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ABSTRACT

We propose a new family of regularized Rényi divergences parametrized not
only by the order α but also by a variational function space. These new objects
are defined by taking the infimal convolution of the standard Rényi divergence
with the integral probability metric (IPM) associated with the chosen function
space. We derive a novel dual variational representation that can be used to
construct numerically tractable divergence estimators. This representation avoids
risk-sensitive terms and therefore exhibits lower variance, making it well-behaved
when α > 1; this addresses a notable weakness of prior approaches. We prove
several properties of these new divergences, showing that they interpolate between
the classical Rényi divergences and IPMs. We also study the α→ ∞ limit, which
leads to a regularized worst-case-regret and a new variational representation in the
classical case. Moreover, we show that the proposed regularized Rényi divergences
inherit features from IPMs such as the ability to compare distributions that are
not absolutely continuous, e.g., empirical measures and distributions with low-
dimensional support. We present numerical results on both synthetic and real
datasets, showing the utility of these new divergences in both estimation and GAN
training applications; in particular, we demonstrate significantly reduced variance
and improved training performance.

1 INTRODUCTION

Rényi divergence, Rényi (1961), is a significant extension of Kullback-Leibler (KL) divergence
for numerous applications; see, e.g., Van Erven & Harremos (2014). The recent neural-based
estimators for divergences Belghazi et al. (2018) along with generative adversarial networks (GANs)
Goodfellow et al. (2014) accelerated the use of divergences in the field of deep learning. The
neural-based divergence estimators are feasible through the utilization of variational representation
formulas. These formulas are essentially lower bounds (and, occasionally, upper bounds) which are
approximated by tractable statistical averages. The estimation of a divergence based on variational
formulas is a notoriously difficult problem. Challenges include potentially high bias that may require
an exponential number of samples McAllester & Stratos (2020) or the exponential statistical variance
for certain variational estimators Song & Ermon (2019), rendering divergence estimation both data
inefficient and computationally expensive. This is especially prominent for Rényi divergences with
order larger than 1. Indeed, numerical simulations have shown that, unless the distributions P and
Q are very close to one another, the Rényi divergence Rα(P∥Q) is almost intractable to estimate
when α > 1 due to the high variance of the statistically-approximated risk-sensitive observables
Birrell et al. (2021), see also the recent analysis in Lee & Shin (2022). A similar issue has also
been observed for the KL divergence, Song & Ermon (2019). Overall, the lack of estimators with
low variance for Rényi divergences has prevented wide-spread and accessible experimentation with
this class of information-theoretic tools, except in very special cases. We hope our results here will
provide a suitable set of tools to address this gap in the methodology.

One approach to variance reduction is the development of new variational formulas. This direction
is especially fruitful for the estimation of mutual information van den Oord et al. (2018); Cheng
et al. (2020). Another approach is to regularize the divergence by restricting the function space of
the variational formula. Indeed, instead of directly attacking the variance issue, the function space
of the variational formula can be restricted, for instance, by bounding the test functions or more
appropriately by bounding the derivative of the test functions. The latter regularization leads to
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Lipschitz continuous function spaces which are also foundational to integral probability metrics
(IPMs) and more specifically to the duality property of the Wasserstein metric. In this paper we
combine the above two approaches, first deriving a new variational representation of the classical
Rényi divergences and then regularizing via an infimal-convolution as follows

RΓ,IC
α (P∥Q) := inf

η
{Rα(P∥η) +WΓ(Q, η)} , (1)

where P and Q are the probability distributions being compared, the infimum is over the space of
probability measures, Rα is the classical Rényi divergence, and WΓ is the IPM corresponding to the
chosen regularizing function space, Γ.

The new family of regularized Rényi divergences that are developed here address the risk-sensitivity
issue inherent in prior approaches. More specifically, our contributions are as follows.

• We define a new family of function-space regularized Rényi divergences via the infimal
convolution operator between the classical Rényi divergence and an arbitrary IPM (1). The
new regularized Rényi divergences inherit their function space from the IPM. For instance,
they inherit mass transport properties when one regularizes using the 1-Wasserstein metric.

• We derive a dual variational representation (11) of the regularized Rényi divergences which
avoids risk-sensitive terms and can therefore be used to construct lower-variance statistical
estimators.

• We prove a series of properties for the new object: (a) the divergence property, (b) being
bounded by the minimum of the Rényi divergence and IPM, thus allowing for the comparison
of non-absolutely continuous distributions, (c) limits as α→ 1 from both left and right, (d)
regimes in which the limiting cases Rα(P∥Q) and WΓ(Q,P ) are recovered.

• We propose a rescaled version of the regularized Rényi divergences (16) which lead to a new
variational formula for the worst-case regret (i.e., α→ ∞). This new variational formula
does not involve the essential supremum of the density ratio as in the classical definition of
worst-case regret, thereby avoiding risk-sensitive terms.

• We present a series of illustrative examples and counterexamples that further motivate the
proposed definition for the function-space regularized Rényi divergences.

• We present numerical experiments that show (a) that we can estimate the new divergence
for large values of the order α without variance issues and (b) train GANs using regularized
function spaces.

Related work. The order of Rényi divergence controls the weight put on the tails, with the limiting
cases being mode-covering and mode-selection Minka (2005). Rényi divergence estimation is used
in a number of applications, including Sajid et al. (2022) (behavioural sciences), Mironov (2017)
(differential privacy), and Li & Turner (2016) (variational inference); in the latter the variational
formula is an adaptation of the evidence lower bound. Rényi divergences have been also applied in
the training of GANs Bhatia et al. (2021) (loss function for binary classification - discrete case) and
in Pantazis et al. (2022) (continuous case, based on the Rényi-Donsker-Varahdan variational formula
in Birrell et al. (2021)). Rényi divergences with α > 1 are also used in contrastive representation
learning, Lee & Shin (2022), as well as in PAC-Bayesian Bounds, Bégin et al. (2016). In the context
of uncertainty quantification and sensitivity analysis, Rényi divergences provide confidence bounds
for rare events, Atar et al. (2015); Dupuis et al. (2020), with higher rarity corresponding to larger α.

Reducing the variance of divergence estimators through control of the function space have been
recently proposed. In Song & Ermon (2019) an explicit bound to the output restricts the divergence
values. A systematic theoretical framework on how to regularize through the function space has been
developed in Dupuis, Paul & Mao, Yixiang (2022); Birrell et al. (2022a) for the KL and f -divergences.
Despite not covering the Rényi divergence, the theory in Dupuis, Paul & Mao, Yixiang (2022); Birrell
et al. (2022a) and particularly the infimal-convolution formulation clearly inspired the current work.
However, adapting the infimal-convolution method to the Rényi divergence setting requires two new
technical innovations: (a) We develop a new low-variance convex-conjugate variational formula
for the classical Rényi divergence in Theorem 2.1 (see also Fig. 1), allowing us to apply infimal-
convolution tools to develop the new Γ-Rényi divergences in Theorem 3.4. (b) We study the α→ ∞
limit of (a) to obtain a new low-variance variational representation of worst-case regret in Theorem
2.2 and study its Γ-regularization in Theorem 4.5.
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2 NEW VARIATIONAL REPRESENTATIONS OF CLASSICAL RÉNYI DIVERGENCES

The Rényi divergence of order α ∈ (0, 1) ∪ (1,∞) between P and Q, denoted Rα(P∥Q), can be
defined as follows: Let ν be a sigma-finite positive measure with dP = pdν and dQ = qdν. Then

Rα(P∥Q) :=

 1
α(α−1) log

[∫
q>0

pαq1−αdν
] if 0 < α < 1 or

α > 1 and P ≪ Q
,

+∞ if α > 1 and P ̸≪ Q ,

(2)

where P ≪ Q denotes absolute continuity of P with respect to Q. There always exists such a ν (e.g.,
ν = P +Q) and one can show that the definition (2) does not depend on the choice of ν. The Rα
provide a notion of ‘distance’ between P and Q in that they satisfy the divergence property, i.e., they
are non-negative and equal zero iff Q = P . The limit of Rα as α approaches 1 or 0 equals the KL or
reverse KL divergence respectively Van Erven & Harremos (2014).

An alternative representation of Rα, the so-called Rényi-Donsker-Varadhan variational formula, was
derived from (2) in Birrell et al. (2021),

Rα(P∥Q) = sup
ϕ∈Mb(Ω)

{
1

α− 1
log

∫
e(α−1)ϕdP − 1

α
log

∫
eαϕdQ

}
, P,Q ∈ P(Ω) . (3)

Here (Ω,M) denotes a measurable space, Mb(Ω) the space of bounded measurable real-valued
functions on Ω, and P(Ω) is the space of probability measures on Ω. By a change of variables
argument this can be transformed into the following new variational representation; see Theorem A.2
in Appendix A for a proof. We call it the convex-conjugate Rényi variational formula (CC-Rényi).
Theorem 2.1 (Convex-Conjugate Rényi Variational Formula). Let P,Q ∈ P(Ω) and α ∈ (0, 1) ∪
(1,∞). Then

Rα(P∥Q) = sup
g∈Mb(Ω):g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) . (4)

If (Ω,M) is a metric space with the Borel σ-algebra then (4) holds with Mb(Ω) replaced by Cb(Ω),
the space of bounded continuous real-valued functions on Ω.

The representation (4) is of convex-conjugate type, which will be key in our development of function-
space regularized Rényi divergences. It is also of independent interest as it avoids risk-sensitive
terms, unlike (3) which contains cumulant-generating-functions. This makes (4) better behaved in
estimation problems, especially when α > 1; see the example in Section 6.1 below.

We also obtain a new variational formula for worst-case regret, as defined by Van Erven & Harremos
(2014)

D∞(P∥Q) := lim
α→∞

αRα(P∥Q) =

{
log

(
ess supP

dP
dQ

)
, P ≪ Q

∞, P ̸≪ Q .
(5)

In contrast to (5), which requires estimation of the likelihood ratio, the new variational formula (6)
below avoids risk-sensitive terms.
Theorem 2.2 (Worst-case Regret Variational Formula). Let P,Q ∈ P(Ω). Then

D∞(P∥Q) = sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 . (6)

If Ω is a metric space with the Borel σ-algebra then (6) holds with Mb(Ω) replaced by Cb(Ω).

