai, xi)

)
, (10)

where g : R → R is a transformation of wθ(ai, xi) and is defined for each model-free estimator.
For example, we have g(y) = y in the IPS estimator, g(y) = min(y,M) in the truncated IPS
estimator (Ionides, 2008b), g(y) = ((1 − λ̂)ys + λ̂)1/s in the PM estimator (Metelli et al., 2021),
g(y) = yβ for β ∈ (0, 1) in the ES estimator (Aouali et al., 2023) and g(y) = τy

y2+τ in the optimistic
shrinkage (OS) (Su et al., 2020). For the IX-estimator with parameter η (Gabbianelli et al., 2023),
we have g(y) = y

1+η/π0
. Furthermore, recently a logarithmic smoothing (LS) estimator and the

linear version of LS (LS-LIN) are proposed by Sakhi et al. (2024). However, the LSE estimator is a
non-linear function with respect to weighted reward or reward. Therefore, the previous techniques
for regret and bias-variance analysis under linear estimators are not applicable.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Comparison of estimators. We consider the bounded reward function, i.e., Rmax :=
sup(a,x)∈A×X r(a, x) for all estimators except LSE. BSN and VSN are the Bias and the Efron-Stein
estimate of the variance of self-normalized IPS. For the ES-estimator, we have TES = BES +
(1/n)

(
DKL(πθ∥π0) + log(4/δ)

)
. where DKL(πθ∥π0) =

∫
A πθ(a|x) log(πθ(a|x)/π0(a|x))da. We

also define power divergence as Pα(πθ∥π0) :=
∫
A πθ(a|x)απ0(a|x)(1−α)da is the power divergence

with order α. For the IX-estimator, Cη(π) is the smoothed policy coverage ratio. We compare the
convergence rate of the generalization error for estimators. B and C are constants. For LS estimator,
Sλ̃(πθ) is the discrepancy between π and π0.

Estimator Generalization Error
(Concentration)

Convergence
Rate Heavy-tailed Regret Bound Noisy Reward Differentiability Subgaussian Like Tail

IPS R2
max

√
P2(πθ∥π0)

δn O(n−1/2) × ✓ × ✓ ×

SN-IPS
(Swaminathan & Joachims, 2015b) Rmax(B

SN +
√

V ES log 1
δ ) - × × × ✓ ×

IPS-TR (M > 0)
(Ionides, 2008a) Rmax

√
P2(πθ∥π0) log

1
δ

n O(n−1/2) × ✓ × × ✓

IX (η > 0)
(Gabbianelli et al., 2023) Rmax(2ηCη(πθ) +

log(2/δ)
ηn ) O(n−1/2) × ✓ × ✓ ✓

PM (λ ∈ [0, 1])
(Metelli et al., 2021) Rmax

√
P2(πθ∥π0) log

1
6

n O(n−1/2) × × × ✓ ✓

ES (α ∈ [0, 1])
(Aouali et al., 2023) Rmax

√
DKL(πθ∥π0)+log(4

√
n/δ)

n + TES O
(
(log(n)/n)1/2

)
× ✓ × ✓ ×

OS (τ > 0)
(Su et al., 2020) maxβ∈{2,3}

β

√
Pβ(πθ∥π0)(log 1

δ )
β−1

nβ−1 O
(
n(1−β)/β

)
× × × ✓ ×

LS (λ̃ ≥ 0)
(Sakhi et al., 2024) λ̃Sλ̃(πθ) +

log(2/δ)

λ̃n
O
(
n−1/2

)
× ✓ × ✓ ✓

LSE (0 > λ > −∞ and ϵ ∈ [0, 1])
(ours) C

(
2 log(2|Πθ|/δ)

n

)ϵ/(1+ϵ)

O(n−ϵ/(1+ϵ)) ✓ ✓ ✓ ✓ ✓

Theoretical comparison with other estimators: The comparison of our LSE estimator with other es-
timators, including, IPS, self-normalized IPS (Swaminathan & Joachims, 2015b), truncated IPS with
weight truncation parameter M , ES-estimator with parameter α (Aouali et al., 2023), IX-estimator
with parameter η, PM-estimator with parameter λ (Metelli et al., 2021), OS-estimator with parameter
τ (Su et al., 2020) and LS-estimator with parameter λ̃ (Sakhi et al., 2024) is provided in Table 2.
Note that the truncated IPS (IPS-TR) (Ionides, 2008a) employs truncation, resulting in a non-
differentiable estimator. This non-differentiability complicates the optimization phase, often neces-
sitating additional care and sometimes leading to computationally intensive discretizations (Papini
et al., 2019). Furthermore, tuning the threshold M in IPS-TR is sensitive and can result in matching
of the learning policy and logging policy in OPL scenario (Aouali et al., 2023).
In the following sections, we provide more details regarding heavy-tail assumption and theoretical
results for the LSE estimator.

5.1 HEAVY-TAIL ASSUMPTION

In this section, the following heavy-tail assumption is made in our theoretical results.
Assumption 1 (Heavy-tail weighted reward). The reward distribution PR|X,A and PX ⊗ π0(A|X)
are such that for all learning policy πθ(A|X) ∈ Πθ and some ϵ ∈ [0, 1], the (1 + ϵ)-th moment of the
weighted reward is bounded,

EPX⊗π0(A|X)⊗PR|X,A

[(
wθ(A,X)R

)1+ϵ] ≤ ν. (11)

We make a few remarks. First, in comparison with the bounded reward function assumption in
literature, (Metelli et al., 2021; Aouali et al., 2023), in Assumption 1, the reward function can be
unbounded. Moreover, our assumptions are weaker with respect to the uniform overlap assumption
5. In heavy-tailed bandit learning (Bubeck et al., 2013; Shao et al., 2018; Lu et al., 2019), a similar
assumption to Assumption 1 on (1 + ϵ)-th moment for some ϵ ∈ [0, 1] of reward is assumed. In
contrast, in Assumption 1, we consider the weighted reward. Note that, under uniform coverage
(overlap) assumption, Assumption 1 can be interpreted as a heavy-tailed assumption on reward.
Furthermore under a bounded reward, Assumption 1 would be equivalent with the heavy-tailed
assumption on the (1 + ϵ)-th moment of weight function, wθ(a, x). More detailed theoretical
comparison is provided in App. D.1.

5.2 REGRET BOUNDS

In this section, we provide an upper bound on the regret of the LSE estimator as discussed in the OPL
scenario.

5In the uniform coverage (overlap) assumption, it is assumed that sup(a,x)∈A×X wθ(a, x) = Uc < ∞.
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We will use the following novel and helpful lemma to prove some results in this section.
Lemma 5.1. Consider the random variable Z > 0. For ϵ ∈ [0, 1], the following upper bound holds
on the variance of eλZ for λ < 0,

V
(
eλZ

)
≤ |λ|1+ϵE[Z1+ϵ]. (12)

In the following Theorem, we provide an upper bound on the regret of learning policy under the LSE
estimator.

Theorem 5.2 (Regret bounds). Given Assumption 1 and assuming n ≥ (2|λ|1+ϵν+ 4
3γ) log

|Πθ|
δ

γ2 exp(2λν1/(1+ϵ))
, with

probability at least 1− δ, then there exists γ ∈ (0, 1) such that the following upper bound holds on
the regret of the LSE estimator,

0 ≤ Rλ(πθ̂, S) ≤
|λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))
,

where πθ̂ is defined in equation 8 .

Sketch of Proof. First, using Bernstein’s Inequality, Boucheron et al., 2013 and Lemma 5.1, we
provide lower and upper bounds on generalization error for a fixed learning policy πθ. Then, we
consider the following decomposition of regret,

V (πθ∗)− V (πθ̂) = genλ(πθ∗)︸ ︷︷ ︸
I1

+V̂λ
LSE(S, πθ∗)− V̂λ

LSE(S, πθ̂)︸ ︷︷ ︸
I2

−genλ(πθ̂)︸ ︷︷ ︸
I3

. (13)

Note that, the term I2 is negative. We can provide upper bounds for terms I1 and I3 using derived
upper and lower bounds on generalization error (Theorem D.1 and Theorem D.2 in App. D.2),
respectively. To obtain the final result, we apply the union bound.

As the regret bound in Theorem 5.2 depends on λ, we need to select an appropriate λ in order to
study the convergence rate of regret bound with respect to n.
Proposition 5.3 (Convergence rate). Given Assumption 1, for any 0 < γ < 1, assuming n ≥
(2ν+ 4

3γ) log
|Πθ|

δ

γ2 exp(2ν1/(1+ϵ))
and setting λ = −n−ζ for ζ ∈ R+, then the overall convergence rate of the regret

upper bound is max(O(n−1+ζ), O(n−ϵζ), O(n(−ζϵ−1)/2)) for a finite policy set.

Remark 5.4. Using Proposition 5.3, the regret upper bound has the convergence rate of O(n−ϵ/(1+ϵ))
for ζ = 1

1+ϵ . Note that, if Assumption 1 holds for ϵ = 1, then we have the convergence rate of
O(n−1/2).

Our theoretical results on regret can be applied to unbounded weighted reward under Assumption 1,
compared to other estimators where the bounded reward or weighted reward is needed. Furthermore,
the dependency of regret or generalization bound on δ can be polynomial O(

(
1
δ

)α
) for α > 0,

sub-exponential O
(

log(1/δ)
n

)
or subgaussian O

(√
log(1/δ)

n

)
. We also study achieving subgaussian

concentration for LSE estimator in App. D.6.
Finite policy set: The theorems in this section assumed that the policy set, Πθ, is finite; this
is for example the case in off-policy learning problems with a finite number of policies. If this
assumption is violated, we can apply the growth function technique which is bounded by VC-
dimension (Vapnik, 2013) or Natarajan dimension (Holden & Niranjan, 1995) as discussed in (Jin
et al., 2021). Furthermore, we can apply PAC-Bayesian analysis (Gabbianelli et al., 2023) for the
LSE estimator. More discussion regarding the PAC-Bayesian approach is provided in App. D.5.
5.3 BIAS AND VARIANCE

In this section, we provide an analysis of bias and variance for the LSE estimator.
Proposition 5.5 (Bias bound). Given Assumption 1, the following lower and upper bounds hold on
the bias of the LSE estimator with λ < 0,

(n− 1)

2n|λ|
V(eλwθ(A,X)R) ≤ B(V̂λ

LSE(S, πθ)) ≤
1

1 + ϵ
|λ|ϵν +

1

2nλ
V(eλwθ(A,X)R). (14)
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Remark 5.6 (Asymptotically Unbiased). By selecting λ as a function of n, which tends to zero as
n → ∞, e.g. λ(n) = −n−ς for some ς > 0, the bounds in Proposition 5.5 becomes asymptotically
zero. The overall convergence rate for upper bound is O(n−ϵ/(1+ϵ)) by choosing ς = 1

1+ϵ . For
example, if Assumption 1 holds for ϵ = 1, then by choosing ς = 1/2, we have the convergence rate
of O(n−1/2) for the bias of the LSE estimator. Consequently, the LSE estimator is asymptotically
unbiased.

For the variance of the LSE estimator, we provide the following upper bound.
Proposition 5.7 (Variance Bound). Assume that E[(wθ(A,X)R)2] ≤ ν2

6 holds. Then the variance
of the LSE estimator with λ < 0, satisfies,

V(V̂λ
LSE(S, πθ)) ≤

1

n
V(wθ(A,X)R) ≤ 1

n
ν2. (15)

Remark 5.8 (Variance Reduction). We can observe that the variance of the LSE is less than the
variance of IPS estimator for all λ < 0.

Combining the results in Proposition 5.5 and Proposition 5.7, we can derive an upper bound on
MSE of the LSE estimator using equation 5. An upper bound on the moment of the LSE estimator
is provided in App. D.3. The bias and variance comparison of different estimators is provided in
App. D.1.1.

5.4 ROBUSTNESS OF THE LSE ESTIMATOR: NOISY REWARD

In this section section, we study the robustness of the LSE estimator under noisy reward. We also
investigate the performance of the LSE estimator under noisy (estimated) propensity scores in the
App. E.

Suppose that due to an outlier or noise in receiving the feedback (reward), the underlying distribution
of the reward given a pair of actions and contexts, PR|X,A is shifted via the distribution of noise or
outlier, denoted as P̃R|X,A. We model the distributional shift of reward via distribution P̃R|X,A due
to inspiration by the notion of influence function (Marceau & Rioux, 2001; Christmann & Steinwart,
2004). Furthermore, we define the noisy reward LBF dataset as S̃ with n data samples. For our result
in this section, the following assumption is made.

Assumption 2 (Heavy-tailed Weighted Noisy Reward). The noisy reward distribution P̃R|X,A and
PX ⊗π0(A|X) are such that for all learning policy πθ(A|X) ∈ Πθ and some ϵ ∈ [0, 1], the (1+ϵ)-th
moment of the weighted reward is bounded,

EPX⊗π0(A|X)⊗P̃R|X,A

[(
wθ(A,X)R

)1+ϵ] ≤ ν̃. (16)

Under noisy reward LBF dataset, we derive the following learning policy,

πθ̂(S̃) = argmax
πθΠθ

V̂λ
LSE(πθ, S̃) . (17)

In the following theorem, we provide an upper bound on the regret of πθ̂(S̃) as the learning policy
under noisy reward LBF dataset.

Theorem 5.9. Given Assumption 1, Assumption 2 and assuming n ≥ (2|λ|1+ϵν+ 4
3γ) log

|Πθ|
δ

γ2 exp(2λν1/(1+ϵ))
, with

probability at least 1− δ, then there exists γ ∈ (0, 1) such that the following upper bound holds on
the regret of the LSE estimator under noisy reward logged data,

0 ≤ Rλ(πθ̂(S̃), S̃) ≤
|λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν̃1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν̃ log 4|Πθ|

δ

n exp(2λν̃1/(1+ϵ))

+ TV(PR|X,A, P̃R|X,A)
( 1

|λ| exp(λν̃1/(1+ϵ))
+

1

|λ| exp(λν1/(1+ϵ))

)
,

(18)

where πθ̂(S̃) is defined in equation 17.

6Assumption 1 for ϵ = 1.
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Table 3: Bias, variance, and MSE of LSE, ES, PM, IX, and IPS-TR estimators. The experiment is run
10000 times with 1000 samples. The variance, bias, and MSE of the estimations are reported. The
best-performing result is highlighted in bold text, while the second-best result is colored in red for
each scenario.

α = 1.1 α = 1.4

Estimator Bias Variance MSE Bias Variance MSE

PM 0.004 0.063 0.063 −0.301 164.951 165.041
ES −0.001 0.054 0.054 1.959 0.396 4.232
LSE 0.052 0.006 0.009 0.615 0.292 0.670
IPS-TR 0.020 0.052 0.052 0.053 133.688 133.691
IX 0.237 0.002 0.058 1.340 0.048 1.842
SNIPS −0.005 0.059 0.059 −0.029 133.520 133.521
LS-LIN 0.284 0.001 0.082 2.164 0.005 4.687
LS 0.082 0.007 0.013 0.564 0.458 0.776
OS 0.521 0.020 0.292 0.623 23.589 23.977

Discussion: This term in equation 18, TV(PR|X,A, P̃R|X,A)
(

1
|λ| exp(λν̃1/(1+ϵ))

+ 1
|λ| exp(λν1/(1+ϵ))

)
,

can be interpreted as the cost of noise associated with noisy reward. This cost can be reduced by
increasing |λ|. However, increasing |λ| also amplifies the term |λ|ϵ

1+ϵν in the upper bound on regret.
Therefore, there is a trade-off between robustness and regret, particularly for λ < 0 in the LSE
estimator.

6 EXPERIMENTS

We present our experiments for OPE and OPL. Our aim is to demonstrate that our proposed estimators
not only possess desirable theoretical properties but also compete with baseline estimators in practical
scenarios. More details can be found in App.F. Furthermore, an experiment on a real-world dataset,
KUAIREC (Gao et al., 2022), is provided in App. G.4.

6.1 OFF-POLICY EVALUATION

We conduct synthetic experiments to evaluate our proposed LSE estimator performance in OPE
setting. For this purpose, we consider an LBF dataset which has only a single context (state), denoted
as x0. We consider the learning and logging policies as Gaussian distributions, πθ(·|x0) ∼ N (µ1, σ

2)

and π0(·|x0) ∼ N (µ2, σ
2). The reward function is a positive exponential function eαx

2

which is
unbounded. We also set our parameters to observe different tail distributions. We fix µ1 = 0.5, µ2 =
1, σ2 = 0.25 and change the value of α which controls the tail of the weighted reward variable,
α ∈ {1.4, 1.6}. We also examine different values of α and the effect of number of samples for a fixed
α in App. G.1. Moreover, we conduct a similar experiment when logging and learning policies are
Lomax distributions7 in App. G.1.
Baselines: For our experiments in OPE setting, we consider truncated IPS estimator (Swaminathan
& Joachims, 2015a), PM estimator (Metelli et al., 2021), ES estimator (Aouali et al., 2023), IX
estimator (Gabbianelli et al., 2023), SNIPS (Swaminathan & Joachims, 2015b), LS-LIN and LS
estimators (Sakhi et al., 2024), and OS (shrinkage) (Su et al., 2020) estimator as baselines.
Metrics: We calculate the Bias, Variance, and MSE of estimators by running the experiments for
10K times each one over 1000 samples.
Discussion: The results presented in Table 3 demonstrate that the LSE estimator has better per-
formance in terms of both MSE and variance when compared to other baselines. There is a close
performance comparison between LSE and LS. More experiments are provided in App. G.10.

6.2 OFF-POLICY LEARNING

In off-policy learning scenario, we apply the standard supervised to bandit transformation (Beygelz-
imer & Langford, 2009) on a classification dataset: Extended-MNIST (EMNIST) (Xiao et al., 2017)
to generate the LBF dataset. We also run on FMNIST in App.G.2 . This transformation assumes that
each of the classes in the datasets corresponds to an action. Then, a logging policy stochastically
selects an action for every sample in the dataset. For each data sample x, action a is sampled by

7The Lomax distribution is a Pareto Type II distribution which is a heavy-tailed distribution.
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Table 4: Comparison of different estimators LSE, PM, ES, IX, BanditNet, LS-LIN and OS accuracy
for EMNIST with different qualities of logging policy (τ ∈ {1, 10}) and true / noisy (estimated)
propensity scores with b ∈ {5, 0.01} and noisy reward with Pf ∈ {0.1, 0.5}. The best-performing
result is highlighted in bold text, while the second-best result is colored in red for each scenario.

Dataset τ b Pf LSE PM ES IX BanditNet LS-LIN OS Logging Policy

EMNIST

1

− − 88.49± 0.04 89.19± 0.03 88.61± 0.06 88.33± 0.13 66.58± 6.39 88.70± 0.02 88.71± 0.26 88.08
5 − 89.16± 0.03 88.94± 0.05 88.48± 0.03 88.51± 0.23 65.10± 0.69 88.38± 0.18 88.70± 0.15 88.08

0.01 − 86.07± 0.01 85.62± 0.10 85.71± 0.04 81.39± 4.02 66.55± 3.11 84.64± 0.17 84.59± 0.09 88.08
− 0.1 89.29± 0.04 89.08± 0.05 88.45± 0.09 88.14± 0.14 59.90± 3.78 88.30± 0.12 88.74± 0.09 88.08
− 0.5 88.72± 0.08 88.78± 0.03 87.27± 0.10 87.08± 0.14 56.95± 3.06 87.20± 0.32 88.06± 0.09 88.08

10

− − 88.59± 0.03 88.61± 0.04 88.38± 0.08 87.43± 0.19 85.48± 3.13 88.58± 0.08 86.88± 0.34 79.43
5 − 88.42± 0.07 88.43± 0.07 88.39± 0.10 88.39± 0.06 84.90± 3.10 88.23± 0.27 86.00± 0.37 79.43

0.01 − 82.15± 0.21 80.85± 0.29 81.07± 0.07 77.49± 2.77 27.02± 1.92 78.43± 3.13 21.70± 4.11 79.43
− 0.1 88.29± 0.06 88.22± 0.02 88.19± 0.08 87.93± 0.35 84.89± 3.21 87.50± 0.17 87.68± 0.16 79.43
− 0.5 88.71± 0.16 88.52± 0.07 84.42± 0.34 83.25± 3.45 63.35± 13.39 85.75± 0.04 89.09± 0.05 79.43

logging policy. For the selected action, propensity score p is determined by the softmax value of that
action. If the selected action matches the actual label assigned to the sample, then we have r = 1,
and r = 0 otherwise. So, the 4-tuple (x, a, p, r) makes up the LBF dataset.
Baselines: For all of our experiments in OPL, we compare our LSE estimator against several
non-regularized baseline estimators, including, truncated IPS (Swaminathan & Joachims, 2015a),
PM (Metelli et al., 2021), ES (Aouali et al., 2023), IX (Gabbianelli et al., 2023), BanditNet (Joachims
et al., 2018), LS-LIN (Sakhi et al., 2024) and OS estimator (Su et al., 2020).
Noisy (Estimated) propensity score: For noisy propensity score, motivated by Halliwell (2018)
and the discussion in App.E.1, we assume a multiplicative inverse Gamma noise on π0 for b ∈ R+,
π̂0 = 1

U π0, where π̂(a|x) is the estimated propensity scores and U ∼ Gamma(b, b). 8.
Noisy reward: Inspired by Metelli et al. (2021), we also consider noise in reward samples. In
particular, we model noisy reward by a reward-switching probability Pf ∈ [0, 1] to simulate noise in
the reward samples. For example, a reward sample of r = 1 may switch to r = 0 with probability Pf .
Logging policy: To have logging policies with different performances, given inverse temperature9

τ ∈ {1, 10}, first, we train a linear softmax logging policy on the fully-labeled dataset. Then, when
we apply standard supervised-to-bandit transformation on the dataset, the results obtained from the
linear logging policy which are weights of each action according to the input, will be multiplied by
the inverse temperature τ and then passed to a softmax layer. Thus, as the inverse temperature τ
Increases, we will have more uniform and less accurate logging policies.
Metric: We evaluate the performance of the different estimators based on the accuracy of the trained
model. Inspired by London & Sandler (2019), we calculate the accuracy for a deterministic policy
where the accuracy of the model based on the argmax of the softmax layer output for a given context
is computed.
For each value of τ , we apply the LSE estimator and observe the accuracy over three runs on EMNIST.
The deterministic accuracies of LSE, PM, ES, IX, BanditNet, OS and LS-LIN for τ ∈ {1, 10} are
presented in Table 4.
Discussion: The results presented in Table 4 demonstrate that the LSE estimator achieves maximum
accuracy (with less variance) in most scenarios compared to all baselines. More discussion and
experiments are provided in App. G.

