Under review as a conference paper at ICLR 2026

SELF-ALIGNED REWARD: TOWARDS EFFECTIVE AND
EFFICIENT REASONERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards has significantly advanced rea-
soning with large language models (LLMs) in domains such as mathematics and
logic. However, verifiable signals provide only coarse-grained or binary correct-
ness feedback. This limitation results in inefficiencies like overly verbose or repet-
itive reasoning. Existing length-based solutions (e.g., length penalty) compromise
accuracy. To address this deficiency, we introduce self-aligned reward (SAR), a
generic, universally applicable self-guided signal that complements verifiable re-
wards to enhance both reasoning accuracy and efficiency in RL. Specifically, SAR
is defined as the relative perplexity difference between an answer conditioned on
the query and the standalone answer, thereby favoring responses that are concise
and query-specific. Quantitative analysis reveals that SAR reliably judges answer
quality: concise, correct answers score higher than redundant ones, and partially
correct answers score higher than entirely incorrect ones. Evaluation on 4 differ-
ent models across 7 benchmarks shows that integrating SAR with prevalent RL
algorithms like PPO and GRPO reduces answer length by 30%, while improving
accuracy by 4%. Our analysis also shows that SAR generalizes well to out-of-
domain tasks and achieves a Pareto-optimal frontier between correctness and ef-
ficiency compared to state-of-the-art baselines. We also show that SAR shortens
unnecessary elaboration while preserving advanced reasoning behaviors. These
results highlight the promise of self-aligned reward as a fine-grained complement
to verifiable rewards, paving the way for efficient and effective LLM training.

cc Acc SAR
Acc SAR SzR
30 % PPO X 30 30| GRPOX
GRPO ‘0-1 X GRPO ol
PPO
PPO
15 15 15/ %¢ 0}
Basg] | Eff))) Bas | Eff ase)) Eff
20 -60 -40 -20 T 20 20 40 60
Qwen3-1.7B Qwen3-4B Phi-3.5-mini Gemma3-1B

Figure 1: Training with self-aligned reward enhances both efficiency and accuracy. We present
the relative gains in efficiency and accuracy compared to the respective base model in math reasoning
benchmarks. Efficiency gain is measured as the drop in average response length.

1 INTRODUCTION

Recently, reinforcement learning (RL) with verifiable rewards has attracted broad attention in LLM
training, showing remarkable improvements in reasoning skills (Guo et al., 2025; Jaech et al., 2024).
However, such verifiable signals are inherently discrete and coarse: they only judge final answer
correctness, but fail to capture finer distinctions among responses. For instance, an unnecessarily
long solution receives no penalty as long as the final answer is correct, and an almost correct response
is treated the same as a completely wrong one. This limitation often induces “overthinking”, where
models generate unnecessary elaborations that increase latency and cost (Sui et al., 2025).

Under review as a conference paper at ICLR 2026

Table 1: Comparison of different reward designs.

Reward Continuous Internal Content-Aware Correctness Conciseness
Correctness X v v v X
Reward Model (Ouyang et al., 2022) v X v v X
Length Penalty (Chen et al., 2025a) v v X X v
Entropy (Agarwal et al., 2025) v v v X X
Self-Aligned (Ours) v ve v v v

To this end, researchers have proposed heuristic regulations such as length penalties or brevity-
oriented objectives (Luo et al., 2025; Aggarwal & Welleck, 2025). While effective in reducing out-
put verbosity, these methods often penalize both redundant and essential reasoning, thereby harming
accuracy when necessary intermediate steps are suppressed. Consequently, this line of approaches
struggles to balance efficiency with correctness. Using external signal sources, such as reward mod-
els, is also undesirable due to their vulnerability to reward hacking. This underscores the necessity
of developing internally grounded reward mechanisms that provide precise and detailed guidance,
discerning necessary reasoning from redundant elaboration.

To close this gap, we introduce Self-Aligned Reward (SAR), a self-guided proxy to judge answer
quality (Equation (6)) based on perplexity, an informative metric modeling uncertainty (Friedland
et al., 2024; Agarwal et al., 2025). Specifically, SAR evaluates the perplexity of an answer both in
isolation and when conditioned on the query, and then measures their relative difference between the
two. Consequently, the reward promotes answers that are highly confident under the query context
but unlikely to arise independently without the query, which typically corresponds to responses that
are concise and strongly aligned with the query. Notably, SAR is the only fine-grained approach that
promotes accuracy and efficiency at the same time, as shown in Table 1.

We first conduct a quantitative analysis of different types of answers to demonstrate that SAR pro-
vides an accurate fine-grained reward landscape over answers of different qualities (Section 4). We
then train LLMs by combining SAR and verifiable reward in PPO and GRPO, two prevalent re-
inforcement learning algorithms. We find PPO and GRPO with SAR (denoted as SA-PPO and
SA-GRPO) achieve notable gains over baselines across 4 models and 7 benchmarks, improving
accuracy by 4% and efficiency by 30% (Section 5.2). Moreover, SAR outperforms length-based
rewards with a Pareto-optimal front in the accuracy-efficiency trade-off (Section 5.3). In addition,
we demonstrate the advantages of SAR over confidence-based methods (Section 6.1) and provide
an analysis of its reasoning behaviors (Section 6.2). Our findings suggest that combining verifi-
able rewards with intrinsic model self-judgment offers a new paradigm for RL training, enabling
improvements in both reasoning capability and efficiency.

2 RELATED WORK

Reinforcement Learning for LLMs. Reinforcement learning (RL) has emerged as a powerful
paradigm for fine-tuning large language models (LLMs) to enhance their performance in reasoning
tasks (Ouyang et al., 2022; Guo et al., 2025). Proximal Policy Optimization (PPO) (Schulman et al.,
2017) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024) are typical algorithms
that are widely adopted in diverse scenarios and domains (Kulkarni et al., 2024; Chen et al., 2025b;
Han et al., 2025a; Liu et al., 2025b). Improvements to these algorithms have also been proposed,
namely Dr.GRPO (Liu et al., 2025a), GSPO (Zheng et al., 2025), and Clip-Cov (Cui et al., 2025).