See Theorem A.5 in Appendix A for a proof. Equation (6) is a new result of independent interest
and will also be useful in our study of the α → ∞ limit of the function-space regularized Rényi
divergences that we define in the next section.
Remark 2.3. Alternative variational formulas for D∞ on a finite alphabet were derived in Kurri
et al. (2022).

t
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3 PRIMAL AND DUAL FORMULATIONS OF THE INFIMAL-CONVOLUTION
Γ-RÉNYI DIVERGENCES

We are now ready to define the function-space regularized Rényi divergences and derive their key
properties. In this section, X will denote a compact metric space, P(X) will denote the set of Borel
probability measures onX , andC(X) will denote the space of continuous real-valued functions onX .
We equip C(X) with the supremum norm and recall that the dual space of C(X) is C(X)∗ =M(X),
the space of finite signed Borel measures on X (see the Riesz representation theorem, e.g., Theorem
7.17 in Folland (2013)).
Definition 3.1. Given a test-function space Γ ⊂ C(X), we define the infimal-convolution Γ-Rényi
divergence (i.e., IC-Γ-Rényi divergence) between P,Q ∈ P(X) by

RΓ,IC
α (P∥Q) := inf

η∈P(X)
{Rα(P∥η) +WΓ(Q, η)} , α ∈ (0, 1) ∪ (1,∞) , (7)

where WΓ denotes the Γ-IPM

WΓ(µ, ν) := sup
g∈Γ

{
∫
gdµ−

∫
gdν} , µ, ν ∈M(X) . (8)

Remark 3.2. The classical Rényi divergence is convex in its second argument but not in its first
when α > 1 Van Erven & Harremos (2014). This is the motivation for defining the IC-Γ-Rényi
divergences via an infimal convolution in the second argument of Rα; convex analysis tools will be
critical in deriving properties of RΓ,IC

α below. For α ∈ (0, 1) one can use the identity Rα(P∥Q) =
R1−α(Q∥P ) to rewrite (7) as an infimal convolution in the first argument.

The definition (7) can be thought of as a regularization of the classical Rényi divergence using the
Γ-IPM. For computational purposes it is significantly more efficient to have a dual formulation,
i.e., a representation of RΓ,IC

α in terms of a supremum over a function space. To derive such a
representation we begin with the variational formula for Rα from Theorem 2.1. If we define the
convex mapping ΛPα : C(X) → (−∞,∞],

ΛPα [g] := ∞1g ̸<0 −
(

1

α− 1
log

∫
|g|(α−1)/αdP + α−1(logα+ 1)

)
1g<0 , (9)

then (4) from Theorem 2.1 can be written as a convex conjugate

Rα(P∥Q) = (ΛPα )
∗[Q] := sup

g∈C(X)

{
∫
gdQ− ΛPα [g]} . (10)

One can then use Fenchel-Rockafellar duality to derive a dual formulation of the IC-Γ-Rényi
divergences. To apply this theory we will need to work with spaces of test functions that satisfy the
following admissibility properties. These properties are similar to those used in the construction of
regularized KL and f -divergences in Dupuis, Paul & Mao, Yixiang (2022) and Birrell et al. (2022a).
Definition 3.3. We will call Γ ⊂ C(X) admissible if it is convex and contains the constant functions.
We will call an admissible Γ strictly admissible if there exists a P(X)-determining set Ψ ⊂ C(X)
such that for all ψ ∈ Ψ there exists c ∈ R, ϵ > 0 such that c ± ϵψ ∈ Γ. Recall that Ψ being
P(X)-determining means that for all Q,P ∈ P(X), if

∫
ψdQ =

∫
ψdP for all ψ ∈ Ψ then

Q = P .

Putting the above pieces together one obtains the following variational representation.
Theorem 3.4. Let Γ ⊂ C(X) be admissible, P,Q ∈ P(X), and α ∈ (0, 1) ∪ (1,∞). Then:

1.

RΓ,IC
α (P∥Q) = sup

g∈Γ:g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) .

(11)

2. If (11) is finite then there exists η∗ ∈ P(X) such that

RΓ,IC
α (P∥Q) = inf

η∈P(X)
{Rα(P∥η) +WΓ(Q, η)} = Rα(P∥η∗) +WΓ(Q, η∗) . (12)
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3. RΓ,IC
α (P∥Q) ≤ min{Rα(P∥Q),WΓ(Q,P )}.

4. If Γ is strictly admissible then RΓ,IC
α has the divergence property.

See Theorem B.3 in Appendix B for detailed proofs of these results as well as several additional
properties. We note that there are alternative strategies for proving the variational formula (11)
which make different assumptions; further comments on this can be found in Remark B.4. Important
examples of strictly admissible Γ include the following:

1. Γ = C(X), which leads to the classical Rényi-divergences.

2. Γ = Lip1(X), i.e. all 1-Lipschitz functions. This regularizes the Rényi divergences via the
Wasserstein metric.

3. Γ = {c + g : c ∈ R, g ∈ C(X), |g| ≤ 1}. This regularizes the Rényi divergences via the
total-variation metric.

4. Γ = {c+ g : c ∈ R, g ∈ Lip1(X), |g| ≤ 1}. This regularizes the Rényi divergences via the
Dudley metric.

5. Γ = {c + g : c ∈ R, g ∈ Y : ∥g∥V ≤ 1}, the unit ball in a RKHS V ⊂ C(X). This
regularizes the Rényi divergences via MMD.

In practice, uniform bounds can be implemented using an appropriately chosen final NN layer.
Lipschitz bounds can be implemented using spectral normalization of neural networks Miyato et al.
(2018), or using a soft gradient penalty Gulrajani et al. (2017). The function space Γ for structure-
preserving GANs discussed in the Appendix is implemented using equivariant neural networks,
Birrell et al. (2022b). If Γ is a ball in an RKHS space the implementation is carried out using the
same tools used in, e.g., MMD distances and divergences, Gretton et al. (2012); Glaser et al. (2021).

The IC-Γ-Rényi divergences also satisfy a data processing inequality. See Theorem B.8 in Appendix
B for a proof as well as details regarding the notation.
Theorem 3.5 (Data Processing Inequality). Let α ∈ (0, 1) ∪ (1,∞), Q,P ∈ P(X), and K be a
probability kernel from X to Y such that K[g] ∈ C(X) for all g ∈ C(X,Y ). If Γ ⊂ C(Y ) is
admissible then RΓ,IC

α (K[P ]∥K[Q]) ≤ R
K[Γ],IC
α (P∥Q). If Γ ⊂ C(X × Y ) is admissible then

RΓ,IC
α (P ⊗K∥Q⊗K) ≤ R

K[Γ],IC
α (P∥Q).

If K[Γ] is strictly contained in Γ then the bounds in Theorem 3.5 can be strictly tighter than the
classical data processing inequality Van Erven & Harremos (2014). Data-processing inequalities are
important for constructing symmetry-preserving GANs; see Birrell et al. (2022b) and Section D.1.

4 LIMITS, INTERPOLATIONS, AND REGULARIZED WORST-CASE REGRET

Next we use Theorem 3.4 to compute various limits of the IC-Γ-Rényi divergences. First we show
that they interpolate between Rα and WΓ in the following sense (see Theorem B.5 for a proof).
Theorem 4.1. Let Γ ⊂ C(X) be admissible, P,Q ∈ P(X), and α ∈ (0, 1) ∪ (1,∞).

1. limδ→0+
1
δR

δΓ,IC
α (P∥Q) =WΓ(Q,P ),

2. If Γ is strictly admissible then limL→∞RLΓ,ICα (P∥Q) = Rα(P∥Q).

Now we discuss the limiting behavior in α. These results generalize several properties of the classical
Rényi divergences Van Erven & Harremos (2014). First we consider the α→ 1 limit; see Theorem
B.6 for a proof.
Theorem 4.2. Let Γ ⊂ C(X) be admissible and P,Q ∈ P(X). Then

lim
α→1+

RΓ,IC
α (P∥Q) = inf

η∈P(X):
∃β>1,Rβ(P∥η)<∞

{R(P∥η) +WΓ(Q, η)} , (13)

lim
α→1−

RΓ,IC
α (P∥Q) = inf

η∈P(X)
{R(P∥η) +WΓ(Q, η)} (14)

= sup
g∈Γ:g<0

{
∫
gdQ+

∫
log |g|dP}+ 1 . (15)
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Remark 4.3. When Γ = C(X), changing variables to g = − exp(ϕ− 1) transforms (15) into the
Legendre-transform variational formula for R(P∥Q); see equation (1) in Birrell et al. (2022c) with
f(x) = x log(x). Eq. (14) is an infimal convolution of the reverse KL-divergence, as opposed to the
results in Dupuis, Paul & Mao, Yixiang (2022) which apply to the (forward) KL-divergence.

Function-space regularized worst-case regret. Next we investigate the α → ∞ limit of the
IC-Γ-Rényi divergences, which will lead to the function-space regularized worst-case regret. First
recall that some authors use an alternative definition of the classical Rényi divergences, related
to the one used in this paper by Dα(·∥·) := αRα(·∥·). This alternative definition has the useful
property of being non-decreasing in α; see Van Erven & Harremos (2014). Appropriately rescaled,
the IC-Γ-Rényi divergence also satisfies this property, leading to the following definition.
Definition 4.4. For Γ ⊂ C(X), α ∈ (0, 1) ∪ (1,∞) and P,Q ∈ P(X) we define

DΓ,IC
α (P∥Q) := αRΓ/α,IC

α (P∥Q) . (16)

Note that αRΓ/α,IC
α (P∥Q) is non-decreasing in α; see Lemma B.1 for a proof. We now show that

the divergences DΓ,IC
α are well behaved in the α → ∞ limit, generalizing (5). Taking this limit

provides a definition of function-space regularized worst-case regret, along with the following dual
variational representation.
Theorem 4.5. Let Γ ⊂ C(X) be admissible and P,Q ∈ P(X). Then

DΓ,IC
∞ (P∥Q) := lim

α→∞
DΓ,IC
α (P∥Q) = inf

η∈P (X)
{D∞(P∥η) +WΓ(Q, η)} (17)

= sup
g∈Γ:g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 . (18)

We call DΓ,IC
∞ the infimal-convolution Γ-worst-case regret (i.e., IC-Γ-WCR). The method of proof

of Theorem 4.5 is similar to that of part (1) of Theorem 3.4; see Theorem B.7 in Appendix B for
details. Theorem 4.5 suggests that DΓ,IC

α is the appropriate α-scaling to use when α is large and we
find this to be the case in practice; see the example in Section 6.3.1.