7 CONCLUSION AND FUTURE WORKS
In this work, inspired by the log-sum-exponential operator, we proposed a novel estimator for
off-policy learning application. Subsequently, we conduct a comprehensive theoretical analysis of
the LSE estimator, including a study of bias and variance, along with an upper bound on regret
under heavy-tailed assumption. Furthermore, we explore the performance of our estimator in
scenarios involving estimated propensity scores or heavy-tailed weighted reward. Results from
our experimental evaluation demonstrate that our estimator, guided by our theoretical framework,
performs competitively compared to most of baseline estimators in off-policy learning and evaluation.
In future work, we plan to study the effect of regularization on the LSE estimator from both theoretical
and practical perspectives. Moreover, we envision extending the application of our estimator to more
challenging RL setups, (Chen & Jiang, 2022; Zanette et al., 2021; Xie et al., 2019a). Inspired by the
application of LSE operator in supervised learning for positive tilt (Li et al., 2023), we can explore
the performance of the LSE estimator for positive λ as future work.

8If Z ∼ Gamma(α, β), then we have fZ(z) =
βα

Γ(α)
zα−1e−βz .

9The inverse temperature τ is defined as π0(ai|x) = exp(h(x,ai)/τ)∑k
j=1 exp(h(x,aj)/τ)

where h(x, ai) is the i-th input to

the softmax layer for context x ∈ X and action ai ∈ A.
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A OTHER RELATED WORKS

In this section, we provide other related works.

Other methods: A balance-based weighting approach, which outperforms traditional estimators, was
proposed by Kallus (2018). Other extensions of batch learning as a scenario for off-policy learning
have been studied, Papini et al. (2019) consider samples from different policies and Sugiyama et al.
(2007) propose Direct Importance Estimation, which estimates weights directly by sampling from
contexts and actions. Chen et al. (2019) introduced a convex surrogate for the regularized value
function based on the entropy of the target policy.

Pessimism Method and Off-policy RL: The pessimism concept originally, introduced in offline
RL(Buckman et al., 2020; Jin et al., 2021), aims to derive an optimal policy within Markov decision
processes (MDPs) by utilizing pre-existing datasets (Rashidinejad et al., 2022; 2021; Yin & Wang,
2021; Yan et al., 2023). This concept has also been adapted to contextual bandits, viewed as a specific
MDP instance. Recently, a ‘design-based’ version of the pessimism principle was proposed by Jin
et al. (2022) who propose a data-dependent and policy-dependent regularization inspired by a lower
confidence bound (LCB) on the estimation uncertainty of the augmented-inverse-propensity-weighted
(AIPW)-type estimators which also includes IPS estimators. Our work differs from that of Jin et al.
(2022) as our estimator is non-linear estimator. Note that for our theoretical analysis, we consider
heavy-tailed assumption for (1 + ϵ)-th moment for some ϵ ∈ [0, 1]. However, (Jin et al., 2022) also
considers 3rd and 4th moments of weights bounded.

Action Embedding and Clustering: Due to the extreme bias and variance of IPS and doubly-robust
(DR) estimators in large action spaces, Saito & Joachims (2022) proposed using action embeddings
to leverage marginalized importance weights and address these issues. Subsequent studies, including
(Saito et al., 2023; Peng et al., 2023; Sachdeva et al., 2023), have introduced alternative methods
to tackle the challenge of large action spaces. Our work can be integrated with these approaches
to further mitigate the effects associated with large action spaces. We consider this combination as
future work.

Individualized Treatment Effects: The individual treatment effect aims to estimate the expected
values of the squared difference between outcomes (reward or feedback) for control and treated
contexts (Shalit et al., 2017). In the individual treatment effect scenario, the actions are limited to two
actions (treated/not treated) and the propensity scores are unknown (Shalit et al., 2017; Johansson
et al., 2016; Alaa & van der Schaar, 2017; Athey et al., 2019; Shi et al., 2019; Kennedy, 2020; Nie &
Wager, 2021). Our work differs from this line of works by considering multiple action scenario and
assuming the access to propensity scores in the LBF dataset.

Noisy/Corrupted Rewards: Agnihotri et al. (2024) utilized offline data with noisy preference
feedback as a warm-up step for online bandit learning. In linear bandits, Kveton et al. (2019)
estimated a set of pseudo-rewards for each perturbed reward in the history and used it for reward
parameter estimation. Lee & Lim (2022) assumes a heavy-tailed noise variable on the observed
rewards and proposes two exploration strategies that provide minimax regret guarantees for the
multi-arm bandit problem under the heavy-tailed reward noise. In the linear bandits, Kang et al.
(2024) Huang et al. (2024) tackles the issue of heavy-tailed noise on cost function by modifying the
reward parameter estimation objective. The former one uses Huber loss for reward function parameter
estimation and the latter one truncates the rewards. Zhong et al. (2021) and Xue et al. (2024) propose
the median of means and truncation to handle the heavy-tailed noise in the observed rewards. In
this work, we study the performance of our proposed estimator, the LSE estimator, under noisy and
heavy-tailed reward.

Estimation of Propensity Scores: We can estimate the propensity score using different methods,
e.g., logistic regression (D’Agostino Jr, 1998; Weitzen et al., 2004), generalized boosted models
(McCaffrey et al., 2004), neural networks (Setoguchi et al., 2008), parametric modeling (Xie et al.,
2019b) or classification and regression trees (Lee et al., 2010; 2011). Note that, as discussed in
(Tsiatis, 2006; Shi et al., 2016), under the estimated propensity scores (noisy propensity score), the
variance of the IPS estimator is reduced. In this work, we consider both true and estimated propensity
scores, where the estimated propensity scores are modeled via Gamma noise. Our work differs from
the line of works on the estimation methods of propensity scores.
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Bandit and Reinforcement Learning under Heavy-tailed Distributions: Some works discussed
the heavy-tailed reward in bandit learning (Medina & Yang, 2016; Bubeck et al., 2013; Shao et al.,
2018; Lu et al., 2019; Zhong et al., 2021). Furthermore, some works also discussed the heavy-tailed
rewards in RL (Zhuang & Sui, 2021; Zhu et al., 2024). However, off-policy learning with LBF dataset
under a heavy-tailed distribution of weighted reward is overlooked.

Mean-estimation under Heavy-tailed Distributions: In (Lugosi & Mendelson, 2019; 2021; Hop-
kins, 2018), the performance of median-of-means and trimmed mean estimators have been studied
and the sub-Gaussian behavior of these estimators are studied. However, median-of-means estimator
presents practical challenges in implementation: it requires additional computational resources for
data partitioning and mean calculations, while also introducing discontinuities that can prevent
gradient-based optimization methods.

Generalization Error under Heavy-tailed Assumption: There are also some works studied the
generalization error of supervised learning under unbounded loss functions, in particular, under
heavy-tailed assumption via the PAC-Bayesian approach. Losses with heavier tails are studied by
Alquier & Guedj (2018) where probability bounds (non-high probability) are developed. Using a
different estimator than empirical risk, PAC-Bayes bounds for losses with bounded second and third
moments are developed by Holland (2019). Notably, their bounds include a term that can increase
with the number of samples n. Kuzborskij & Szepesvári (2019) and Haddouche & Guedj (2022) also
provide bounds for losses with a bounded second moment. The bounds in (Haddouche & Guedj,
2022) rely on a parameter that must be selected before the training data is drawn. Information-
theoretic bounds based on the second moment of loss function suph∈H |ℓ(h, Z) − E[ℓ(h, Z̃)]| are
also derived in (Lugosi & Neu, 2022). Furthermore, in (Lugosi & Mendelson, 2019, Section 4), the
uniform bound via Rademacher complexity analysis over the L2 bounded function space is studied
for median-of-means estimator. In our work, we focus on generalization error and regret analysis of
the LSE estimator as a non-linear estimator in OPL and OPE scenarios.

Heavy-tailed rewards in Bandits: Bandit learning with heavy-tailed reward distributions has been
extensively studied. Bubeck et al. (2013) proposed Robust UCB, and Vakili et al. (2013) introduced
DSEE as bandit algorithms with theoretical regret guarantees. Yu et al. (2018) proposed a bandit
algorithm based on pure exploration with heavy-tailed reward distributions. Heavy-tailed reward
distributions are also studied in the context of linear bandits (Shao et al., 2018; Medina & Yang,
2016). Dubey et al. (2020) proposed a decentralized algorithm for cooperative multi-agent bandits
when the reward distribution is heavy-tailed. Our work differs from this line of works by considering
heavy-tailed assumption on weighted reward.

Heavy-tailed rewards in RL: The challenge of heavy-tailed distributions in decision making has
been studied for more than two decades (Georgiou et al., 1999; Hamza & Krim, 2001; Huang &
Zhang, 2017; Ruotsalainen et al., 2018). There is a significant amount of study in RL dealing
with heavy tailed reward distribution (Zhu et al., 2023; Zhuang & Sui, 2021; Huang et al., 2024).
Moreover, big sparse rewards are a prominent issue in reinforcement learning (Park et al., 2022;
Agarwal et al., 2021; Dawood et al., 2023). In such scenarios, there is a far-reaching goal, possibly
accompanied by sparse failure states in which the agent attains big positive and negative rewards
respectively. For example in safe autonomous driving, accidents are so costly and, hence are assigned
large negative rewards. They are also delayed and sparse, which means that they are observed after
many steps with a lot of exploration in the environment (Kiran et al., 2021; Amini et al., 2020). This
hinders the training and leads to an infeasible slow learning curve. A common approach to tackle
this issue is reward shaping which inserts new engineered reward functions alongside the agent’s
trajectory to provide guidelines for the agent (Kiran et al., 2021). This strategy may fail because it
biases the model into the strategy hinted by the new rewards, which may not be the optimal solution
for the original problem. Moreover, the method of reward shaping will not necessarily avoid the
low-probability high-value rewards, because the imputed rewards are mostly small and high-value
rewards still happen with low probability. Therefore, handling low-probability large reward is one of
the challenges in this field, which can be modeled by heavy-tailed distributions as discussed with
more details in App. G.12.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B PRELIMINARIES

B.1 NOTATIONS AND DIAGRAM

All notations are summarized in Table 5. An overview of our main theoretical results is provided in
Fig. 1.

the LSE
estimator

Off-Policy
Evaluation Robustness

Off-Policy
Learning

Bias Variance Generalization
Error

RegretNoisy reward Noisy propen-
sity score

Bias Bounds
(Proposition 5.5)

Variance Bound
(Proposition 5.7)

Generalization
Error Lower and
Upper Bounds
(Theorem D.2

& Theorem D.1)

Regret Bounds
(Theorem 5.2)

Regret Bound
(Theorem 5.9)

Regret Bound
(Theorem E.6)

Figure 1: Overview of the main results

Table 5: Summary of notations in the paper

Notation Definition Notation Definition

X Context A Action
r(X,A) Reward function R Reward

n The number of logged data samples PX Distribution over context set
S LBF dataset pi Propensity score (π0(ai|xi))
πθ Learning policy wθ(A|X) weight (πθ(A|X)/π0(A|X))

V̂λ
LSE(S, πθ) the LSE estimator V (πθ) Value of learning policy πθ

ν Upper bound on (1 + ϵ)-th moment of weighted reward (Assumption 1) π0(a|X) Logging policy
genλ(πθ) Generalization error of the LSE estimator Rλ(πθ̂, S) Regret of the LSE estimator

B(V̂λ
LSE(S, πθ)) Bias of the LSE estimator V(V̂λ

LSE(S, πθ)) Variance of the LSE estimator
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B.2 DEFINITIONS

We define the softmax function

softmax(x1, x2, · · · , xn) = (s1, s2, · · · , sn),

si =
exi∑n

j=1 x
xj
, 1 ≤ i ≤ n.

The diag function, diag(a1, a2, · · · , an) ∈ Rn×n, defines a diagonal matrix with a1, a2, · · · , an as
elements on its diagonal.

Definition B.1. (Cardaliaguet et al., 2019) A functional U : P(Rn) → R admits a functional linear
derivative if there is a map δU

δm : P(Rn)× Rn → R which is continuous on P(Rn), such that for all
m,m′ ∈ P(Rn), it holds that

U(m′)− U(m) =

∫ 1

0

∫
Rn

δU

δm
(mλ, a) (m

′ −m)(da) dλ,

where mλ = m+ λ(m′ −m).

B.3 THEORETICAL TOOLS

In this section, we provide the main lemmas which are used in our theoretical proofs.

Lemma B.2 (Kantorovich-Rubenstein duality of total variation distance, see (Polyanskiy & Wu,
2022)). The Kantorovich-Rubenstein duality (variational representation) of the total variation
distance is as follows:

TV(m1,m2) =
1

2L
sup
g∈GL

{EZ∼m1 [g(Z)]− EZ∼m2 [g(Z)]} , (19)

where GL = {g : Z → R, ||g||∞ ≤ L}.

Lemma B.3 (Hoeffding Inequality, Boucheron et al., 2013). Suppose that Zi are sub-Gaussian
independent random variables, with means µi and sub-Gaussian parameter σ2

i , then we have:

P

(
n∑

i=1

(Zi − µi) ≥ t

)
≤ exp

(
−t2

2
∑n

i=1 σ
2
i

)
(20)

Lemma B.4 (Bernstein’s Inequality, Boucheron et al., 2013). Suppose that S = {Zi}ni=1 are i.i.d.
random variable such that |Zi − E[Z]| ≤ R almost surely for all i, and V(Z) = σ2. Then the
following inequality holds with probability at least (1− δ) under PS ,∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣ ≤√4σ2 log(2/δ)

n
+

4R log(2/δ)

3n
. (21)

The rest of the lemmas are provided with proofs.

Lemma B.5 (Change of variables). Assume that the following equation holds,

ϵ = exp

{
− Aδ2

B + Cδ

}
,

for some positive parameters A,B,C, ϵ ≥ 0 and 0 ≤ δ ≤ 1. Then, we have,

δ ≤
C log 1

ϵ

A
+

√
B log 1

ϵ

A
.

Also, for some D > 0, if A ≥ B log 1
ϵ+2DC log 1

ϵ

D2 , then we have δ ≤ D.
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Proof. We have,

ϵ = exp

{
− Aδ2

B + Cδ

}
↔ Aδ2 − C log

1

ϵ
δ −B log

1

ϵ
= 0

Given δ > 0 and solving the quadratic equation, we have,

δ =
1

2A

(
C log

1

ϵ
+

√
C2 log2

1

ϵ
+ 4AB log

1

ϵ

)
=

C

2

√
log 1

ϵ

A

√ log 1
ϵ

A
+

√
log 1

ϵ

A
+ 4

B

C2


≤ C

√
log 1

ϵ

A

√ log 1
ϵ

A
+

√
B

C2


=

C log 1
ϵ

A
+

√
B log 1

ϵ

A
,

where the inequality is derived from
√
a+ b ≤

√
a+

√
b.

For the second part, similar argument works for a =
√
A as the variable ,

C log 1
ϵ

A
+

√
B log 1

ϵ

A
≤ D ↔ Da2 −

√
B log

1

ϵ
a− C log

1

ϵ
≥ 0

which is satisfied if a is greater than the bigger root,

a ≥

√
B log 1

ϵ +
√
B log 1

ϵ + 4DC log 1
ϵ

2D

So,

A ≥
B log 1

ϵ + 2DC log 1
ϵ

D2
≥


√

B log 1
ϵ +

√
B log 1

ϵ + 4DC log 1
ϵ

2D

2

where the last inequality comes from a2+b2

2 ≥
(
a+b
2

)2
. Hence if A ≥ B log 1

ϵ+2DC log 1
ϵ

D2 , a is bigger
than the largest root and the proposed inequality holds.

Lemma B.6. Assume A,B,C ∈ R+. For any x ∈ R+ such that,

x ≤ C2

2AC +B
,

we have,
Ax+

√
Bx ≤ C (22)

Proof. Given Ax ≤ C, equation equation 22 is equivalent to the following quadratic form.

A2x2 − (B + 2AC)x+ C2 ≥ 0

Let 0 < r1 < r2 be the roots of the abovementioned quadratic form. If X < r1, Ax ≤ C holds and
the quadratic form is positive. So we have the following condition on x to satisfy Equation 22,

x ≤
B + 2AC −

√
(B + 2AC)2 − 4A2C2

2A2
=

2C2

B + 2AC +
√

(B + 2AC)2 − 4A2C2
.

Since,
C2

2AC +B
≤ 2C2

B + 2AC +
√
(B + 2AC)2 − 4A2C2

,

the condition in the lemma is sufficient for equation 22 to hold.
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Lemma B.7. Let us consider the functions hb(y) = log(y) + 1
2b2 y

2 and ha(y) = log(y) +
1

2a2 y
2 for a < y < b. Then hb(y) and ha(y) are concave and convex, respectively.

Proof. Taking the second derivative gives us the result, d2

dy2

(
log(y) + βy2

)
= − 1

y2 + 2β.

Lemma B.8. We have the following inequality for y < 0 and ϵ ∈ [0, 1],

ey ≤ 1 + y +
|y|1+ϵ

1 + ϵ
. (23)

Proof. For y = 0, equality holds. If suffices to prove that the derivative of LHS of equation 23 is
more than the derivative of RHS ∀y < 0, i.e.,

ey − 1 + |y|ϵ ≥ 0.

Note that for y ≤ −1, |y|ϵ ≥ 1 and the inequality trivially holds. For y > −1, |y|ϵ is minimized at
ϵ = 1, so it is sufficient to prove the inequality only for ϵ = 1, which is,

ey − 1− y ≥ 0 ↔ ey ≥ y + 1

and holds ∀y ≤ 0.

Lemma B.9. For a positive random variable, Z > 0, suppose E[Z1+ϵ] < νz for some
ϵ ∈ [0, 1]. Then, the following inequality holds,

E[Z] ≤ ν1/(1+ϵ)
z

Proof. Due to Jensen’s inequality, we have,
E[Z] = E

[
(Z1+ϵ)1/(1+ϵ)

]
≤ E

[
Z1+ϵ]1/(1+ϵ) ≤ ν1/(1+ϵ)

z .

Lemma B.10. For a positive random variable, Z > 0, suppose E[Z1+ϵ] < ∞ for some
ϵ ∈ [0, 1]. Then, following inequality for λ < 0 holds,

E[Z] ≥ 1

λ
logE[eλZ ] ≥ E[Z]− 1

1 + ϵ
|λ|ϵE[Z1+ϵ].

Proof. The left side inequality follows from Jensen’s inequality on f(z) = log (z). For the right side,
we have for z < 0,

1 + z ≤ ez ≤ 1 + z +
1

1 + ϵ
|z|1+ϵ.

Therefore, we have,
1

λ
logE[eλZ ] ≥ 1

λ
logE[1 + λZ +

1

1 + ϵ
|λ|1+ϵZ1+ϵ]

=
1

λ
log

(
1 + λE[Z] +

1

1 + ϵ
|λ|1+ϵE

[
Z1+ϵ

])
≥ 1

λ

(
λE[Z] +

1

1 + ϵ
|λ|1+ϵE[Z1+ϵ]

)
= E[Z]− 1

1 + ϵ
|λ|ϵE[Z1+ϵ].
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C OTHER PROPERTIES OF THE LSE ESTIMATOR

Proposition C.1 (LSE Asymptotic Properties). The following asymptotic properties of LSE
with respect to λ holds,

lim
λ→0

V̂λ
LSE(S) =

1

n

(
n∑

i=1

riwθ(ai, xi)

)
,

lim
λ→−∞

V̂λ
LSE(S) = min

i
riwθ(ai, xi),

lim
λ→∞

V̂λ
LSE(S) = max

i
riwθ(ai, xi).

Proof. For the first limit, we use L’Hopital’s rule:

lim
λ→0

V̂λ
LSE(S) = lim

λ→0

log
(∑n

i=1 eλriwθ(ai,xi)

n

)
λ

= lim
λ→0

(∑n
i=1 riwθ(ai,xi)e

λriwθ(ai,xi)∑n
i=1 eλriwθ(ai,xi)

)
1

=

∑n
i=1 riwθ(ai, xi)

n
.

For the second limit for λ → −∞ we have:

min
i

riwθ(ai, xi) =
1

λ
log

(∑n
i=1 e

λmini riwθ(ai,xi)

n

)
≤ 1

λ
log

(∑n
i=1 e

λriwθ(ai,xi)

n

)
≤ 1

λ
log

(
eλmini riwθ(ai,xi)

n

)
= min

i
riwθ(ai, xi)−

1

λ
log n.

As both lower and upper tends to mini riwθ(ai, xi) we conclude that:

lim
λ→−∞

1

λ
log

(∑n
i=1 e

λriwθ(ai,xi)

n

)
= min

i
riwθ(ai, xi).

A similar argument proves the third limit (λ → ∞).

Remark C.2. As shown in (Zhang, 2006, Proposition 1.1), the LSE function is an increasing function
with respect to λ.

Derivative of the LSE estimator: The derivative of the LSE estimator can be represented as,

∇θV̂
λ
LSE(S, πθ) =

1

n

n∑
i=1

rie
λ(riwθ(ai,xi)−V̂λ

LSE(S,πθ))∇θwθ(ai, xi). (24)

Note that, in equation 24, we have a weighted average of the gradient of the weighted reward samples.
In contrast to the linear estimators for which the gradient is a uniform mean of reward samples, in
the LSE estimator, the gradient for large values of riwθ(ai, xi), ∀i ∈ [n] (small absolute value),
contributes more to the final gradient. It can be interpreted as the robustness of the LSE estimator
with respect to the very large absolute values of riwθ(ai, xi) (i.e. high wθ(a, x)), ∀i ∈ [n].

It is interesting to study the sensitivity of the LSE estimator with respect to its values.
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Lemma C.3. The gradient and hessian of the LSE estimator with respect to its values are as
follows,

∇V̂λ
LSE(S, πθ) = softmax(λr1wθ(a1, x1), · · · , λrnwθ(an, xn)), (25)

∇2V̂λ
LSE(S) = λdiag(Sn)− λSnS

T
n , (26)

where Sn = softmax(λr1wθ(a1, x1), · · · , λrnwθ(an, xn)). Also, LSE is convex when λ > 0
and concave otherwise.

Proof. The two equations can be derived with simple calculations. About the convexity and concavity
of V̂λ

LSE, we prove that for λ ≥ 0 the Hessian matrix is positive semi-definite. The proof for concavity
for λ < 0 is similar.

zT∇2V̂λ
LSEz = λ

(
zTdiag(Sn)z− zTSnS

T
n z
)
= λ

 n∑
i=1

Sn(i)z
2
i −

(
n∑

i=1

Sn(i)zi

)2


= λ

( n∑
i=1

Sn(i)z
2
i

)(
n∑

i=1

Sn(i)

)
−

(
n∑

i=1

Sn(i)zi

)2
 ≥ 0.

