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Abstract— Programming a robotic arm involves a lot of
complexity, as it demands from the user to have a good
command of its specific programming language and a clear
awareness of its physical constraints. We propose a framework
that simplifies robot deployment and reduces the entry barrier
for the user. It uses Large-Language Model (LLM) for prompt
processing, workspace understanding, and waypoint generation.
It also employs Augmented Reality (AR) to provide visual
feedback of the planned outcome. We showcase the effectiveness
of our framework with a simple pick-and-place task, which
we implement on a real robot. Moreover, we present an early
concept of expressive robot behavior and skill generation that
can be used to: communicate with the user and learn new skills
(e.g., object grasping, door opening, etc.).

I. INTRODUCTION

Manual programming has been the conventional way of
setting up industrial and collaborative robots – using a
specific input controller to define various robot tasks, such as
setting waypoints, connecting I/O ports to auxiliary equip-
ment, and creating program logic, etc. Usually, each robot
arm manufacturer has a bespoke controller and programming
language, which is often presented as a simple ladder di-
agram or graphical block representation. To overcome the
limitations of robot-specific interface/language, more abstract
programming methods have been developed, such as the
Robot Operating System (ROS) which aims to provide a
universal programming method.

The methods mentioned above require the robot program-
mer to have some basic computer science and robotics skills
to grasp concepts such as singularities, joint space, inverse
kinematics, etc. However, most of the world’s manufacturing
is done by Small and Medium Enterprises (SMEs) who often
do not have such skills, which limits their ability to automate
their processes. To lower the barrier for robot programming,
more automated methods exist [1], such as Programming
by Demonstration (PbD) which allows users to demonstrate
robot skills to the system, rather than coding them.

In addition to PbD, recent advances in generative AI,
specifically the creation of foundation models, allow re-
searchers to solve diverse robotics tasks not confined by the
tasks, environments, and robot types in the prior training
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data [2]. This presents an immense opportunity not only
for scaling robotic operations but also for improvements in
human-robot interaction, given the semantic nature of the I/O
of the large language models. Specifically, this could further
lower the barrier of laypersons to operate a collaborative
robot.

In this paper, we propose a novel way to interact with
a collaborative robot using natural language with LLMs.
Our framework takes in the speech input from the user and
in real-time generates a series of waypoints. The generated
waypoints can be simultaneously previewed in an augmented
reality headset overlaid on top of the physical environment,
and the robot receives the waypoints directly as a result of the
generation and follows the approved plan. Furthermore, we
also demonstrate an early exploration of automatic robotic
skill generation, leveraging the generative nature of the
LLM framework. We show that our framework can generate
expressive gestures such as ”nodding”, and this capability
can be generalized to other skills such as the ”pick” skill in
a pick-and-place task.

II. RELATED WORK

We start the Related Work section with current ap-
proaches to automating robot programming – ”Programming
by Demonstration”. We then touch upon the use of Mixed
Reality in assisting robot programming. Finally, we conclude
with recent breakthroughs and experiments using foundation
models like LLMs to scale up robotic tasks.

A. Programming by Demonstration Interfaces

There exist different ways to gather and transmit the
trajectory data to the robotics system. For robot arms, it is
typically kinesthetic teaching [3], where the user holds the
robot’s end-effector and moves it along the desired trajectory.
Takano et al. [4] focus on learning and reproducing basic
motion primitives. Caccavale et al. [5] additionally introduce
structured cooperative tasks from human demonstrations.
Kim et al. [6] implement three layers of kinesthetic teaching
(joint, task and contact) for dual-arm robot control.