5 ANALYTICAL EXAMPLES AND COUNTEREXAMPLES

In this section we present several analytical examples and counterexamples that illustrate important
properties of the IC-Γ-Rényi divergences and demonstrate weaknesses of other attempts to define
regularized Rényi divergences. In particular, we show that other attempts at regularizing Rényi
divergences fail to inherit important properties from the Γ-IPM. More details on the computations
can be found in Appendix C

Infimal convolution and scaling limits: First we present a simple example that illustrates the infimal
convolution formula and limiting properties from Sections 3 and 4. LetP = δ0,Qx,c = cδ0+(1−c)δx
for c ∈ (0, 1), x > 0, and let Γ = Lip1. Then for L > 0 one can compute

RLΓ,ICα (P∥Qx,c) =


(1− c)Lx , 0 < αLx < 1

α−1 − cLx+ α−1 log(αLx) , 1 ≤ αLx ≤ 1/c

α−1 log(1/c) , αLx > 1/c

. (19)

In particular, it is straightforward to show that RLΓ,ICα (P∥Qx,c) ≤ (1 − c)Lx = WLΓ(Qx,c, P ),
limx→0+ R

LΓ,IC
α (P∥Qx,c) = limx→0+(1 − c)Lx = 0, and limL→∞RLΓ,ICα (P∥Qx,c) =

α log(1/c) = Rα(P∥Qx,c). We can also rewrite this in terms of the solution to the infimal convolu-
tion problem and take the worst-case-regret scaling limit as follows

RLΓ,ICα (P∥Qx,c) =


WLΓ(Qx,c, P ) , 0 < αLx < 1

Rα(P∥Qx,1/(αLx)) +WLΓ(Qx,c, Qx,1/(αLx)) , 1 ≤ αLx ≤ 1/c

Rα(P∥Qx,c) , αLx > 1/c

,

lim
α→∞

αRΓ/α,IC
α (P∥Qx,c) =


WΓ(Qx,c, P ) , 0 < x < 1

D∞(P∥Qx,1/x) +WΓ(Qx,c, Qx,1/x) , 1 ≤ x ≤ 1/c

D∞(P∥Qx,c) , x > 1/c

. (20)
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Γ-Rényi-Donsker-Varadhan counterexample: As an alternative to Definition 3.1, one can attempt to
regularize the Rényi divergences by restricting the test-function space in the variational representation
(3), leading to the Γ-Rényi-Donsker-Varadhan (Γ-Rényi-DV) divergences

RΓ,DV
α (P∥Q) := sup

ϕ∈Γ

{
1

α− 1
log

∫
e(α−1)ϕdP − 1

α
log

∫
eαϕdQ

}
. (21)

The bound log
∫
ecϕdP ≥ c

∫
ϕdP for all ϕ ∈ Γ, c ∈ R implies that RΓ,DV

α ≤ WΓ for α ∈ (0, 1),
making (21) a useful regularization of the Rényi divergences in this case; this utility was demonstrated
in Pantazis et al. (2022), where it was used to construct GANs. However, estimators built from the
representation (21) (i.e., replacing P and Q by empirical measures) are known to be numerically
unstable when α > 1. Below we provide a counterexample showing that, unlike for the IC-Γ-Rényi
divergences, RΓ,DV

α ̸≤WΓ in general when α > 1. We conjecture that this is a key reason for the
instability of Γ-Rényi-Donsker-Varadhan estimators when α > 1.

Let Px,c = cδ0 + (1 − c)δx, Q = δ0 for x > 0, c ∈ (0, 1) and ΓL = LipL. Then for α > 1 we
have RΓL,DV

α (Px,c∥Q) = 1
α−1 log (c+ (1− c) exp((α− 1)Lx)) and WΓL(Px,c, Q) = (1− c)Lx.

Using strict concavity of the logarithm one can then obtain the bound

RΓL,DV
α (Px,c∥Q) > WΓL(Px,c, Q) . (22)

This shows that, when α > 1, Γ-Rényi-DV violates the key property that allows the IC-Γ-Rényi
divergences to inherit properties from the corresponding Γ-IPM. Another alternative is to begin
with (3) and then reduce the test-function space to 1

α log(Γ), where the logarithm is introduced
to eliminate the exponential functions in (21). However, this definition also fails to provide an
appropriate regularized Rényi divergence; in particular, it is incapable of meaningfully comparing
Dirac distributions. See Appendix C.3 for details. These counterexamples lend further credence to
our infimal-convolution based regularization approach (7).

6 NUMERICAL EXPERIMENTS

In this section we present numerical examples that demonstrate the use of the IC-Γ-Rényi divergences
for both estimation and training of GANs (additional examples can be found in Appendix D). All of
the divergences considered in this paper have a variational representation of the form D(P∥Q) =
supg∈ΓH[g;P,Q] for some objective functional H; we use the corresponding estimator

D̂n(P∥Q) := sup
θ∈Θ

H[gθ;Pn, Qn] (23)

where Pn, Qn are n-sample empirical measures and gθ is a family of neural networks (NN) with
parameters θ ∈ Θ. For Lipschitz function spaces we weaken the Lipschitz constraint to a soft 1-sided
gradient penalty (see Section 4.1 of Birrell et al. (2022a)). Optimization is performed using the Adam
optimizer Kingma & Ba (2014). For the infimal convolution divergences we enforce negativity of the
test function (i.e., discriminators) using a final layer having one of the following forms: 1)−abs(x)
or 2) −(1/(1− x)1x<0 + (1 + x)1x≥0). The latter, which we term poly-softplus, is C1 and decays
like O(x−1) as x→ −∞.

6.1 VARIANCE OF RÉNYI ESTIMATORS

As a first example, we compare estimators of the classical Rényi divergences (i.e., without regular-
ization) constructed from DV-Rényi (3) and CC-Rényi (4) in a simple case where the exact Rényi
divergence is known. We let Q and P be 1000-dimensional Gaussians with equal variance and study
Rα(P∥Q) as a function of the separation between their means. The results are shown in Figure 1. We
see that the estimator based on the convex-conjugate Rényi variational formula 4 has smaller variance
and mean-squared error (MSE) that the Rényi-Donsker-Varadhan variational formula 3, with the
difference becoming very large when α≫ 1 or when P and Q are far apart (i.e., when µq is large).
The Rényi-Donsker-Varadhan estimator only works well when µq and α are both not too large, but
even in such cases the convex-conjugate Rényi estimator generally performs better. We conjecture
that this difference is due to the presence of risk-sensitive terms in (3) which were eliminated in
the new representation (4). We note that the NN for the convex-conjugate Rényi estimator used the
poly-softplus final layer, as we found the −abs final layer to result in a significant percentage of
failed runs (i.e., NaN outputs) but this issue did not arise when using poly-softplus. We do not show
results for either DV-WCR or CC-WCR here as the exact divergence is infinite in this example.

7



Published as a conference paper at ICLR 2023

10
-2

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
5

10
10

10
-2

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
5

10
10

Figure 1: Variance and MSE of estimators of the classical Rényi divergence between 1000-
dimensional Gaussians. DV-Rα refers to Rényi divergence estimators built using (3) while CC-Rα
refers to estimators built using our new variational representation (4). We used a NN with one fully
connected layer of 64 nodes, ReLU activations, and a poly-softplus final layer (for CC-Rényi). We
trained for 10000 epochs with a minibatch size of 500. The variance and MSE were computing
using data from 50 independent runs. Note that the CC-Rényi estimator has significantly reduced
variance and MSE compared to the DV-Rényi estimator, even when α is large. Strikingly, the 1-D
case exhibits the same behavior (see Figure 3 in Appendix D.2), demonstrating that the DV-Rényi
estimator is unsuitable even in low dimensions.

6.2 DETECTION OF RARE SUB-POPULATIONS IN SINGLE-CELL BIOLOGICAL DATASETS

A critical task in cancer assessment is the detection of rare sub-populations subsumed in the overall
population of cells. The advent of affordable flow and mass cytometry technologies that perform
single cell measurements opens a new direction for the analysis and comparison of high-dimensional
cell distributions Shahi et al. (2017) via divergence estimation. We consider single cell mass
cytometry measurements on 16 bone marrow protein markers (d = 16) coming from healthy and
disease individuals with acute myeloid leukemia Levine et al. (2015). Following Weber et al. (2019),
we create two datasets: one with only healthy samples and another one with decreasing percentage of
sick cells and compute several divergences. Considering the estimated divergence value as the score
of a binary classifier, we compute the ROC curve and the respective area under the ROC curve (AUC)
for any pair of sample distributions. More specifically, true negatives correspond to the divergence
values between two healthy datasets while true positives correspond to the divergence between a
healthy and a diseased dataset. Thus, the AUC is 1.0 when the divergence estimates are completely
separable while AUC is 0.5 when they completely overlap. Table 1 reports the AUC values for the
scaled IC-Γ-Rényi divergences (16), various levels of rarity and two sample sizes for the datasets.
The best performance in the Rényi family is obtained for α = ∞ using the IC-Γ-WCR variational
formula (18). IC-Γ-WCR also outperforms the Wasserstein distance of first order in both sample size
regimes.

6.3 IC-Γ-RÉNYI GANS

Finally, we study a pair of GAN examples (the second example is presented in Appendix D). Here
the goal is to learn a distribution P using a family of generator distribution Qψ ∼ hψ(X) where X is
a noise source and hψ is a family of neural networks parametrized by ψ ∈ Ψ, i.e., the goal is to solve

inf
ψ∈Ψ

D̂n(P∥Qψ) , (24)

where D̂n is a divergence estimator of the form (23). In particular, we will study the GANs constructed
from the newly introduced IC-Γ-Rényi and IC-Γ-WCR GANs and compare them with Wasserstein
GAN Gulrajani et al. (2017); Arjovsky et al. (2017).
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Table 1: AUC values (higher is better) for several divergences and various levels of rarity. The AUC
values have been averaged from 50 independent runs. The neural discriminator has 2 hidden layers
with 32 units each and ReLU activation. The DΓ,IC

α divergences used the poly-softplus final layer.