Where the last inequality is derived from the Cauchy–Schwarz inequality.

Using Lemma C.3, we can show that V̂λ
LSE is convex for λ ≥ 0 and concave for λ < 0. Applying

Lemma C.3, we can prove that the derivative of the LSE estimator is positive and less than one, i.e.,

0 ≤ ∇V̂λ
LSE(S, πθ) ≤ 1. (27)

Furthermore, we prove equation 24 by applying Lemma C.3.

C.1 LSE ESTIMATOR AND KL REGULARIZATION

In this section, we will discuss the connection between the LSE estimator,

LSEλ(Z) =
1

λ
log
( 1
n

n∑
i=1

eλzi
)
, (28)

and the KL regularization problem.

Consider the following KL-regularized expected minimization for λ < 0,

min
P∈∆n−1

n∑
i=1

pizi −
1

λ
DKL(P∥Uni(n)), (29)

where ∆n−1 denotes the probability simplex and Uni(n) in the discrete uniform distribution over
n mass points. Note that λ < 0, and the KL divergence is strictly convex with respect to P.
Therefore, the objective function in equation 29 is convex. Then, the solution of regularized problem
in equation 29, is the Gibbs distribution as follows,

p⋆i =
exp(λzi)∑n
i=1 exp(λzi)

, ∀i ∈ [n], (30)

Using equation 30 in equation 29, we have,
n∑

i=1

exp(λzi)zi∑n
j=1 exp(λzj)

− 1

λ

n∑
i=1

exp(λzi)∑n
j=1 exp(λzj)

(
λzi − log

( 1
n

n∑
i=1

exp(λzi)
))

=
1

λ
log
( 1
n

n∑
i=1

exp(λzi)
)
.

(31)

Therefore, the final value of KL-regularized minimization problem is the LSE estimator with λ < 0.
Therefore, the LSE estimator with negative parameter can be interpreted as KL-regularized expected
minimization problem.
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D PROOFS AND DETAILS OF SECTION 5

D.1 DETAILS OF THEORETICAL COMPARISON

In this section, we compare our estimator with PM, ES, IX, LS and OS from a theoretical perspective
in more details.

D.1.1 BIAS AND VARIANCE COMPARISON

In this section we present the bias and variance comparison of different estimators in Table 6. We
define power divergence as Pα(πθ∥π0) :=

∫
a
πθ(a|x)απ0(a|x)(1−α)da is the power divergence

with order α. For a fair comparison, we consider the bounded reward function, i.e., Rmax :=
sup(a,x)∈A×X r(a, x). Therefore, we have ν ≤ R1+ϵ

maxP1+ϵ(πθ∥π0) and ν2 ≤ R2
maxP2(πθ∥π0). We

can observe that LSE has the same behavior in comparison with other estimators.

Table 6: Comparison of bias and variance of estimators. BSN and VSN are the Bias and the Efron-
Stein estimate of the variance of self-normalized IPS. For the ES-estimator, we have TES = BES +
(1/n)

(
DKL(πθ∥π0) + log(4/δ)

)
. where DKL(πθ∥π0) =

∫
a
πθ(a|x) log(πθ(a|x)/π0(a|x))da. For

the IX-estimator, Cη(π) is the smoothed policy coverage ratio. We compare the convergence rate
of the generalization error for estimators. B and C are constants. For LS estimator, Sλ̃(πθ) is the
discrepancy between π and π0.

Estimator Variance Bias

IPS R2
maxP2(πθ∥π0)

n 0

SN-IPS
(Swaminathan & Joachims, 2015b) R2

maxV
SN RmaxB

SN

IPS-TR (M > 0)
(Ionides, 2008a) R2

max
P2(πθ∥π0)

n Rmax
P2(πθ∥π0)

M

IX (η > 0)
(Gabbianelli et al., 2023) RmaxCη(πθ)/n RmaxηCη(πθ)

PM (λ ∈ [0, 1])
(Metelli et al., 2021)

R2
maxP2(πθ∥π0)

n RmaxλP2(πθ∥π0)

ES (α ∈ [0, 1])
(Aouali et al., 2023) R2

max
Eπθ

[πθ·π1−2α
0 ]

n Rmax(1− Eπθ
[π1−α

0 ])

OS (τ > 0)
(Su et al., 2020)

R2
maxP2(πθ∥π0)

n Rmax
P3(πθ∥π0)

τ

LS (λ̃ ≥ 0)
(Sakhi et al., 2024)

Sλ̃(πθ)

n λ̃Sλ̃(πθ)

LSE (0 > λ > −∞ and ϵ ∈ [0, 1])
(ours)

R2
maxP2(πθ∥π0)

n
1

1+ϵ |λ|
ϵR1+ϵ

maxP1+ϵ(πθ∥π0)− B
2n|λ|

Note that in variance comparison between IPS and LSE, the LSE variance is less than IPS. However
in Table 6, we use a looser upper bound to compare bounds in terms of the same parameter Rmax.

Bias and Variance Trade-off: Observe that for the bias and variance of the LSE estimator, there is a
trade-off with respect to λ < 0. Specifically, reducing λ increases the bias of the LSE estimator,

B(V̂λ
LSE(S, πθ)) = E[wθ(A,X)R]− E[V̂λ

LSE(S, πθ)]. (32)

This is a consequence of the increasing property of the LSE with respect to λ (see Remark C.2).

Additionally, for the variance, we have the following bound,

Var(V̂λ
LSE(S, πθ)) ≤ E[(V̂λ

LSE(S, πθ))
2]. (33)

It is important to note that decreasing λ reduces the upper bound on the variance of the LSE estimator.
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Therefore, by decreasing λ < 0, the bias increases and the variance decreases.

D.1.2 COMPARISON WITH PM ESTIMATOR

In (Metelli et al., 2018), the authors proposed the following PM estimator for two hyper-parameter
(λp, s),

V̂PM(S, πθ) =
1

n

n∑
i=1

((1− λp)wθ(ai, xi)
s + λp)

1
s ri.

An upper bound on generalization error of PM estimator for (λp, s = −1), is provided in (Metelli
et al., 2018, Theorem 5.1),

genPM(S, πθ) ≤ ∥R∥∞(2 +
√
3)

(
2Pα(πθ∥π0)

1
α−1 log 1

δ

3(α− 1)2n

)1− 1
α

, (34)

where genPM(S, πθ) = V (πθ)− V̂PM(S, πθ) and α ∈ (1, 2]. In contrast to the bound presented in
equation 34, which necessitates a bounded reward, exhibits a dependence on log(1/δ)

ϵ
1+ϵ and two

hyper-parameter (s, λp), our work offers several advancements. We derive both upper and lower
bounds on generalization error, as detailed in Theorem D.2 and Theorem D.1, respectively. These
bounds help us for our subsequent derivation of an upper bound on regret. Notably, our bounds
demonstrate a more favorable dependence of log(1/δ)1/2. This improvement not only eliminates the
requirement for bounded rewards but also provides a tighter concentration. Furthermore, we provide
theoretical analysis for robustness with respect to both noisy reward and noisy propensity scores, and
we just have one hyperparameter. Note that the assumption on Pα(πθ∥π0) for α = 1 + ϵ in (Metelli
et al., 2018) is similar to bounded (1 + ϵ)-th moment of weight function, wθ(a, x) for a bounded
reward function.

D.1.3 COMPARISON WITH ES ESTIMATOR

The ES estimator (Aouali et al., 2023)is represented as,

V̂ α
ES(πθ) =

1

n

n∑
i=1

ri
πθ(ai|xi)

π0(a|xi)α
, α ∈ [0, 1]. (35)

In (Aouali et al., 2023, Theorem 4.1), an upper bound on generalization error is derived via PAC-
Bayesian approach for α ∈ [0, 1],

|V (πQ)− V̂ α
ES(πQ)| ≤

√
KL1(πQ)

2n
+Bα

n (πQ) +
KL2(πQ)

nλ

+
λ

2
V̄ α
n (πQ).

where KL1(πQ) = DKL(Q∥P) + ln
4
√
n

δ
, and

KL2(πQ) = DKL(Q∥P) + ln
4

δ
,

Bα
n (πQ) = 1− 1

n

n∑
i=1

Ea∼πQ(·|xi)

[
π1−α
0 (a|xi)

]
,

V̄ α
n (πQ) =

1

n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

πQ(ai|xi)∥R∥2∞
π0(ai|xi)2α

,

(36)

where Q and P are posterior and prior distributions over the set of hypothesis, R̂α
n(πQ) is ES estimator

and R(πQ) is true risk. The ES estimator’s bound exhibits several limitations. Primarily, it requires a
bounded reward. Moreover, the upper bound on the generalization error of the ES estimator converges
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at a rate of O(log(n)n−1/2), which is suboptimal. A notable drawback is the presence of the term
Bα

n (πQ), which remains constant for α > 1 and does not decrease with increasing sample size n. In
contrast, we derive an upper bound on the Regret with a convergence rate of O(n−1/2) under the
condition of bounded second moment (ϵ = 1) and can be extended for heavy-tailed scenarios under
bounded reward. This improved rate not only eliminates the logarithmic factor but also demonstrates
a tighter concentration. Furthermore, we have a theoretical analysis for robustness with respect to
both noisy reward and noisy propensity scores. Finally, the noisy reward scenario is not studied under
the ES estimator.

D.1.4 COMPARISON WITH IX ESTIMATOR

The IX estimator (Gabbianelli et al., 2023) is defined as for η > 0,

V̂ η
ES(S, πθ) :=

1

n

n∑
i=1

πθ(ai|xi)

πθ(ai|xi) + η
ri.

The following upper bound on regret of IX estimator is derived in (Gabbianelli et al., 2023, Theo-
rem 1),

R(πθ∗) ≤
√

log(2|Πθ|/δ)
n

(2ηCη(πθ∗) + 1), (37)

where

Cη(πθ) = E

[∑
a

πθ(a|X)

π0(a|X) + η
· r(X, a)

]
. (38)

In equation 37, it is assumed that reward is bounded. The term Cη(πθ) can be large if η is small.
While a small η is desirable for reducing bias, it can simultaneously increase Cη(πθ), potentially
compromising the tightness of the bound. The bounded reward in [0, 1] is needed for the proof of
regret bound as R2 ≤ R for R ∈ [0, 1]. Moreover, the process of tuning η in the IX estimator is
particularly sensitive.

D.1.5 COMPARISON WITH LOGARITHMIC SMOOTHING

We provide theoretical comparison with the Logarithmic Smoothing (LS) estimator (Sakhi et al.,
2024).

The LS estimator is,

V̂ λ̃
n (π) =

1

n

n∑
i=1

1

λ̃
log(1 + λ̃wθ(xi, ai)ri),

for λ̃ > 0. As mentioned in (Sakhi et al., 2024), a Taylor expansion of LS estimator around λ̃ = 0
yields,

V̂ λ̃
n (π) = V̂n(π) +

∞∑
ℓ=2

(−1)ℓλ̃ℓ−1

ℓ

(
1

n

n∑
i=1

(wθ(xi, ai)ri)
ℓ

)
.

Furthermore, the authors introduced,

Sλ̃(π) = E
[

(wθ(X,A)r)2

(1 + λ̃wπ(X,A)r)

]
,

where in (Sakhi et al., 2024, Proposition 7), a bounded second moment is needed to derive the
generalization error bound. Furthermore, for PAC-Bayesian analysis, the author proposed a linearized
version,

V̂ λ̃-LIN
n (π) =

1

n

n∑
i=1

π(ai|xi)

λ̃
log

(
1 +

λ̃ri
π0(ai|xi)

)
,

Note that, the linearized version of LS estimator is bounded by IPS estimator due to log(1 + x) ≤ x
inequality. Then, for LS-LIN estimator the PAC-Bayesian upper bound on the Regret of LS-LIN
estimator is derived in (Sakhi et al., 2024, Proposition 11) as follows,
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0 ≤ V (π̂n)− V (π∗
Q) ≤ λ̃SLIN

λ̃
(π∗

Q) +
2(KL(Q||P ) + ln(2/δ))

λ̃n
,

where SLIN
λ̃

(π) = E
[

π(a|x)r2

π0(a|x)+λ̃π0(a|x)r

]
.

Theoretical Comparison: The key distinction between the LS estimator and our LSE estimator is
that we explicitly assume the heavy-tailed weighted reward and can drive the better convergence rate.

In (Sakhi et al., 2024, Proposition 7), the authors demonstrate that under the assumption of a bounded
second moment of the weighted reward, the convergence rate is O(1/

√
n).

However, if the second moment is not bounded, from (Sakhi et al., 2024) we only know that:

Sλ̃(π) = E
[

(w(X,A)r)2

1 + λ̃w(X,A)r

]
≤ min

( 1
λ̃
E [w(X,A)r] ,E

[
(w(X,A)r)2

] )
.

If we replace Sλ̃(π) with 1
λE [w(X,A)r] in (Sakhi et al., 2024, Proposition 7), we get O(1) as

convergence rate. In contrast, our analysis yields a convergence rate of

O(n−ϵ/(1+ϵ)),

for bounded (1 + ϵ)-th moment.

This result demonstrates that our assumption is both precise and necessary to achieve the optimal
convergence rate for regret under the heavy-tailed assumption.

D.1.6 COMPARISON WITH OPTIMISTIC SHRINKAGE

The OS estimator (Su et al., 2020) is represented as for τ ≥ 0.

V̂OS(πθ) =
1

n

n∑
i=1

τwθ(ai, xi)

w2
θ(ai, xi) + τ

ri. (39)

In (Metelli et al., 2021, Theorem E.1), an upper bound for the right tail of the concentration inequality
for the OS estimator is established, which depends on P3(πθ∥π0). Consequently, this estimator fails
to ensure reliable performance under heavy-tailed assumptions, even when the reward is bounded.
Furthermore, due to applying the Bernstein inequality in the proof, theoretical results can not be
extended to unbounded reward.

D.1.7 COMPARISON UNDER BOUNDED REWARD ASSUMPTION

In this section, we compare different estimators by assuming bounded reward. Note that, under
bounded reward assumption, R ∈ [0, Rmax], our Assumption 1, would be simplified as follows,

Assumption 3. The PX ⊗ π0(A|X) are such that for all learning policy πθ(A|X) ∈ Πθ and some
ϵ ∈ [0, 1], the (1 + ϵ)-th moment of the weight function is bounded,

EPX⊗π0(A|X)

[(
wθ(A,X)

)1+ϵ] ≤ νw. (40)

Note that, under Assumption 3, our theoretical results hold by replacing ν with νwR
1+ϵ
max. In the

following, we compare main estimators, PM, ES, IX, LS and OS with LSE under Assumption 3,

• The PM estimator provides an upper bound on concentration inequality under Assumption 3.
However, a lower bound on generalization error (concentration inequality) is not provided.
Furthermore, for ϵ = 0, we can have a bounded upper bound on generalization error.
However, (Metelli et al., 2021, Theorem 5.1) is infinite for ϵ = 0.10

10Note that in Metelli et al. (2021), the authors consider α ∈ (1, 2] where α = ϵ+ 1 and ϵ ∈ (0, 1].
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• The ES estimator, does not support Assumption 3 and an assumption on bounded πθ

π2α
0

for
α ∈ (0, 1) is needed. Furthermore, the convergence rate of generalization bound on ES
estimator is worse than ours in ϵ = 1.

• For OS estimator, the bounded assumption on third moment of weight function is needed.
Therefore, it does not support Assumption 3.

• The theoretical results for LS estimator do not need bounded (1 + ϵ)-th moment of weight
function, Assumption 3. However, under Assumption 3, we can not derive the optimal rate
of regret, O(n

−ϵ
1+ϵ ) for ϵ ∈ [0, 1] under LS estimator.

• For IX estimator, using the upper bound on regret in (Gabbianelli et al., 2023, Theorem 7),
requires bounded C0(πθ∗), which can impose a stronger condition than Assumption 3.

D.1.8 DETAILED COMPARISON WITH TILTED EMPIRICAL RISK

Inspired by the log-sum-exponential function, the authors in (Li et al., 2023) proposed a non-linear
form known as tilted empirical risk. They established connections between tilted empirical risk and
other risk measures, particularly demonstrating that tilted empirical risk acts as a risk regularization
via the KL divergence between uniform and weighted distributions. Furthermore, they explored the
connection between tilted empirical risk and conditional value at risk. However, the generalization
error and excess risk analysis of tilted empirical risk remained unexplored. Since our LSE estimator
is also based on the log-sum-exponential function, we believe our current analysis of generalization
error and regret in OPL/OPE could be extended to analyze tilted empirical risk under heavy-tailed
assumptions and improve the understanding of tilted empirical risk under heavy-tailed scenario in
supervised learning scenario.

D.1.9 COMPARISON WITH THE ASSUMPTION 1 IN SWITCH ESTIMATOR

The switch estimator introduced in (Wang et al., 2017) adaptively chooses between model-free
estimation and an estimated reward function based on importance weights. While (Wang et al., 2017)
requires the existence of finite (2 + ϵ̃)-th moments (for ϵ > 0) in their Assumption 1, our work
operates under a weaker condition. We only require bounded (1 + ϵ)-th moments for some ϵ ∈ [0, 1].
This distinction is significant—our assumption (Assumption 1) encompasses cases where the second
moment and (2+ ϵ̃)-th moment for ϵ̃ > 0 do not exist. In contrast, (Wang et al., 2017, Assumption 1),
which requires the finiteness of the (2 + ϵ̃)-th moments, imposes a strictly stronger condition on the
underlying distribution. Therefore, we can not apply the approach in (Wang et al., 2017) in our case.

D.2 PROOFS AND DETAILS OF REGRET BOUNDS

Lemma 5.1 (Restated). Consider the random variable Z > 0. For ϵ ∈ [0, 1], the following
upper bound holds on the variance of eλZ for λ < 0,

V
(
eλZ

)
≤ |λ|1+ϵE[Z1+ϵ]. (41)

Proof. We have,

|eλZ − eλC1 | =

∣∣∣∣∣
∫ λz

λC1

eydy

∣∣∣∣∣ ≤ |λ(z − C1)|emax(λz,λC1) ≤ |λ||z − C1|.

Then it holds that

V(eλZ) = min
C1∈R+

E
[
(eλZ − eλC1)2

]
= min

C1∈R+
E
[
|eλZ − eλC1 |1−ϵ|eλZ − eλC1 |1+ϵ

]
= min

C1∈R+
E
[
|eλZ − eλC1 |1−ϵ|λ|1+ϵ|Z − C1|1+ϵ

]
≤ min

C1∈R+
E
[
|λ|1+ϵ|Z − C1|1+ϵ

]
≤ |λ|1+ϵE[Z1+ϵ],

where the last inequality holds due to the fact that |eλZ − eλC1 |1−ϵ ≤ 1.
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Furthermore, we are interested in providing high probability upper and lower bounds on genλ(πθ),

P (genλ(πθ) > gu(δ, n, λ)) ≤ δ, and, P (genλ(πθ) < gl(δ, n, λ)) ≤ δ.

where 0 < δ < 1 and n is the number of samples in LBF dataset. We first provide an upper bound on
generalization error.

Theorem D.1. Given Assumption 1, with probability at least 1− δ, then the following upper
bound holds on the generalization error of the LSE for a learning policy πθ ∈ Πθ

genλ(πθ) ≤
1

1 + ϵ
|λ|ϵν − 1

λ

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
− 4 log(2/δ)

3λ exp(λν1/(1+ϵ))n
.

Proof. To ease the notation, we consider Yθ(A,X) = wθ(A,X)R. Using Bernstein’s inequal-
ity (Lemma B.4), with probability (1− δ), we have,

E[exp(λYθ(A,X))]− 1

n

n∑
i=1

exp(λYθ(ai, xi)) ≥ −
√

4V(exp(λYθ(A,X))) log(2/δ)

n
−4 log(2/δ)

3n
.

Using Lemma 5.1, V(exp(λYθ(A,X))) ≤ |λ|1+ϵν, we have,

E[exp(λYθ(A,X))]− 1

n

n∑
i=1

exp(λYθ(ai, xi)) ≥ −
√

4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3n
.

As the log function is an increasing function, the following holds with probability at least 1− δ,

V̂λ
LSE(S, πθ) ≥

1

λ
log

(
E[eλYθ(A,X)] +

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3n

)
.

where recall that V̂λ
LSE(S, πθ) =

1
λ log

(
1
n

∑n
i=1 exp(λyθ(ai, xi))

)
. With probability at least 1− δ,

using the inequality log(x+ y) ≤ log(x) + y/x for x > 0,

V̂λ
LSE(S, πθ) ≥

1

λ
log

(
E[eλYθ(A,X)] +

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3n

)

≥ 1

λ
log
(
E[eλYθ(A,X)])

)
+

1

λE[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3λE[eλYθ(A,X)]n
.

Using Lemma B.10, we have with probability at least 1− δ,

V̂λ
LSE(S, πθ) ≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵE[Yθ(A,X)1+ϵ]

+
1

λE[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3λE[eλYθ(A,X)]n

≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵE[Yθ(A,X)1+ϵ]

+
1

λE[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3λE[eλYθ(A,X)]n

≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵν +

1

λ

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
+

4 log(2/δ)

3λ exp(λν1/(1+ϵ))n
.

The final result holds by by applying Lemma B.9 to E[eλYθ(A,X)] ≥ exp(λν1/(1+ϵ)).
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Next, we provide a lower bound on generalization error.

Theorem D.2. Given Assumption 1, and assuming n ≥ (2|λ|1+ϵν+ 4
3γ) log

1
δ

γ2 exp(2λν1/(1+ϵ))
, then there

exists γ ∈ (0, 1) such that with probability at least 1 − δ, the following lower bound on
generalization error of the LSE for a learning policy πθ ∈ Πθ holds

genλ(πθ) ≥
1

λ(1− γ)

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
+

4 log(2/δ)

3(1− γ)λ exp(λν1/(1+ϵ))n

Proof. To ease the notation, we consider Yθ(A,X) = Rwθ(A,X). Using Bernstein’s inequal-
ity (Lemma B.4), with probability (1− δ), we have,

E[exp(λYθ(A,X))]− 1

n

n∑
i=1

exp(λYθ(ai, xi)) ≤
√

4V(exp(λYθ(A,X))) log(2/δ)

n
+

4 log(2/δ)

3n
.

Using Lemma 5.1, V(exp(λYθ(A,X))) ≤ |λ|1+ϵν, we have,

E[exp(λYθ(A,X))]− 1

n

n∑
i=1

exp(λYθ(ai, xi)) ≤
√

4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3n
.