Efficient Reasoning. Reasoning models often suffer from overthinking (Su et al., 2025; Cuadron
etal., 2025; Sui et al., 2025), leading to unnecessary computation burdens. Prompt engineering (Han
et al., 2024; Ma et al., 2025a; Renze & Guven, 2024a) and instruction tuning (Yu et al., 2024; Kang
etal., 2025; Xiaetal., 2025; Han et al., 2024; Ma et al., 2025b) have been widely used to mitigate this
drawback. Recently, researchers have also explored using RL to elicit efficient reasoning abilities
through reward signals that penalize overly lengthy answers (Aggarwal & Welleck, 2025; Team
et al.,, 2025b) or relatively longer answers (Luo et al., 2025; Arora & Zanette, 2025). In addition,
Yeo et al. (2025) explores the length penalty’s relationship with reasoning behaviors, and Chen et al.
(2025a) proposes a difficulty-sensitive method for token compression. However, these methods all
sacrifice accuracy to gain efficiency, which is the key issue this paper aims to address.

Under review as a conference paper at ICLR 2026

Self-judging of LLMs. Self-judging is a fundamental capability of LLMs (Renze & Guven, 2024b),
playing a key role in scalable training and self-evolution. The concept of self-judging is widely
adopted. For instance, confidence estimation is widely used to reduce hallucination (Geng et al.,
2023; Wen et al., 2024; Ji et al., 2023), probing internal states provides a lens to analyze model
behavior (Han et al., 2025b; Chen et al., 2024), and majority voting (Wang et al., 2022) is critical in
inference-time scaling techniques (Snell et al., 2024). Self-judging has also been used in RL to train
scalable reasoning models, with a primary focus on entropy-based metrics (Agarwal et al., 2025;
Lei et al., 2025; Zhao et al., 2025). Zhang et al. (2025) discussed the theoretical foundation and
limitations of self-judged signals.

3 METHODOLOGY

3.1 REINFORCEMENT LEARNING FORMULATION

Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) are two widely adopted RL algorithms. Given the current policy
Ty, query q, and the sampled rollout a, PPO and GRPO can be formulated as:

Tvpo(m0) = gD anmg(a) [ﬁ >ou min {r; Aj, clip(rj, 1 — e, 1+ €)A;} — 8 KL(Wollﬂref)}
(L

m0(% | 4 ar..5-1) y Aj = Q(q,a1..5) — V(g a1..5)- 2

where r; =
7 To(ag | g a1 1)

Jareo(70) = BynD, a) y~mg(a) [% S, £ S min{ri Ay, clip(rig, 1 — 6,14 €A} — BKL(MHWref)] ;
3)

mo (i | ¢, Gi1.5-1) , A;i = R(q,a;) — mean[R(q,a1..n)]. “)

Wold(ai,]‘ ‘ q, ai,lmj—l)

where r; ; =

In the above formulas, A is the advantage, D is the training dataset, and r refers to the importance
sampling ratio. N, €, Ly,x and 3 are hyperparameters. Specifically, we use Dr. GRPO (Liu et al.,
2025a), an unbiased variant of GRPO in this paper. For verifiable tasks, the reward for PPO and
GRPO can be obtained by comparing the model answer with the expected ground truth (gt):

1 ifgtina,

Rppoigrero(9; a, gt) = Ryr(q; a, gt) = {0 otherwise (5)

Although RL with verifiable reward has set new benchmarks in reasoning tasks, it induces undesired
characteristics such as redundant output due to the coarse binary nature of the reward. To address this
issue, two widely used methods introduce targeted penalities on output length: O1-pruner (Luo et al.,
2025) and Efficient Reasoner (Arora & Zanette, 2025) (referred to as O1 and ER). Their detailed
formulations are provided in Appendix B.2. Despite their effectiveness, both methods inevitably
trade off accuracy, which constrains their broader applicability.

3.2 SELF-ALIGNED REWARD

We propose Self-Aligned Reward (SAR) (denoted as Rga), an unsupervised holistic signal that
combines generation quality, conciseness, and query-answer relevance. The self-aligned reward
is estimated entirely by the model policy without any external feedback. We then combine our
reward with the binary verifiable reward to address the shortcomings of previous methods, aiming to
improve both accuracy and generation efficiency. The reward for self-aligned PPO and self-aligned
GRPO (SA-PPO and SA-GRPO) can be formulated as follows':

ppl(ai) — ppl(ailq)

1,1 6
ppl(a:) —L1) ©

Rsa-proiGrPO (4 @i, gt) = Ryr + aRsa, Rsa = clip (

1 ylal . ;
— o TaT Zym logPlaglasar.. 1) D

-1 lal o aila .
where ppl(a) = e TaT 2j=1109P(@5101.5-1) " 1y516)) .

Since ppl > 0, we always have Rsa < 1. In practice, Rsa lies in the (0, 1) range in most cases.

Under review as a conference paper at ICLR 2026

The self-aligned reward captures the relative difference between ppl(a) and ppl(alg), or the condi-
tioned perplexity drop, based on the current model policy. Perplexity reflects the likelihood that the
model will produce the given response, with lower values indicating higher confidence. Thus, Rga
can be interpreted as: “How much less likely does the answer become if the query is not present?”

When an answer is tightly tailored to the query, the conditioned perplexity ppl(a|q) will be signif-
icantly lower than the standalone perplexity ppl(a), leading to a higher Rga. In contrast, if parts
of the answer are irrelevant to the query or include noisy, verbose text, the two perplexities will be
similar, leading to a smaller Rsa. Therefore, a larger value of Rga indicates the answer’s stronger
dependency and better alignment to the query.

Section 4 provides an in-depth analysis of this reward formulation, where we demonstrate that self-
aligned reward encourages concise reasoning and effective use of query information, thereby im-
proving both accuracy and training efficiency, and penalizing noisy verbose answers. In addition,
the computation of Rga integrates seamlessly into the RL pipeline with negligible computational
overhead, as shown in Section and appendix

4 CASE ANALYSIS: WHY SELF-ALIGNED REWARD WORKS

This section analyzes the self-aligned reward formulation, providing insights on how SAR enhances
the reasoning effectiveness and efficiency.

4.1 SAR PROVIDES ACCURATE AND FINE-GRAINED SIGNALS

An ideal reward design should be able to rate different types of answers based on their qualities.
To assess different reward functions, we analyze 6 different types of answers to 200 math questions
sampled from five common math benchmarks (section 5.1) in Table 2. Types (1) to (4) are obtained
by sampling Qwen3-1.7B rollouts at temperature = 1, and using GPT-40 to annotate the responses
(see Appendix C for details). Types (5) and (6) are artificially synthesized to simulate memorization,
where the LLM directly extracts answers from its knowledge without reasoning.

Table 2: We calculate advantage values over the 6 types of answers to the same question (o = 1),
and report the average over 200 questions. The advantage values of SA-GRPO accurately rate
answers of different qualities.

