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Abstract

We present (G Spatial Reasoners, a software
framework to perform spatial reasoning over con-
tinuous variables with generative denoising mod-
els. Denoising generative models have become
the de-facto standard for image generation, due
to their effectiveness in sampling from complex,
high-dimensional distributions. Recently, they
have started being explored in the context of rea-
soning over multiple continuous variables. Pro-
viding infrastructure for generative reasoning with
such models requires a high effort, due to a wide
range of different denoising formulations, sam-
plers, and inference strategies. Our presented
framework aims to facilitate research in this area,
providing easy-to-use interfaces to control vari-
able mapping from arbitrary data domains, gener-
ative model paradigms, and inference strategies.
Spatial Reasoners are openly available online”.

1. Introduction

Denoising generative models, such as DDPM [6],
DDIM [16], Flow Matching [9], or Rectified Flow [10]
have achieved unmatched levels of generation quality, and
the research work in this field only continues to accelerate.
Typically, these models learn to approximate a conditional
data distribution p(« | ¢) and learn to sample from it, where
x represents a variable like images and c can be text or other
conditioning signals.

In the recent year, the trend evolved further and interest
grew in diffusion models that allow sampling over multiple
variables, where each has its own noise level [3; 15; 20].
This scheme allows a wide range of sampling techniques,
such as auto-regressive generation (with planned order),
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generation with infinite horizon, and overlapping genera-
tion, essentially turning denoising models into an engine for
general probabilistic inference. Spatial Reasoning Models
(SRMs) [20] formalized this framework into a general vari-
ant of such models that, given some partitioning of the data
format into variables {x1, ..., x, }, e.g. image patches, video
frames, skeleton joint positions, language tokens, etc., al-
lows sequential conditional inference across these variables
by decomposition using the chain-rule of probability:

n

p(z1, .. 2n) = Hp(xwml{%(j)}?:m) ey
=1

As shown, optimizing the specific inference strategy, such
as order and amount of sequentialization, can significantly
reduce hallucinations in the generations [20].

Currently there are many different diffusion formulations,
noise schedules, samplers, and inference variants. Thorough
analysis and adaption to other data domains requires large-
scale ablations and significant implementation effort. It is
common that in the research field rapid development is pri-
oritized over good separation of concerns, modularity and
readability. This allows quickly testing ideas, but makes it
harder to build on top of them. We believe an intuitive, mod-
ular and expandable framework and project template would
therefore immensely help to further develop the paradigm
of reasoning with denoising generative models.

In this work, we present (©) Spatial Reasoners, a software
framework for performing spatial reasoning over sets of
continuous random variables via multi-noise-level denois-
ing generative models. We hope it will facilitate solving
generative tasks in a wide range of new domains that go
beyond image representations. Spatial Reasoners expose the
following degrees of freedom in an easy-to-use interface:
* The choice of the input domain by providing a generic
mapper interface that transforms arbitrary data domains
into sets of variables to reason over.

» Explicit control over training and inference schedules,
e.g., order and amount of sequentialization, individual
noise levels, and the denoising formulation.

* A range of denoiser architectures, such as UNet [14],
DiT [12], LightningDiT[22], U-ViT [7; 17], MAR [8],
xAR [13], and AEs [4; 14; 22] for latent modeling, to
be used depending on modality and task at hand.
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Figure 1: Overview of Spatial Reasoners. The variable mapper transforms different input modalities, such as images,
videos or others, into variables, which are then used for training and inference. Yellow  building blocks are exchangeable
and can be extended with custom functionality. On the right, we zoom into individual aspects of the denoising model.

2. Related Work

Applying denoising generative models with individual noise
levels per variable has been a recent trend in several works.
Rolling Diffusion [15] and Diffusion Forcing [3] have pro-
posed video diffusion models that are trained to denoise
different noise levels per frame, allowing to generate long se-
quences in a rolling window. History-guided diffusion [17]
recently expanded on the video generation with the Diffu-
sion Forcing scheme, by exploring the impact of classifier-
free guidance with respect to clean frames. MAR [8] and
xAR [13] present auto-regressive diffusion on images that
denoise a single or k variables at the same time. Spatial
Reasoning Models (SRMs) [20] present a general frame-
work for such strategies on sets of variables. Another line
of work involves denoising models applied across multi-
ple modalities. UniDiffuser [2] performs diffusion jointly
on text and images, by independently sampling the noise
level for each modality during training. The model can be
used to conditionally generate images from given text, vise
versa, or joint generation. Spatial Reasoners unifies all of
these paradigms into a single framework, allowing to mix
and explore individual choices, such as inference schedules,
architectures, and denoising models.