As the log function is an increasing function, the following holds with probability at least 1− δ,

V̂λ
LSE(S, πθ) ≤

1

λ
log

(
E[eλYθ(A,X)]−

√
4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3n

)
.

where recall that V̂λ
LSE(S, πθ) =

1
λ log

(
1
n

∑n
i=1 exp(λyθ(ai, xi))

)
. Without loss of generality, we

can assume that, √
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3n
≤ γE[eλYθ(A,X)] (42)

for some γ ∈ (0, 1). Using the inequality log(z − y) ≥ log(z)− y
z−y for z > y > 0, and assuming

z = E[eλYθ(A,X)] and y =
√

4|λ|1+ϵν log(2/δ)
n + 4 log(2/δ)

3n and combining with equation 42, then with
probability (1− δ), we have,

V̂λ
LSE(S, πθ) ≤

1

λ
log

(
E[eλYθ(A,X)]−

√
4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3n

)

≤ 1

λ
log
(
E[eλYθ(A,X)]

)
− 1

λ(1− γ)E[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n

− 4 log(2/δ)

(1− γ)λ3E[eλYθ(A,X)]n
.

Equation 42 can be considered as quadratic equation in terms of 1√
n

. Then, using lemma B.6, we
have, (

2|λ|1+ϵν + 4
3γ
)
log(2/δ)

γ2 exp(2λν1/(1+ϵ))
≤ n. (43)
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Using Lemma B.10, with probability at least (1− δ) we have

V̂λ
LSE(S, πθ) ≤ E[Yθ(A,X)]− 1

λ(1− γ)E[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3(1− γ)λE[eλYθ(A,X)]n

≤ E[Yθ(A,X)]− 1

(1− γ)λE[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3(1− γ)λE[eλYθ(A,X)]n

≤ E[Yθ(A,X)]− 1

λ(1− γ)

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
− 4 log(2/δ)

3(1− γ)λ exp(λν1/(1+ϵ))n
.

The final result holds by applying Lemma B.9 to E[eλYθ(A,X)] ≥ exp(λν1/(1+ϵ)).

Using the previous upper and lower bounds on generalization error, we can provide an upper bound
on the regret of the LSE estimator.

Theorem 5.2 (Restated). Given Assumption 1 and assuming n ≥ (2|λ|1+ϵν+ 4
3γ) log

1
δ

γ2 exp(2λν1/(1+ϵ))
, with

probability at least 1− δ, then there exists γ ∈ (0, 1) such that the following upper bound
holds on the regret of the LSE estimator,

0 ≤ Rλ(πθ̂, S) ≤
|λ|ϵ

1 + ϵ
ν−4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))
.

Proof. We have,

V (πθ∗)−V (πθ̂) = V (πθ∗)− V̂λ
LSE(S, πθ∗)︸ ︷︷ ︸

I1

+V̂λ
LSE(S, πθ∗)− V̂λ

LSE(S, πθ̂)︸ ︷︷ ︸
I2

+V̂λ
LSE(S, πθ̂)− V (πθ̂)︸ ︷︷ ︸

I3

.

(44)
Using upper bound on generalization error, Theorem D.1, and union bound (Shalev-Shwartz &
Ben-David, 2014), with probability at least 1− δ, the following upper bound holds on term I1,

V (πθ∗)− V̂λ
LSE(S, πθ∗) ≤ sup

πθ∈Πθ

V (πθ)− V̂λ
LSE(S, πθ)

≤ 1

1 + ϵ
|λ|ϵν − 1

λ

√
4|λ|1+ϵν log(2|Πθ|/δ)
n exp(2λν1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3λ exp(λν1/(1+ϵ))n

.

(45)

Using lower bound on generalization error, Theorem D.2, and union bound (Shalev-Shwartz &
Ben-David, 2014), with probability at least 1− δ, the following upper bound holds on term I3,

V̂λ
LSE(S, πθ̂)− V (πθ̂) ≤ sup

πθ∈Πθ

V̂λ
LSE(S, πθ)− V (πθ)

≤ −1

λ(1− γ)

√
4|λ|1+ϵν log(2|Πθ|/δ)
n exp(2λν1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3(1− γ)λ exp(λν1/(1+ϵ))n

.

(46)

Note that the term I2 is negative as the πθ̂ is the maximizer of the LSE estimator over Πθ. Combining
equation 45 and equation 46 with equation 44, and applying the union bound, completes the proof.

Proposition 5.3 (Restated). Given Assumption 1, for any 0 < γ < 1, assuming n ≥
(2ν+ 4

3γ) log
1
δ

γ2 exp(2ν1/(1+ϵ))
and setting λ = −n−ζ for ζ ∈ R+, then the overall convergence rate of the

regret upper bound is max(O(n−1+ζ), O(n−ϵζ), O(n(−ζϵ−1)/2)) for finite policy set.
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Proof. Without loss of generality, we can assume that λ ≥ −1. Therefore, we have |λ|1+ϵ ≤ 1 and

ν1/(1+ϵ) ≥ 0, which results in n ≥ (2ν+ 4
3γ) log

1
δ

γ2 exp(−2ν1/(1+ϵ))
≥ (2|λ|1+ϵν+ 4

3γ) log
1
δ

γ2 exp(2λν1/(1+ϵ))
. Using Theorem 5.2,

with probability at least 1− δ, we have

Rλ(πθ̂, S)

≤ |λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))
(47)

≤ |λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
+

(2− γ)

(1− γ) exp(λν1/(1+ϵ))

√
4|λ|ϵν log 4|Πθ|

δ

n
. (48)

Since λ ≥ −1, we have exp(λν1/(1+ϵ)) ≥ exp(−ν1/(1+ϵ)) (note that ν1/(1+ϵ) ≥ 0 and −1 < λ <
0). Replacing λ with λ⋆ = −n−ζ and exp (λν1/(1+ϵ)) with exp (−ν1/(1+ϵ)), then we have the
overall convergence rate of max(O(n−ϵζ), O(n−1+ζ), O(n(−ζϵ−1)/2)).

D.3 PROOFS AND DETAILS OF BIAS AND VARIANCE

Proposition 5.5 (Restated). Given Assumption 1, the following lower and upper bounds
hold on the bias of the LSE estimator,

(n− 1)

2n|λ|
V(eλwθ(A,X)R) ≤ B(V̂λ

LSE(S, πθ)) ≤
1

1 + ϵ
|λ|ϵν +

1

2nλ
V(eλwθ(A,X)R).

Proof. In the proof, for the sake of simplicity of notation, we consider Yθ(A,X) = wθ(A,X)R. For
lower bound we need to prove the following,

V (πθ)− E
[
V̂λ

LSE(S, πθ)
]
≥ n− 1

n|λ|
V
(
eλwθ(A,X)R

)
.

Setting yθ(ai, xi) = riwθ(ai, xi), according to Lemma B.7 for b = 1, f(x) = log (x) + 1
2x

2 is
concave. So we have,

log

(∑n
i=1 e

λyθ(ai,xi)

n

)
+

1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2

≥ 1

n

(
n∑

i=1

log
(
eλyθ(ai,xi)

)
+

1

2
e2λyθ(ai,xi)

)

=
λ

n

n∑
i=1

yθ(ai, xi) +
1

2n

n∑
i=1

e2λyθ(ai,xi).

Hence,

E
[
1

λ
log

(∑n
i=1 e

λyθ(ai,xi)

n

)]
≤ E

[
1

n

n∑
i=1

yθ(ai, xi) +
1

2nλ

n∑
i=1

e2λyθ(ai,xi) − 1

2λ

(∑n
i=1 e

λyθ(ai,xi)

n

)2
]

= E [Yθ(A,X)] +
1

2λ

(
E
[
e2λYθ(A,X)

]
− E

[(∑n
i=1 e

λyθ(ai,xi)

n

)2
])

= E [Yθ(A,X)] +
1

2λ

(
E
[
e2λYθ(A,X)

]
− V

(∑n
i=1 e

λyθ(ai,xi)

n

)
− E

[∑n
i=1 e

λyθ(ai,xi)

n

]2)

= E [Yθ(A,X)] +
1

2λ

(
E
[
e2λYθ(A,X)

]
− 1

n
V
(
eλYθ(A,X)

)
− E

[
eλYθ(A,X)

]2)
= E[Yθ(A,X)] +

n− 1

2nλ
V
(
eλYθ(A,X)

)
.
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Note that E[Yθ(A,X)] = V (πθ). It completes the proof for lower bound.

For upper bound, we need to prove the following
1

2nλ
V(eλwθ(A,X)R) ≥ 1

λ
log
(
E
[
eλYθ(A,X)

])
− E

[
V̂λ

LSE(S, πθ)
]
. (49)

Note that, an upper bound 1 on
∑n

i=1 eλriwθ(ai,xi)

n holds. Now, we have,

E[V̂λ
LSE(S, πθ)] =

1

λ
E
[
log

(∑n
i=1 e

λyθ(ai,xi)

n

)]
=

1

λ
E

[
log

(∑n
i=1 e

λyθ(ai,xi)

n

)
+

1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2

− 1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2
]

≥ 1

λ

(
log

(
E
[∑n

i=1 e
λyθ(ai,xi)

n

])
+

1

2
E
[∑n

i=1 e
λyθ(ai,xi)

n

]2
− 1

2
E

[(∑n
i=1 e

λyθ(ai,xi)

n

)2
])

=
1

λ
log
(
E
[
eλYθ(A,X)

])
− 1

2λ
V
(∑n

i=1 e
λyθ(ai,xi)

n

)
=

1

λ
log
(
E
[
eλYθ(A,X)

])
− 1

2nλ
V
(
eλYθ(A,X)

)
,

where the first inequality is derived by applying Jensen inequality on function

log

(∑n
i=1 e

λyθ(ai,xi)

n

)
+

1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2

,

which is concave based on Lemma B.7 for b = 1. Then, we have,
1

λ
log
(
E
[
eλYθ(A,X)

])
− E[V̂λ

LSE(S, πθ)] ≤
1

2nλ
V
(
eλYθ(A,X)

)
.

Finally, we combine the upper bound in equation 49 .

E[V̂λ
LSE(S, πθ)]−

1

λ
log
(
E
[
eλYθ(A,X)

])
≥ − 1

2nλ
V
(
eλYθ(A,X)

)
,

and the upper bound in Lemma B.10,
1

λ
log
(
E
[
eλYθ(A,X)

])
≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵE[|Yθ(A,X)|1+ϵ].

Therefore, we have,

E[V̂λ
LSE(S, πθ)] ≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵE[|Yθ(A,X)|1+ϵ]

− 1

2nλ
V
(
eλwθ(A,X)R

)
.

(50)

It completes the proof.

Proposition 5.7. Assume that E[(wθ(A,X)R)2] ≤ ν2 (Assumption 1 for ϵ = 1) holds. Then
the variance of the LSE estimator with λ < 0, satisfies,

V(V̂λ
LSE(S, πθ)) ≤

1

n
V(wθ(A,X)R) ≤ 1

n
ν2. (51)

Proof. Let Yθ(A,X) = wθ(A,X)R and Y
(c)
θ = Yθ(A,X)−E[Yθ(A,X)] be the centered Yθ(A,X).

We have,

V̂λ
LSE(S, πθ) =

1

λ
ln

(∑n
i=1 e

λyi,θ

n

)
=

1

λ
ln

(∑n
i=1 e

λ(y
(c)
i,θ−mθ)

n

)
=

1

λ
ln

(∑n
i=1 e

λy
(c)
i,θ

n

)
+mθ
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where mθ = E[Yθ(A,X)]. Note that, we also have V(Y (c)
θ ) = V(Yθ).

Now, setting Z =
∑n

i=1 e
λy

(c)
i,θ

n , we have,

V(V̂λ
LSE(S, πθ)) = V

(
1

λ
logZ

)
Furthermore, using Jensen’s inequality for λ < 0, we have,

1

λ
logZ ≤

∑n
i=1 y

(c)
i,θ

n
.

Hence we have,

V(V̂λ
LSE(S, πθ)) = E

[
1

λ2
log2 Z

]
−
(
E
[
1

λ
logZ

])2

≤ E

(∑n
i=1 y

(c)
i,θ

n

)2


= V

(∑n
i=1 y

(c)
i,θ

n

)
+ E

[∑n
i=1 y

(c)
i,θ

n

]2

= V

(∑n
i=1 y

(c)
i,θ

n

)
+ E

[
Y

(c)
θ

]2
= V

(∑n
i=1 y

(c)
i,θ

n

)
+ 0

=
1

n
V(Y (c)

θ ) =
1

n
V(Yθ).

It completes the proof.

For the moment of the LSE estimator, we provide the following upper bound.

Proposition D.3 (Moment bound). Given Assumption 1, the following upper bound hold on
the moment of the LSE estimator,

E
[∣∣∣ 1
λ
log
(∑n

i=1 e
λwθ(ai,xi)ri

n

)∣∣∣1+ϵ
]
≤ ν. (52)

Proof. Suppose that Z =
∑n

i=1 eλriwθ(ai,xi)

n . Also set yi,θ(ai, xi) = ri(ai, xi)wθ(ai, xi). For
negative λ < 0 and Z > 0, we have,

V̂λ
LSE(S, πθ) =

1

λ
log(Z)

≤
∑n

i=1 riwθ(ai, xi)

n
.

Since logZ < 0 for 0 < Z < 1, we have,

E
[∣∣∣ 1
λ
logZ

∣∣∣1+ϵ
]
≤ E

[∣∣∣ 1
n

n∑
i=1

wθ(ai, xi)ri

∣∣∣1+ϵ
]

≤ E[|wθ(A,X)R|1+ϵ]

≤ ν,

where the second inequality holds due to Jensen inequality.
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D.4 PROOF AND DETAILS OF ROBUSTNESS OF THE LSE ESTIMATOR: NOISY REWARD

Using the functional derivative (Cardaliaguet et al., 2019), we can provide the following results.

Proposition D.4. Given Assumption 1, then the following holds,

1

λ
log(EP1

[exp(λwθ(A,X)R)])− 1

λ
log(EP2

[exp(λwθ(A,X)R)]) ≤
TV(PR|X,A, P̃R|X,A)

|λ| exp(λν1/(1+ϵ))
,

(53)

where P1 = PX ⊗ π0(A|X)⊗ PR|X,A and P2 = PX ⊗ π0(A|X)⊗ P̃R|X,A.

Proof. We have that

1

λ
log(EP1 [exp(λwθ(A,X)R)])− 1

λ
log(EP2 [exp(λwθ(A,X)R)])

(a)
=

∫
R×X×A

exp(λwθ(A,X)R)

|λ|E[exp(λwθ(a, x)r)]
PX ⊗ π0(A|X)(P̃R|X,A − P̃R|X,A)(dadxdr)

(b)

≤
TV(PR|X,A, P̃R|X,A)

|λ| exp(λν1/(1+ϵ))
.

(54)

where (a) and (b) follow from the functional derivative and Lemma B.2.

Combining Proposition D.4 with generalization error bounds, Theorem D.2 and Theorem D.1, we
derive the upper bound on the regret under noisy reward scenario.

Theorem 5.9. Given Assumption 1, Assumption 2 and assuming n ≥ (2|λ|1+ϵν+ 4
3γ) log

|Πθ|
δ

γ2 exp(2λν1/(1+ϵ))
,

with probability at least 1 − δ, then there exists γ ∈ (0, 1) such that the following upper
bound holds on the regret of the LSE estimator under noisy reward logged data,

0 ≤ Rλ(πθ̂(S̃), S̃) ≤
|λ|ϵ

1 + ϵ
ν

− 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν̃1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν̃ log 4|Πθ|

δ

n exp(2λν̃1/(1+ϵ))

+ TV(PR|X,A, P̃R|X,A)
( 1

|λ| exp(λν̃1/(1+ϵ))
+

1

|λ| exp(λν1/(1+ϵ))

)
,

where πθ̂(S̃) = argmaxπθΠθ
V̂λ

LSE(πθ, S̃).

Proof. We have,

V (πθ∗)− V (πθ̂(S̃)) = V (πθ∗)− V̂λ
LSE(S̃, πθ∗)︸ ︷︷ ︸

I1

+V̂λ
LSE(S̃, πθ∗)− V̂λ

LSE(S̃, πθ̂(S̃))︸ ︷︷ ︸
I2

+ V̂λ
LSE(S̃, πθ̂(S̃))− V

(
πθ̂(S̃)

)︸ ︷︷ ︸
I3

.
(55)
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Using upper bound on generalization error, Theorem D.1, and union bound (Shalev-Shwartz &
Ben-David, 2014), with probability at least 1− δ, the following upper bound holds on term I1,

V (πθ∗)− V̂λ
LSE(S̃, πθ∗)

= V (πθ∗)− 1

λ
log(EP1 [exp(λwθ(A,X)R)])

+
1

λ
log(EP1

[exp(λwθ(A,X)R)])− 1

λ
log(EP2

[exp(λwθ(A,X)R)])

+
1

λ
log(EP2

[exp(λwθ(A,X)R)])− V̂λ
LSE(S̃, πθ∗)

≤ 1

1 + ϵ
|λ|ϵν

+
TV(PR|X,A, P̃R|X,A)

|λ| exp(λν1/(1+ϵ))

− 1

λ

√
4|λ|1+ϵν̃ log(2|Πθ|/δ)
n exp(2λν̃1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3λ exp(λν1/(1+ϵ))n

.

(56)

Using lower bound on generalization error, Theorem D.2, and union bound (Shalev-Shwartz &
Ben-David, 2014), with probability at least 1− δ, the following upper bound holds on term I3,

V̂λ
LSE(S̃, πθ̂(S̃))− V (πθ̂(S̃))

= V̂λ
LSE(S̃, πθ̂(S̃))−

1

λ
log(EP2

[exp(λwθ̂(A,X)R)])

+
1

λ
log(EP2

[exp(λwθ̂(A,X)R)])− 1

λ
log(EP1

[exp(λwθ̂(A,X)R)])

+
1

λ
log(EP1

[exp(λwθ̂(A,X)R)])− V (πθ̂(S̃))

≤ −1

λ(1− γ)

√
4|λ|1+ϵν̃ log(2|Πθ|/δ)
n exp(2λν̃1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3(1− γ)λ exp(λν̃1/(1+ϵ))n

+
TV(PR|X,A, P̃R|X,A)

|λ| exp(λν̃1/(1+ϵ))
.

(57)

Note that the term I2 is negative as the πθ̂(S̃) is the maximizer of the LSE estimator over Πθ.
Combining equation 56 and equation 57 with equation 55, and applying the union bound, completes
the proof.

D.5 PAC-BAYESIAN DISCUSSION

In this section, we explore the PAC-Bayesian approach and its application in extending our previous
results. Given that the methodology for deriving these results closely resembles our earlier approach,
we will outline the key steps in the derivation process rather than providing a full detailed analysis.

For this purpose, we introduce several additional definitions inspired by Gabbianelli et al. (2023). For
PAC-Bayesian approach, we focus on randomized algorithms that output a distribution Q̂n ∈ P(Πθ)
over policies. Our interest lies in performance guarantees that satisfy two conditions: (1) they hold in
expectation with respect to the random selection of π̂n ∼ Q̂n, and (2) they maintain high probability
with respect to the realization of the LBF dataset. For this purpose, we define the following integral
forms of our previous formulation,
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V (Q) =

∫
V (πθ)dQ(πθ),

V̂λ
LSE(S,Q) =

∫
V̂λ

LSE(S, π)dQ(π),

R(Q,S) =

∫
R(π, S)dQ(π).

(58)

These expressions capture relevant quantities evaluated in expectation under the distribution Q ∈
P(Πθ) where P(Πθ) is the set of distributions over policy set. Let P ∈ P(Πθ) a prior distribution
over policy class.

We can relax the uniform assumption on (1 + ϵ)-th moment Assumption 1, as follows,
Assumption 4. The reward distribution PR|X,A and PX ⊗ π0(A|X) are such that for a posterior
distribution Q over the set of policies Πθ and some ϵ ∈ (0, 1], the (1 + ϵ)-th moment of the weighted
reward is bounded,

Eπθ∼QEPX⊗π0(A|X)⊗PR|X,A

[(
wθ(A,X)R

)1+ϵ] ≤ νq. (59)

In order to derive the upper bound on regret, we need to derive the upper and lower PAC-Bayesian
bound on generalization error. For this purpose, we can apply the following bound from (Tolstikhin
& Seldin, 2013, Theorem 2) which holds with probability 1− δ and for a fixed c1 > 1,

|
∫
πθ∼Q

E[exp(λYθ(A,X))]−
∫
πθ∼Q

1

n

n∑
i=1

exp(λYθ(ai, xi))|

≤ (1 + c1)

√
(e− 2)EQ[V(exp(λYθ(A,X)))]

(
KL(Q∥P) + ln ν1

δ

)
n

,

(60)

where Yθ(ai, xi) = wθ(ai, xi)ri and

ν1 =

⌈
1

ln c1
ln

(√
(e− 2)n

4 ln(1/δ)

)⌉
+ 1. (61)

Similar to Theorem D.2 and Theorem D.1, we can replace EQ[V(exp(λYθ(A,X)))] with
|λ|1+ϵE[Yθ(A,X)1+ϵ]. Given Assumption 4, the following upper bounds holds on generalization
error,

Eπθ∼Q[genλ(πθ)] ≤
1

1 + ϵ
|λ|ϵνq −

(1 + c1)

λ

√
(e− 2)|λ|1+ϵνq

(
KL(Q∥P) + ln 2ν1

δ

)
exp(2λν

1/(1+ϵ)
q )n

. (62)

For lower bound, given Assumption 4, there exists n0 such that for n ≥ n0 and γq ∈ (0, 1) the
following holds with probability (1− δ),

Eπθ∼Q[genλ(πθ)] ≥
(1 + c1)

λ(1− γq)

√
(e− 2)|λ|1+ϵνq

(
KL(Q∥P) + ln 2ν1

δ

)
exp(2λν

1/(1+ϵ)
q )n

. (63)

Combining equation 63 and equation 62, we can derive an upper bound on R(Q̂, S) in a similar
approach to Theorem 5.2 under Assumption 4 and assuming Q̂n := argmaxQ∈P(Πθ) V̂

λ
LSE(S,Q).

R(Q̂n, S) ≤
1

1 + ϵ
|λ|ϵνq −

(1 + c1)(2− γq)

(1− γq)λ

√
(e− 2)|λ|1+ϵνq

(
KL(Q∥P) + ln 2ν1

δ

)
exp(2λν

1/(1+ϵ)
q )n

. (64)

Note that, the PAC-Bayesian approach in (London & Sandler, 2019; Sakhi et al., 2023; 2024; Aouali
et al., 2023) is different. However, their PAC-Bayesian model can also be applied to our LSE estimator.
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D.6 SUB-GAUSSIAN DISCUSSION

In this section, we investigate the sub-Gaussianity concentration inequality (generalization error)
under LSE estimator.