Answer Type Length Agrro Acrroot Acrro-ER Asa-greo (Ours)
(1): Correct and concise 143.5 0.5 1.04 0.81 1.15
(2): Correct but redundant 236.0 0.5 0.35 -0.11 1.00
(3): Partly correct with wrong answer 457.1 -0.5 -1.28 -0.65 -0.01
(4): Completely wrong or irrelevant 405.8 -0.5 -1.19 -0.65 -1.44
(5): Correct but no thought 5.0 0.5 1.04 1.25 -0.04
(6): Incorrect and no thought 5.0 -0.5 0.04 -0.65 -0.68

We present the advantage values (Equation (4)) for each type of response using the following re-
wards: verifiable GRPO rewards (Agrpo), length-based rewards from the O1 and ER methods
(AGRpo-01> AGrro.er) and our self-aligned reward Aga.grpo. From Table 2, we can observe that
SAR provides rich and accurate signals to different answers, exhibiting the following features:

* SAR favors concise and correct answers; it gives a lower reward to long and redundant answers,
promoting efficiency. Section 4.2 explains this phenomenon in detail.

* SAR provides partial credit to partly correct answers and penalizes completely irrelevant ones,
helping the model learn basic reasoning patterns in the initial stage of training.

* SAR penalizes the synthesized “no thought” answers, even if they’re correct and short. This
indicates that the reasoning process plays a critical role in SAR, and memorization is discouraged.

On the other hand, the verifiable reward (GRPO) fails to discern answers that are both correct and
incorrect, and O1 or ER focus solely on response length, making signals biased and not suitable for
maximizing accuracy. For instance, ER isn’t applicable to wrong answers, and O1 favors irrelevant

Under review as a conference paper at ICLR 2026

answers over partly correct ones, simply because they’re shorter. We also provide a qualitative
example in Table 12 to illustrate the different answer types.

4.2 SAR PROMOTES EXPLOITING QUERY INFORMATION EFFICIENTLY

In this experiment, we take a deeper look at SAR at the token level, aiming to reveal which tokens
contribute more to the overall score. Specifically, we decompose the self-aligned reward (Equa-
tions (6) and (7)) to calculate the token-level score’:

P(ajlg,a1,. . j—1)

—Aoslal gy
T 2j=1t09 Plajlat. j—1) |)

We then define v(a;) = log% to measure the importance of each token a; on the whole
3j g
metric Rga. A token with a higher v(a;) is considered valuable, while a token with a low or even

negative v(a;) indicates it’s less informative and independent of the query.

5 Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers' market?

Answer:Janet's ducks lay 16 eggs per day. She eats 3 eggs for breakfast every morning. So 16 - 3 = 13 eggs
remain after Janet eats breakfast. She bakes 4 eggs in muffins every day for her friends, so we need to
-5 subtract these as well: 13 - 4 = 9 eggs. Hence, after considering all the consum ptions, Janet sells 9 eggs to

v(aj) the farmers' market daily. She sells each egg at $2. Therefore, Janet's daily revenue is 9 * $2 = $18.

Figure 2: An illustration of token-level importance scores (i.e. v(a;)). Red color means the token
is considered informative for our self-aligned reward, and blue indicates a negative v(a;). Tokens
extracting new information from the query get high scores.

From Figure 2, we observe that tokens drawing on information from the question for the first time,
like “Janet”, “duck”, “16”, tend to receive high scores. This is because such information is present
in the query but absent from previous answer tokens, making P(a;|q, a1.. j—1) relatively high while
P(ajla1..j—1) remains low. In contrast, repeating information already generated, like mentioning
“Janet” for the second time, results in low scores as both probabilities become similarly high.

Generally, tokens in the earlier part of an answer typically achieve higher v(a;) values, since ex-
tracting new content from the query is easier at the beginning. Later tokens, by comparison, struggle
to introduce novel information once much of the query has already been incorporated. This explains
why SAR favors short, concise answers and promotes more efficient generation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We utilize five math reasoning benchmarks: GSM8k (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), NuminaMath 1.5 (Li et al., 2024), GSM-symbolic (Mirzadeh et al.,
2024), and AIME 1983-2024 (Veeraboina, 2024), covering a difficulty range from primary school
to competition level. For training, we combine the training splits of the first three datasets, while the
remaining two are not present during training to evaluate generalization.

Models. We utilize four base models: Qwen3-1.7B (Base), Qwen3-4B (Base) (Yang et al., 2025),
Phi-3.5-mini (Instruct, 3.8B) (Abdin et al., 2024), and Gemma3-1B (Instruct) (Team et al., 2025a),
covering different sizes and model families.

Settings. We train reasoning models with the following methods:
* PPO, GRPO: two traditional RL algorithms, using only the verifiable reward.

* GRPO-0O1, GRPO-ER: algorithms with length penalties, aimed to enhance efficiency. See Ap-
pendix B.2 for details.

>We omit the clipping for simplicity.

Under review as a conference paper at ICLR 2026

Table 3: Evaluation on math benchmarks. Self-aligned reward significantly reduces token usage
while achieving the best reasoning accuracy. GRPO-O1 and GRPO-ER results in the table use
a = 0.05, and SA-GRPO uses o = 0.2. Best results among each model are bolded.

. GSM8k GSM-sym MATH NuminaMath AIME Average
Setting
acc len acc len acc len acc len acc len acc len AES
Qwen3-1.7B 69.22 281 46.76 365 56.89 700 24.58 1242 997 1539|4148 8254 0.000
+PPO 82.71 332 6288 460 63.04 784 27.02 1358 9.11 1718 |48.95 9304 0.773
+SA-PPO 85.51 281 68.02 369 6627 587 32.05 866 10.61 1015|5249 623.6 1.572
+GRPO 84.53 335 67.66 413 6731 697 3344 1091 13.93 1278 |53.37 762.8 1.509

+GRPO-O1 84.15 285 65.78 363 6651 528 33.15 775 13.61 910 |52.64 5722 1.652
+GRPO-ER 8271 244 64.74 320 66.54 557 3435 980 1222 1232 |52.11 666.6 1474
+SA-GRPO 8551 267 67.66 346 67.96 564 36.03 841 13.50 992 |54.13 602.0 1.795

Qwen3-4B 76.19 315 66.22 435 63.79 652 3880 1142 20.15 1281 |53.03 765.0 0.000
+PPO 91.36 373 8542 485 82.15 1132 50.80 1995 2690 2680 | 67.33 1333.0 0.606
+SA-PPO 9212 266 83.52 345 78.67 652 49.09 1133 28.19 1397 |66.32 758.6 1.260
+GRPO 92.62 320 86.30 414 8251 821 5379 1485 30.11 2113 |69.07 1030.6 1.165
+GRPO-O1 91.89 262 86.76 350 8041 549 51.06 866 28.62 1016 |67.75 608.6 1.592
+GRPO-ER 9280 219 8524 297 79.48 503 5047 854 2894 1022]67.38 579.0 1.596
+SA-GRPO 9340 239 87.64 323 82.63 762 57.70 1358 35.69 1788 | 71.41 894.0 1.564