Sample size 100K 20K

Probability (%) 0.1 0.2 0.3 0.4 0.5 1.0 10.0 0.1 0.3 0.5 1.0 10.0

D
Γ
,I
C

α

α = 2 0.51 0.55 0.62 0.64 0.70 0.92 1.00 0.48 0.58 0.58 0.60 1.00

α = 5 0.66 0.70 0.71 0.72 0.74 0.80 1.00 0.32 0.37 0.43 0.38 0.91

α = 10 0.57 0.50 0.62 0.64 0.49 0.59 1.00 0.48 0.48 0.43 0.47 0.74

α = ∞ 0.64 0.89 0.96 0.99 1.00 1.00 1.00 0.58 0.71 0.79 0.91 1.00

Wasserstein 0.63 0.58 0.58 0.51 0.57 0.55 1.00 0.46 0.40 0.45 0.40 1.00

6.3.1 CIFAR-10

In Figure 2 we demonstrate improved performance of the IC-Γ-Rényi and IC-Γ-WCR GANs, as com-
pared to Wasserstein GAN with gradient penalty (WGAN-GP), on the CIFAR-10 dataset Krizhevsky
et al. (2009). The IC GANs also outperform Rényi-DV GAN (21), as the latter is highly unstable
when α > 1 and so the training generally encounters NaN after a small number of training epochs
(hence we omit those results from the figure). We use the same ResNet neural network architecture
as in (Gulrajani et al., 2017, Appendix F) and focus on evaluating the effect of different divergences.
Here we let Γ be the set of 1-Lipschitz functions, implement via a gradient penalty. Note that DΓ,IC

∞
performs significantly better than RΓ,IC

α with large α, and the rescaled DΓ,IC
α -GAN performs better

that RΓ,IC
α -GAN when α is large.
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Figure 2: Comparison between IC-Γ-Rényi GAN, IC-Γ-WCR GAN, and WGAN-GP (both 1 and
2-sided) on the CIFAR-10 dataset. Here we plot the inception score as a function of the number
of training epochs (moving average over the last 5 data points, with results averaged over 5 runs).
We also show the averaged final FID score in the legend, computed using 50000 samples from both
P and Q. For the IC GANs we enforce negativity of the discriminator by using a final layer equal
to −abs. The GANs were trained using the Adam optimizer with an initial learning rate of 0.0002.
The left pane shows that the IC-Γ-Rényi GANs outperform WGAN while the right pane shows that
GANs based on the rescaled DΓ,IC

α divergences (16) perform better when α is large, including in the
α→ ∞ limit, i.e., IC-Γ-WCR (17). In both cases the IC GANs outperform the Γ-Rényi-DV GANs
with α > 1 (21); the latter fail to converge due to the presence of risk-sensitive terms.
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A DERIVATION OF VARIATIONAL FORMULAS FOR THE CLASSICAL RÉNYI
DIVERGENCES

In this appendix we provide several variational formulas for the classical Rényi divergences, some of
which are new. In the following we let (Ω,M) denote a measurable space, M(Ω) be the space of
measurable real-valued functions on Ω, Mb(Ω) the subspace of bounded functions, and P(Ω) will
be the space of probability measures on Ω.

First we recall the Rényi-Donsker-Varadhan variational formula derived in Birrell et al. (2021). This
is a generalization of the Donsker-Varadhan variational representation of the KL divergence.
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Theorem A.1 (Rényi-Donsker-Varadhan Variational Formula). Let P and Q be probability measures
on (Ω,M) and α ∈ R, α ̸= 0, 1. Then for any set of functions, Φ, with Mb(Ω) ⊂ Φ ⊂ M(Ω) we
have

Rα(P∥Q) = sup
ϕ∈Φ

{
1

α− 1
log

∫
e(α−1)ϕdP − 1

α
log

∫
eαϕdQ

}
, (25)

where we interpret ∞−∞ ≡ −∞ and −∞+∞ ≡ −∞.

If in addition (Ω,M) is a metric space with the Borel σ-algebra then (25) holds for all Φ that
satisfy Lipb(Ω) ⊂ Φ ⊂ M(Ω), where Lipb(Ω) is the space of bounded Lipschitz functions on Ω (i.e.,
Lipschitz for any Lipschitz constant L ∈ (0,∞)).

Using Theorem A.1 we can derive a new variational representation that takes the form of a convex
conjugate.
Theorem A.2 (Convex-Conjugate Rényi Variational Formula). Let P,Q ∈ P(Ω) and α ∈ (0, 1) ∪
(1,∞). Then

Rα(P∥Q) = sup
g∈Mb(Ω):g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) . (26)

If (Ω,M) is a metric space with the Borel σ-algebra then (26) holds with Mb(Ω) replaced by Cb(Ω),
the space of bounded continuous real-valued functions on Ω.

Proof. Let Φ = {α−1 log(−h) : h ∈ Mb(Ω), h < 0}. We have Mb(Ω) ⊂ Φ ⊂ M(Ω), hence
Theorem A.1 implies

Rα(P∥Q) = sup
ϕ∈Φ

{
1

α− 1
log

∫
e(α−1)ϕdP − 1

α
log

∫
eαϕdQ

}
(27)

= sup
h∈Mb(Ω):h<0

{
1

α− 1
log

∫
e(α−1)(α−1 log(−h))dP − 1

α
log

∫
eα(α

−1 log(−h))dQ

}
= sup
h∈Mb(Ω):h<0

{
1

α− 1
log

∫
|h|(α−1)/αdP − 1

α
log

∫
(−h)dQ

}
.

Note that the second term is finite but the first term is possibly infinite when α ∈ (0, 1). Next use the
identity

log(c) = inf
z∈R

{z − 1 + ce−z} , c ∈ (0,∞) (28)

in the second term to write

Rα(P∥Q) = sup
h∈Mb(Ω):h<0

{
1

α− 1
log

∫
|h|(α−1)/αdP − 1

α
inf
z∈R

{z − 1 + e−z
∫

(−h)dQ}
}
(29)

=sup
z∈R

sup
h∈Mb(Ω):h<0

{
1

α− 1
log

∫
|h|(α−1)/αdP +

z − 1

α
+ α−1e−z

∫
hdQ

}
.

For each z ∈ R make the change variables h = αezg, g ∈ Mb(Ω), g < 0 in the inner supremum to
derive

Rα(P∥Q) = sup
z∈R

sup
g∈Mb(Ω):g<0

{
1

α− 1
log

∫
|αezg|(α−1)/αdP − z − 1

α
+ α−1e−z

∫
αezgdQ

}
(30)

=sup
z∈R

sup
g∈Mb(Ω):g<0

{
1

α− 1
log

∫
|g|(α−1)/αdP + (α−1(logα+ 1) +

∫
gdQ)

}
= sup
g∈Mb(Ω):g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) .

This completes the proof of (26). The proof of the metric-space version in nearly identical.
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Remark A.3. To reverse the above derivation and obtain (25) (with Φ = {ϕ ∈ M(Ω) :
ϕ is bounded above}) from (26), change variables g 7→ −c exp(αϕ), ϕ ∈ Φ, c > 0 in (26) and
then maximize over c.
Corollary A.4. If X is a compact metric space with the Borel σ-algebra, P,Q ∈ P(X), and
α ∈ (0, 1) ∪ (1,∞) then Cb(X) = C(X) and so

Rα(P∥Q) = sup
g∈C(X):g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) . (31)

Next we derive a variational formula for the worst case regret, defined by

D∞(P∥Q) := lim
α→∞

αRα(P∥Q) . (32)

Theorem A.5. Let P,Q ∈ P(Ω). Then

D∞(P∥Q) = sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 . (33)

If Ω is a metric space with the Borel σ-algebra then (33) holds with Mb(Ω) replaced by Cb(Ω).
Remark A.6. Note that on a compact metric space, the space of bounded continuous functions is the
same as the space of all continuous functions.

Proof. Recall Van Erven & Harremos (2014)

D∞(P∥Q) =

{
log

(
ess supP

dP
dQ

)
, P ≪ Q

∞, P ̸≪ Q .
(34)

First suppose P ̸≪ Q. Then there exists a measurable set A with Q(A) = 0 and P (A) > 0. Let
gn = −n1A − 1Ac . Then

sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 ≥

∫
gndQ+ log

∫
|gn|dP + 1 (35)

=− nQ(A)−Q(Ac) + log(nP (A) + P (Ac)) + 1 = log(nP (A) + P (Ac)) → ∞ (36)

as n→ ∞. Therefore

sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 = ∞ = D∞(P∥Q) . (37)

Now suppose P ≪ Q. Using the definition (32) along with Theorem A.2 and changing variables
g = g̃/α we have

D∞(P∥Q) = lim
α→∞

αRα(P∥Q) (38)

= lim
α→∞

[
sup

g∈Mb(Ω):g<0

{∫
αgdQ+

α

α− 1
log

∫
|g|(α−1)/αdP

}
+ (logα+ 1)

]

≥ lim
α→∞

[∫
g̃dQ+

α

α− 1
log

∫
|g̃/α|(α−1)/αdP + (logα+ 1)

]
= lim
α→∞

[∫
g̃dQ+

α

α− 1
log

∫
|g̃|(α−1)/αdP + 1

]
=

∫
g̃dQ+ log

∫
|g̃|dP + 1 for all g̃ ∈ Mb(Ω), g̃ < 0.

Here we used the dominated convergence theorem to evaluate the limit. Hence, by maximizing over
g̃ we obtain

D∞(P∥Q) ≥ sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 . (39)

14
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To prove the reverse inequality, take any r ∈ (0, ess supP dP/dQ). By definition of the essential
supremum we have P (dP/dQ > r) > 0. We also have the bound

P (dP/dQ > r) =

∫
1dP/dQ>r

dP

dQ
dQ ≥

∫
1dP/dQ>rrdQ = rQ(dP/dQ > r) . (40)

For c, ϵ > 0 define gc,ϵ = −c1dP/dQ>r − ϵ. These satisfy gc,ϵ ∈ Mb(Ω), gc,ϵ < 0 and so

sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 ≥

∫
gc,ϵdQ+ log

∫
|gc,ϵ|dP + 1 (41)

=− cQ(dP/dQ > r)− ϵ+ log(cP (dP/dQ > r) + ϵ) + 1

≥− cP (dP/dQ > r)/r − ϵ+ log(cP (dP/dQ > r) + ϵ) + 1 .

Letting ϵ→ 0+ we find

sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 ≥− cP (dP/dQ > r)/r + log(cP (dP/dQ > r)) + 1

(42)

for all c > 0. We have P (dP/dQ > r) > 0, hence by maximizing over c > 0 and changing variables
to z = cP (dP/dQ > r) we obtain

sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 ≥ sup

z>0
{−z/r + log(z) + 1} = log(r) . (43)

This holds for all r < ess supP dP/dQ, therefore we can take r ↗ ess supP dP/dQ and use (34) to
conclude

sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 ≥ log(ess supP dP/dQ) = D∞(P∥Q) . (44)

Combining this with (39) completes the proof of (33).

Now suppose Ω is a metric space. We clearly have

D∞(P∥Q) = sup
g∈Mb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 (45)

≥ sup
g∈Cb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 .