We first present the following general result.
Proposition D.5. Given Assumption 1, for any 0 < γ < 1, assuming n ≥

max

(
(2ν+ 4

3γ) log
1
δ

γ2 exp(2ν1/(1+ϵ))
,
log 2

δ

ν

)
and setting

λ = −
(
log 2

δ

νn

) 1
1+ϵ

,

then with a probability at least 1− δ for δ ∈ (0, 1), the absolute of generalization error of the LSE
estimator satisfies for a fixed πθ ∈ Πθ,∣∣genλ(πθ)

∣∣ ≤ ( 1

1 + ϵ
+

4

(1− γ) exp(ν1/(1+ϵ))

)
ν

1
1+ϵ

(
log 2

δ

n

) ϵ
1+ϵ

.

Proof. Choosing n ≥ 2 log 2
δ

ν , we have λ ≥ −1, |λ|1+ϵ ≤ 1 and ν ≥ 0, which results in n ≥
(2ν+ 4

3γ) log
1
δ

γ2 exp(2ν1+ϵ) ≥ (2|λ|1+ϵν+ 4
3γ) log

1
δ

γ2 exp(2λν1+ϵ) . Using Theorem D.1 and Theorem D.2, we have with probability
at least 1− δ,∣∣genλ(πθ)

∣∣
≤ 1

1 + ϵ
|λ|ϵν − 1

λ(1− γ)

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
− 4 log(2/δ)

3(1− γ)λ exp(λν1/(1+ϵ))n
(65)

Since λ ≥ −1, we have exp(λν1+ϵ) ≥ exp(−ν1+ϵ) (note that ν ≥ 0). Replacing λ with λ⋆ =

−
(

log 2
δ

νn

) 1
1+ϵ

and exp (λν1+ϵ) with exp (ν1+ϵ), we have,

∣∣genλ(πθ)
∣∣ ≤ ν

1
1+ϵ

1 + ϵ

(
log 2

δ

n

) ϵ
1+ϵ

+
4ν

1
1+ϵ

3(1− γ) exp(ν1/(1+ϵ))

(
log 2

δ

n

) ϵ
1+ϵ

+
2ν

1
1+ϵ

(1− γ) exp(ν1/(1+ϵ))

(
log 2

δ

n

) ϵ
1+ϵ

≤
(

1

1 + ϵ
+

4

(1− γ) exp(ν1/(1+ϵ))

)
ν

1
1+ϵ

(
log 2

δ

n

) ϵ
1+ϵ

with a probability at least 1− δ. As the upper bound on absolute value of the generalization error
holds.

Remark D.6. Suppose that the second moment of weighted reward is bounded which is equal
to Assumption 1 with ϵ = 1. As a result, using Proposition D.5 for ϵ = 1, we can establish a
concentration inequality (generalization bound) for the LSE even in cases where the rewards are
unbounded.

D.7 IMPLICIT SHRINKAGE

Su et al. (2020) proposed the optimistic shrinkage where the weights are less than the main weights
of IPS estimator. Other transformation of weights in other estimators are also lower bound to main
weights of IPS estimators. For example, in TR-IPS, we have min(M,wθ(a, x)) which is a lower
bound to wθ(a, x). Our LSE estimator is also a lower bound to IPS estimator,

1

λ
log(

1

n

n∑
i=1

exp(λwθ(ai, xi)ri)) ≤
1

n

n∑
i=1

wθ(ai, xi)ri, (66)
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which can be interpreted as implicit shrinkage. Furthermore, note that the LSE is not separable with
respect to the samples, so instead of per sample shrinkage, we investigate LSE’s shrinkage effect on
the entire output, which is the estimated average reward. In can be derived by simple calculation that
for λ < 0,

1

n

n∑
i=1

yi −
1

λ
log

(∑n
i=1 e

λyi

n

)
=

1

|λ|
DKL

(
1

n
1n, softmax(λyi)

)
,

where 1n is all-one vector with size n. Hereby we see that LSE shrinks the Monte-Carlo average by
the KL-divergence between the uniform vector and softmax of the samples (with temperature 1/λ).
This way, when outlier values or large values are out of the normal range of the data are observed, the
amount of shrinkage increases. Also when the variance is high or we have heavy-tailed distributions,
the softmax of λyi goes further from the uniform vector and more shrinkage is applied.
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E ROBUSTNESS OF THE LSE ESTIMATOR: ESTIMATED PROPENSITY SCORES

In this section, we study the robustness of the LSE estimator with respect to estimated (noisy)
propensity scores.

To model the estimated propensity scores, we consider π̂0(a|x) as the noisy version of the logging
policy π0(a|x). Similarly, we define V̂λ

LSE(Ŝ, πθ) for the LSE estimator on the noisy data samples Ŝ,
with estimated propensity scores. In this section, we made the following definitions.
Definition E.1 (Discrepancy metric). We define the general discrepancy metric between ŵθ(A,X)R
and wθ(A,X)R with bounded 1 + ϵ-th moment as,

dπ0
(ŵθ(A,X)R,wθ(A,X)R) := E

[(
ŵθ(A,X)− wθ(A,X)

)
R
]
. (67)

Definition E.2. The log-sum error of the noisy (or estimated) propensity score π̂0(a|x) is defined as

∆πθ
(π̂0, π0) =

1

λ
logEP1

[exp(λŵθ(A,X)R)]− 1

λ
logEP1

[exp(λwθ(A,X)R)]. (68)

where ŵθ(A,X) = πθ(A|X)
π̂0(A|X) and where P1 = PX ⊗ π0(A|X)⊗ PR|X,A.

Definition E.2 captures a notion of bias in the noise that is applied to the propensity score. It indicates
the change in the population form of the LSE estimator. Similarly, for the Monte Carlo estimator,
the change in the expected value shows the bias of the noise, and for additive noise, the zero-mean
assumption ensures that in expectation, the noisy value is the same as the original value. For the LSE
estimator instead, we require the exponential forms to be close to each other. It is also inspired by
influence function definition and robust statistic (Ronchetti & Huber, 2009; Christmann & Steinwart,
2004).

We made the following assumption on estimated propensity scores.
Assumption 5 (Bounded moment under noise). The reward function r(A,X) and PX are such that
for all learning policy πθ(A|X) ∈ Πθ, the moment of weighted reward is bounded under estimated
propensity score scenario, EPX⊗π0(A|X)⊗PR|X,A

[(ŵθ(A,X)R)1+ϵ] ≤ ν̂.

Remark E.3. Under Assumption 5 and Assumption 1 and using Lemma B.9, it can be shown that the
discrepancy metric in Definition E.1 is bounded,

−ν1/(1+ϵ) ≤ dπ0
(ŵθ(A,X)R,wθ(A,X)R) ≤ ν̂1/(1+ϵ). (69)

We define the achieved policy under the estimated propensity scores as

πθ̃(S) := arg max
πθ∈ΠΘ

V̂λ
LSE(Ŝ, πθ).

In order to derive an upper bound on the regret under noisy propensity score, the following results are
needed.

Proposition E.4. Given Assumption 1 and Assumption 5, the following upper and lower
bound hold on ∆πθ

(π̂0, π0),

dπ0(wθ(A,X)R, ŵθ(A,X)R)− |λ|ϵν̂
1 + ϵ

≤ ∆πθ
(π̂0, π0),

and, ∆πθ
(π̂0, π0) ≤

|λ|ϵν
1 + ϵ

+ dπ0(ŵθ(A,X)R,wθ(A,X)R).

Proof. It follows directly from applying Lemma B.10 to 1
λ logEP1

[exp(λŵθ(A,X)R)] and
1
λ logEP1 [exp(λwθ(A,X)R)] and combining the lower and upper bounds. Then, we have,

E
[(
wθ(A,X)− ŵθ(A,X)

)
R
]
− |λ|ϵν̂

1 + ϵ
≤ ∆πθ

(π̂0, π0) ≤
|λ|ϵν
1 + ϵ

+E
[(
ŵθ(A,X)−wθ(A,X)

)
R
]
.
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Proposition E.5. Given Assumption 5, and assuming n >
4
3µmin+4

µ2
min

log 4
δ where µmin =

min
(
eλν

1/(1+ϵ)

, eλν̂
1/(1+ϵ)

)
, then with probability at least (1− δ) for a fixed πθ ∈ Πθ, we

have,∣∣V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)−∆πθ
(π̂0, π0)

∣∣ ≤ 2υ(δ)

λ

( 1

eλν̂1/(1+ϵ)
+

1

eλν1/(1+ϵ)

)
,

where, υ(δ) = log 4
δ

3n +

√
log 4

δ

n .

Proof. Set Yθ(A,X) = wθ(A,X)R, Ŷθ(A,X) = ŵθ(A,X)r(A,X), ui =
1
λ

(
eŷi − eλ∆πθ

(π̂0,π0)µ
)

and vi = 1
λ (e

yθ(ai,xi) − µ), where µ = E[eλYθ(A,X)]. We have

−µ
λ ≤ vi ≤ 1

λ − µ
λ and − e

λ∆πθ
(π̂0,π0)

µ
λ ≤ ui ≤ 1

λ − e
λ∆πθ

(π̂0,π0)
µ

λ . Then, using the one-sided
Bernstein’s inequality (Lemma B.4), and changing variables (Lemma B.5), we have:

P

 1

n

n∑
i=1

eλyθ(ai,xi) − E[eλYθ(A,X)] >
(1− µ) log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλyθ(ai,xi) − E[eλYθ(A,X)] < −
µ log 1

δ

3n
−

√
V
(
eλYθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλŷi − eλ∆πθ
(π̂0,π0)E[eλYθ(A,X)] >

(1− eλ∆πθ
(π̂0,π0)µ) log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλŷi − eλ∆πθ
(π̂0,π0)E[eλYθ(A,X)] < −

eλ∆πθ
(π̂0,π0)µ log 1

δ

3n
−

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n

 ≤ δ.

Therefore, with probability at least 1− 2δ, for υ2 < 1
2E[e

λYθ(A,X)], we have,

V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)

=
1

λ
log

( ∑n
i=1 e

λŷi∑n
i=1 e

λyθ(ai,xi)

)
≤ 1

λ
log

(
eλ∆πθ

(π̂0,π0)E[eλYθ(A,X)] + υ1
E[eλYθ(A,X)]− υ2

)

=
1

λ

(
log
(
eλ∆πθ

(π̂0,π0)E[eλYθ(A,X)] + υ1

)
− log

(
E[eλYθ(A,X)]− υ2

))
≤ 1

λ

(
log
(
eλ∆πθ

(π̂0,π0)E[eλYθ(A,X)]
)
+

υ1

eλ∆πθ
(π̂0,π0)E[eλYθ(A,X)]

−
(
log
(
E[eλYθ(A,X)]

)
− υ2

E[eλYθ(A,X)]− υ2

))

≤ ∆πθ
(π̂0, π0) +

1

λ

(
υ1

E[eλŶθ(A,X)]
+

2υ2
E[eλYθ(A,X)]

)

≤ ∆πθ
(π̂0, π0) +

2

λ

(
υ1

E[eλŶθ(A,X)]
+

υ2
E[eλYθ(A,X)]

)
.
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where

υ1 =
(1− E[eλŶθ(A,X)]) log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n
,

υ2 =
E[eλYθ(A,X)] log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n
.

Similarly, with probability at least 1− 2δ we have, given υ3 < 1
2E[e

λŶθ(A,X)],

V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ) ≥ ∆πθ
(π̂0, π0)−

2

λ

(
υ3

E[eλŶθ(A,X)]
+

υ4
E[eλYθ(A,X)]

)
,

where,

υ3 =
E[eλŶθ(A,X)] log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n
,

υ4 =
(1− E[eλYθ(A,X))] log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n
.

Therefore, with probability at least 1− 4δ we have,

∆πθ
(π̂0, π0)−

2

λ

(
υ3

E[eλŶθ(A,X)]
+

υ4
E[eλYθ(A,X)]

)
≤ V̂λ

LSE(Ŝ, πθ)− V̂λ
LSE(S, πθ)

≤ ∆πθ
(π̂0, π0) +

2

λ

(
υ1

E[eλŶθ(A,X)]
+

υ2
E[eλYθ(A,X)]

)
.

We have for i ∈ [4],

υi ≤
log 1

δ

3n
+

√
log 1

δ

n
.

So, replacing δ with δ/4, we have with probability at least 1− δ,∣∣∣V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)−∆πθ
(π̂0, π0)

∣∣∣
≤ 2

λ

 log 4
δ

3n
+

√
log 4

δ

n

( 1

E[eλŶθ(A,X)]
+

1

E[eλYθ(A,X)]

)

≤ 2

λ

 log 4
δ

3n
+

√
log 4

δ

n

 2ϵ

λ

( 1

eλν̂1/(1+ϵ)
+

1

eλν1/(1+ϵ)

)
,

which is true given log 4
δ

3n +

√
log 4

δ

n < 1
2 min

(
E[eλYθ(A,X)],E[eλŶθ(A,X)]

)
. According to

Lemma B.6, this is satisfied by

n >
4
3µmin + 4

µ2
min

log
4

δ
.

In the following theorem, we study the regret of the LSE estimator under πθ̃(S) policy.
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Theorem E.6. Suppose that,

πθ̃(Ŝ) = arg max
πθ∈ΠΘ

V̂λ
LSE(Ŝ, πθ),

where Ŝ is the data with noisy propensity scores. Given Assumption 1, and 5, and

assuming that n ≥ max

(
4
3µmin+4

µ2
min

log 4|Πθ|
δ ,

(2|λ|1+ϵν+ 4
3γ) log

4|Πθ|
δ

γ2 exp(2λν1/(1+ϵ))

)
where µmin =

min
(
eλν

1/(1+ϵ)

, eλν̂
1/(1+ϵ)

)
, then there exists γ ∈ (0, 1) such that the following upper

bound holds on the regret of the LSE estimator under πθ̃(S) with probability at least 1− δ
for δ ∈ (0, 1),

Rλ(πθ̃, S) ≤
2|λ|ϵ

1 + ϵ
ν +

|λ|ϵ

1 + ϵ
ν̂

− 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))

+ dπ0(ŵθ̂(A,X)R,wθ̂(A,X)R) + dπ0(ŵθ̃(A,X)R,wθ̃(A,X)R)

+
4υ( δ

4|Πθ| )

λ

( 1

eλν1/(1+ϵ)
+

1

eλν̂1/(1+ϵ)

)
,

(70)

where, υ(δ) = log 4
δ

3n +

√
log 4

δ

n .

Proof. Let θ̂ be,
πθ̂(S) = arg max

πθ∈ΠΘ

V̂λ
LSE(S, πθ).

We decompose the regret as follows,

Rλ(πθ̃, S)

= V (πθ∗)− V (πθ̃)

= V̂λ
LSE(S, πθ̃)− V (πθ̃)

− V̂λ
LSE(S, πθ̃) + V̂λ

LSE(Ŝ, πθ̃)

− V̂λ
LSE(Ŝ, πθ̃) + V̂λ

LSE(Ŝ, πθ̂)

− V̂λ
LSE(Ŝ, πθ̂) + V̂λ

LSE(S, πθ̂)

− V̂λ
LSE(S, πθ̂) + V̂λ

LSE(S, πθ∗)

− V̂λ
LSE(S, πθ∗) + V (πθ∗).

Using the generalization error bounds at Theorem D.2 and Theorem D.1 and using the union bound,
with probability (1− δ) we have,

V̂λ
LSE(S, πθ̃)−V (πθ̃) ≤ − 1

λ(1− γ)

√
4|λ|1+ϵν log(2|Πθ|/δ)
n exp(2λν1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3(1− γ)λ exp(λν1/(1+ϵ))n

, (71)

V (πθ∗)− V̂λ
LSE(S, πθ∗) ≤ 1

1 + ϵ
|λ|ϵν− 1

λ

√
4|λ|1+ϵν log(2|Πθ|/δ)
n exp(2λν1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3λ exp(λν1/(1+ϵ))n

. (72)

In addition, using Proposition E.5, we have,

V̂λ
LSE(Ŝ, πθ̃)− V̂λ

LSE(S, πθ̃) ≤ ∆π
θ̃
(π̂0, π0) +

2υ(δ/|Πθ|)
λ

(
1

eλν̂1/(1+ϵ)
+

1

eλν1/(1+ϵ)

)
, (73)

V̂λ
LSE(S, πθ̂)− V̂λ

LSE(Ŝ, πθ̂) ≤ ∆π
θ̂
(π̂0, π0) +

2υ(δ/|Πθ|)
λ

(
1

eλν̂1/(1+ϵ)
+

1

eλν1/(1+ϵ)

)
. (74)
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As πθ̃ is the maximizer of V̂λ
LSE(Ŝ, πθ), we have,

V̂λ
LSE(Ŝ, πθ̂)− V̂λ

LSE(Ŝ, πθ̃) ≤ 0, (75)

and as πθ̂ is the maximizer of V̂λ
LSE(S, πθ) we have,

V̂λ
LSE(S, πθ∗)− V̂λ

LSE(S, πθ̂) ≤ 0. (76)

So putting all together, using the union bound we have with probability at least 1− δ,

V (πθ̃)− V (πθ∗) ≤ |λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))
.

+∆π
θ̂
(π̂0, π0)−∆π

θ̃
(π̂0, π0)

+
2υ( δ

4|Πθ| )

λ

( 1

eλν1/(1+ϵ)
+

1

eλν̂1/(1+ϵ)

)
,

where υ
(

δ
4|Πθ|

)
=

log
(

16Πθ
δ

)
3n +

√
log
(

16Πθ
δ

)
n . The final result holds by applying Proposition E.4 to

∆π
θ̂
(π̂0, π0)−∆π

θ̃
(π̂0, π0).

Discussion: The term dπ0
(ŵθ̂(A,X)R,wθ̂(A,X)R)+dπ0

(ŵθ̃(A,X)R,wθ̃(A,X)R) in equation 70
can be interpreted as the cost of estimated propensity scores which is independent from n. Similar to
Remark 5.4, we have the convergence rate of O(n−ϵ/(1+ϵ)) for all remaining terms in equation 70.

In the following Corollary, we discuss that the small range of variation of the noise gives an upper
bound on the variance of the LSE estimator under estimated propensity score.

Corollary E.7. Under the same assumptions in Proposition E.5, then the following upper
bound holds on the variance of the LSE estimator under estimated propensity scores with
probability at least (1− δ),

V(V̂λ
LSE(Ŝ, πθ)) ≤ 2V(V̂λ

LSE(S, πθ)) + 2B2ε2,

where ε = 2
λ

(
log 1

δ

3n +

√
log 1

δ

n

)
, and B =

(
1

eλν̂1/(1+ϵ) + 1

eλν1/(1+ϵ)

)
.

Proof. As ∆πθ
(π̂0, π0) is a constant with respect to V̂λ

LSE(Ŝ, πθ) and V̂λ
LSE(S, πθ), then we have,

V(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)) ≤
(
2Bε

2

)2

= B2ϵ2.

Therefore,

V(V̂λ
LSE(Ŝ, πθ)) = V(V̂λ

LSE(Ŝ, πθ)− V̂λ
LSE(S, πθ) + V̂λ

LSE(S, πθ))

= V(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)) + V(V̂λ
LSE(S, πθ))

+ 2Cov(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ), V̂
λ
LSE(S, πθ))

≤ V(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)) + V(V̂λ
LSE(S, πθ))

+ 2

√
V(V̂λ

LSE(S, πθ))V(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ))

=

(√
V(V̂λ

LSE(S, πθ)) +

√
V(V̂λ

LSE(Ŝ, πθ)− V̂λ
LSE(S, πθ))

)2

≤
(√

V(V̂λ
LSE(S, πθ)) +Bε

)2

≤ 2V(V̂λ
LSE(S, πθ)) + 2B2ε2.
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From Corollary E.7, we have an upper bound on the variance of the LSE estimator under estimated
propensity scores, in terms of the variance of the LSE estimator under true propensity scores.
Therefore, if V(V̂λ

LSE(S, πθ)) is bounded, then we expect bounded V(V̂λ
LSE(Ŝ, πθ)).

E.1 GAMMA NOISE DISCUSSION

For statistical modeling of the estimated propensity scores, as discussed in (Zhang et al., 2023b),
suppose that the logging policy is a softmax policy with respect to a.

π0(A|X) = softmax(fθ∗(X,A)), (77)

where fθ is a function parameterized by θ that indicates the policy’s function output before softmax
operation and θ∗ is the parameter of this function for the true logging policy.

We have an estimation of the function fθ∗(X,A), as fθ̂(X,A) and we model the error in the
estimation of fθ∗(X,A) as a random variable Z which is a function of X and A,

fθ̂(X,A) = fθ∗(X,A) + Z(X,A).

Then we have,

π̂0 = softmax(fθ̂(X,A))

= softmax(fθ∗ + Z)

∝ eZπ0.

Motivated by Halliwell (2018), we use a negative log-gamma distribution for Z, which results in
an inverse Gamma multiplicative noise on the propensity scores. Negative log-gamma distribution
is skewed towards negative values, resulting in inverse gamma noise on the logging policy which
is skewed towards values less than one. This pushes the propensity scores πθ

π0
towards the higher

variance, i.e., the logging policy is near zero and the importance weight becomes large.

In particular, we consider a model-based setting in which the noise is modeled with an inverse Gamma
distribution. We use inverse gamma distribution 1/U as a multiplicative noise, so we have,

π̂0 =
1

U
π0 → ŵθ(A,X) = Uwθ(A,X).

which results in a multiplicative gamma noise on the importance-weighted reward. We choose
U ∼ Gamma(b, b), so E[U ] = 1. Hence, the expected value of the noisy version is the same as the
original noiseless variable.

E[Uwθ(A,X)R] = E[U ]E[wθ(A,X)R] = E[wθ(A,X)R].

Note that we have

E
[
eλwθ(A,X)RU

]
= E

[(
1

1− λwθ(A,X)R/b

)b
]
,

Therefore, E[eλUwθ(A,X)R] converges to E[eλwθ(A,X)R] for b → ∞. Furthermore, we assume that
for a large value b, ∆πθ

(π̂0, π0) ≈ 0 and using Proposition E.5, with a probability at least 1− δ, we
have, ∣∣∣V̂λ

LSE(Ŝ, πθ)− V̂λ
LSE(S, πθ)

∣∣∣ ≤ ϵ
( 1

E[eλŵθ(A,X)R]
+

1

E[eλwθ(A,X)R]

)
. (78)

The impact of inverse Gamma noise on the LSE estimator is constrained when the noise’s domain is
sufficiently small. This property ensures that the LSE remains relatively stable under certain noise
conditions. Furthermore, we can reduce the deviation from the original noiseless LSE by increasing
the size of the Logged Bandit Feedback (LBF) dataset. This relationship demonstrates the estimator’s
robustness and scalability in practical applications.
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Table 7: Statistics of the datasets used in our experiments. For image datasets the 2048-dimensional
features from pretrained ResNet-50 are used.