Kinesthetic teaching requires the human user to use both
hands to manipulate the robot arm, which becomes more
troublesome when the robot has more limbs, e.g., a humanoid
robot. For that case, motion capture based approaches can
be used to imitate human body movements [7], [8]. In this
setup, the human teacher is equipped with sensors that are
externally tracked with optical or magnetic tracking systems.
The major challenge with thisapproach is the correspondence



Fig. 1. Overview of our framework. Starting from the top left, a 3D scene (optionally scanned if does not exist already) and a user prompt are fed to
adapted LLMR framework, which is an orchestration of prompt-engineered GPT modules. The adapted framework outputs the trajectory based on the user
prompt, which is converted to Universal Robot script, readable by the robot arm. The user also sees the rendered trajectory in the AR headset.

problem where the demonstrator and imitator do not have
the same kinematic and dynamic properties (e.g., human vs.
humanoid). Alternatively, prior work used different mappings
[9] or tools [10], [11]to mediate the difference in the
properties.

Teleoperation does not face the correspondence problem
(i.e., the operator is constrained to the robot’s sensors), and it
also allows the operator to perform the task remotely. The hu-
man teacher requires some type of input device and feedback
such as joysticks [12] or custom control devices [13], [14]
to operate the robot. Mobile ALOHA [15] introduces whole-
body teleoperation where the user is physically tethered to
the device and can control both arms and the wheels.

Speech is another interface for PbD, although not so pop-
ular due to its ambiguities and limited command dictionary
for robot control. Norberto [16] and Tasevski et al. [17]
use voice-controlled industrial robot to perform pick-and-
place, and welding tasks with a fixed set of voice commands.
We propose a novel way for automatic robot programming,
as it utilizes voice modality for robot control with natural
language processing, hence it does not force the user to
memorize a constrained set of robot commands.

B. Augmented Reality in Robotics

Augmented Reality (AR) is well researched topic as an
interface for Human-Robot Interaction [18], robot control
and teleoperation, etc. Quintero et al. [19] use head-mounted
display to allow users to create and preview robot trajectory.
Gong et al. [20] create robot instructions using projection-
based AR for grasping tasks. While Stadler et al. [21] explore
handheld AR interface for industrial robot programming.
Zielinski et al. [22] augment robot arm with contextual
data, such as software limits, joint temperatures, end-effector
coodinate frame, etc. Chen et al. [23] control mobile robot
with drag-and-drop prompt using head-mounted AR display.

C. Situating LLM with the Real World for Robotics

Kawaharazuka et al. overview the application of founda-
tion Large Language Models (LLM) and Vision-Language
Models (VLM) in real-world robotics [2]. Palm-E is one
such example of a general-purpose multimodal language
model that is trained for embodied reasoning (e.g., robot
planning) [24]. Besides training new foundation models with
new modalities, many can already solve many challenges in
robotics by adapting existing foundation models. ProgPrompt
uses LLM to help with task planning and generate a correct

sequence of steps in different contexts [25]. Ahn et al.
focus on a key limitation of using LLM to drive robotic
behavior, which is the awareness of the robot’s capabilities.
They ground the output to the capabilities of the robot
such that the output is actually feasible to execute [26].
AutoRT solves the challenge of lack of data grounded in
the physical world by scaling up the deployment of auto-
instructing robots using existing foundation models [27].
On the other hand, SpatialVLM solves the same problem
by developing an automatic 3D spatial visual QA data
generation framework [28]. Despite recent advances, they
point out that the current models are still not suitable for
tasks that require collaboration with humans [2].

Our work hopes to contribute to the improvement of
human-robot collaboration and interaction. We do so by
building on top of the Large Language Model for Mixed Re-
ality (LLMR) framework [29], a framework that allows real-
time natural language prompting of interactive 3D scenes.
We take advantage of the ease of integration of the LLM-
based framework within the mixed reality environment. The
user can instruct the robot arm with natural language and
preview the results directly in an AR headset, for example.

III. FRAMEWORK OVERVIEW

Our framework encompasses the integration of LLMs,
the Unity game engine, the HoloLens 2 AR headset, and
URScript (proprietary Universal Robots’ programming lan-
guage) to achieve real-time AI-assisted planning of robot
waypoints (Figure 1). We now discuss each component of
the framework in detail.