To prove the reverse inequality, take any g ∈ Mb(Ω) with g < 0. By Lusin’s theorem, for all ϵ > 0
there exists a closed set Eϵ and hϵ ∈ Cb(Ω) such that P (Ecϵ ) ≤ ϵ, Q(Ecϵ ) ≤ ϵ, hϵ|Eϵ

= g, and
inf g ≤ hϵ ≤ 0. Define gϵ = hϵ − ϵ. Then gϵ < 0, gϵ ∈ Cb(Ω) and we have

sup
g∈Cb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
≥

∫
gϵdQ+ log

∫
|gϵ|dP (46)

=

∫
gdQ+

∫
(hϵ − g)1Ec

ϵ
dQ− ϵ+ log(

∫
|g|dP +

∫
(|hϵ| − |g|)1Ec

ϵ
dP + ϵ)

≥
∫
gdQ− (sup g − inf g)Q(Ecϵ )− ϵ+ log(

∫
|g|dP + inf gP (Ecϵ ) + ϵ)

≥
∫
gdQ− (sup g − inf g)ϵ− ϵ+ log(

∫
|g|dP + inf gϵ+ ϵ) .

Taking the limit ϵ→ 0+ we therefore obtain

sup
g∈Cb(Ω):g<0

{∫
gdQ+ log

∫
|g|dP

}
≥

∫
gdQ+ log

∫
|g|dP . (47)

This holds for all g ∈ Mb(Ω) with g < 0, hence by taking the supremum over g we obtain the
reverse inequality to (45). This completes the proof.
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B PROOFS

In this appendix we provide a number of proofs that were omitted from the main text. Recall that X
denotes a compact metric space.

Lemma B.1. Let Γ ⊂ C(X) and P,Q ∈ P(X). Then αRΓ/α,IC
α (P∥Q) is non-decreasing in

α ∈ (0, 1) ∪ (1,∞). If 0 ∈ Γ then αRΓ,IC
α (P∥Q) is also non-decreasing.

Proof. If 0 ∈ Γ then WΓ ≥ 0, hence

αRΓ,IC
α (P∥Q) = inf

η∈P(X)
{αRα(P∥η) + αWΓ(Q, η)} (48)

where both α 7→ αRα(P∥η) and α 7→ αWΓ(Q, η) are non-decreasing. Therefore the infimum is as
well. The proof for α 7→ αR

Γ/α,IC
α (P∥Q) is similar, though it doesn’t require the assumption 0 ∈ Γ

due to the identity αWΓ/α =WΓ.

Next we prove a key lemma that is used in our main result. First recall the definition

ΛPα [g] := ∞1g ̸<0 −
(

1

α− 1
log

∫
|g|(α−1)/αdP + α−1(logα+ 1)

)
1g<0 , g ∈ C(X). (49)

Lemma B.2. ΛPα is convex and is continuous on {g ∈ C(X) : g < 0}, an open subset of C(X).

Proof. First we prove convexity. Let g0, g1 ∈ {C(X) : g < 0} and λ ∈ (0, 1). For α ∈ (0, 1) we
can use the inequality λa+ (1− λ)b ≥ aλb1−λ for all a, b > 0 to compute

− 1

α− 1
log

∫
|λg1 + (1− λ)g0|(α−1)/αdP ≤ − 1

α− 1
log

∫
(|g1|λ|g0|1−λ)(α−1)/αdP . (50)

Using Hölder’s inequality with exponents p = 1/λ, q = 1/(1− λ) we then obtain

− 1

α− 1
log

∫
(|g1|λ|g0|1−λ)(α−1)/αdP (51)

≤− 1

α− 1
log

(∫
|g1|(α−1)/αdPλ

∫
|g0|(α−1)/αdP 1−λ

)
=λ

(
− 1

α− 1
log

∫
|g1|(α−1)/αdP

)
+ (1− λ)

(
− 1

α− 1
log

∫
|g0|(α−1)/αdP

)
.

Therefore g 7→ − 1
α−1 log

∫
|g|(α−1)/αdP is convex on {g < 0}. This proves ΛPα is convex when

α ∈ (0, 1).

Now suppose α > 1. The map t > 0, t 7→ t(α−1)/α is concave and − log is decreasing and convex,
hence

− 1

α− 1
log

∫
|λg1 + (1− λ)g0|(α−1)/αdP (52)

≤− 1

α− 1
log

(
λ

∫
|g1|(α−1)/αdP + (1− λ)

∫
|g0|(α−1)/αdP

)
≤λ

(
− 1

α− 1
log

∫
|g1|(α−1)/αdP

)
+ (1− λ)

(
− 1

α− 1
log

∫
|g0|(α−1)/αdP

)
.

This proves that ΛPα is also convex when α > 1. Openness of {g < 0} follows from the assumption
that X is compact and so any strictly negative continuous function is strictly bounded away from
zero. Continuity on {g < 0} then follows from the dominated convergence theorem.

Now we prove our main theorem, deriving the dual variational formula and other important properties
of the IC-Γ-Rényi divergences.
Theorem B.3. Let Γ ⊂ C(X) be admissible, P,Q ∈ P(X), and α ∈ (0, 1) ∪ (1,∞). Then:
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1.

RΓ,IC
α (P∥Q) = sup

g∈Γ:g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) .

(53)

2. If (53) is finite then there exists η∗ ∈ P(X) such that

RΓ,IC
α (P∥Q) = inf

η∈P(X)
{Rα(P∥η) +WΓ(Q, η)} = Rα(P∥η∗) +WΓ(Q, η∗) . (54)

3. RΓ,IC
α (P∥Q) is convex in Q. If α ∈ (0, 1) then RΓ,IC

α (P∥Q) is jointly convex in (P,Q).

4. (P,Q) 7→ RΓ,IC
α (P∥Q) is lower semicontinuous.

5. RΓ,IC
α (P∥Q) ≥ 0 with equality if P = Q.

6. RΓ,IC
α (P∥Q) ≤ min{Rα(P∥Q),WΓ(Q,P )}.

7. If Γ is strictly admissible then RΓ,IC
α has the divergence property.

Proof. 1. Define F,G : C(X) → (−∞,∞] by F = ΛPα and G[g] = ∞1g ̸∈Γ −EQ[g]. Using
the assumptions on Γ along with Lemma B.2 we see that F and G are convex, F [−1] <∞,
G[−1] <∞, and F is continuous at −1. Therefore Fenchel-Rockafellar duality (see, e.g.,
Theorem 4.4.3 in Borwein & Zhu (2006)) along with the identity C(X)∗ =M(X) gives

sup
g∈C(X)

{−F [g]−G[g]} = inf
η∈M(X)

{F ∗[η] +G∗[−η]} , (55)

and if either side is finite then the infimum on the right hand side is achieved at some
η∗ ∈M(X). Using the definitions, we can rewrite the left hand side as follow

sup
g∈C(X)

{−F [g]−G[g]} (56)

= sup
g∈Γ:g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) .

We can also compute

G∗[−η] = sup
g∈C(X)

{−
∫
gdη − (∞1g ̸∈Γ − EQ[g])} =WΓ(Q, η) . (57)

Therefore

inf
η∈M(X)

{(ΛPα )∗[η] +WΓ(Q, η)} (58)

= sup
g∈Γ:g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) .

Next we show that the infimum over M(X) can be restricted to P(X). First suppose
η ∈ M(X) with η(X) ̸= 1. Then, using the assumption that Γ contains the constant
functions, we have

WΓ(Q, η) ≥ EQ[±n]−
∫

±ndη = ±n(1− η(X)) → ∞ (59)

as n→ ∞ (for appropriate choice of sign). Therefore WΓ(Q, η) = ∞ if η(X) ̸= 1. This
implies that the infimum can be restricted to {η ∈M(X) : η(X) = 1}.

Now suppose η ∈ M(X) is not positive. Take a measurable set A with η(A) < 0. By
Lusin’s theorem, for all ϵ > 0 there exists a closed set Eϵ ⊂ X and a continuous function
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gϵ ∈ C(X) such that |η|(Ecϵ ) < ϵ, 0 ≤ gϵ ≤ 1, and gϵ|Eϵ
= 1A. Define gn,ϵ = −ngϵ − 1,

n ∈ Z+. Then gn,ϵ ∈ {g ∈ C(X) : g < 0}, hence

(ΛPα )
∗[η] ≥

∫
gn,ϵdη +

1

α− 1
log

∫
|gn,ϵ|(α−1)/αdP + α−1(logα+ 1) (60)

=− nη(A) + nη(A ∩ Ecϵ )− n

∫
gϵ1Ec

ϵ
dη − η(X)

+
1

α− 1
log

∫
|ngϵ + 1|(α−1)/αdP + α−1(logα+ 1)

≥n(|η(A)| − 2ϵ)− η(X) +
1

α− 1
log

∫
|ngϵ + 1|(α−1)/αdP + α−1(logα+ 1) .

If α > 1 then log
∫
|ngϵ + 1|(α−1)/αdP ≥ 0 and if α ∈ (0, 1) then log

∫
|ngϵ +

1|(α−1)/αdP ≤ 0. In either case we have 1
α−1 log

∫
|ngϵ + 1|(α−1)/αdP ≥ 0 and so

(ΛPα )
∗[η] ≥n(|η(A)| − 2ϵ)− η(X) + α−1(logα+ 1) . (61)

By choosing ϵ < |η(A)|/2 and taking n → ∞ we see that (ΛPα )
∗[η] = ∞ whenever

η ∈ M(X) is not positive. Therefore the infimum can further be restricted to positive
measures. Combining these results we find

sup
g∈Γ:g<0

{∫
gdQ+

1

α− 1
log

∫
|g|(α−1)/αdP

}
+ α−1(logα+ 1) (62)

= inf
η∈P(X)

{(ΛPα )∗[η] +WΓ(Q, η)} .

For η ∈ P(X), equation (10) implies (ΛPα )
∗[η] = Rα(P∥η). This completes the proof.

2. The existence of a minimizer follows from Fenchel-Rockafellar duality; again, see Theorem
4.4.3 in Borwein & Zhu (2006).

3. This follows from (53) together with the fact that the supremum of convex functions is
convex and y 7→ 1

α−1 log(y) is convex when α ∈ (0, 1).

4. Compactness of X implies that g and |g|(α−1)/α are bounded and continuous whenever
g ∈ Γ satisfies g < 0. Therefore Q→

∫
gdQ and P →

∫
|g|(α−1)/αdP are continuous in

the weak topology on P(X). Therefore the objective functional in (53) is continuous in
(P,Q). The supremum is therefore lower semicontinuous.

5. This easily follows from the definition (7).

6. Rα is a divergence, hence is non-negative. Γ contains the constant functions, henceWΓ ≥ 0.
Therefore RΓ,IC

α ≥ 0. If Q = P then 0 ≤ RΓ,IC
α (P∥Q) ≤ Rα(P∥P ) +WΓ(P, P ) = 0,

hence RΓ,IC
α (P∥Q) = 0.