DATA SET IPS-TRAINING SAMPLES TEST SAMPLES NUMBER OF ACTIONS DIMENSION

FMNIST 60, 000 10000 10 2048
EMNIST 60, 000 10000 10 2048
KUAIREC 12,530,806 4,676,570 10,728 1555

F EXPERIMENT DETAILS

Datasets: In addition to dataset EMNIST, we also run our estimator over Fashion-MNIST (FM-
NIST) (Xiao et al., 2017).

Setup Details: We use mini-batch SGD as an optimizer for all experiments. The learning learning
used for EMNIST and FMNIST datasets is 0.001. Furthermore, we use early stopping in our training
phase and the maximum number of epochs is 300. For the image datasets, EMNIST and FMNIST,
we use the last layer features from ResNet-50 model pretrained on the ImageNet dataset (Deng et al.,
2009).

F.1 HYPER-PARAMETER TUNING

In order to find the value for each hyper-parameter, we put aside a part of the training dataset as a
validation set and find the parameter that results in the highest accuracy on the validation set, and
then we report the method’s performance on the test set.

In order to tune λ we use grid search over the values in {0.01, 0.1, 1, 10, 100} and to tune β parameter,
we use Optuna, a hyper-parameter optimization Python-based library, over the range [0.01, 10] with 3
trials and 3 runs for each trial. The reason for using Optuna is to reduce the number of trials and find
reasonable values for hyper-parameters more efficiently.

Hyper-Parameter Tuning for PM, ES, and IX Estimators: For the PM, ES, and IX estimators, grid
search will be used for hyper-parameter tuning. To tune the PM parameter λ, we will use data-driven
approach proposed in (Metelli et al., 2021). For the ES estimator, the parameter α will be varied
across α ∈ {0.1, 0.4, 0.7, 1}. For the IX estimator, the γ parameter will be tested with values in the
set γ ∈ {0.01, 0.1, 1, 10, 100}.

F.2 CODE

The code for this study is written in Python. We use Pytorch for the training of our model. The
supplementary material includes a zip file named rl_without_reward.zip with the following files:

• preprocess_raw_dataset_from_model.py: The code to generate the base pre-processed
version of the datasets with raw input values.

• The data folder consists of any potentially generated bandit dataset (which can be generated
by running the scripts in code).

• The code folder contains the scripts and codes written for the experiments.

– requirements.txt contains the Python libraries required to reproduce our results.
– readme.md includes the syntax of different commands in the code.
– accs: A folder containing the result reports of different experiments.
– data.py code to load data for image datasets.
– eval.py code to evaluate estimators for image datasets and open bandit dataset.
– config: Contains different configuration files for different setups.
– runs: Folder containing different batch running scripts.
– loss.py: Script of our loss functions including LSE.
– train_logging_policy.py: Script to train the logging policy.
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– train_reward_estimator.py: Script to train the reward estimator for DM and DR
methods.

– create_bandit_dataset.py: Code for the generation of the bandit dataset using the
logging policy.

– main_semi_ot.py: Main training code which implements different methods proposed
by our paper.

– synthetic_experiment_v3.py: Code for synthetic experiments.
– motivation.ipynb: Code for motivating example.
– OPE_classification: The codes for the OPE experiments on real-world datasets from

UCI repository.

* train_on_uci.ipynb: Main code running experiments on UCI datasets.
* faulty_policy.py: The code for the faulty policy model for the logging and training

polices.
* UCI: The folder containing UCI datasets used in the experiments.

• The real_world folder contains the scripts and codes written for Kuai-Rec dataset.
– preprocess_data.ipynb: The code that preprocess the KuaiRec dataset and makes it

ready for training.
– run_kuairec_experiments.py: The main code for real dataset experiments. It contains

the training of the logging policy as well as the learning policy
– eval.py: Code containing the implementation of the evaluation metrics.

To use this code, the user needs to download and store the dataset using prepro-
cess_raw_dataset_from_model.py script. All downloaded data will be stored in data directory.
Then, to train the logging policy, the code/train_logging_policy.py should be run. Then, by us-
ing code/create_bandit_dataset.py, the LBF dataset corresponding to the experiment setup, will
be created. Finally, to train the desired estimator, the user should use code/main_semi_ot.py
script. For OPE synthetic experiments, the code synthetic_experiment_v3.py should be run. For
real-world OPL experiments, the Kuairec (version 2) dataset should be downloaded and put in
real_world/KuaiRec 2.0/ folder and first real_world/preprocess_data.ipynb notebook should be run
and then real_world/run_kuairec_experiments.py code will train the estimators on Kuairec dataset.
The code itself trains and stores a logging policy before the main training phase. For OPE real-world
experiments, the notebook OPE_classification/train_on_uci.ipynb would train the estimators on the
UCI datasets in the folder OPE_classification/UCI.

Computational resources: We have taken all our experiments using 3 servers, one with a nvidia
1080 Ti and one with two nvidia GTX 4090, and one with three nvidia 2070-Super GPUs.
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G ADDITIONAL EXPERIMENTS

This section presents supplementary experiments to further validate our LSE approach in off-policy
learning and evaluation. We extend our experiments as follows:

1. Comparison with the Model-based estimators: We conduct a series of experiments to assess
the performance of model-based estimators in comparison with our LSE estimator.

2. Combined method: We investigate the efficacy of combining the LSE estimator with the
Doubly Robust (DR) estimator, exploring potential synergies between these methods.

3. Real-world application: To demonstrate the practical relevance of our approach, we apply
our methods to a real-world dataset, providing insights into their performance under real
world datasets in off-policy learning scenarios.

4. λ Effect: We study the effect of λ in different scenarios.

5. Sample number effect: We study the performance of LSE estimator with different number
of samples n.

6. Off-policy evaluation: We conduct more off-policy evaluation using Lomax distribution.

7. Off-policy learning: We run more experiments for off-policy learning scenario under FM-
NIST dataset.

8. Selection of λ: Different methods of the selection of λ, data-driven selection of λ and
sensitivity of λ are explored.

9. Distributional properties: In OPE scenario under heavy-tailed assumption, the distributional
properties of LSE are studied.

10. Comparison with LS estimator: More Comparison with LS estimator in OPE setting based
on choosing λ is provided.

These additional experiments aim to provide a comprehensive evaluation of our proposed LSE
estimator.

G.1 OFF-POLICY EVALUATION EXPERIMENT

We conduct synthetic experiments to test our model’s performance and behavior compared to other
models and the effectiveness of our approach in the case of heavy-tailed rewards. We have two
different settings. Gaussian setting in which the distributions are Gaussian random variables, having
exponential tails, and Lomax setting in which the distributions are Lomax random variables, with
polynomial tails. In all experiments we run 10K trials to estimate the bias, variance and MSE of
each method, given MSE as the main criteria to compare the performance of different approaches.
We conduct experiments on our method (LSE), power-mean estimator (PM) (Metelli et al., 2021),
exponential smoothing (ES) (Aouali et al., 2023), IX estimator (Gabbianelli et al., 2023), truncated
IPS (IPS-TR) (Ionides, 2008b), self-normalized IPS (SNIPS) (Swaminathan & Joachims, 2015b), OS
estimator (Su et al., 2020) and LS estimator (Sakhi et al., 2024). The number of samples changes in
different settings. In each setting, we grid search the hyperparameter of each method with 5 different
values and select the one that leads to the least estimated MSE value. Note that the hyperparameter for
each method is selected independently in each setting, but the candidate values are fixed throughout
all settings.

Gaussian: In this setting, as explained in section 6, we have πθ(·|x0) ∼ N (µ1, σ
2), π0(·|x0) ∼

N (µ2, σ
2) and r(x0, u) = −eαu

2

. Given 2ασ2 < 1, with simple calculations we have,

Eπθ
[r] = − 1√

1− 2ασ2
exp

(
αµ2

1

1− 2ασ2

)
(79)

Eπ0

[∣∣∣∣πθ

π0
r

∣∣∣∣1+ϵ
]
= |Eπθ

[r]| exp
(
ϵ(µ1 − µ2)((1 + ϵ+ 2ασ2)µ1 − (1 + ϵ− 2ασ2)µ2)

2σ2(1− 2ασ2)

)
(80)

We fix µ1 = 0.5, µ2 = 1, σ2 = 0.25, but we change α as it increases the 1 + ϵ-moment of the
weighted reward variable as it tends to 1

2σ2 and (given µ1 > 0, ϵ ≤ µ1

|µ1−µ2| or µ1 > µ2) leads to
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unbounded 1+ ϵ-moment for α = 1
2σ2 . We report the experiment results in Tables 8 and 9 As we can

observe that LSE effectively keeps the variance low without significant side-effects on bias, leading
to an overall low MSE, making it a viable choice with general unbounded reward functions.
We also try different values for the number of samples, and observe the methods capability to work
well on small number of samples and their performance growth with the number of samples. For
α = 1.4, the results of different methods for n = 100, 1K, 10K, 100K are illustrated in Table 10.

Discussion: We observe that either in small sample size or large sample size, LSE beats other
methods with significant gap. Inspecting the bias of LSE though different sample sizes, the bias
becomes fixed and doesn’t decrease as the number of samples in the LBF dataset goes beyond 1K.
This is due to the fixed candidate set for the parameter λ in LSE and the presence of λ in our derived
bias upper bound in Proposition 5.5. This shows that the dependence of the bias on λ that appears in
the bias upper bound is tight and with a fixed λ, the bias doesn’t vanish, no matter how much data we
have and for large number of samples it is critical to select λ as a function of n. Furthermore, we can
see that the variance of LSE effectively decreases as the number of samples increase. Here we can
observe the decrease rate of 1/n in the variance, as it is proved in Proposition 5.7 under bounded
second moment assumption. We also observe that as α increases and the reward function’s growth
becomes bigger PM, IPS-TR, SNIPS, and OS suffer from a very large variance, while ES, LSE, IX,
and LS-LIN manage to keep the variance relatively low. Among these low-variance methods, LSE
achieves the lowest bias, indicating a better bias-variance trade-off. Also, LS-LIN achieves the lowest
variance among all methods. We hypothesize that is is do to the fact that LS-LIN, along LSE, is the
only method that is not linear w.r.t. reward and compresses the reward besides the importance weight.

Lomax: In the Lomax setting, we use Lomax distributions with scale 1 for the learning and logging
policies, πθ(u|x0) ∼ α

(u+1)α+1 , π0(u|x0) ∼ α
(u+1)α′+1 , α, α

′ > 0. We use a polynomial function

for the reward, r(u) = (1 + u)β , β > 0. The main difference in this setting compared to Gaussian
setting is that here the tails of the distributions are polynomial, in contrast to the Gaussian setting in
which the tails are exponential. In this setting, for α > β, we have,

Eπθ
[r] =

α

α− β

Eπ0

[∣∣∣∣πθ

π0
r

∣∣∣∣1+ϵ
]
=

(
α

α− β

)1+ϵ

k−ϵ(1 + ϵ(1− k))−1

where k = α′

α−β and for the second inequality to hold we should have 1+ϵ(1−k) > 0. The condition
α > β is sufficient for the weighted reward function to be ϵ-heavy-tailed for some ϵ > 0 (either
k < 1 or ϵ < 1

|1−k| . We change the value of β to 0.5, 1, 2. We also fix α − β = 0.5, to keep the
value function in an appropriate range. We change k to get different values for α′ = k(α− β) which
determines the tail of the weighted reward variable. We set k = 2, 3, 4. The results are shown in
Tables 11 and 12. We observe the superior performance of LSE compared to other methods.

Discussion: In Lomax experiments the LSE estimator has the best performance in most of settings.
In two settings, i.e., β = 0.5 and α′ ∈ {1.5, 2.0}, IPS-TR does better than LSE with a very small
margin, yet LSE is the second best model in these two settings. Similar to the Gaussian setting, we
also run the experiments for different numbers of samples to inspect the effect of the number of
samples on the performance of the models. We fix α = 2.5, β = 2 and α′ = 1.5 in this scenario.
Table 13 reports the performance of LSE across different number of samples. The same conclusions
as the Gaussian setting are also observable in the Lomax setting. We can observe that LSE has better
performance for n = 100, 10K, 100K.
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Table 8: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators
with Gaussian distributions for α = 1.0, 1.1, 1.2, 1.3. The experiment was run 10000 times and the
variance, bias, and MSE of the estimations are reported. The best-performing result is highlighted in
bold text, while the second-best result is colored in red for each scenario.

α Estimator Bias Variance MSE

1.0

PM 0.037 0.004 0.006
ES −0.001 0.006 0.006
LSE 0.021 0.003 0.003
IPS-TR 0.019 0.004 0.004
IX 0.168 0.001 0.029
SNIPS −0.003 0.008 0.008
LS-LIN 0.151 0.001 0.024
LS 0.006 0.005 0.005
OS 0.505 0.005 0.260

1.1

PM 0.004 0.063 0.063
ES −0.001 0.054 0.054
LSE 0.052 0.006 0.009
IPS-TR 0.020 0.052 0.052
IX 0.237 0.002 0.058
SNIPS −0.005 0.059 0.059
LS-LIN 0.284 0.001 0.082
LS 0.082 0.007 0.0135
OS 0.521 0.020 0.292

1.2

PM −0.043 0.435 0.437
ES 0.000 0.357 0.357
LSE 0.152 0.014 0.037
IPS-TR 0.024 0.353 0.354
IX 0.373 0.005 0.144
SNIPS −0.003 0.366 0.366
LS-LIN 0.545 0.002 0.299
LS 0.183 0.016 0.050
OS 0.541 0.116 0.409

1.3

PM −0.121 1.731 1.746
ES 1.162 0.026 1.377
LSE 0.158 0.124 0.148
IPS-TR 0.030 1.404 1.405
IX 0.662 0.016 0.453
SNIPS −0.000 1.491 1.491
LS-LIN 1.069 0.003 1.145
LS 0.155 0164 0.188
OS 0.463 56.581 56.796
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Table 9: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators
with Gaussian distributions for α = 1.4, 1.5, 1.6, 1.7. The experiment was run 10000 times and the
variance, bias, and MSE of the estimations are reported. The best-performing result is highlighted in
bold text, while the second-best result is colored in red for each scenario.

α Estimator Bias Variance MSE

1.4

PM −0.301 164.951 165.041
ES 1.959 0.396 4.232
LSE 0.615 0.292 0.670
IPS-TR 0.053 133.688 133.691
IX 1.340 0.048 1.842
SNIPS −0.029 133.520 133.521
LS-LIN 2.164 0.005 4.687
LS 0.564 0.458 0.776
OS 0.623 23.589 23.977

1.5

PM −0.205 222.003 222.045
ES 3.850 1.505 16.324
LSE 2.132 0.645 5.190
IPS-TR 0.349 179.990 180.112
IX 3.116 0.153 9.865
SNIPS 0.315 194.830 194.929
LS-LIN 4.682 0.009 21.927
LS 1.968 1.156 5.028
OS 1.096 504.001 505.205

1.6

PM 0.726 5095.725 5096.252
ES 9.420 22.685 111.416
LSE 7.541 1.233 58.105
IPS-TR 1.903 4131.016 4134.636
IX 8.665 0.502 75.589
SNIPS 1.860 4426.166 4429.625
LS-LIN 11.547 0.015 133.349
LS 7.148 2.595 53.689
OS 3.669 1303.684 1317.146

1.7

PM 9.943 125126.550 125225.418
ES 38.531 0.301 1484.959
LSE 32.107 2.244 1033.093
IPS-TR 12.880 101427.776 101593.680
IX 32.923 1.802 1085.753
SNIPS 12.704 102027.853 102189.250
LS-LIN 38.112 0.024 1452.556
LS 31.227 5.267 980.41
OS 29.171 17767.954 18618.899
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Table 10: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators
with Gaussian distributions setup. The experiment was run 10000 times fixing α = 1.4 and different
number of samples n ∈ {100, 1000, 10000, 100000}. The variance, bias, and MSE of the estimations
are reported. The best-performing result is highlighted in bold text, while the second-best result is
colored in red for each scenario.

n Estimator Bias Variance MSE

100

PM −0.1288 203.5015 203.5181
ES 1.9769 1.7696 5.6775
LSE 1.2210 0.5015 1.9925
IPS-TR 0.1617 164.9972 165.0234
IX 1.3459 0.4783 2.2897
SNIPS 0.0074 196.8881 196.8881
LS-LIN 2.1683 0.0568 4.7585
LS 1.1817 0.8115 2.2079
OS 0.7661 10.2588 10.8458

1000

PM −0.1963 18.3363 18.3749
ES 1.9587 0.1694 4.0058
LSE 0.6030 0.2999 0.6635
IPS-TR 0.1007 14.8696 14.8798
IX 1.3375 0.0486 1.8376
SNIPS 0.0594 15.0741 15.0776
LS-LIN 2.1646 0.0056 4.6910
LS 0.5640 0.4580 0.7761
OS 0.6432 8.7698 9.1835

10000

PM −0.2282 10.4458 10.4979
ES 1.9625 0.0285 3.8800
LSE 0.6159 0.0296 0.4089
IPS-TR 0.0464 8.4660 8.4681
IX 1.3410 0.0048 1.8031
SNIPS 0.0435 8.5986 8.6005
LS-LIN 2.1644 0.0005 4.6852
LS 0.5606 0.0466 0.3609
OS 0.5564 4.8936 5.2032

100000

PM −0.2505 1.8148 1.8775
ES 0.0246 1.4707 1.4713
LSE 0.6160 0.0029 0.3823
IPS-TR 0.0250 1.4706 1.4712
IX 1.3408 0.0005 1.7982
SNIPS 0.0246 1.4757 1.4763
LS-LIN 2.1629 5.6014 4.6783
LS 0.5584 0.0049 0.3167
OS 0.5823 0.8251 1.1643
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Table 11: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators
with Lomax distributions setup for β = 1.0, 1.5. The experiment was run 10000 times with different
values of α, α′ and β. The variance, bias, and MSE of the estimations are reported. The best-
performing result is highlighted in bold text, while the second-best result is colored in red for each
scenario.

β α α′ Method Bias Variance MSE

0.5 1.0

1.0

PM −0.0004 0.0197 0.0197
ES −0.0004 0.0197 0.0197
LSE 0.0361 0.0047 0.0060
IPS-TR −0.0004 0.0197 0.0197
IX 0.6958 0.0001 0.4842
SNIPS −0.0004 0.0197 0.0197
LS-LIN 0.4475 0.0002 0.2005
LS 0.0266 0.0046 0.0053
OS 0.3332 0.0094 0.1204

1.5

PM 0.2191 0.0154 0.0634
ES 0.0145 0.2011 0.2013
LSE 0.1702 0.0117 0.0407
IPS-TR 0.1341 0.0146 0.0326
IX 0.7815 0.0003 0.6111
SNIPS 0.0181 0.1668 0.1671
LS-LIN 0.5303 0.0011 0.2822
LS 0.0697 0.0346 0.0395
OS 0.7636 0.0007 0.5838

2.0

PM 0.4784 0.0084 0.2372
ES 0.9554 0.0020 0.9147
LSE 0.1586 0.0801 0.1052
IPS-TR 0.2965 0.0171 0.1050
IX 0.8641 0.0006 0.7472
SNIPS 0.0580 1.1500 1.1533
LS-LIN 0.6106 0.0023 0.3751
LS 0.3086 0.0238 0.1190
OS 1.0176 0.0003 1.0358

1

1.5

1.0

PM −0.0823 0.0440 0.0508
ES 0.0006 0.0357 0.0357
LSE 0.0731 0.0092 0.0146
IPS-TR 0.0006 0.0357 0.0357
IX 1.0438 0.0002 1.0897
SNIPS −0.0003 0.0418 0.0418
LS-LIN 0.8513 0.0004 0.7252
LS 0.0429 0.0104 0.0122
OS 0.3566 0.0364 0.1635

1.5

PM 0.0167 0.7885 0.7888
ES 0.0167 0.7885 0.7888
LSE 0.1122 0.0820 0.0946
IPS-TR 0.0167 0.7885 0.7888
IX 1.1723 0.0006 1.3749
SNIPS 0.0167 0.7885 0.7888
LS-LIN 0.9551 0.0014 0.9136
LS 0.1183 0.0717 0.0857
OS 0.5122 0.6815 0.9439

2.0

PM 0.3839 0.3198 0.4672
ES 1.4337 0.0035 2.0589
LSE 0.2731 0.1353 0.2099
IPS-TR 0.2280 0.2424 0.2944
IX 1.2957 0.0013 1.6801
SNIPS 0.0614 2.3202 2.3239
LS-LIN 1.0580 0.0030 1.1223
LS 0.2548 0.1785 0.2434
OS 1.2544 0.0059 1.5793
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Table 12: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators
with Lomax distributions setup for β = 2. The experiment was run 10000 times with different values
of α, α′ and β. The variance, bias, and MSE of the estimations are reported. The best-performing
result is highlighted in bold text, while the second-best result is colored in red for each scenario.

β α α′ Method Bias Variance MSE

2

2.5

1.0

PM −0.2267 0.1913 0.2427
ES −0.0049 0.1540 0.1540
LSE 0.0304 0.0461 0.0471
IPS-TR −0.0049 0.1540 0.1540
IX 1.7392 0.0007 3.0256
SNIPS −0.0100 0.1858 0.1859
LS-LIN 1.9231 0.0011 3.6995
LS 0.0819 0.0281 0.0348
OS 0.5571 0.0849 0.3953

1.5

PM −0.2510 17.7398 17.8028
ES 2.2891 0.0024 5.2425
LSE 0.2266 0.1688 0.2201
IPS-TR −0.0042 14.3693 14.3694
IX 1.9546 0.0018 3.8224
SNIPS −0.0062 14.4548 14.4549
LS-LIN 2.0374 0.0016 4.1529
LS 0.2330 0.1699 0.2242
OS 0.3995 13.5957 13.7553

2.0

PM −0.2114 27.6307 27.6754
ES 2.3886 0.0113 5.7167
LSE 0.5334 0.2729 0.5574
IPS-TR −0.0086 22.5415 22.5416
IX 2.1606 0.0035 4.6717
SNIPS −0.0107 22.6954 22.6955
LS-LIN 2.1601 0.0034 4.6694
LS 0.4946 0.3696 0.61424
OS 0.5158 7.4515 7.7175
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Table 13: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators
with Lomax distributions setup. The experiment is conducted for 10000 times and different number
of samples n ∈ {100, 1000, 10000, 100000}. The variance, bias, and MSE of the estimations are
reported. The best-performing result is highlighted in bold text, while the second-best result is
colored in red for each scenario.

n Estimator Bias Variance MSE

100

PM −0.2486 75.480 75.542
ES 2.2895 0.0244 5.2663
LSE 0.6217 0.4035 0.7900
IPS-TR 0.0021 61.140 61.140
IX 1.9546 0.0182 3.8388
SNIPS −0.0331 67.583 67.583
LS-LIN 2.0369 0.0168 4.1660
LS 0.6339 0.5402 0.9421
OS 0.4287 61.159 61.343

1000

PM −0.2421 10.960 11.019
ES 2.2889 0.0024 5.2415
LSE 0.2245 0.1702 0.2206
IPS-TR 0.0037 8.8781 8.8780
IX 1.9540 0.0018 3.8198
SNIPS 0.0010 9.0742 9.0742
LS-LIN 2.0375 0.0016 4.1531
LS 0.2330 0.1699 0.2242
OS 0.4345 8.8799 9.0687

10000

PM −0.2317 0.6596 0.7132
ES 0.0131 0.5343 0.5345
LSE 0.2253 0.0171 0.0679
IPS-TR 0.0131 0.5342 0.5345
IX 1.9539 0.0002 3.8180
SNIPS 0.0133 0.5364 0.5366
LS-LIN 2.0375 0.0002 4.1517
LS 0.2338 0.0171 0.0717
OS 0.4438 0.5345 0.7315

100000

PM −0.2619 0.6546 0.7232
ES −0.0140 0.5302 0.5304
LSE 0.2267 0.0019 0.0533
IPS-TR −0.0140 0.5302 0.5304
IX 1.9538 1.6977 3.8175
SNIPS −0.0137 0.5284 0.5286
LS-LIN 2.0374 1.6805 4.1509
LS 0.2351 0.0019 0.0572
OS 0.4166 0.5302 0.7038
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G.2 OFF-POLICY LEARNING EXPERIMENT

We present the results of our experiments for EMNIST and FMNIST in Table 15.