Digital representation of the physical scene – We start by
creating a replica of the physical scene in Unity, a rendering
engine [30]. We used Polycam [31] to capture a 3D model of
the real-world objects and environment, and we imported the
3D model of the Universal Robots (UR10e) [32] (Figure 3).
The user can alternatively provide the scan of the physical
world (most industrial plants likely have such models). The
scan is used as a reference for the collider boundaries we
manually configured in Unity, a manual step that can be
refined and replaced with a sophisticated scene understanding
model [33]. We named the scene objects and the robot’s sub-
components according to their semantic meaning. We also
set up a reachability sphere that represents the conservative
upper bound of the reach of the robot’s endpoint. At the
moment, we assume the physical objects are static (i.e., they
do not move when the robot is moving and thus are not



Fig. 2. Example interaction between the user and the collaborative robot arm enabled by our framework. A-B: The user is wearing a HoloLens2 AR
headset and instructs the robot to create a pick-and-place program between two stools. C: Our framework (running within Unity on a separate laptop)
generates a series of waypoints (indicated as the red spheres) and the waypoints are streamed to preview in the AR headset. D: Once the user is satisfied
with the waypoints, the robot receives the command from Unity and then follows the waypoints.

tracked). Future work can use real-time capture methods
(e.g., OptiTrack or Aruco Markers) to update the scene in
Unity. Combined with the user prompt, the scene is provided
to our LLM system to generate a series of waypoints, which
we discuss next.

LLM integration – We use our framework for generating
the viable waypoints. We built upon LLMR [29]. LLMR is
designed for simulating scenarios in virtual environments.
We pushed the real-world implication of LLMR by connect-
ing the simulated outcome to a physical robot. We fine-tuned
a specific prompt for LLMR that provides the context of
the task. An example prompt is in the Appendix I. We also
optimized and improved the Scene Analyzer component in
LLMR to pay more attention to the robot and the relevant
objects. The outputs of this step are the code that generates a
series of sequential waypoints and the visualization of these
waypoints in the virtual scene. A sample of the generated
code is in the Appendix II. In the iteration process of fine-
tuning the prompt, we found that the generated trajectory
pattern does not vary significantly across runs unless the
prompt describes very specific constraints (such as specific
obstacles to avoid or constraints of the robot arm motion).

Visualization of the scene in AR – We deploy our frame-
work’s run-time compiler on a PC that acts as the server,
and we build upon existing streaming protocols (holographic
remoting for a HoloLens 2) [34], [35] to stream the generated
results to the head-mounted display.

Virtual robot control in Unity – For the system to test
if a point is reachable or not, we have implemented a
simplified inverse kinematics (IK) controller in Unity. As an
argument, it takes waypoint positions in Cartesian space w.r.t.
(with reference to) the robot base and returns joint angles.

Fig. 3. A pre-scanned scene is loaded in the Unity environment, along with
a model of the collaborative robot arm from Universal Robots. A translucent
reachability sphere is shown to indicate the conservative estimation of the
maximum reach of the robot arm.

The controller is based on gradient descent to calculate
the trajectory between waypoints but does not account for
singularities.

Real robot control from Unity – To run our framework
on the real robot, we used Universal Robot’s proprietary
Primary Interface for two-way communication with the arm
in Unity. Once we obtain satisfactory waypoints, we can
directly upload them to the robot. In this mode, there is no
need to provide custom inverse kinematics, since we utilize
Universal Robots’ control box for trajectory planning in-
between waypoints.

IV. EXAMPLE SCENARIO

A common task is pick-and-place, where the robot arm
needs to move between two end points repeatedly while
avoiding colliding with objects in the room or itself. Typ-
ically, the user would need to manually program the robot
(first in simulation and then in the physical environment).