Phi-3.5-mini 71.19 287 56.86 398 33.83 1132 11.56 1492 235 943 |35.15 8504 0.000

+PPO 8249 209 64.88 322 3856 831 1145 1707 3.85 926 [40.24 799.0 0.784
+SA-PPO 87.04 238 7352 344 4634 300 17.43 586 279 501 | 4542 393.8 1.997
+GRPO 87.56 235 73.76 337 48.69 415 1637 582 321 672 | 4591 4482 2.003

+GRPO-O1 79.83 203 6224 279 4441 390 14.08 509 257 583 |40.62 392.8 1.316
+GRPO-ER 82.03 154 63.54 240 4361 363 1255 511 247 606 |40.84 3748 1.368
+SA-GRPO 8795 207 7272 289 50.99 356 16.08 455 322 535 |46.19 3684 2.137

Gemma3-1B 42.15 325 19.58 427 3640 1042 1240 1414 225 2279|2256 1097 0.000

+PPO 56.86 942 30.28 1187 44.17 1408 15.57 1904 1.60 2422]29.69 1572.6 1.146
+SA-PPO 5580 683 31.00 936 4294 1025 14.22 1523 1.50 1683 |29.10 1170.0 1.383
+GRPO 59.97 1208 34.70 1552 4540 1693 16.59 2264 2.25 2613 |31.78 1866.0 1.343

+GRPO-O1 60.80 873 32.06 1157 44.76 1298 16.16 1871 2.35 2449 |31.23 1529.6 1.528
+GRPO-ER 59.44 748 3236 1063 4623 1131 1641 1545 2.04 1696|3129 1236.6 1.808
+SA-GRPO 61.26 552 3452 772 46.60 952 16.70 1302 2.14 1509 | 32.24 1017.4 2.218

* SA-PPO, SA-GRPO: algorithms using self-aligned reward (SAR). See Section for details.
For training details and hyperparameters, refer to Appendix

Metrics. In this work, we focus on accuracy and efficiency (measured by average answer length)
of LLM reasoning. We report these two metrics as well as an Accuracy-Efficiency trade-off Score

(AES). For a trained policy 7y and its base model 7, we define Alen = W

Aacc = 2eclmo)—ace(mer) Then AES(my) = Alen +yA acc measures the trade-off.

acc(Trer)

and

5.2 MAIN RESULTS

From Table 3, we observe that baseline approaches struggle to balance accuracy and efficiency.
PPO and GRPO significantly improve accuracy at the cost of longer and possibly redundant an-
swers. While GRPO-O1 and GRPO-ER effectively reduce computation overhead, they compromise
reasoning capability. In contrast, SAR delivers substantial improvements in both accuracy and
efficiency. Across four base models, SA-GRPO consistently achieves the highest reasoning accu-
racy while maintaining highly efficient reasoning, with at least 4% improvement in accuracy and
30% reduction in length compared to GRPO. Notably, SA-GRPO produces answers of comparable
or even shorter length than GRPO-O1 and GRPO-ER, which are explicitly designed for efficient rea-
soning. A similar phenomenon is observed for SA-PPO, indicating that self-aligned reward applies
to diverse RL algorithms. We show two examples comparing GRPO and SA-GRPO in Appendix

These findings highlight the superiority of the self-aligned reward mechanism. With a more fine-
grained and intelligent signal, SAR makes the model preserve the necessary reasoning which are

3The choice of value reflects which aspect does the user prioritize. Since accuracy is the most important
factor in most use cases, we set v = 5 in practice.

Under review as a conference paper at ICLR 2026

closely related to query information, and reduces unnecessary content that introduces token burdens,
leading to more effective and efficient reasoning.

5.3 SELF-ALIGNED REWARD ACHIEVES A PARETO-OPTIMAL IN DYNAMIC BALANCE

Performance Performance
Gain (%) Gain (%)
2 -1 i 2t Length
1 2 'S : 2 -1 Length
— ok D 20 A~ 57, Reduction (%)
-2 - 3t —u 3t 3 60
-2 u »
-61| ¥ GRPO M ER
Ol-pruner A SA-GRPO (Ours) u -6
| |
-10
(a) Qwen3-1.7B. (b) Qwen3-4B.
Performance Performance
Gain (%) Gain (%)
2{A s 4k 2t Length as: A5,
7 = A 20 Reduction (%) 2t Length
2 10 30 2 A A Reduction (%)
& m_40 80
-6] 3t L
-10 .
||
14 |
(¢) Phi-3.5-mini. (d) Gemma3-1B.

Figure 3: Accuracy-efficiency balance of different algorithms. SA-GRPO reaches a Pareto-
optimal curve and achieves notable gains on both axes. Numbers around each point indicate
the « values, and { indicates using 20% of the total training data with the same total training steps.

The hyperparameter « in Equation (6) controls the weights of verifiable reward and self-aligned
reward, offering flexibility to focus more on efficiency or accuracy. Therefore, we train SA-GRPO
with different o values and compare it with GRPO-O1 and GRPO-ER on 2-dimensional plots.

From Figure 3, we can observe that the curves for SA-GRPO are consistently on the top-right side
over curves for GRPO-O1 and GRPO-ER, indicating SA-GRPO balances accuracy and efficiency
better than length-based methods. Moreover, length-based methods are always under the x-axis in
most cases, showing that these methods sacrifice accuracy for reduced tokens, while SA-GRPO is
the only method consistently above the x-axis (illustrated as the light purple area in the figure),
showing better accuracy and better efficiency compared to vanilla GRPO. The Pareto-optimal bal-
ance between accuracy and efficiency of SA-GRPO further demonstrates the effectiveness of SAR.

5.4 SELF-ALIGNED REWARD GENERALIZES TO LOGICAL REASONING

In this section, we examine the generalization ability of self-aligned reward (SAR) in a different do-
main—Ilogical reasoning. We evaluate the models on two benchmark datasets: LogicBench (Parmar
et al., 2024) and ProntoQA (Saparov & He, 2022).