7. Suppose Γ is strictly admissible. Due to part 5 of this theorem, we only need to show that
if RΓ,IC

α (P∥Q) = 0 then P = Q. If RΓ,IC
α (P∥Q) = 0 then part 2 implies there exists

η∗ ∈ P(X) such that

0 = Rα(P∥η∗) +WΓ(Q, η∗) . (63)

Both terms are non-negative, hence Rα(P∥η∗) = 0 =WΓ(Q, η∗). Rα has the divergence
property, hence η∗ = P . So WΓ(Q,P ) = 0. Therefore 0 ≥

∫
gdQ−

∫
gdP for all g ∈ Γ.

Let Ψ be as in the definition of strict admissibility and let ψ ∈ Ψ. There exists c ∈ R, ϵ > 0
such that c± ϵψ ∈ Γ and so 0 ≥ ±ϵ(

∫
ψdQ−

∫
ψdP ). Therefore

∫
ψdQ =

∫
ψdP for all

ψ ∈ Ψ. Ψ is P(X)-determining, hence Q = P .

Remark B.4. The Fenchel-Rockafellar Theorem applies under two different sets of assumptions: the
first assumes both mappings are lower semicontinuous (LSC) while the second applies when one
mapping is continuous at a point where both are finite. The mapping ΛPα , as defined by (49) and
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appearing in (10), is not LSC but it is continuous on its domain, hence we used the second version
of Fenchel-Rockafellar in our proof of Theorem B.3. For α > 1 one could alternatively redefine
ΛPα along the boundary of {g < 0} to make it LSC while still maintaining the relation (10) and
thereby utilize the first version of Fenchel-Rockafellar. This alternative approach is also amenable to
extending the theorem to non-compact spaces, using the methods from Dupuis, Paul & Mao, Yixiang
(2022); Birrell et al. (2022a). However, these methods do not apply to α ∈ (0, 1). With this in mind,
in order to provide a simple unified treatment of all α ∈ (0, 1) ∪ (1,∞) we structured our proof
around the second version of Fenchel-Rockafellar.

Despite the fact that ΛPα is not LSC, the Fenchel-Rockafellar Theorem does imply that convex duality
holds at all points of continuity in the domain, i.e., one has

ΛPα [g] = sup
η∈M(X)

{
∫
gdη −Rα(P∥η)} for all g < 0 , (64)

but this duality formula doesn’t necessarily hold if g ̸< 0. Here, Rα(P∥η) for general η ∈M(X) is
defined via the variational formula

Rα(P∥η) := (ΛPα )
∗[η] = sup

g∈C(X)

{
∫
gdη − ΛPα [g]} (65)

and one can rewrite this in terms of the classical Rényi divergence as follows

Rα(P∥η) =

{
∞ if η ̸≥ 0 or η = 0 ,

Rα(P∥ η
∥η∥ )−

1
α log ∥η∥ if η is a nonzero positive measure.

(66)

Next we prove the limiting results from Theorem 4.1.
Theorem B.5. Let Γ ⊂ C(X) be admissible, P,Q ∈ P(X), and α ∈ (0, 1) ∪ (1,∞). Then

lim
δ→0+

1

δ
RδΓ,ICα (P∥Q) =WΓ(Q,P ) (67)

and if Γ is strictly admissible we have

lim
L→∞

RLΓ,ICα (P∥Q) = Rα(P∥Q) . (68)

Proof. It is straightforward to show that the scaled function spaces are admissible and W cΓ = cWΓ

for all c > 0. First we prove (67). From the definition 7 we have

δ−1RδΓ,ICα (P∥Q) = inf
η∈P(X)

{δ−1Rα(P∥η) +WΓ(Q, η)} ≤WΓ(Q,P ) (69)

and so δ−1RδΓ,ICα (P∥Q) is non-increasing in δ. Therefore

lim
δ→0+

δ−1RδΓ,ICα (P∥Q) = sup
δ>0

δ−1RδΓ,ICα (P∥Q) (70)

and

lim
δ→0+

δ−1RδΓ,ICα (P∥Q) ≤WΓ(Q,P ) . (71)

We will assume this inequality is strict and derive a contradiction. This assumption, together with
(70), implies RδΓ,ICα (P∥Q) <∞ for all δ > 0. Part (2) of Theorem 3.4 then implies the existence of
η∗,δ ∈ P(X) such that

δ−1RδΓ,ICα (P∥Q) = δ−1Rα(P∥η∗,δ) +WΓ(Q, η∗,δ) ≥WΓ(Q, η∗,δ) . (72)

Take a sequence δn → 0+. We have assumed X is compact, hence P(X) is also compact and so
there exists a weakly convergent subsequence η∗,δnj

→ η∗. From the variational formulas (25) and
(8) we see that Rα(P∥·) and WΓ(Q, ·) are lower semicontinuous, hence lim infjW

Γ(Q, η∗,δnj
) ≥

WΓ(Q, η∗) and

Rα(P∥η∗) ≤ lim inf
j

Rα(P∥η∗,δnj
) ≤ lim inf

j
δnj (δ

−1
nj
Rα(P∥η∗,δnj

) +WΓ(Q, η∗,δnj
)) (73)

= lim inf
j

δnj (δ
−1
nj
R
δnj

Γ,IC
α (P∥Q)) = 0 , (74)
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where the last equality follows from the assumed strictness of the inequality (70). Therefore the
divergence property for the classical Rényi divergences implies Rα(P∥η∗) = 0 and P = η∗.
Combining the above results we obtain

lim
δ→0+

δ−1RδΓ,ICα (P∥Q) = lim
j→∞

δ−1
nj
R
δnj

Γ,IC
α (P∥Q) ≥ lim inf

j
WΓ(Q, η∗,δnj

) (75)

≥WΓ(Q, η∗) =WΓ(Q,P ) .

This contradicts (71) and therefore we have proven the equality (67).

Now we assume Γ is strictly admissible and will prove (68) via similar reasoning. From the definition
7 we see that

RLΓ,ICα (P∥Q) = inf
η∈P(X)

{Rα(P∥η) + LWΓ(Q, η)} ≤ Rα(P∥Q) (76)

and RLΓ,ICα is non-decreasing in L. Hence limL→∞RLΓ,ICα (P∥Q) = supL>0R
LΓ,IC
α (P∥Q) and

lim
L→∞

RLΓ,ICα (P∥Q) ≤ Rα(P∥Q) . (77)

Suppose this inequality is strict. Then RLΓ,ICα (P∥Q) < ∞ for all L and we can use part (2) of
Theorem 3.4 to conclude there exists η∗,L ∈ P(X) such that

RLΓ,ICα (P∥Q) = Rα(P∥η∗,L) + LWΓ(Q, η∗,L) . (78)
Take Ln → ∞. Compactness of P(X) implies the existence of a weakly convergent subse-
quence η∗,j := η∗,Lnj

→ η∗ ∈ P(X). Lower semicontinuity of Rα(P∥·) and WΓ(Q, ·) imply
lim infj Rα(P∥η∗,j) ≥ Rα(P∥η∗) and

WΓ(Q, η∗) ≤ lim inf
j

WΓ(Q, η∗,j) = lim inf
j

L−1
nj
WLnj

Γ(Q, η∗,j) (79)

≤ lim inf
j

L−1
nj
R
Lnj

Γ,IC
α (P∥Q) = 0 ,

where the last equality follows from the assumed strictness of the inequality (77). Therefore
WΓ(Q, η∗) = 0. Γ is strictly admissible, hence Q = η∗ (see the proof of part (7) of Theorem
3.4). Combining these results we see that

lim
L→∞

RLΓ,ICα (P∥Q) = lim
j
R
Lnj

Γ,IC
α (P∥Q) = lim

j
(Rα(P∥η∗,Lnj

) + Lnj
WΓ(Q, η∗,Lnj

)) (80)

≥ lim inf
j

Rα(P∥η∗,j) ≥ Rα(P∥η∗) = Rα(P∥Q) .

This contradicts the assumed strictness of the inequality (77) and hence (77) is an equality. This
completes the proof.

Next we prove Theorem 4.2, regarding the α→ 1 limit of the IC-Γ-Rényi divergences.
Theorem B.6. Let Γ ⊂ C(X) be admissible and P,Q ∈ P(X). Then

lim
α→1+

RΓ,IC
α (P∥Q) = inf

η∈P(X):
∃β>1,Rβ(P∥η)<∞

{R(P∥η) +WΓ(Q, η)} , (81)

lim
α→1−

RΓ,IC
α (P∥Q) = inf

η∈P(X)
{R(P∥η) +WΓ(Q, η)} (82)

= sup
g∈Γ:g<0

{
∫
gdQ+

∫
log |g|dP}+ 1 . (83)

Proof. Lemma B.1 implies α 7→ αRΓ,IC
α (P∥Q) is non-decreasing on (1,∞), therefore

lim
α→1+

αRΓ,IC
α (P∥Q) = inf

α>1
αRΓ,IC

α (P∥Q) (84)

= inf
α>1

inf
η∈P(X)

{αRα(P∥η) + αWΓ(Q, η)}

= inf
η∈P(X)

inf
α>1

{αRα(P∥η) + αWΓ(Q, η)}

= inf
η∈P(X)

{ lim
α→1+

αRα(P∥η) +WΓ(Q, η)} .
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From Van Erven & Harremos (2014) we have

lim
α→1+

Rα(P∥η) =
{
R(P∥η) if ∃β > 1, Rβ(P∥η) <∞
∞ otherwise

(85)

and so we can conclude

lim
α→1+

RΓ,IC
α (P∥Q) = lim

α→1+
αRΓ,IC

α (P∥Q) = inf
η∈P (X):

∃β>1,Rβ(P∥η)<∞

{R(P∥η) +WΓ(Q, η)} . (86)

This proves (81).