We envision the following end-to-end interaction where
the user can achieve this with natural language instructions.
The user wants to create a custom pick-and-place program
between two places. They can point at the two locations
and say ”between this stool and that stool” (Figure 2 A-B).
Our framework takes in the user prompt and the physical
scene to create a detailed instruction. The instruction and
scene information go through the LLM framework and
the framework outputs a series of waypoints that are then
visualized in the Augmented Reality headset (visualized as
the red spheres, Figure 2 C). The user is able to see and verify
the proposed waypoints in-situ. After the user confirms, the
waypoints are directly sent to the robot, where the robot’s
endpoint follows the generated sequence (Figure 2 D).

V. EARLY EXPLORATION: FEW-SHOT GENERATION OF
EXPRESSIVE ROBOT BEHAVIOR AND SKILLS

Overlaying visualization of the robot’s trajectory in the
real world is one of the ways that helps human users to di-
rectly manipulate and communicate with the robot. However,
there lacks a channel and modality, such as gesturing [36],
for the robot to communicate back to the human user. We
were also inspired by how the collaborative robot can be
programmed to perform alongside a human dancer [37].

Following the extended animation generation capability
of LLMR [38], we also experimented with using LLM to
generate anthropomorphic expressions of the robot arm. We
provided some context about the robot’s joint limitations
and a few examples of hand-crafted animations. We used



Fig. 4. An example of an expressive response from the robot back to the user. A: The user asks the robot if it is happy with the generated program. B-C:
The robot responds by nodding back at the user, where the nodding animation is generated by our framework.

the gpt4-1106-preview model with a temperature of 0.1. A
sample of the generated joint positions is in the Appendix
IV. We imagine a scenario where the robot is asked whether
they are pleased with the result, they could nod or shake their
head back to the user (Figure 4). We consider ”nodding” and
”shaking” the head to be similar to the skill of ”grasping”.
Different from other LLM-based generative approach that
interpolates between different pre-existing skills, we generate
new anthropomorphic animations with a few-shot example
in the metaprompt. The resulting animations are still ex-
ploratory, as the robotic arm’s inherent limitation in degrees
of freedom cannot result in complex expressions. In addition,
unlike animals or humans where ample examples of different
behaviors exist, robot expressions are more idiosyncratic, and
thus the quality of the generated output is up to the human’s
interpretation.

VI. LIMITATIONS AND FUTURE WORK

Singularities – The current LLM system is unaware of the
singularities that might emerge from the generated trajectory.
The reachability sphere is one way that we prevent the
robot from going beyond its range of motion. We used
the Universal Robot’s IK to allow the robotic arm to reach
between the endpoints. Our framework could be incorporated
as part of a path planning pipeline to eliminate singularities.

Trajectory Optimization – At the moment our LLM system
only generates one possible path during each run. When the
LLM’s temperature is set to zero, the generated solution is
mostly consistent (as a higher temperature usually results in a
non-deterministic behavior). Unless the physical constraints
of the robot or the target positions change, the LLM’s
solution stays consistent across generations. However, we do
not enforce any optimization parameters, such as ensuring
the shortest cycle time or least energy consumption. Our
solution is not meant to be compared with the mathematical
approach to derive the most optimized path. Rather, focus
on creating a draft trajectory that is directly in the place of
the user’s working environment. Future work might combine
the advantages of both approaches.

Feedback from the human – An immediate improvement
to our framework is incorporating direct feedback from the
human. Specifically, the human can not only directly edit
the trajectory by dragging the generated waypoints in the
Augmented Reality scene but also ”teach” the robot why the
changes are preferred. Akin to PbD, the user has the ultimate
say in what the trajectory looks like, but our framework

would allow the user to overview the entire trajectory in-
situ and use language to provide context. A user study is
merited to understand the ideal way to engage the user in
this process such that the agency of the user is preserved in
AI-assisted path planning.

Feedback from the world – Our current system requires
manual alignment between the physical and virtual scene,
which can be easily solved using trackable markers [39],
[40]. However, if an object moves in the scene, the changes
would need to be synchronized and updated in the virtual
scene. The current computer vision based solution systems
lack sophisticated tracking of 3D objects, and running a
machine learning model for object classification is computa-
tionally expensive. One workaround is to use a combination
of vision and language to query the scene [41] or co-embed
text and image pixels in the CLIP feature space to achieve
scene understanding [42].