From Table 4, we can find that SA-GRPO enhances accuracy compared to GRPO on 5 out of 8
columns, and outperforms length-based methods (GRPO-O1 and ER) on all cases. Similarly, SA-
PPO outperforms the PPO baseline on 6 columns. In addition, SAR also maintains an efficiency
benefit in the logical domain, not only reducing answer length compared to GRPO, but it’s even
more efficient than length-based methods in most cases. These results show that SAR generalizes
well to logical reasoning benchmarks, which are out-of-domain tasks, benefiting from the reward
design that ensures answers are tailored to the input questions and contain dense information.

Under review as a conference paper at ICLR 2026

Table 4: SA-PPO and SA-GRPO maintains robustness and efficiency in out-of-domain tasks.

(a) LogicBench. (b) ProntoQA.
Qwen3 Qwen3 Phi-3.5 Gemma3 Qwen3 Qwen3 Phi-3.5 Gemma3
Model -1.7B -4B -mini -1B Model -1.7B -4B -mini -1B
acc len acc len acc len acc len acc len acc len acc len acc len
Base 56.0 182 75.4 336 66.0 309 50.6 303 Base 69.0 616 89.6 988 94.8 339 56.2 712
PPO 60.2 340 80.0 455 60.8 229 48.8 264 PPO 71.8 920 97.8 561 96.4 301 56.4 904

SA-PPO 64.6 368 77.6 342 64.2 205 55.6 241 SA-PPO 65.6 735 99.0 405 98.2 304 57.6 690
GRPO 64.2 372 78.4 416 67.6 243 53.0 277 GRPO 74.0 756 100.0 546 98.2 254 57.4 963
GRPO-O1 60.6 264 76.0 350 51.0 212 52.6 223 GRPO-O1 73.0 505 98.8 469 87.2 227 59.0 938
GRPO-ER 614 206 77.6 263 49.8 143 50.0 250 GRPO-ER 73.6 424 99.0 309 86.6 205 58.6 919
SA-GRPO 65.0 278 80.4 208 57.4 173 55.2 222 SA-GRPO 77.8 482 99.8 301 90.8 216 60.6 733

6 ANALYSIS

6.1 ABLATION STUDY

In this section, we investigate two critical components of our algorithm that make internal signals
effective during training. Firstly, the self-aligned reward (Equation (6)) measures conditioned per-
plexity drop, which is the relative difference between ppl(a|q) and ppl(a), as a proxy for query-
answer relevancy. However, existing methods focus mainly on ppl(alg) alone, which measures
entropy or uncertainty(,).Secondly, our approach combines
verifiable reward with self—ahgned reward We ablate these components and derive the following
rewards to compare against SA-GRPO (R = Rygr + aRsp):

* R = Rga removes the verifiable reward, using only the self-aligned reward.

* R = Ryr + aRgm = Rvr — alogppl(alg) uses “entropy minimization”, a metric measuring
self-confidence, as the internal reward, instead of conditioned perplexity drop;

* R = Rgy is the entropy minimization reward (,), ablating both components.

Table 5: GRPO training results on Qwen3-4B with different internal reward signals (o = 0.2). The
SA-GRPO formulation obtains optimal performance among baselines.

. GSM8k GSM-sym MATH NuminaMath AIME Average
Setting
acc len acc len acc len acc len acc len acc len
Base 76.19 315 66.22 435 63.79 652 38.80 1142 20.15 1281 | 53.03 765.0
Rvr 92.62 320 86.30 414 82.51 821 53.79 1485 30.11 2113 |69.07 1030.6
Rem 79.15 319 67.94 414 68.89 970 39.86 1885 21.44 2556 |55.46 1228.8
Rsa 39.65 87 19.54 102 2472 74 1648 80 439 79 2096 844

Rvr + aRem 9225 351 87.36 414 81.83 779 5478 1371 33.01 1767 | 69.85 936.4
Rvr + aRsa 93.40 239 87.64 323 82.63 762 57.70 1358 35.69 1788 | 71.41 894.0

From Table 5, we can observe that both verifiable signal and conditioned drop measurement are crit-
ical for optimal performance. Specifically, Rgm shows limited accuracy gain but a large efficiency
drop, and Rga converges to shallow reasoning with fewer tokens and poor accuracy . Failure of these
methods indicates that the ground-truth signals are still critical for models to develop reasoning skills
and ensure training stability, similar to what’s found in ()

Ryr 4+ aRgym also underperforms SA-GRPO in both accuracy and efficiency, indicating that mini-
mizing entropy is less effective than our approach, which is maximizing conditioned perplexity drop.
This is because conditioned perplexity drop provides a more accurate measure of answer quality, as
demonstrated in Section 4. Moreover, it avoids issues such as overconfidence or entropy collapse,
which can hinder exploratlon (, ,). Overall, the results suggest

“verifiable signal” and “conditioned perplexity drop are two crucial components in SAR, without
which SA-GRPO won’t be able to reach optimal performance in accuracy and efficiency.

Under review as a conference paper at ICLR 2026

6.2 REASONING BEHAVIORS OF SA-GRPO

Previous work (R ; s) has shown that certain reasoning behaviors are
critical to effective and deep reasomng In this section, we investigate four typical behaviors: back-
tracking, verification, subgoal setting, and enumeration. Specifically, we use GPT-4o to annotate the
reasoning behaviors for models trained with different algorithms (see Appendix C for details).

Table 6: Frequency of reasoning behaviors. B, V, S, E refer to Backtracking, Verification, Subgoal
setting and Enumeration, respectively. Scores are in percentages. The base model is Qwen3-1.7B.
Unlike length-based methods, SA-GRPO maintains a high usage of reasoning behaviors.

Dataset MATH NuminaMath AIME
Behavior | B A% S E B A% S E B \% S E
Base 0.8 242 90.8 122 |54 27.0 934 348 |44 362 932 374 38.0
GRPO 1.0 292 954 146 |4.6 38.8 978 442 |50 422 982 49.0| 434
GRPO-O1 | 1.2 26.6 904 14648 37.0 932 39.6 |42 434 960 428 40.6
GRPO-ER | 1.4 26.0 89.8 134 (6.2 37.0 904 404 |58 442 962 476| 412
SA-GRPO | 0.8 29.2 934 13.8|7.0 36.0 93.8 438 |88 47.0 97.0 49.6 | 430

Average

From Table 6, we can observe that GRPO-O1/ER exhibit fewer reasoning behaviors compared to
GRPO, as reasoning behaviors require additional tokens which are penalized by length-based reward
functions. However, SA-GRPO maintains almost the same frequency of reasoning behaviors
with GRPO, notably with 30% fewer tokens than GRPO. This stems from the self-aligned reward’s
content-aware feature, showcasing its ability to accurately distinguish useful reasoning behaviors
from unnecessary content, guiding model behaviors in a more accurate and unbiased manner.