As we can observe in the results for different scenarios and datasets, our estimator, shows dominant
performance among other baselines. The details of the number of best-performing and second rank
estimator is provided in Table 14. We observe that in 21 out of 30 experiments, the LSE estimator
outperforms other estimators. Additionally, it ranks second in 7 of the remaining 9 experiments.

Table 14: Comparison of different estimators in terms of the number of best|second rank performances
of all true propensity score/ reward , estimated (noisy) propensity scores and noisy reward experiment
setups in OPL scenario.

Estimator True PS & Reward Noisy PS Noisy Reward Total

LSE 3|2 10|1 8|4 21|7
OS 1|2 1|0 3|3 5|5
PM 2|1 1|7 1|5 4|13

ES 0|0 0|3 0|0 0|4
LS-LIN 0|1 0|0 0|0 0|1

IX 0|0 0|1 0|0 0|1

In the noisy scenario, where noise robustness is critical, increasing the noise on the propensity scores
by reducing the b value results in a marked decrease in the performance of all estimators, with the
notable exception of LSE, which exhibits superior noise robustness.

In all two datasets, without noise, increasing τ has a negligible impact on the estimators. However, in
noisy scenarios, a higher τ leads to decreased performance. This happens because as τ increases, the
logging policy distribution approaches a uniform distribution, making it easier for noise to affect the
argmax value, thereby reducing the estimators’ performance. Notably, the LSE estimator demonstrates
better robustness compared to other estimators, consistently showing superior performance in all
noisy setups when b = 0.01.
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Table 15: Comparison of different estimators LSE, PM, ES, IX, BanditNet, LS-LIN and OS accuracy
for EMNIST and FMNIST with different qualities of logging policy (τ ∈ {1, 10, 20}) and true /
estimated propensity scores with b ∈ {5, 0.01} and noisy reward with Pf ∈ {0.1, 0.5}. The best-
performing result is highlighted in bold text, while the second-best result is colored in red for each
scenario.

Dataset τ b Pf LSE PM ES IX BanditNet LS-LIN OS Logging Policy

EMNIST

1

− − 88.49± 0.04 89.19± 0.03 88.61± 0.06 88.33± 0.13 66.58± 6.39 88.70± 0.02 88.71± 0.26 88.08
5 − 89.16± 0.03 88.94± 0.05 88.48± 0.03 88.51± 0.23 65.10± 0.69 88.38± 0.18 88.70± 0.15 88.08

0.01 − 86.07± 0.01 85.62± 0.10 85.71± 0.04 81.39± 4.02 66.55± 3.11 84.64± 0.17 84.59± 0.09 88.08
− 0.1 89.29± 0.04 89.08± 0.05 88.45± 0.09 88.14± 0.14 59.90± 3.78 88.30± 0.12 88.74± 0.09 88.08
− 0.5 88.72± 0.08 88.78± 0.03 87.27± 0.10 87.08± 0.14 56.95± 3.06 87.20± 0.32 88.06± 0.09 88.08

10

− − 88.59± 0.03 88.61± 0.04 88.38± 0.08 87.43± 0.19 85.48± 3.13 88.58± 0.08 86.88± 0.34 79.43
5 − 88.42± 0.07 88.43± 0.07 88.39± 0.10 88.39± 0.06 84.90± 3.10 88.23± 0.27 86.00± 0.37 79.43

0.01 − 82.15± 0.21 80.85± 0.29 81.07± 0.07 77.49± 2.77 27.02± 1.92 78.43± 3.13 21.70± 4.11 79.43
− 0.1 88.29± 0.06 88.22± 0.02 88.19± 0.08 87.93± 0.35 84.89± 3.21 87.50± 0.17 87.68± 0.16 79.43
− 0.5 88.71± 0.16 88.52± 0.07 84.42± 0.34 83.25± 3.45 63.35± 13.39 85.75± 0.04 89.09± 0.05 79.43

20

− − 88.28± 0.05 88.20± 0.08 87.96± 0.34 86.82± 1.30 83.69± 3.32 88.21± 0.06 80.64± 0.25 14.86
5 − 88.42± 0.12 87.98± 0.05 88.27± 0.33 88.27± 0.07 86.82± 0.17 88.19± 0.11 79.31± 0.61 14.86

0.01 − 81.36± 0.14 75.53± 2.61 73.45± 2.78 72.31± 1.46 26.92± 2.51 72.33± 0.35 11.12± 0.39 14.86
− 0.1 88.10± 0.05 87.93± 0.16 87.69± 0.22 87.67± 0.18 81.73± 3.09 87.08± 0.14 82.95± 0.31 14.86
− 0.5 86.83± 0.10 86.67± 0.19 84.01± 0.32 80.79± 3.06 75.20± 3.01 83.05± 0.75 86.03± 0.48 14.86

FMNIST

1

− − 76.45± 0.12 73.33± 2.67 72.90± 2.35 69.12± 0.26 60.66± 2.16 69.29± 0.19 77.77± 0.09 78.38
5 − 73.20± 2.43 75.07± 0.27 70.38± 2.59 70.80± 2.38 22.41± 4.50 69.33± 0.20 77.57± 0.10 78.38

0.01 − 74.08± 1.64 70.35± 0.12 57.93± 2.66 63.34± 3.64 30.20± 8.17 63.86± 3.40 37.57± 3.16 78.38
− 0.1 76.07± 0.02 74.54± 0.02 70.42± 2.53 70.58± 2.47 50.37± 5.43 70.41± 2.20 77.71± 0.22 78.38
− 0.5 76.96± 0.23 74.03± 0.30 66.32± 0.44 66.66± 1.41 54.53± 1.32 66.57± 2.76 77.46± 0.11 78.38

10

− − 76.14± 0.11 74.42± 0.17 69.25± 0.10 70.69± 2.39 65.70± 3.78 69.31± 0.24 74.89± 0.96 21.43
5 − 75.42± 0.16 74.79± 0.15 71.42± 2.53 69.21± 0.25 69.53± 0.29 70.15± 2.53 72.87± 0.47 21.43

0.01 − 74.04± 0.15 60.77± 0.09 53.69± 1.37 63.57± 3.91 26.96± 1.87 60.65± 3.83 13.22± 0.91 21.43
− 0.1 76.78± 0.23 73.91± 0.13 68.58± 0.09 68.07± 0.18 64.05± 2.34 68.10± 0.58 76.24± 0.29 21.43
− 0.5 77.66± 0.17 74.02± 0.05 61.46± 4.72 62.60± 0.16 43.33± 2.83 61.35± 1.83 77.52± 0.26 21.43

20

− − 75.12± 0.03 74.32± 0.12 69.26± 0.09 72.46± 2.14 64.92± 3.82 72.86± 2.32 65.78± 1.10 14.84
5 − 75.13± 0.09 74.17± 0.15 69.23± 0.46 68.72± 0.30 62.41± 4.24 69.06± 0.11 63.53± 1.70 14.84

0.01 − 69.16± 0.22 55.20± 1.14 60.91± 2.75 61.11± 4.92 28.23± 2.18 61.46± 1.96 13.04± 4.76 14.84
− 0.1 75.48± 0.09 71.84± 2.47 65.41± 4.23 67.91± 0.16 65.21± 2.93 68.03± 0.46 70.90± 0.26 14.84
− 0.5 75.96± 0.05 73.12± 0.25 61.79± 3.13 60.19± 3.13 55.13± 0.15 60.51± 3.28 73.32± 0.81 14.84
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Table 16: Comparison of different model-based estimators DR, DR-OS, MRDR, SWITCH-DR,
SWITCH-DR-LSE, DM and DR-LSE with LSE for EMNIST and FMNIST under a logging policy
with τ = 10, true / estimated propensity scores with b ∈ {5, 0.01} and noisy reward with Pf ∈
{0.1, 0.5}. The best-performing result is highlighted in bold text, while the second-best result is
colored in red for each scenario.

Dataset τ b Pf DR-LSE DR DR-OS MRDR DR-Switch DR-Switch-LSE LSE DM Logging Policy

EMNIST 10

− − 88.79± 0.03 88.71± 0.07 87.79± 0.36 80.57± 4.00 79.40± 5.21 87.73± 0.31 88.59± 0.03 76.52± 2.68 79.43
5 − 88.67± 0.04 88.49± 0.13 87.83± 0.17 80.08± 4.62 79.28± 0.65 85.80± 3.40 88.42± 0.07 76.73± 4.95 79.43

0.01 − 83.30± 3.13 78.24± 0.57 80.53± 0.32 10.00± 0.01 74.81± 0.57 41.11± 2.87 82.15± 0.21 75.65± 0.29 79.43
− 0.1 88.51± 0.02 88.32± 0.16 87.50± 0.28 45.49± 9.14 75.28± 0.09 79.86± 0.64 88.29± 0.06 78.85± 2.69 79.43
− 0.5 85.88± 0.13 83.53± 0.54 85.46± 0.73 7.04± 4.18 72.76± 0.56 81.73± 0.23 88.71± 0.16 75.26± 2.39 79.43

FMNIST 10

− − 80.15± 0.09 68.70± 5.12 63.66± 0.39 58.61± 3.89 54.20± 6.27 34.47± 0.02 76.14± 0.11 51.24± 4.16 79.43
5 − 79.64± 0.05 66.67± 3.50 64.80± 2.36 56.62± 1.52 56.61± 7.37 29.59± 3.83 75.42± 0.16 59.65± 3.13 79.43

0.01 − 55.10± 0.25 52.19± 3.84 60.92± 1.81 10.00± 0.01 63.35± 1.62 41.13± 2.84 74.04± 0.15 58.94± 4.18 79.43
− 0.1 79.91± 0.11 68.94± 0.35 63.19± 1.69 10.00± 0.01 57.54± 3.05 52.79± 4.04 76.78± 0.23 56.33± 7.70 79.43
− 0.5 79.14± 0.04 56.47± 7.08 56.72± 7.19 22.05± 4.50 59.54± 2.95 75.31± 0.55 77.66± 0.17 53.70± 7.19 79.43

G.3 MODEL-BASED ESTIMATORS

There are some approaches where utilise the estimation of reward. For example, in direct method
(DM), the reward is estimated from logged data via regression. In particular, an estimation of reward
function, r̂(x, a), is learning from LBF dataset S using a regression. The objective function for DM
can be represented as,

1

n

n∑
i=1

∑
a

πθ(a|xi)r̂(a, xi). (81)

In doubly-robust (DR) approach (Dudík et al., 2014) DM is combined with IPS estimator and has a
promising performance in off-policy learning scenario. The object function for doubly robust can be
represented,

1

n

n∑
i=1

∑
a

πθ(a|xi)r̂(a, xi) +
1

n

n∑
i=1

πθ(ai|xi)

π0(ai|xi)
(ri − r̂(a, xi)). (82)

There are also some improvements regarding the DR, including DR based on optimistic Shrinkage
(DR-OS) (Su et al., 2020), DR-Switch (Wang et al., 2017) and MRDR (Farajtabar et al., 2018).

As these methods are based estimation of reward, we consider them as model-based methods. Inspired
by DR method, we combine the LSE estimator with the DM method (DR-LSE)

1

n

n∑
i=1

∑
a

πθ(a|xi)r̂(a, xi) +
1

λ
log
( 1
n

n∑
i=1

exp
(
λ
πθ(ai|xi)

π0(ai|xi)
(ri − r̂(a, xi))

))
. (83)

We also combine, LSE with DR-Switch as (DR-Switch-LSE) where the IPS estimator in DR-Switch
is replaced with LSE estimator.

In this section, we aim to show that the combination of our LSE estimator with the DR method as a
model-based method can improve the performance of these methods. For our experiments, we use
the same experiment setup as described in App. F. We compare model-based methods, DM, DR and
DR-LSE, DR-Switch, DR-OS, DR-Switch-LSE with our LSE estimator. The results are shown in
Table 16. We observed that DR-LSE outperforms the standard DR in many scenarios.
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G.4 REAL-WORLD DATASET

We applied our method to the Kuairec, a public real-world recommendation system dataset ((Gao
et al., 2022)). This dataset is gathered from the recommendation logs of the video-sharing mobile
app Kuaishou. In each instance, a user watches an item (video) and the watch duration divided by
the entire duration of the video is reported. We use the same procedure as (Zhang et al., 2023a) to
prepare the logged bandit dataset. We also use the same architecture for the logging policy and the
learning policy, with some modifications in the hidden size and number of layers of the deep models.
We use separate models for the logging and learning policies. We first train the logging policy using
cross-entropy loss and fix it to use as the propensity score estimator for the training of the OPL
models. We report Precision@K, and NDCG@K for K=1, 3, 5, 10. Recall@K is very low for small K
values because the number of positive items for each use of much more than K. For each method, we
use grid search to find the hyperparameter that maximizes the Precision@1 in the validation dataset.
The comparison of different estimators is presented in Table 17. We can observe that in Precision@1,
Precision@3, Precision@10, NDCG@1, NDCG@3 and NDCG@10, we have the best performance.

Table 17: Comparison of different estimators LSE, PM, ES, IX, LS-LIN, OS and SNIPS in different
metrics. The best-performing result is highlighted in bold text, while the second-best result is colored
in red for each scenario.

Dataset Method Precision@1 Precision@3 Precision@5 Precision@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10

KuaiRec

PM 0.8885 0.5723 0.5201 0.4275 0.8585 0.6551 0.5932 0.4988
SNIPS 0.0289 0.6177 0.5995 0.6462 0.0289 0.4981 0.5226 0.5830

IX 0.8794 0.5824 0.6355 0.6586 0.8794 0.6164 0.6410 0.6548
ES 0.8951 0.7495 0.7187 0.6644 0.8951 0.7787 0.7483 0.7006
OS 0.8993 0.3215 0.2015 0.1403 0.8993 0.4381 0.3227 0.2378

LS-LIN 0.8836 0.6680 0.7159 0.6904 0.8836 0.7159 0.7368 0.7108
LSE 0.9257 0.7534 0.6999 0.7206 0.9257 0.7917 0.7441 0.7431

G.5 SAMPLE NUMBER EFFECT

We also conduct experiments on our LSE estimator and PM estimator to examine the effect of
limited training samples in the OPL scenario. For this purpose, we considered different ratios of
training LBF dataset, Rn ∈ {1, 0.5, 0.2, 0.05}. The results are shown in Table 18. We observed that
reducing Rn decreased the accuracy for both estimators. However, our LSE estimator demonstrated
robust performance under different ratios of training LBF dataset, Rn. Therefore, for small-size LBF
datasets, we can apply the LSE estimator for off-policy learning.

G.6 λ EFFECT

The impact of λ across various scenarios and τ values was investigated using the experimental setup
described in Appendix F for the EMNIST dataset. Figure 2 illustrates the accuracy of the LSE
estimator for τ ∈ 1, 10. For τ = 1, corresponding to a logging policy with higher accuracy, an
optimal λ value of approximately −1.5 was observed. In contrast, for τ = 10, representing a logging
policy with lower accuracy, the optimal λ approached zero. Additionally, in scenarios with noisy
rewards Fig.3, both τ = 1 and τ = 10 we observed an optimal λ values larger −2. As for τ = 1,
the logging policy has higher accuracy, the effect of noisy reward should be canceled by larger |λ|.
However, for λ = 10, we need a smaller |λ|.
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Table 18: Comparison of LSE and PM accuracy for EMNIST dataset with different ratio of training
LBF dataset (Rn ∈ {1, 0.5, 0.2, 0.05}) and true / estimated propensity scores with b ∈ {5, 0.01} and
noisy reward with Pf ∈ {0.1, 0.5}. The best-performing result is highlighted in bold text.

Dataset τ Rn b Pf LSE PM Logging Policy

EMNIST

1

1
− − 88.49± 0.04 89.19± 0.03 88.08
0.01 − 86.07± 0.01 85.62± 0.10 88.08
− 0.5 88.72± 0.08 88.78± 0.03 88.08

0.5
− − 87.79± 0.08 86.42± 0.11 88.08
0.01 − 81.13± 0.08 48.70± 15.46 88.08
− 0.5 86.24± 0.07 85.17± 0.36 88.08

0.2
− − 83.76± 0.25 74.57± 1.01 88.08
0.01 − 67.64± 3.89 23.18± 5.02 88.08
− 0.5 80.39± 0.19 69.54± 0.65 88.08

0.05
− − 70.16± 2.44 53.51± 2.77 88.08
0.01 − 36.06± 0.62 15.56± 3.21 88.08
− 0.5 50.06± 2.10 47.57± 5.19 88.08

10

1
− − 88.59± 0.03 88.61± 0.04 79.43
0.01 − 82.15± 0.21 80.85± 0.29 79.43
− 0.5 88.71± 0.16 88.52± 0.07 79.43

0.5
− − 86.30± 0.04 86.02± 0.06 79.43
0.01 − 75.02± 2.67 28.12± 1.94 79.43
− 0.5 86.61± 0.08 83.21± 0.10 79.43

0.2
− − 80.67± 0.35 80.83± 0.22 79.43
0.01 − 53.32± 1.47 17.03± 0.30 79.43
− 0.5 80.89± 0.19 73.42± 1.14 79.43

0.05
− − 48.51± 0.81 42.27± 1.48 79.43
0.01 − 34.15± 0.61 14.70± 2.20 79.43
− 0.5 56.64± 2.40 41.75± 1.95 79.43
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(a) τ = 1 (b) τ = 10

Figure 2: Accuracy of the LSE estimator over different values of λ for true propensity score and
reward. (a) τ = 1. (b) τ = 10.

(a) τ = 1 (b) τ = 10

Figure 3: Plots of Accuracy of the LSE estimator over different values of λ for true propensity score
and noisy reward with Pf = 0.5. (a) τ = 1. (b) τ = 10.
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G.7 SELECTION OF λ

Although we use grid search to tune the λ in our algorithm, inspired by Proposition 5.3, we can select
the following value,

λ∗ =
1

n1/(ϵ+1)
, (84)

where n is the number of samples. With such a selection we have a regret rate of O(n−ϵ/(1+ϵ)). We
test and evaluate our selection in OPL and OPE. We examine also a data driven approach for selecting
λ in Section G.7.2.

G.7.1 λ SELECTION FOR OPL

We have tested λ∗ on EMNIST dataset. In OPL experiments we have truncated the propensity score
to 0.001 in order to avoid numerical overflow. Hence, our distributions are effectively heavy-tailed
with ϵ = 1, leading to λ∗ = 1√

n
. We change n = 512, 256, 128, 64, 16 with corresponding values

λ∗ ∈ {0.044, 0.0625, 0.088, 0.125, 0.25} which its results are presented in the Table 19. Note that
because we use stochastic gradient descent in training, here n is the batch size. We can observe that
the suggested value of λ∗ = 1√

n
does not only have a theoretical generalization bound of O( 1√

n
)

(according to Proposition 5.3), but also achieves reasonable performance in experiments.

Table 19: Comparison of accuracy (%) for different λ values and sample sizes n

λ\n 16 64 128 256 512

0.01 92.83± 0.10 91.52± 0.01 90.26± 0.02 88.71± 0.26 85.43± 0.44
0.1 92.83± 0.01 91.45± 0.01 90.37± 0.02 88.93± 0.10 85.50± 0.58
1 92.66± 0.01 91.66± 0.02 90.76± 0.02 89.54± 0.01 87.79± 0.01

10 91.33± 0.01 89.48± 0.09 88.86± 0.05 88.03± 0.03 86.73± 0.03
λ∗ 92.78± 0.01 91.52± 0.05 90.38± 0.05 88.83± 0.02 85.09± 0.51

G.7.2 DATA-DRIVEN SELECTION OF λ

In Theorem 5.2, we assume a fixed value of λ. However, it is often important in practical applications
to have a method for adjusting λ dynamically based on the data.

Recall the following regret bound proposed by Theorem 5.2,

Rλ(πθ̂, S) ≤
|λ|ϵ

1 + ϵ
ν +

4(2− γ)

3(1− γ)

log 4|Πθ|
δ exp(|λ|ν1/(1+ϵ))

n|λ|

+
(2− γ)

(1− γ)|λ|

√
4|λ|1+ϵν log 4|Πθ|

δ exp(2|λ|ν1/(1+ϵ))

n

which is true for any γ. If γ tends to zero, we have,

Rλ(πθ̂, S) ≤
|λ|ϵ

1 + ϵ
ν+

8

3

exp(|λ|ν1/(1+ϵ)) log 4|Πθ|
δ

n|λ|
+

2

|λ|

√
4|λ|1+ϵν log 4|Πθ|

δ exp(2|λ|ν1/(1+ϵ))

n
.

Let the upper bound be UR and x =
√

ν|λ|1+ϵ. We have,

UR =
x

2ϵ
1+ϵ

(1 + ϵ)ν
ϵ

1+ϵ
ν +

8

3

ν
1

1+ϵ exp(x
2

1+ϵ ) log 4|Πθ|
δ

nx
2

1+ϵ

+ 2

√√√√4ν log 4|Πθ|
δ exp(2x

2
1+ϵ )

n(x
2

1+ϵ ν
−1
1+ϵ )1−ϵ

= ν
1

1+ϵ

 x
2ϵ

1+ϵ

(1 + ϵ)
+

8

3

exp(x
2

1+ϵ ) log 4|Πθ|
δ

nx
2

1+ϵ

+ 2

√
4 log 4|Πθ|

δ exp(2x
2

1+ϵ )

nx
2(1−ϵ)
1+ϵ

 .