Now we compute the limit as α → 1−. Note that the limit exists due to the fact that α 7→
αRΓ,IC

α (P∥Q) is non-decreasing. From the definition (7), for all η ∈ P(X) we have

lim
α→1−

RΓ,IC
α (P∥Q) ≤ lim

α→1−
Rα(P∥η) +WΓ(Q, η) = R(P∥η) +WΓ(Q, η) . (87)

Here we used the fact that limα→1− Rα(P∥η) = R(P∥η) (see Van Erven & Harremos (2014)).
Maximizing over η then gives

lim
α→1−

RΓ,IC
α (P∥Q) ≤ inf

η∈P(X)
{R(P∥η) +WΓ(Q, η)} . (88)

To prove the reverse inequality, use part 1 of Theorem 3.4 to compute

lim
α→1−

RΓ,IC
α (P∥Q) = lim

α→1−
αRΓ,IC

α (P∥Q) (89)

= lim
α→1−

sup
g∈Γ:g<0

{
α

∫
gdQ+

α

α− 1
log

∫
|g|(α−1)/αdP + logα+ 1

}
≥
∫
gdQ+ lim

α→1−

α

α− 1
log

∫
|g|(α−1)/αdP + 1

=

∫
gdQ+

d

dy
|y=0 log

∫
ey log |g|dP + 1

=

∫
gdQ+

∫
log |g|dP + 1

for all g ∈ Γ, g < 0. Therefore, maximizing over g gives

lim
α→1−

RΓ,IC
α (P∥Q) ≥ sup

g∈Γ:g<0

{∫
gdQ+

∫
log |g|dP

}
+ 1 . (90)

We now use Fenchel-Rockafellar duality (Theorem 4.4.3 in Borwein & Zhu (2006)) to compute the
dual variational representation of the right hand side of (90). Define F,G : C(X) → (−∞,∞] by
F [g] = ∞1g ̸<0 −

∫
log |g|dP and G[g] = ∞1g ̸∈Γ − EQ[g]. It is stratightforward to show that F

and G are convex, F [−1] <∞, G[−1] <∞, and F is continuous at −1. Therefore

inf
g∈C(X)

{F [g] +G[g]} = sup
η∈E∗

{−F ∗(−η)−G∗(η)} , (91)

i.e.

sup
g∈Γ:g<0

{EQ[g] +
∫

log |g|dP} = inf
η∈M(X)

{F ∗(η) +WΓ(Q, η)} , (92)

where F ∗(η) = supg∈C(X):g<0{
∫
gdη +

∫
log |g|dP}. Now we show the infimum can be restricted

to η ∈ P(X): If η(X) ̸= 1 then by taking g = ±n we find

WΓ(Q, η) ≥ n|Q(X)− η(X)| → ∞ (93)

as n→ ∞. Therefore WΓ(Q, η) = ∞ if η(X) ̸= 1.

Now suppose η ∈ M(X) is not positive. Take a measurable set A with η(A) < 0. By Lusin’s
theorem, for all ϵ > 0 there exists a closed set Eϵ ⊂ X and a continuous function gϵ ∈ C(X)
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such that |η|(Ecϵ ) < ϵ, 0 ≤ gϵ ≤ 1, and gϵ|Eϵ
= 1A. Define gn,ϵ = −ngϵ − 1, n ∈ Z+. Then

gn,ϵ ∈ {g ∈ C(X) : g < 0}, hence

F ∗(η) ≥
∫
gn,ϵdη +

∫
log |gn,ϵ|dP (94)

=

∫
−ngϵ − 1dη +

∫
log(ngϵ + 1)dP

≥n(|η(A)| −
∫

(gϵ − 1A)1Ec
ϵ
dη)− η(X)

≥n(|η(A)| − ϵ)− η(X) .

Letting ϵ = |η(A)|/2 and taking n→ ∞ gives F ∗(η) = ∞. Therefore we conclude

inf
η∈M(X)

{F ∗(η) +WΓ(Q, η)} = inf
η∈P(X)

{F ∗(η) +WΓ(Q, η)} . (95)

To evaluate F ∗(η) for η ∈ P(X) we make a change of variables g = − exp(h− 1), h ∈ C(X) to
obtain

F ∗(η) = sup
h∈C(X)

{
∫
hdP −

∫
eh−1dη} − 1 = R(P∥η)− 1 . (96)

Here we used the Legendre-transform variational representation of the KL divergence; see equation
(1) in Birrell et al. (2022c) with f(x) = x log(x). Combining these results we obtain

inf
η∈P(X)

{R(P∥η) +WΓ(Q, η)} ≥ lim
α→1−

RΓ,IC
α (P∥Q) (97)

≥ sup
g∈Γ:g<0

{∫
gdQ+

∫
log |g|dP

}
+ 1

= inf
η∈M(X)

{F ∗(η) +WΓ(Q, η)}+ 1

= inf
η∈P(X)

{R(P∥η) +WΓ(Q, η)} .

This completes the proof.

Now we prove Theorem 4.5, regarding the α→ ∞ limit of the IC-Γ-Rényi divergences.

Theorem B.7. Let Γ ⊂ C(X) be admissible and P,Q ∈ P(X). Then

lim
α→∞

αRΓ/α,IC
α (P∥Q) = inf

η∈P (X)
{D∞(P∥η) +WΓ(Q, η)} (98)

= sup
g∈Γ:g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 . (99)

Proof. First note that

αRΓ/α,IC
α (P∥Q) = inf

η∈P(X)
{αRα(P∥η) +WΓ(Q, η)} (100)

is nondecreasing in α, therefore for η ∈ P(X) we have

lim
α→∞

αRΓ/α,IC
α (P∥Q) = sup

α>1
αRΓ/α,IC

α (P∥Q) (101)

≤ sup
α>1

{αRα(P∥η) +WΓ(Q, η)}

=D∞(P∥η) +WΓ(Q, η) .

Maximizing over η gives the upper bound

lim
α→∞

αRΓ/α,IC
α (P∥Q) ≤ inf

η∈P(X)
{D∞(P∥η) +WΓ(Q, η)} . (102)
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To prove the reverse inequality, use the variational formula (53) to write

αRΓ/α,IC
α (P∥Q) =α sup

g∈Γ:g<0

{∫
g/αdQ+

1

α− 1
log

∫
|g/α|(α−1)/αdP

}
+ logα+ 1 (103)

= sup
g∈Γ:g<0

{∫
gdQ+

α

α− 1
log

∫
|g|(α−1)/αdP

}
+ 1 .

Therefore, for all g ∈ Γ, g < 0 we can use the dominated convergence theorem to compute

lim
α→∞

αRΓ/α,IC
α (P∥Q) ≥

∫
gdQ+ lim

α→∞

α

α− 1
log

∫
|g|(α−1)/αdP + 1 (104)

=

∫
gdQ+ log

∫
|g|dP + 1 .

Maximizing over g then gives

lim
α→∞

αRΓ/α,IC
α (P∥Q) ≥ sup

g∈Γ:g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 . (105)

Next we use the Fenchel-Rockafellar duality to derive a dual formulation of the right hand side of
(105). Define G,F : C(X) → (−∞,∞], G[g] = ∞1g ̸∈Γ − EQ[g], F [g] = ∞1g ̸<0 − log

∫
|g|dP .

It is straightforward to prove that G,F are convex and G[−1] <∞, F [−1] <∞ and F is continuous
at −1. Therefore Fenchel-Rockafellar duality implies

inf
g∈C(X)

{F [g] +G[g]} = sup
η∈C(X)∗

{−F ∗[−η]−G∗[η]} , (106)

i.e.

sup
g∈Γ:g<0

{
EQ[g] + log

∫
|g|dP

}
= inf
η∈M(X)

{F ∗[η] +WΓ(Q, η)} , (107)

where F ∗[η] = supg∈C(X):g<0{
∫
gdη + log

∫
|g|dP}. We now prove that the infimum over M(X)

can be restricted to P(X). First suppose η(X) ̸= 1. Then, because Γ contains the constant functions,
we have

WΓ(Q, η) ≥ ±n(1− η(X)) → ∞ (108)

as n→ ∞ for appropriate choice of sign. Therefore WΓ(Q, η) = ∞ when η(X) ̸= 1.

Now suppose η ∈ M(X) is not positive. Take a measurable set A with η(A) < 0. By Lusin’s
theorem, for all ϵ > 0 there exists a closed set Eϵ ⊂ X and a continuous function gϵ ∈ C(X)
such that |η|(Ecϵ ) < ϵ, 0 ≤ gϵ ≤ 1, and gϵ|Eϵ

= 1A. Define gn,ϵ = −ngϵ − 1, n ∈ Z+. Then
gn,ϵ ∈ {g ∈ C(X) : g < 0}, hence

F ∗[η] ≥
∫
gn,ϵdη + log

∫
|gn,ϵ|dP (109)

=n(|η(A)| −
∫
(gϵ − 1A)1Ec

ϵ
dη)− η(X) + log(n

∫
gϵdP + 1)

≥n(|η(A)| − ϵ)− η(X) .

Letting ϵ = |η(A)|/2 and then taking n → ∞ we see that F ∗[η] = ∞ when η is not positive.
Together these results imply

inf
η∈M(X)

{F ∗[η] +WΓ(Q, η)} = inf
η∈P(X)

{F ∗[η] +WΓ(Q, η)} . (110)

Finally, using Theorem A.5 we see that

F ∗[η] + 1 = sup
g∈C(X):g<0

{
∫
gdη + log

∫
|g|dP}+ 1 = D∞(P∥η) (111)
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for all η ∈ P(X). Combining these results gives

lim
α→∞

αRΓ/α,IC
α (P∥Q) ≥ sup

g∈Γ:g<0

{∫
gdQ+ log

∫
|g|dP

}
+ 1 (112)

= inf
η∈M(X)

{F ∗[η] +WΓ(Q, η)}+ 1

= inf
η∈P(X)

{D∞(P∥η) +WΓ(Q, η)} ≥ lim
α→∞

αRΓ/α,IC
α (P∥Q) .

This completes the proof.

Finally, we prove Theorem 3.5, the data-processing inequality for the IC-Γ-Rényi divergences. First
we introduce the following notation: Let Y be another compact metric space and K be a probability
kernel from X to Y . Given P ∈ P(X) we denote the composition of P with K by P ⊗ K (a
probability measure on X × Y ) and we denote the marginal distribution on Y by K[P ]. Given
g ∈ C(X × Y ) we let K[g] denote the function on X given by x 7→

∫
g(x, y)Kx(dy).

Theorem B.8 (Data Processing Inequality). Let α ∈ (0, 1) ∪ (1,∞), Q,P ∈ P(X), and K be a
probability kernel from X to Y such that K[g] ∈ C(X) for all g ∈ C(X,Y ).

1. If Γ ⊂ C(Y ) is admissible then

RΓ,IC
α (K[P ]∥K[Q]) ≤ RK[Γ],IC

α (P∥Q) . (113)

2. If Γ ⊂ C(X × Y ) is admissible then

RΓ,IC
α (P ⊗K∥Q⊗K) ≤ RK[Γ],IC

α (P∥Q) . (114)

Proof. It is straightforward to show that admissiblility of Γ implies admissibility of K[Γ]. Hence we
can write

RK[Γ],IC
α (P∥Q) = sup

g̃∈K[Γ]:g̃<0

{∫
g̃dQ+

1

α− 1
log

∫
|g̃|(α−1)/αdP

}
+ α−1(logα+ 1) (115)

≥ sup
g∈Γ:g<0

{∫
K[g]dQ+

1

α− 1
log

∫
|K[g]|(α−1)/αdP

}
+ α−1(logα+ 1) .