6.3 TRAINING COST OF SELF-ALIGNED REWARD

We report the training cost for SA- Typje 7: Comparison of training time. We report GPU hours

GRPO in Table 7, from which We (Tpining time x GPU count) of training Qwen3-4B for the
can find that SA-GRPO doesn’t in- frot 200 steps.

troduce burdens in “Update” phase
compared to vanilla GRPO. The only
additional computation in SAR is
ppl(a) (ppl(alq) is already calculated
in GRPO, for KL penalty and impor-
tance sampling), which only requires
a forward pass, making it highly ef-
ficient. Additionally, SA-GRPO even
takes less time in the “Rollout” phase due to reduced answer lengths. This suggests that enhancing
reasoning efficiency is not only valuable during inference — it can also accelerate RL training and
maximize the gain of reasoning capability under limited computation.

Method Rollout Update Total
GRPO 32.95 15.13 48.08
GRPO-O1 30.36 1592 46.28
GRPO-ER 30.92 1524 46.16
SA-GRPO 31.44 1520 46.64

7 CONCLUSION

In this work, we propose Self-Aligned Reward (SAR), an internal perplexity-based signal evalu-
ating the answer’s relevancy with the query, enabling fine-grained supervision beyond binary cor-
rectness. Through comprehensive experiments on 4 base models and 7 benchmarks, we demon-
strated that SAR enables reinforcement learning to achieve consistent gains of up to 4% in accuracy
while reducing response length and computational cost by 30%. Moreover, SAR exhibits a favor-
able accuracy—efficiency balance compared with length-based baselines, offering a fine-grained and
content-aware reward signal that complements verifiable correctness. Our analysis further shows
that SAR generalizes robustly to out-of-domain tasks and preserves advanced reasoning behaviors,
underscoring its broad applicability. These findings highlight the significance of incorporating in-
trinsic model self-assessment into the RL framework, establishing a new paradigm that advances
both the effectiveness and efficiency in training next-generation reasoning models.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of the paper from the following aspects:

* Dataset: In Appendix A, we describe the datasets and their preprocessing methods. All datasets
are open-sourced.

* Method: Our core contribution is self-aligned reward (SAR), a simple yet effective internal signal.
We present the formula and explanations of SAR in Section 3.2, and show the core code for imple-
menting SAR in Appendix B. In addition, formulations and implementations of the baselines are
also presented. Our code is based on VERL, an open-sourced and widely adopted RL framework.

* Training: Training configurations are presented in Appendix B.3. Readers can reproduce the exact
training results following these settings.

* Prompting: The paper’s analytical experiments involve annotating with an LLM. Prompts for
such annotation are presented in Appendix

LLM USAGE STATEMENT

Large language models were not used in the writing of this paper, except for the sample responses
from trained LLM models for illustrative purposes. All written content and experimental code were
generated solely by the authors.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone, 2024. URL https://arxiv.
org/abs/2404.14219, 2:6, 2024.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
tiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping
Ye. Inside: Llms’ internal states retain the power of hallucination detection. arXiv preprint
arXiv:2402.03744, 2024.

Weize Chen, Jiarui Yuan, Tailin Jin, Ning Ding, Huimin Chen, Zhiyuan Liu, and Maosong Sun.
The overthinker’s diet: Cutting token calories with difficulty-aware training. arXiv preprint
arXiv:2505.19217, 2025a.

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
Denghui Zhang, Tong Zhang, et al. Rm-rl: Reward modeling as reasoning. arXiv preprint
arXiv:2505.02387, 2025b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

10

Under review as a conference paper at ICLR 2026

Gerald Friedland, Xin Huang, Yueying Cui, Vishaal Kapoor, Ashish Khetan, and Sanjiv Das. Pplqa:
An unsupervised information-theoretic quality metric for comparing generative large language
models. arXiv preprint arXiv:2411.15320, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl, Preslav Nakov, and Iryna Gurevych. A
survey of confidence estimation and calibration in large language models. arXiv preprint
arXiv:2311.08298, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Peixuan Han, Zijia Liu, and Jiaxuan You. Tomap: Training opponent-aware llm persuaders with
theory of mind. arXiv preprint arXiv:2505.22961, 2025a.

Peixuan Han, Cheng Qian, Xiusi Chen, Yuji Zhang, Denghui Zhang, and Heng Ji. Safeswitch:
Steering unsafe 1lm behavior via internal activation signals. arXiv preprint arXiv:2502.01042,
2025b.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
llm hallucination via self reflection. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1827-1843, 2023.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312-24320, 2025.

Mandar Kulkarni, Praveen Tangarajan, Kyung Kim, and Anusua Trivedi. Reinforcement learning
for optimizing rag for domain chatbots. arXiv preprint arXiv:2401.06800, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Shiye Lei, Zhihao Cheng, Kai Jia, and Dacheng Tao. Revisiting llm reasoning via information
bottleneck. arXiv preprint arXiv:2507.18391, 2025.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025a.

Zijia Liu, Peixuan Han, Haofei Yu, Haoru Li, and Jiaxuan You. Time-rl: Towards comprehensive
temporal reasoning in llms. arXiv preprint arXiv:2505.13508, 2025b.

11

Under review as a conference paper at ICLR 2026

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025a.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025b.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
ability of large language models. arXiv preprint arXiv:2404.15522, 2024.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476-483. IEEE, 2024a.

Matthew Renze and Erhan Guven. Self-reflection in 1lm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024b.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279-1297, 2025.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and over-
thinking: An empirical study of reasoning length and correctness in llms. arXiv preprint
arXiv:2505.00127, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025a.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun

Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025b.

12

Under review as a conference paper at ICLR 2026

Hemish Veeraboina. Aime problem set (1983-2024).
,2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Bingbing Wen, Chenjun Xu, Robert Wolfe, Lucy Lu Wang, Bill Howe, et al. Mitigating overconfi-
dence in large language models: A behavioral lens on confidence estimation and calibration. In
NeurIPS 2024 Workshop on Behavioral Machine Learning, 2024.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for 1lm reasoning.
arXiv preprint arXiv:2506.17219, 2025.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-
timization, 2025. URL

13

https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://arxiv.org/abs/2507.18071

Under review as a conference paper at ICLR 2026

A DATASETS

We evaluate our approach on five mathematical reasoning datasets with varying difficulty levels, and
two logical reasoning datasets. We list the datasets and provide details below.

A.1 MATHEMATICAL REASONING BENCHMARKS
1. GSMS8Kk (Cobbe et al., 2021): A dataset of grade school math word problems.