Another integration would be sensor data from external
sensors deployed in the real world scene. At the moment,
the cobot stops when it senses that it has hit something, it
would be helpful to incorporate these types of information
in the LLM system and to further equip the LLM abilities
to perceive the world.

VII. CONCLUSION

We present an end-to-end framework that addresses the
difficulties for users without much prior knowledge to pro-
gram a collaborative robot. Building on top of the existing
framework LLMR that can create interactive scenes in a
simulated mixed-reality environment with natural language
input, we adapted the input prompt such that a user can
use natural language to instruct a collaborative robot. Our
adapted framework supports the initial step of path planning,
which is the generation of waypoints. The framework consid-
ers the unique constraints coming from the environment (e.g.,
avoid colliding with physical objects) and the robot itself
(e.g., maximum reach). We also show initial exploration of
the framework’s ability to generate new ”skills” in the form
of animations with few-shot examples. The contribution of
this work lies in its potential to leverage existing LLMs to
work with embodied systems and environments at human-
scale. We propose that this work bridges the gap between
the human’s and the robot’s perception of the world with the
ability for both to speak the same ”language” (code) in the
mixed reality environment.
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APPENDIX I
PROMPT FOR THE ADAPTED LLMR FRAMEWORK

An example of a modified user prompt that allows the
framework to understand the scene and instructions.

You are controlling a robot arm named UR10e.
Your goal is to find at least 5 waypoints that
allows the robot end point to move from the TOP
surface of stool 1 to the TOP surface of stool
2. The first and final waypoint should be the
start and end destinations. The middle waypoints
should allow the robot to travel in air but
these waypoints should avoid colliding with all
objects (like table) in the scene. The middle
waypoints should form some sort of arc or curve.
The robot's end point can not reach beyond the
reachability sphere. You should first establish
the mesh boundaries of the objects in the scene.
Do not move the robot. Visualize the final
waypoints as small red sphere with unique names.

APPENDIX II
EXAMPLE CODE OUTPUT OF THE LLM FRAMEWORK

using UnityEngine;

public class WaypointsGenerator : Widgets
{

public GameObject stool1;
public GameObject stool2;
public GameObject table;
public GameObject reachabilitySphere;
public GameObject robotEndPoint;
public GameObject waypointPrefab;
public int waypointCount = 5;
private Bounds stool1Bounds;
private Bounds stool2Bounds;
private Bounds tableBounds;
private Bounds reachabilitySphereBounds;

void Start()
{

summary = "This script generates
waypoints for the robot end point to
move from the top of stool 1 to the
top of stool 2, avoiding collision
with the table.";

↪→

↪→

↪→

↪→

stool1 = GameObject.Find("Stool_1");
stool2 = GameObject.Find("Stool_2");
table = GameObject.Find("Table");
reachabilitySphere = GameObject.Find("Re ⌋

achabilitySphere");↪→

robotEndPoint =
GameObject.Find("Robot_EndPoint");↪→

waypointPrefab = GameObject.CreatePrimit ⌋
ive(PrimitiveType.Sphere);↪→

waypointPrefab.name = "WaypointPrefab_"
+ System.Guid.NewGuid().ToString();↪→

waypointPrefab.GetComponent<Renderer>(). ⌋
material.color =
Color.red;

↪→

↪→

waypointPrefab.transform.localScale *=
.1f;↪→

Destroy(waypointPrefab); // We only
needed it for the prefab↪→

stool1Bounds =
GetMeshSize.GetRenderBounds(stool1);↪→

stool2Bounds =
GetMeshSize.GetRenderBounds(stool2);↪→

tableBounds =
GetMeshSize.GetRenderBounds(table);↪→

reachabilitySphereBounds = GetMeshSize.G ⌋
etRenderBounds(reachabilitySphere);↪→

GenerateWaypoints();
}

void GenerateWaypoints()
{

Vector3 start = stool1Bounds.center +
new Vector3(0,
stool1Bounds.extents.y, 0);