Using Jensen’s inequality we can derive

|
∫
g(y)Kx(dy)|(α−1)/α ≤

∫
|g(y)|(α−1)/αKx(dy) , α ∈ (0, 1) , (116)

|
∫
g(y)Kx(dy)|(α−1)/α ≥

∫
|g(y)|(α−1)/αKx(dy) , α > 1 . (117)

Combining (115) - (117) with the monotonicity of y 7→ 1
α−1 log(y) we arrive at (113). The proof of

(114) is similar.

C DETAILS ON ANALYTICAL EXAMPLES AND COUNTEREXAMPLES

In this appendix we present several details regarding the analytical examples found in Section 5.

C.1 INFIMAL CONVOLUTION AND SCALING LIMITS

First we present a simple example that illustrates the infimal convolution formula and limiting
properties from Sections 3 and 4.

Let P = δ0, Qx,c = cδ0 + (1 − c)δx for c ∈ (0, 1), x > 0, and let Γ = Lip1. Then for L > 0 one
can compute

Rα(P∥Qx,c) =α−1 log(1/c) , (118)

WLΓ(Qx,c, P ) =(1− c)Lx , (119)
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and

RLΓ,ICα (P∥Qx,c) = sup
a,b<0:|a−b|≤x

{Lca+ L(1− c)b+ α−1 log(L|a|)}+ α−1(logα+ 1) (120)

=sup
a<0

{Lca+ L(1− c)min{x+ a, 0}+ α−1 log(L|a|)}+ α−1(logα+ 1)

=α−1 + α−1 sup
y>0

{
−cy + log y , y ≤ αLx

(1− c)αLx− y + log y , y > αLx

=


(1− c)Lx , 0 < αLx < 1

α−1 − cLx+ α−1 log(αLx) , 1 ≤ αLx ≤ 1/c

α−1 log(1/c) , αLx > 1/c

.

In particular, it is straightforward to show that

RLΓ,ICα (P∥Qx,c) ≤WLΓ(Qx,c, P ) , (121)

lim
x→0+

RLΓ,ICα (P∥Qx,c) = lim
x→0+

(1− c)Lx = 0 , (122)

lim
L→∞

RLΓ,ICα (P∥Qx,c) = α log(1/c) = Rα(P∥Qx,c) . (123)

We can also rewrite this in terms of the solution to the infimal convolution problem as follows

RLΓ,ICα (P∥Qx,c) =


WLΓ(Qx,c, P ) , 0 < αLx < 1

Rα(P∥Qx,1/(αLx)) +WLΓ(Qx,c, Qx,1/(αLx)) , 1 ≤ αLx ≤ 1/c

Rα(P∥Qx,c) , αLx > 1/c

.

(124)

Taking the worst-case-regret scaling limit we find

lim
α→∞

αRΓ/α,IC
α (P∥Qx,c) =


(1− c)x , 0 < x < 1

1− cx+ log(x) , 1 ≤ x ≤ 1/c

log(1/c) , x > 1/c

(125)

=


WΓ(Qx,c, P ) , 0 < x < 1

D∞(P∥Qx,1/x) +WΓ(Qx,c, Qx,1/x) , 1 ≤ x ≤ 1/c

D∞(P∥Qx,c) , x > 1/c

,

where D∞(P∥Qx,c) = log(1/c).

C.2 Γ-RÉNYI-DONSKER-VARADHAN COUNTEREXAMPLE

As an alternative to Definition 3.1, one can attempt to regularize the Rényi divergences by restrict-
ing the test-function space in the variational representation (3), leading to the Γ-Rényi-Donsker-
Varadhan divergences

RΓ,DV
α (P∥Q) := sup

ϕ∈Γ

{
1

α− 1
log

∫
e(α−1)ϕdP − 1

α
log

∫
eαϕdQ

}
. (126)

The bound

log

∫
ecϕdP ≥ c

∫
ϕdP , ϕ ∈ Γ, c ∈ R (127)

implies that RΓ,DV
α ≤ WΓ for α ∈ (0, 1), making (126) a useful regularization of the Rényi

divergences in this case; this utility was demonstrated in Pantazis et al. (2022), where it was used to
construct GANs. However, the representation (126) is known to be poorly behaved when α > 1. Here
we provide a counterexample showing that, unlike for the IC-Γ-Rényi divergences, RΓ,DV

α ̸≤WΓ in
general when α > 1. We conjecture that this fact is the reason for the poor behavior of RΓ,DV

α when
α > 1.
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Let Px,c = cδ0 + (1− c)δx, Q = δ0 for x > 0, c ∈ (0, 1) and ΓL = LipL. Then for α > 1 we have

RΓL,DV
α (Px,c∥Q) = sup

a,b∈R:|a−b|≤Lx

{
1

α− 1
log(c exp((α− 1)a) + (1− c) exp((α− 1)b))− a

}
(128)

=sup
a∈R

{
1

α− 1
log(c exp((α− 1)a) + (1− c) exp((α− 1)(Lx+ a)))− a

}
=

1

α− 1
log (c+ (1− c) exp((α− 1)Lx)) ,

WΓL(Px,c, Q) = sup
|a−b|≤Lx

{ca+ (1− c)b− a} = (1− c)Lx . (129)

Note that the condition α > 1 was crucial in computing the supreumum over b in (128). Using strict
concavity of the logarithm one can then obtain the bound

RΓL,DV
α (Px,c∥Q) > WΓL(Px,c, Q) . (130)

C.3 log-Γ-RÉNYI-DONSKER-VARADHAN COUNTEREXAMPLE

A second alternative to Definition 3.1 is to again start with (3) and then reduce the test-function space
to 1

α log(Γ)

RΓ,log−DV
α (P∥Q) := sup

g∈Γ:g>0

{
1

α− 1
log

∫
g(α−1)/αdP − 1

α
log

∫
gdQ

}
. (131)

However, as we show below, this definition fails to provide a regularized divergence; in particular, it
is incapable of meaningfully comparing Dirac distributions.

Let P = δ0, Qx = δx, x > 0, ΓL = LipL. Then straightforward computations using the variational
definition gives

RΓL,DV−log
α (P∥Qx) =α−1 sup

ϕ∈Γ,ϕ>0
log(ϕ(0)/ϕ(x)) (132)

=α−1 sup
b>0

sup
a>0:b−x≤a≤x+b

log(a/b)

=α−1 sup
b>0

log(1 + x/b) = ∞ .

In contrast we have

RΓL,IC
α (P∥Qx) (133)

= sup
a<0,b<0:b−x≤a≤b+x

{Lb+ α−1 logL+ α−1 log(|a|)}+ α−1(log(α) + 1)

= sup
b<0

{Lb+ 1

α
log(|b− x|)}+ α−1 logL+ α−1(logα+ 1)

=

{
α−1 log(αLx) + α−1 , x ≥ 1/(αL)

Lx , x < 1/(αL)
.

In particular,

RΓL,IC
α (P∥Qx) ≤ Lx =WΓL(P,Qx) , (134)

lim
x→0+

RΓL,IC
α (P∥Qx) = 0 , (135)

showing that RΓL,IC
α is able to capture the convergence of Qx to P as x → 0+, while RΓ,log−DV

α
fails to do so.
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D ADDITIONAL EXAMPLES

D.1 TRAINING SYMMETRY-PRESERVING GANS ON ROTMNIST

When learning a distribution P that is invariant under a symmetry group (e.g., rotation invariance
for images without preferred orientation) one can greatly increase performance by using a GAN that
incorporates the symmetry information into the generator and the discriminator space Γ Dey et al.
(2021). A theory of such symmetry-preserving GANs was developed in Birrell et al. (2022b) and the
new divergences introduced in this paper satisfy the assumptions required to apply that theory. In
Table 2 we demonstrate this effectiveness on the RotMNIST dataset, obtained from randomly rotating
the original MNIST digit dataset LeCun et al. (1998), resulting in an rotation-invariant distribution.
Note that incorporating more symmetry information into the GAN (i.e., progressing down the rows
of the table) results in greatly improved performance, especially in the low data regime.

Table 2: The median of the FIDs (lower is better), calculated every 1,000 generator update for
20,000 iterations, over three independent trials. The number of the training samples used for
experiments varies from 1% (600) to 10% (6,000) of the RotMNIST training set. The NN structure
and hyperparameters are the same as those used in Section 5.4 of Birrell et al. (2022b). Eqv G
(resp. Inv D) denotes that the symmetry information was incorporated into the generator (resp.
discriminator) while CNN implies that a convolutional NN was used (without rotational symmetry).
Σ denotes the rotation group used, where Cn denotes rotations by being integer multiples of 2π/n.

Architecture 1% 5% 10%

R
ev

er
se
R

Γ
,I
C

2

CNN G&D
Eqv G + CNN D, Σ = C4

CNN G + Inv D, Σ = C4

Eqv G + Inv D, Σ = C4

Eqv G + Inv D, Σ = C8

357
464
366
151
114

325
271
321
105
71

298
263
302
89
62

D.2 VARIANCE OF RÉNYI ESTIMATORS

Here we compare the DV-Rényi and CC-Rényi estimators on the Gaussian test problem from Section
6.1, except in lower dimensions (1-D and 100-D). Qualitatively, the behavior is similar. In particular,
it is striking that the DV-Rényi estimator performs extremely poorly even in the 1-D case (see Figure
3) while the CC-Rényi estimator has much lower variance and MSE when the separation between the
distributions becomes larger (i.e., as µq increases).
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Figure 3: Variance and MSE of estimators of the classical Rényi divergence between 1-dimensional
Gaussians. DV-Rα refers to Rényi divergence estimators built using (3) while CC-Rα refers to
estimators built using our new variational representation (4). We used a NN with one fully connected
layer of 64 nodes, ReLU activations, and a poly-softplus final layer (for CC-Rényi). We trained for
10000 epochs with a minibatch size of 500. The variance and MSE were computing using data from
50 independent runs. Note that the CC-Rényi estimator has significantly reduced variance and MSE
compared to the DV-Rényi estimator, even when α is large.
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Figure 4: Variance and MSE of estimators of the classical Rényi divergence between 100-dimensional
Gaussians. DV-Rα refers to Rényi divergence estimators built using (3) while CC-Rα refers to
estimators built using our new variational representation (4). We used a NN with one fully connected
layer of 64 nodes, ReLU activations, and a poly-softplus final layer (for CC-Rényi). We trained for
10000 epochs with a minibatch size of 500. The variance and MSE were computing using data from
50 independent runs. Again, the CC-Rényi estimator has significantly reduced variance and MSE
compared to the DV-Rényi estimator, even when α is large.
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