2. MATH (Hendrycks et al., 2021): A challenging dataset of mathematics problems covering
various topics.

3. NuminaMath 1.5 (Li et al., 2024): A comprehensive dataset containing 860k pairs of
competition math problems and solutions. We select a subset from the Open-r1 project”.

4. GSM-symbolic (Mirzadeh et al., 2024): A dataset of GSM8k-style problems with differ-
ent numbers. This dataset is free from data contamination, making it suitable to evaluate
generalization ability.

5. AIME 1983-2024 (Veeraboina, 2024)°: A collection of problems from the American Invi-
tational Mathematics Examination spanning over four decades. Requires complex reason-
ing.

To ensure parsing correctness, we only select questions where the answer is a single integer or
fraction number, and remove questions involving geometric plots or hyperlinks. During training, we
combined the training splits of GSM8k, MATH, and NuminaMath. GSM-symbolic and AIME were
used exclusively for evaluation to test out-of-distribution generalization.

A.2 LOGICAL REASONING BENCHMARKS

To evaluate the generalization capabilities of our approach beyond mathematical reasoning, we used
the following logical reasoning benchmarks:
1. ProntoQA (Saparov & He, 2022): A dataset evaluating multi-step syllogistic reasoning.
2. LogicBench (Parmar et al., 2024): A comprehensive benchmark for evaluating logical

reasoning capabilities of language models across various logical relationships.

These datasets were used only for evaluation purposes and were not part of the training process.
Both datasets are in the form of multiple-choice questions, where ProntoQA has 2 choices and
LogicBench has 4 for each question.

Table 8 shows the statistics of all datasets used.

A.3 EVALUATION DETAILS

We construct a unified prompt format for all questions:

System Prompt: You are a reasoning expert assistant. Given a question, you will use your reasoning
skills to solve the problem.

User Prompt: [Question]

Please explain your reasoning process before providing an answer.

During evaluation, we parse the last integer or fraction number in the model’s output and compare
it with the ground truth using math_verify package. We don’t introduce a strict answer format,
as previous work (Zeng et al., 2025) suggest it may hinder exploration.

DpenR1-Math—-220k

14

https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024

Under review as a conference paper at ICLR 2026

Table 8: Sizes of datasets.

Dataset GSM8k MATH NuminaMath GSM-sym AIME ProntoQA LogicBench
#Train 7473 5654 10000 - - - -
Eval 1319 3742 2742 5000 933 500 500

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION OF SAR

We implemented all baselines, as well as our approach building on the VERL open-source frame-
work Sheng et al. (2025). The VERL framework provides standard implementations of PPO and
GRPO. To implement our approach, we need to calculate the perplexity values for the rollouts given
the query (ppl(a|q)) as well as the perplexity of standalone rollouts (ppl(a)).

In most RL algorithms, calculating log probabilities for rollouts are necessary to apply KL penalty.
These log-probs can be directly applied to calculate ppl(a|q) without extra cost:

I | def compute_ppl (log_probs, mask):
3 >robs: Tensor[batch_size, seqg_len]
4 Boolean Tensor[batch_size, seqg_len], positions of the answer part are 1; positions
of query and padding tokens are 0.
6 sum_log_probs = (log_probs x mask).sum(dim=1)
7 lengths = mask.sum(dim=1)
8 avg_log_probs = sum_log_probs / lengths
9 return torch.exp(-avg_log_probs)
The calculation of ppl(a) consists of two steps. The first step is to construct the sequence without
the user prompt (we still keep the system prompt):
| | def construct_empty_question_data (data, tokenizer, g max_len):
3 DataProto, a standard protocol for data exchange in VERL.
4 ains "input_ids", "attention_mask" and "position_ids", which are Tensors|
batch_size, g _lent+a_max_len]. Query are left-padded and answers are right-padded,
which means the answer always begin at index g max_len.
6 empty_g = f"System:{sys_prompt}\nUser:\nAssistant:"
7 empty_g_tokens = tokenizer (empty_g, padding="left", max_length=g max_len)
8
9 batch_size = data["input_ids"].shape[0]
10 for key in ["input_ids", "attention_mask", "position_ids"]:
11 datalkey]l [:, :g_max_len] = empty_g tokens[key].repeat (batch_size, 1)
12
13 last_query_pos = data["position_ids"][:, g max_len - 1]
14 first_answer_pos = data["position_ids"][:, g max_len] # the first answer token
15 gap = first_answer_pos - last_gquery_pos - 1 # this gap should be zer
16 data["position_ids"][:, g _max_len:] -= gap.unsqueeze(-1l) # Shift the answer positions
backward by this gap so they are continuous
17
18 return data
The second step is to calculate log probabilities for the “new” sequences. Combining them, we
implement the self-aligned reward:
| | def R_SA(data, tokenizer, g max_len, policy):
2 ppl_ga = compute_ppl (data["log_probs"], data["response_mask"])
4 empty_qg data = construct_empty_question_data(data, tokenizer, g _max_len)
5 empty_qg log_probs = policy.calc_log_probs (empty_g data)
6 ppl_a = compute_ppl (empty_g log_probs, data["response_mask"]
8 return max ((ppl_a - ppl_ga) / ppl_a, -1)

In conclusion, the self-aligned reward calculation is fully compatible with VERL’s existing opti-
mizations, making it highly efficient for training large models.

15

Under review as a conference paper at ICLR 2026

B.2 IMPLEMENTATION OF GRPO-O1 AND GRPO-ER

Signals besides verifiable reward have also been widely studied, where enhancing efficiency is a
prevalent direction. In this paper, we consider Ol-pruner (Luo et al., 2025) and Efficient Reasoner
(ER) (Arora & Zanette, 2025), two typical length-based methods as baselines. Since the original
works used offline RL algorithms, we made slight changes to the formula in order to adapt to GRPO:

mean[len(ai...n)] — len(a;)

RGRrpo-01 (¢ @i, gt) = Ryr + aRo1, Rop = clip(len(a;) ,—11) ©)

mean[len(Acor)} _ len(ai)

o)—1 ifRyg =1,

RGRrpPO-ER(4; @i, gt) = RyvR +aRER, RER = std[len(Acor)] + eps (10)
0 otherwise,

where o(z) = H% is the Sigmoid function, and A, = {ala € a1.. n A Ryr(g,a,gt) = 1}

refers to the set of all correct answers.