Other packages. Related software frameworks for de-
noising generative models have been very successful
in recent years. Examples include HuggingFace Dif-
fusers [18], a framework for diffusion models for im-
age generation, which supports most of the research
in this domain. Another widely used toolkit is the
denoising-diffusion-pytorch repository [19].
None of the existing frameworks explicitly supports genera-
tion and reasoning across multiple variables.

3. Spatial Reasoning with Spatial Reasoners

In this section, we first introduce the core reasoning frame-
work of Spatial Reasoners in Sec. 3.1, before giving an

overview of different toolkit building blocks in Sec. 3.2.
Then, we detail exposed degrees of freedom in Sec. 3.3 and
explain the easy-to-implement interfaces that allow to fast
adaption of the framework to new domains in Sec. 3.4.

3.1. Core Framework

The Spatial Reasoners toolkit is built upon the framework of
Spatial Reasoning Models (SRMs) [20]. Given a set of vari-
ables {x1, ..., x, }, SRMs define reasoning as an iterative
denoising process over the set of variables:

@

L dte ~og(alt) . aln
where t; encode individual noise levels for each variable.
Depending on the task at hand, variables can represent dif-
ferent types of data, e.g. image patches, whole images of a
sequence, or other entities, and can contain positional en-
codings to locate them in an arbitrary space. For a denoising
process of d steps, a matrix T € R"™*¢, containing the noise
levels ¢; for all n variables and all d steps, fully specifies the
reasoning process during inference. One step of the process
can be carried out by predicting scores or flows, accord-
ing to typical generative denoising formulations, such as
DDPM [6], DDIM [16], or Rectified Flows [10].

3.2. Overview

Fig. 2 shows an overview of the full toolkit, where exchange-
able and customizable building blocks are shown in yellow.
The VariableMapper can transform data from different
domains into the Variable format, which is then unified
for the rest of the pipeline. Training and inference routines
work on top of this format. During training, noise is added
to ground truth variables according to the chosen noise level
sampling algorithm, before fed into the denoising model,
which is trained to denoise them. During inference, vari-
ables can be (partially) initialized with random noise and
denoised according to a defined schedule.
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3.3. Individual Degrees of Freedom

The Spatial Reasoners framework exposes a wide range
of degrees of freedom to facilitate exploration and further
research. We discuss them individually in the following.

Denoising Paradigms. We support original diffusion with
discrete steps, implementing DDPM [6] and DDIM [16],
diffusion with continuous steps, mixing diffusion and flow
matching, cosine (variance preserving) flows [1; 11] and
Rectified Flows [10].

Parameterizations. Spatial Reasoners supports a wide
range of parameterizations, including e prediction (noise),
x( prediction (clean data), u; prediction (direction in flow
models), v prediction (direction vector in diffusion).

Training t-sampling. We support different t-samplers for
training with sets of variables, such as the independent uni-
form sampling strategy [3], or Uniform-# sampling [20]. It
is straightforward to implement additional sampling strate-
gies. All t-samplers for variable sets can be additionally
combined with tailored scalar noise level samplers like the
logit-normal distribution for Rectified Flows [5].

Architectures. The framework makes it easy to exchange
the neural architecture, which predicts the noise. Cur-
rently, we support DiT [12], LightningDiT [22], UNet [14],
MAR [8], xAR [13], and U-ViT-Pose [17]. We support
loading the checkpoints from the original works.

Inference Schedules. We support all the inference sched-
ules from existing works, such as sequentialized sampling,
with variable blend between autoregressive and parallel gen-
eration (overlap), and with predicted, manually-defined or
random order [20], as well as next k variable prediction [13].

Dependency Graph Injection. We provide functionality
to inject domain-specific knowledge by providing depen-
dency structure between variables in form of graphs. Those
can be exploited in choosing the order of inference.