↪→

↪→

Vector3 end = stool2Bounds.center + new
Vector3(0, stool2Bounds.extents.y,
0);

↪→

↪→

for (int i = 0; i < waypointCount; i++)
{

float t = (float)i / (waypointCount
- 1);↪→

Vector3 waypointPosition =
Vector3.Lerp(start, end, t);↪→

// Make sure the waypoint is above
the table and within the
reachability sphere

↪→

↪→

if (waypointPosition.y <=
tableBounds.max.y ||
!reachabilitySphereBounds.Contai ⌋
ns(waypointPosition))

↪→

↪→

↪→

{
waypointPosition.y = Mathf.Max(w ⌋

aypointPosition.y,
tableBounds.max.y + 0.1f);

↪→

↪→

waypointPosition =
reachabilitySphereBounds.Clo ⌋
sestPoint(waypointPosition);

↪→

↪→

}

// Create the waypoint
GameObject waypoint =

Instantiate(waypointPrefab,
waypointPosition,
Quaternion.identity);

↪→

↪→

↪→

Debug.Log(waypointPosition);
waypoint.name = "Waypoint_" + i;

}
}

}

APPENDIX III
ANIMATION PROMPT

You're an animator who will be provided the
joints on a rigged 3D model of a robotic arm,
and you have to rotate the joints to produce the
requested animation. The joints will be given as
a JSON string that outlines the object hierarchy.
You have to output a string that specifies the
rotation of movement for each joint.

Each subsequent line of the string starts with
the joint name, then each vector in the format
(timestamp,rotation), specifing a key frame for
the animation. Rotation is in radians.

# Example:
The object you will animate is a **robot**.
Object JSON:



name:Robot,children:[name:z-up,children:[name:ro ⌋
ot,children:[name:__base,rotation:(0.0),children ⌋
:[name:__shoulder,rotation:(0.0),children:[name: ⌋
__elbow,rotation:(0.0),children:[name:__wrist-1, ⌋
rotation:(0.0),children:[name:__wrist-2,rotation ⌋
:(0.0),children:[name:__wrist-3,rotation:(0.0)]] ⌋
]]]]]]
__base clockwise direction: (1.0)
__shoulder clockwise direction: (1.0)
__elbow clockwise direction: (-1.0)
__wrist-1 clockwise direction: (1.0)
__wrist-2 clockwise direction: (1.0)
__wrist-3 clockwise direction: (1.0)

Instruction: animate the robot to bow

Robot/z-up/root/__base,(0.000,-1.571),(1.020,-1. ⌋
571),(2.020,-1.571),(3.020,-1.571),(4.020,-1.571 ⌋
),(5.020,-1.571)
Robot/z-up/root/__base/__shoulder,(0.000,-1.571) ⌋
,(1.020,-1.571),(2.020,-1.570),(3.020,-1.570),(4 ⌋
.020,-1.570),(5.020,-1.571)
Robot/z-up/root/__base/__shoulder/__elbow,(0.000 ⌋
,0.000),(1.020,-0.472),(2.020,-1.519),(3.020,-2. ⌋
089),(4.020,-1.358),(5.020,-0.315)
Robot/z-up/root/__base/__shoulder/__elbow/__wris ⌋
t-1,(0.000,-1.571),(1.020,-1.239),(2.020,-0.504) ⌋
,(3.020,-0.104),(4.020,-0.617),(5.020,-1.349)
Robot/z-up/root/__base/__shoulder/__elbow/__wris ⌋
t-1/__wrist-2,(0.000,1.571),(1.020,1.571),(2.020 ⌋
,1.571),(3.020,1.570),(4.020,1.571),(5.020,1.571)
Robot/z-up/root/__base/__shoulder/__elbow/__wris ⌋
t-1/__wrist-2/__wrist3,(0.000,0.000),(1.020,0.00 ⌋
0),(2.020,0.000),(3.020,0.000),(4.020,0.000),(5. ⌋
020,0.000)