(85)
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Finally, we assume that |λ| ≤ 1 and bound and replace the exponential exp(x
2

1+ϵ ) by e. Minimizing
the upper bound in equation 85, we derive the following optimum λ for the optimization of the upper
bound in Theorem 5.2,

λ∗ = max

−f(ϵ) ·

(
ln
(
1
δ

)
vn

) 1
1+ϵ

,−1

 (86)

where f(ϵ) =
(

e(1+ϵ)
ϵ

(
1− ϵ+

√
(1− ϵ)2 + 8ϵ

3e(1+ϵ)

)) 2
1+ϵ

. Note that, we can compute the empiri-
cal value of ν based on the available LBF dataset,

ν̂ =
1

n

n∑
i=1

(
wθ(ai, xi)ri

)1+ϵ
. (87)

Using empirical ν̂ in equation 86, we derive the value for data driven λ. Note that, in our experiments,
we consider ϵ = 1.

G.7.3 λ SELECTION FOR OPE

We tested our λ selection in the OPE setting with Lomax distributions. We changed the number
of samples and set n = 100, 500, 1K, 5K, 10K, 50K, 500K and tested all estimators as we as LSE
with selected λ = λ⋆. The results are illustrated at Tables 20, and 21. The first observation is that
in all settings, the selected λ⋆ outperforms all other estimators, except LS which loses in n ≤ 5000
experiments with a very small margin and is not significantly worse than the λ found by grid search.

Another critical observation is that as the number of samples increases, the selected λ works better
than compared to other methods, even LSE with λ found by grid-search. In n = 100K, not only λ⋆

performs the best, but also the λ found by grid-search falls behind IPS-TR and ES. This shows the
significance of selective λ when the number of samples is large.

Third observation is the lower performance of λ⋆ when we have very small number of samples, e.g.
n = 100. This also conforms our theoretical results, as upper and lower bounds on generalization
and regret bounds in Theorem D.1, Theorem D.2 and Theorem 5.2 requires a minimum number of
samples as an assumption.
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Table 20: Summary of Bias, Variance, and MSE for Different Estimators for Lomax OPE experiments.
We change the number of samples n = 100, 500, 1K, 10K and report the metrics for PM, ES, LSE,
LSE(λ∗), LS, LS-LIN, OS, IPS-TR, IX, SNIPS

n Estimator Bias Var MSE

100

PM −0.2623 30.6419 30.7106
ES 2.2894 0.0247 5.2662

LSE 0.6194 0.3967 0.7803
LSE(λ∗) 0.9144 0.1952 1.0314

LS 0.6386 0.5336 0.9414
LS-LIN 2.0377 0.0167 4.1689

OS 0.4485 22.7449 22.9461
IPS-TR −0.0144 24.8212 24.8214

IX 1.9517 0.0171 3.8264
SNIPS −0.0483 25.8348 25.8371

500

PM −0.2002 3.1605 3.2006
ES 0.0415 2.5603 2.5620

LSE 0.2221 0.3375 0.3869
LSE(λ∗) 0.5542 0.0984 0.4055

LS 0.2309 0.3449 0.3983
LS-LIN 2.0377 0.0033 4.1557

OS 0.42724 7.6075 7.7901
IPS-TR 0.0415 2.5603 2.5620

IX 1.9536 0.0035 3.8200
SNIPS 0.0347 2.6865 2.6877

1000

PM −0.2379 4.8325 4.8891
ES 0.0076 3.9145 3.9145

LSE 0.2262 0.1720 0.2231
LSE(λ∗) 0.4335 0.0712 0.2591

LS 0.2270 0.1751 0.2266
LS-LIN 2.0368 0.0016 4.1502

OS 0.4178 4.0558 4.2303
IPS-TR 0.0076 3.9145 3.9145

IX 1.9536 0.0018 3.8186
SNIPS 0.0040 4.0054 4.0054

5000

PM −0.2428 3.7591 3.8180
ES 0.0032 3.0449 3.0449

LSE 0.2277 0.0343 0.0862
LSE(λ∗) 0.2448 0.0319 0.0919

LS 0.2334 0.0342 0.0887
LS-LIN 2.0374 0.0003 4.1513

OS 0.4626 0.4477 0.6617
IPS-TR 0.0032 3.0449 3.0449

IX 1.9535 0.0004 3.8166
SNIPS 0.0025 2.9976 2.9976

10000

PM −0.2318 0.4702 0.5239
ES 0.0131 0.3809 0.3811

LSE 0.2254 0.0171 0.0679
LSE(λ∗) 0.1867 0.0212 0.0560

LS 0.2341 0.0173 0.0721
LS-LIN 2.0376 0.0002 4.1518

OS 0.4336 0.5004 0.6884
IPS-TR 0.0131 0.3809 0.3811

IX 1.9536 0.0002 3.8168
SNIPS 0.0123 0.3830 0.3832
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Table 21: Summary of Bias, Variance, and MSE for Different Estimators for Lomax OPE experiments.
We change the number of samples n = 50K, 100K and report the metrics for PM, ES, LSE, LSE(λ∗),
LS, LS-LIN, OS, IPS-TR, IX, SNIPS

n Estimator Bias Var MSE

50000

PM −0.2418 0.2152 0.2736
ES 0.0040 0.1743 0.1743

LSE 0.2261 0.0033 0.0544
LSE(λ∗) 0.1020 0.0085 0.0189

LS 0.2324 0.0035 0.0574
LS-LIN 2.0374 0.0000 4.1512

OS 0.3872 5.0487 5.1987
IPS-TR 0.0040 0.1743 0.1743

IX 1.9538 0.0000 3.8172
SNIPS 0.0040 0.1745 0.1746

100000

PM −0.2347 0.0633 0.1184
ES 0.0105 0.0513 0.0514

LSE 0.2267 0.0017 0.0531
LSE(λ∗) 0.0790 0.0056 0.0119

LS 0.2338 0.0017 0.0564
LS-LIN 2.0375 0.0000 4.1516

OS 0.4294 0.2179 0.4021
IPS-TR 0.0105 0.0513 0.0514

IX 1.9538 0.0000 3.8172
SNIPS 0.0105 0.0515 0.0516
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G.7.4 SENSITIVITY TO THE SELECTION OF λ

In this section, we investigate the performance of our proposed data-driven λ in App. G.7.2, where
can avoid any sort of hyper-parameter tuning. Hence solving the problem of selection of λ and any
concerns related to the selection of a "bad" λ.

In order to measure the sensitivity of the selection of λ we compare three different methods. First, λ
is found by grid search which provides the best MSE. Second, λ∗ is found by the data-driven suggest
in App.G.7.2. In the third method, we select λ uniformly randomly from [0, 1], λ̃ ∼ Uniform(0, 1).
This method shows the performance of LSE by choosing random λ as hyperparameter. We test
these methods on the Lomax scenario where we have the more challenging heavy-tailed (for ϵ ̸= 1)
condition. The MSE of each method for the same setting of parameters as in the original OPE
experiments and for n = 1K, 10K, 100K is reported in table 22.

Table 22: MSE of LSE with fine-tuned, data-driven and random λ for β = 1.0, 1.5, 2.0. The
experiment was run 100000 times with different values of α, α′, and β.

β α α′ Estimator n = 1K n = 10K n = 100K

0.5 1.0

1.0
LSE 0.006 0.0009 0.0001
LSE-λ∗ 0.049 0.0076 0.0009

LSE-λ̃ 0.131 0.131 0.131

1.5
LSE 0.041 0.0.008 0.0039
LSE-λ∗ 0.463 0.138 0.03

LSE-λ̃ 0.449 0.449 0.449

2.0
LSE 0.105 0.033 0.026
LSE-λ∗ 1.044 0.450 0.148

LSE-λ̃ 0.764 0.762 0.760

1.0 1.5

1.0
LSE 0.014 0.002 0.0003
LSE-λ∗ 0.110 0.018 0.002

LSE-λ̃ 0.398 0.398 0.394

1.5
LSE 0.093 0.020 0.012
LSE-λ∗ 1.042 0.311 0.067
LSE-λr 1.227 1.226 1.223

2.0
LSE 0.211 0.088 0.0754
LSE-λ∗ 3.05 1.013 0.333

LSE-λ̃ 1.991 1.99 1.985

2.0 2.5

1.0
LSE 0.0463 0.005 0.0014
LSE-λ∗ 0.3071 0.048 0.0054

LSE-λ̃ 1.550 1.548 1.552

1.5
LSE 0.222 0.058 0.052
LSE-λ∗ 2.894 0.864 0.187

LSE-λ̃ 4.242 4.236 4.246

2.0
LSE 0.548 0.313 0.289
LSE-λ∗ 6.530 2.817 0.928

LSE-λ̃ 6.534 6.531 6.535

Our experimental results demonstrate that LSE with grid-searched λ consistently achieves the lowest
MSE across all experimental configurations. The data-driven λ selection approach exhibits strong
performance, ranking second in scenarios with larger sample sizes (n = 10K, 100K). For smaller
samples (n = 1K), random λ selection occasionally outperforms the data-driven approach. Notably,
LSE maintains robust variance control under heavy-tailed distributions even with randomly selected
λ values. The performance gap between data-driven and random λ selection widens significantly as
the sample size increases, suggesting a clear strategy for parameter selection: while the estimator
remains robust to arbitrary λ choices, the data-driven approach becomes increasingly reliable with
larger sample sizes.

• If n is small (e.g. n ≈ 1000), we have fewer computational concerns, and a grid-search
based on the performance on a validation set can find an appropriate λ for our problem.
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(a) PM, TR-IPS, SNIPS, OS (b) LSE, LS-LIN, IX, ES

Figure 4: MSE of the PM, TR-IPS, SNIPS, OS, LS-LIN, IX, OS, ES, and LSE estimators over
different values of log σ

• For larger values of n, we can hold to the data-driven proposal of λ which gives a comparable
performance with the grid-search method.

Another hint about the selection of λ is that for problems where the variance of the importance weights
of the unbounded behavior of the reward function is not an issue, a very small λ (e.g. λ = 0.01) can
be a better option because as λ → 0, LSE tends to vanilla IPS. For heavy-tailed problems, selecting
bigger λ values around 1 can lead to better performance.

G.8 OPE WITH NOISE

Here we discuss the performance of estimators in OPE when reward noise is available. In all
experiments, the number of samples is 1000 and the number of trials is 100K.

G.8.1 GAUSSIAN SETTING

We run the same experiments as mentioned in Section 6.1 by adding noise to the observed reward.
We add a positive Gaussian noise,

R̃(S,A) = R(S,A) + |W | : W ∼ N (0, σ2).

where R̃(S,A) is noisy reward function. We increase σ from 1 to 100 and observe the behavior
of different estimators under the noise. We report the MSE of different estimators. There is a
discrepancy between the performance of different estimators. LSE, LS, LSE-LIN, IX, and ES
demonstrated robust performance under high noise conditions, while PM, TR-IPS, SNIPS, and OS
exhibited substantially higher MSE values, often differing by several orders of magnitude from the
better-performing estimators. We draw the MSE of these two groups against log σ in Figure 4. We
observe that ES, LSE, IX, and LS-LIN are better suited for the noisy scenario. Also we observe that
ES is more sensitive to the increase of the variance of the noise. We also investigate the distributional
form of the estimators with the same levels of noise. Estimators other than LSE, LS-LIN, and IX keep
proposing outlier estimations. But these three estimators stay stable in this setting and are compared
in Figure 5 for two levels of noise. Among these three estimators, LSE can keep a low bias with
almost the same variance in comparison to IX nad LS-LIN, hence leading to the lowest MSE.

G.8.2 LOMAX SETTING

When we examine the Lomax setting, the estimators’ performance deteriorates as we introduce
heavier-tailed noise distributions. To test this, we add Pareto-distributed (with parameter α) noise to
the reward, varying the parameter α from 1.05 to 2.0. The parameter α controls the tail weight of the
distribution, with values closer to 1 producing heavier tails. Our results, shown in Figure 6, reveal a
clear split in estimator performance. The estimators - PM, ES, TR-IPS, OS, and SNIPS - struggle
significantly with the heavy-tailed noise and show poor performance based on their MSE. In contrast,
the more robust estimators - LSE, LS-LIN, and IX - maintain better performance across different
noise levels, similar to what we observed in the Gaussian scenario. Note that the IX estimator, despite
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(a) small noise, σ2 ≈ 1.82 (b) large noise, σ2 = 20

Figure 5: The error distribution of the LS-LIN, LSE, and IX estimators

(a) PM, TR-IPS, SNIPS, OS, ES (b) LSE, LS-LIN, IX

Figure 6: MSE of the PM, TR-IPS, SNIPS, OS, LS-LIN, IX, OS, ES, and LSE estimators over
different values of α

having significantly less error than the poorly performing estimators, compared to LSE and LS-LIN
is much more worse in the tail of the noise.

For the distributional behavior of the estimators, we observe that except LSE and LS-LIN, the
estimators produce extreme outlier values. Error distribution is the distribution of the difference
between the estimated value and the true value. Hence, we plot the error distribution of the LSE and
LS-LIN with respect to noise in Figure 7. Here we see that in the small noise scenario LSE despite
having more variance, is significantly less bias. Under large noise, LSE keeps the variance lower than
LS-LIN, while showing the same bias. Hence, in both cases LSE achieve less MSE than LS-LIN and
performs better in both small and large noise scenarios.

(a) Small noise, α = 2.0 (b) Large noise, α = 1.05

Figure 7: The error distribution of the LS-LIN and LSE estimators
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(a) Gaussian Scenario (b) Lomax Scenario

Figure 8: The error distribution of the LS-LIN, IX, and LSE estimators

G.9 DISTRIBUTIONAL PROPERTIES IN OPE

In this section, we investigate the error distribution of different estimators. In both Gaussian and
Lomax settings, SNIPS, TR-IPS, OS, ES, and PM show extreme outlier values, but LS-LIN, LSE,
and IX avoid outliers. In Figure 8, we show the error distribution of these estimators. We can see the
competitive performance of IX and LSE in the Gaussian scenario, while LS-LIN induces a relatively
large bias in this setting. In the Lomax setting, LSE has a bigger variance than IX and LS-LIN, while
having significantly less bias. LSE has the property that it keeps bias significantly low while trading
it for some small variance, leading to less MSE and better performance.

G.10 MORE COMPARISON WITH LS ESTIMATOR

We conduct experiments to measure and compare the sensitivity of LSE and LS with respect to the
selection of λ. To measure the sensitivity, we choose grid method where we test the followings set of
λ ∈ {0.001, 0.01, 0.1, 1.0, 5.0} in Table 23, adaptive method where λn := 1√

n
is chosen, Table 24,

and random method where λ̂ chosen uniformly random from [0, 1], Table 25. Then we compare these
two estimators among these different methods of selecting λ. The results are reported below for
Lomax setup.

We can observe that in a close competitions, using the grid search method, LSE outperforms in 4
out of 9 experiments. With the adaptive method, LSE performs better in 7 out of 9 experiments, and
when using the random method, LSE outshines in all 9 experiments.
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Table 23: MSE of LSE and LS estimators with grid-searched for λ ∈ 0.001, 0.01, 0.1, 1.0, 5.0 and
β = 1.0, 1.5, 2.0. The experiment was run 100000 times with different values of α, α′, and β.

β α α′ Estimator Bias Variance MSE

0.5 1.0

1.0
LSE 0.0362 0.0047 0.0060
LS 0.0266 0.0047 0.0054

1.5
LSE 0.1693 0.0118 0.0404
LS 0.0697 0.0346 0.0395

2.0
LSE 0.1590 0.0813 0.1066
LS 0.3086 0.0238 0.1190

1.0 1.5

1.0
LSE 0.0728 0.0091 0.0144
LS 0.0429 0.0104 0.0122

1.5
LSE 0.1065 0.0829 0.0942
LS 0.1183 0.0717 0.0857

2.0
LSE 0.2726 0.1367 0.2111
LS 0.2548 0.1785 0.2434

2.0 2.5

1.0
LSE 0.0302 0.0452 0.0461
LS 0.0819 0.0281 0.0348

1.5
LSE 0.2245 0.1702 0.2206
LS 0.2330 0.1699 0.2242

2.0
LSE 0.5345 0.2645 0.5502
LS 0.4946 0.3696 0.6142

Table 24: MSE of LSEλn and LSλn estimators with data-driven λn = 1√
n

for β = 1.0, 1.5, 2.0 and
n = 1000. The experiment was run 100000 times with different values of α, α′, and β.

β α α′ Estimator Bias Variance MSE

0.5 1.0

1.0
LSEλn 0.0816 0.0029 0.0096
LSλn 0.1314 0.0028 0.0200

1.5
LSEλn

0.2756 0.0054 0.0814
LSλn

0.2841 0.0073 0.0880

2.0
LSEλn 0.4651 0.0063 0.2226
LSλn 0.4476 0.0099 0.2103

1.0 1.5

1.0
LSEλn 0.1596 0.0053 0.0308
LSλn

0.2610 0.0052 0.0733

1.5
LSEλn

0.4857 0.0091 0.2449
LSλn

0.5129 0.0123 0.2754

2.0
LSEλn 0.7817 0.0100 0.6211
LSλn 0.7645 0.0159 0.6004

2.0 2.5

1.0
LSEλn

0.3652 0.0111 0.1445
LSλn

0.6177 0.0108 0.3924

1.5
LSEλn

0.9792 0.0169 0.9757
LSλn

1.0722 0.0227 1.1723

2.0
LSEλn 1.4919 0.0180 2.2437
LSλn

1.4952 0.0282 2.2637
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Table 25: MSE of LSEλ̂ and LSλ̂ estimators with random λ̂ for β = 1.0, 1.5, 2.0. The experiment
was run 100000 times with different values of α, α′, and β.

β α α′ Estimator Bias Variance MSE

0.5 1.0

1.0
LSEλ̂ 0.3418 0.0139 0.1308
LSλ̂ 0.6779 0.0640 0.5236

1.5
LSEλ̂ 0.6516 0.0247 0.4493
LSλ̂ 0.8335 0.0581 0.7528

2.0
LSEλ̂ 0.8583 0.0262 0.7629
LSλ̂ 0.9635 0.0491 0.9775

1.0 1.5

1.0
LSEλ̂ 0.6019 0.0365 0.3987
LSλ̂ 1.2196 0.1783 1.6656

1.5
LSEλ̂ 1.0803 0.0594 1.2264
LSλ̂ 1.4290 0.1521 2.1941

2.0
LSEλ̂ 1.3890 0.0603 1.9898
LSλ̂ 1.6017 0.1237 2.6890

2.0 2.5

1.0
LSEλ̂ 1.1942 0.1180 1.5442
LSλ̂ 2.4803 0.6019 6.7537

1.5
LSEλ̂ 2.0218 0.1686 4.2565
LSλ̂ 2.7676 0.4797 8.1390

2.0
LSEλ̂ 2.5258 0.1654 6.5451
LSλ̂ 3.0074 0.3796 9.4239

G.11 OPE ON REAL-WORLD DATASETS

Table 26: UCI datasets specifications. N is the number of samples, K is the number of actions, and p
is the number of features.

Dataset N K p

Yeast 1,484 10 8
Page-blocks 5,473 5 10
Optdigits 5,620 10 64
Satimage 6,430 6 36
Kropt 28,056 18 6

We evaluate our method’s performance in OPE by conducting experiments on 5 UCI classification
datasets, as explained in Table 26,

We use the same supervised-to-bandit approach as in OPL experiments. Suggested by Sakhi et al.
(2024), we consider a set of softmax policies as the target and logging policy. Consider an ideal policy
as a softmax policy peaked on the true label of the sample. Moreover, a faulty policy is an ideal policy
that has a set of its actions shifted by 1, hence, doing mostly wrong on the samples from the shifted
labels. For the logging policy, we use faulty policies on the first K/2 actions with temperatures
τ0 = {0.6, 0.7, 0.8}, and faulty policies on the last K/2 actions with τ = {0.1, 0.3, 0.5} as target
policies, a total of 9 different experiments for each dataset. We create a bandit dataset using the
logging policy π0 and estimate the expected reward of the πθ which is calculated as below,

V (πθ) =
1

n

n∑
i=1

πθ (yi|xi)

where yi is the true label of the data sample xi. We also add a random uniform noise ϵ ∼
Uniform(0, 1) to the policy logits before softmax. We ran each experiment in each setting 10
times and calculated the average MSE of each estimator over all 90 experiments. For hyperparameter
selection, for LS, OS, IPS-TR, PM, and IX, we use their own proposals. For LSE and ES, we use 0.2
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Figure 9: Histogram of 10K samples generated from Gaussian and Lomax distributions (we consider
the absolute value of the Gaussian samples to focus on the tail of the distributions)

of the dataset as a validation set to find the hyperparameter with the lowest MSE by grid search and
evaluate the method on the remaining 0.8 of the dataset. Table 27 illustrates this on the 5 datasets for
different estimators.

Table 27: MSE of LSE, PM, ES, IX, OS, LS, IPS-TR and SNIPS estimators on 5 UCI classification
datasets on the OPE task.

Dataset PM ES IX OS LS IPS-TR SN-IPS LSE

Yeast 0.237 0.0096 0.0573 0.0131 0.0146 0.0255 0.0088 0.0077

Satimage 0.0033 0.0066 0.0057 0.0035 0.0047 0.0043 0.0086 0.0028

Kropt 0.0160 0.0041 0.0056 0.0169 0.0208 0.0189 0.0256 0.0015

Optdigits 0.0079 0.0066 0.0150 0.0076 0.0083 0.0098 0.0110 0.0042

Page-Blocks 0.0440 0.0002 0.0236 0.0487 0.0513 0.0445 0.0639 0.0008

G.12 CONNECTION BETWEEN HEAVY-TAILED DISTRIBUTIONS AND OUTLIER MODELING

We illustrate how heavy-tailed distributions can model outlier samples. Consider two sets of observa-
tions, the first one from a normal distribution N (0, 2) which has an exponential tail, and the second
from a Lomax distribution L(1.5), which is heavy-tailed with ϵ = 0.5. Figure 9 depicts the histogram
of observed 10K samples from each distribution. We can observe that the Lomax distribution contains
large, low-probability values (values around 400), but the total range for Gaussian observations is less
than 10. The occurrence of sparse very low probability outlier values is possible by sampling from a
heavy-tailed distribution like Lomax distribution. However, it’s does not hold for an exponential-tailed
distribution like Gaussian. Hence, heavy-tailed distributions seem to be able to model scenarios with
sparse large rewards or outliers, which is not possible using an exponential-tailed distribution. In the
following, we discuss the heavy-tailed reward scenario in RL applications.
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