Uncertainty Prediction. All models can easily parame-
terized to also predict uncertainty, allowing for uncertainty-
based ordering of generation [20].

Learned Variance. By implementing a unified interface
for different denoising paradigms, we support improvements
for diffusion modes like the learning of the variance in
the generative process [11] also in combination with flow
formulations like Rectified Flows [10].

Latent Denoising. Spatial Reasoners supports reasoning
and generation in latent spaces, by including typical im-
age autoencoders like SD-VAE [14], VAVAE [22], and DC-
AE [4].

Modular Losses. We support different losses including
standard MSE for noise prediction, VLB [11] for learning
the variance of the reverse process, and cosine similarity for
additional supervision of the velocity direction with flow

models [21]. It is easy to add additional losses, e.g., other
losses for uncertainty predictions besides NLL [20].

3.4. Adapting to New Domains

A main goal of Spatial Reasoners is to make it easy to
adopt SRMs to new data domains. We achieve this by
providing two interface classes that need to be customized
to support a new modality: the VariableMapper and
the Tokenizer.

In the VariableMapper, the user needs to define how a
data example should be partitioned into variables, atomic
elements that maintain the same noise level. For latent
space diffusion, an autoencoder can be defined here that
pre-processes the data before partitioning.

The Tokenizer allows to transform the variables-format
data to the arbitrary input format of the trained denoiser.
Architectures such as DiT are domain agnostic and just
require the definition of the token positions for positional
encodings, e.g., sinusoidal, RoPE, etc., depending on the
generation task.

In addition to the two mentioned interfaces, the user can im-
plement custom visualization and metrics in Evaluation
classes. Thanks to the underlying variable format, the rest
of the framework remains domain agnostic.

4. Application Examples

In this section, we provide a few application examples
to showcase the generality of Spatial Reasoners. We
show examples for reasoning over image-based MNIST
Sudoku [20], auto-regressive image generation [13], and
auto-regressive, overlapping video generation [3; 17].

Visual Reasoning Tasks. SRMs [20] introduced multiple
visual reasoning benchmarks, where variables are image
patches. In Fig. 2a we show sequential solving of visual
Sudoku, consisting of MNIST numbers. It is fully auto-
regressive and the order is predicted based on uncertainty.
The more numbers on the board, the less ambiguous the
remaining ones, which is visible in the % prediction.

Image Generation and Editing. Fig. 2b shows multiple
examples for image generation (left and middle), and out-
painting (right). Spatial Reasoners supports a variety of sam-
pling schedules, such as standard parallel generation with
LightningDiT [22], next-k variable generation of XxAR [13],
or manually defined schedules from SRMs [20]. The SRM
example (right) shows a locality-based order, painting out-
wards from existing variables. All shown models are latent
diffusion models and generate in the latent space of a VAE.

Soft-sequential Video Generation. We allow to perform
soft-sequential video generation with a U-ViT model [17],
where each video frame is represented as one variable.
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Figure 2: Application Examples. Spatial Reasoners supports (a) visual reasoning benchmarks like visual Sudoku [20],
(b) various image generation and editing strategies including parallel denoising with LightningDiT [22], autoregressive
next-X prediction with XxAR [13], and soft, certainty-based sequentialization with Spatial Reasoning Models [20], and (c)
auto-regressive, long horizon video generation, including history-guidance [3; 17].

Fig. 2c illustrates a moment during inference. While the
first three frames are already fully denoised, the others are
partially or fully noisy. However, the information from the
already denoised frames and the camera pose conditioning
is sufficient conditioning for the model to provide a good
single-step X prediction for fully noisy frames.

5. Conclusion

Denoising models have proven to be powerful tools for
generative tasks, and recent developments have extended
their utility to reasoning over multiple variables with dis-
tinct noise levels. By offering a clean, modular interface for
defining variable mappers, training and inference schedules,
together with access to a vast lineup of denoising architec-
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tures, Spatial Reasoners aims to broaden the applicability
of multi-noise-level generative models beyond traditional
domains. We hope that Spatial Reasoners will become a use-
ful tool for researchers who want to take a deeper dive into
probabilistic reasoning with structured generative models.
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