# Example:
The object you will animate is a **robot**.
Object JSON:
name:Robot,children:[name:z-up,children:[name:ro ⌋
ot,children:[name:__base,rotation:(0.0),children ⌋
:[name:__shoulder,rotation:(0.0),children:[name: ⌋
__elbow,rotation:(0.0),children:[name:__wrist-1, ⌋
rotation:(0.0),children:[name:__wrist-2,rotation ⌋
:(0.0),children:[name:__wrist-3,rotation:(0.0)]] ⌋
]]]]]]
__base clockwise direction: (1.0)
__shoulder clockwise direction: (1.0)
__elbow clockwise direction: (-1.0)
__wrist-1 clockwise direction: (1.0)
__wrist-2 clockwise direction: (1.0)
__wrist-3 clockwise direction: (1.0)

Instruction: animate the robot shaking as if
it's saying no

Robot/z-up/root/__base,(0.000,-1.514),(1.000,-1. ⌋
514),(2.000,-1.514)
Robot/z-up/root/__base/__shoulder,(0.000,-0.931) ⌋
,(1.000,-0.932),(2.000,-0.932)
Robot/z-up/root/__base/__shoulder/__elbow,(0.000 ⌋
,-1.281),(1.000,-1.281),(2.000,-1.281)
Robot/z-up/root/__base/__shoulder/__elbow/__wris ⌋
t-1,(0.000,-0.904),(1.000,-0.904),(2.000,-0.904)
Robot/z-up/root/__base/__shoulder/__elbow/__wris ⌋
t-1/__wrist-2,(0.000,1.172),(1.000,1.612),(2.000 ⌋
,1.752)
Robot/z-up/root/__base/__shoulder/__elbow/__wris ⌋
t-1/__wrist-2/__wrist3,(0.000,0.000),(1.000,0.00 ⌋
0),(2.000,0.000)

APPENDIX IV
ANIMATION OUTPUT

animate the robot saying yes
[0,0,0.5,0,0,0]
[0,0,1.0,0,0,0]
[0,0,0.5,0,0,0]
[0,0,0,0,0,0]
[0,0,0.5,0,0,0]
[0,0,1.0,0,0,0]
[0,0,0.5,0,0,0]
[0,0,0,0,0,0]

animate the robot purring like a cat
[0,0,0,0,0,1]
[0,0,0,0,0,0.5]
[0,0,0,0,0,1]
[0,0,0,0,0,0.5]
[0,0,0,0,0,1]
[0,0,0,0,0,0.5]
[0,0,0,0,0,1]
[0,0,0,0,0,0.5]

the robot is laughing hysterically
[0,0,0,0,0,0]
[0.2,-0.1,0.3,0.1,-0.2,0.3]
[-0.2,0.1,-0.3,-0.1,0.2,-0.3]
[0.2,-0.1,0.3,0.1,-0.2,0.3]
[-0.2,0.1,-0.3,-0.1,0.2,-0.3]
[0.2,-0.1,0.3,0.1,-0.2,0.3]
[-0.2,0.1,-0.3,-0.1,0.2,-0.3]
[0,0,0,0,0,0]

the robot is so disappointed and embarrassed
[0,0,0,0,0,0]
[0.2,-0.5,1.2,-0.8,0,0]
[0,-0.8,1.5,-1.2,0,0]
[0.2,-0.5,1.2,-0.8,0,0]
[0,-0.8,1.5,-1.2,0,0]
[0,0,0,0,0,0]
[0,-0.3,0.5,-0.3,0,0]
[0,0,0,0,0,0]
[0,-0.3,0.5,-0.3,0,0]
[0,0,0,0,0,0]
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