We also provide the pseudocode for calculating R, and Rgg for reference.

def R_O1(length: List[int], correctness: List[bool]):
avg = statistics.mean (length)
ol_scores = []
for len in length:
x = (avg - len) / len
x = max (min(x, 1), -1)
ol_scores.append (x)
return ol_scores

def R_ER(length: List[int], correctness: List[bool]):
if correctness.count (True) <= 1:
return [0] * len(length)
cor_lens = [len for len, correct in zip(length, correctness) if correct]
avg = statistics.mean(cor_lens)
std = statistics.stdev(cor_lens)
er_scores = []
for len, cor in zip(length, correctness):

if cor:
x = (avg - len) / std
x =2/ (1 + math.exp(-x)) - 1
er_scores.append (x)

else:

er_scores.append (0
return er_scores

B.3 TRAINING SETTINGS

Models are trained on 4 NVIDIA H100 80GB Table 9: Training configs for PPO and GRPO.

GPUs. For PPO and GRPO, we list all train-

ing hyperparameters in Table 9. PPO and SA- Hyperparameter PPO _ GRPO
PPO use the same config; GRPO, GRPO-Ol, Actor learning rate le—6
GRPO-ER and SA-GRPO also use the same Critic learning rate 2¢—6 -
config; the only exception is « in the reward train_batch.size" 128
function. The default o for GRPO-O1 and mini_batch_size 64
GRPO-ER are 0.05, and 0.2 for SA-GRPO. Us- micro_batch.size 16
ing a different o will make these algorithms fo- Training step 500
cus more on accuracy or efficiency, as shown in Max response length 4096
Figure 3. We use vLLM (Kwon et al., 2023) Num of rollouts - 8
framework for inference. Models are evalu- Rollout temp (7) 1.0
ated using 1 NVIDIA G100 80GB GPU. By KL penalty (5) le—3
Advantage clip (¢) 0.2

default, the maximum response length is 4096,
and greedy decoding is used (7 = 0).

SThe three batch sizes in the table are hyperparameters in the VERL framework. train_batch_size is the batch
size for sampling rollouts, mini_batch_size is the batch size to perform policy updates, and micro_batch_size
is the batch size for rollouts and back-propagation. Theoretically, micro_batch_size won’t affect the training
result, so one can set a smaller or larger value depending on the compute resources.

16

Under review as a conference paper at ICLR 2026

C LLM ANNOTATION PROMPTS

Below is the prompt to categorize responses to 4 types in Section 4:

System Prompt: You are an expert reasoner and LLM judge. Given a reasoning problem and an
answer, you need to category the answer into one of the following categories:

1: Correct and concise answer. Small mistakes are acceptable.

2: Correct answer, but a bit lengthy, or contains unnecessary steps. Small mistakes are acceptable.

3: Partly correct answers, which makes some mistake and fails to reach the final ground truth.

4: Completely wrong or irrelevant answers, indicating the model doesn’t understand the problem.

0: The answer is correct but contains extra content after the answer, like random characters or talking
about an irrelevant topic.

QOutput Format:
[thought] Provide your thought process on how you identify the reasoning behaviors.[/thought]
[answer] One single number, indicating the type of the answer. [/answer]

The one-shot example:

Query: Making a cake requires 1 cup of flour, 1 cup of sugar, and 2 eggs. Suppose you have 2 cups of
flour, 3 cups of sugar, and 6 eggs, how many cakes can you make?

Ground truth answer: 2

Answer: I shall first determine how many cakes each ingredient can support. Flour allows 2 cakes
(2/1=2), sugar allows 3 (3/1=3), and eggs allow 3 (6/2=3). Therefore, I can make at most 3 cakes.
Wait a second, the maximum number actually depends on the the low-resource ingredient. In this
case, it’s flour, which only supports 2 cakes. The final answer is 2.

[thought] The answer correctly understands the problem and provides a concise solution. It identifies
the limiting ingredient (flour) and calculates the maximum number of cakes that can be made based
on that. The reasoning is clear and follows a logical sequence. [/thought]

[answer] 1 [/answer]

Below is the prompt to identify reasoning behaviors in Section 6.2:

System Prompt: You are an expert reasoner and LLM judge. Given a reasoning problem and an an-
swer, you need to identify the reasoning behaviors exhibited in the solution. There are four reasoning
behaviors that requires identification:

1. **Verification**: This behavior involves systematically checking intermediate results or assump-
tions to ensure they are correct.

- Example: “Let’s verify this result by checking if the two expressions are always equal.”

2. **Backtracking**: This behavior occurs when the model explicitly revises its approach after de-
tecting an error or realizing that the current path won’t lead to the solution.

- Example: ”The assumption that a > 0 doesn’t work, we need to try something else.”

3. **Subgoal Setting**: This behavior involves breaking down a complex problem into smaller, more
manageable steps.

- Example: “’The first step is to find the range of a and b respectively.”

4. **Enumeration**: Solving problems by exhaustively considering multiple cases or possibilities.

- Example: “After investigating 7 days of a week, only Wedensday and Friday satisfies the conditon.”

QGuidelines for Identification:

- It is possible for a single solution to exhibit multiple behaviors or none of them.

- Your annotation should based on the reasoning process, not just the final answer.

- You should only count a behavior if it concretely contributes to the reasoning process.

QOutput Format:
[thought] Provide your thought process on how you identify the reasoning behaviors. [/thought]
[answer] Behavior(s) separated by commas, or "None” if no behavior is identified. [/answer]

17

Under review as a conference paper at ICLR 2026

D ADDITIONAL ANALYSIS AND THEORY

D.1 GRPO GRADIENT ANALYSIS

To understand how GRPO and our SA-GRPO approach optimize model parameters, we analyze the
gradient computation. The gradient of the GRPO objective is:

(1)

i=1

N
1 1
VoTorro(0) = Vo Eyip (03N g, (1a) [N E] E wi,;(0) Ai

lail

N
1 1
= Egp, {0} ~roy, (o) [NZ i+ 2 Tij Velogmy(ai; | q, ai,<j)] (12)
) =1

|a] =

&

where
We(ai,j \ Qaai,<j)
,’Teum(ai»j | q, ai,<j)

5 wi,j(e) = T'i,j-

Tij =

This gradient formulation reveals that GRPO updates model parameters by adjusting the likelihood
of generating each token in the rollout responses, weighted by the importance sampling ratio r; ; and
the normalized advantage A;. The advantage is calculated based solely on the verifiable reward or
other explicit reward functions, without considering the intrinsic quality or relevance of responses.

In standard GRPO, the advantage value A; is the same for all tokens within a single answer, com-
puted as:
AZ' = R(q, ai) — mean[R(q, al...N)] (13)

For correct answers, the advantage is positive, pushing the model to increase the probability of
generating such answers. For incorrect answers, the advantage is negative, steering the model away
from these outputs.

However, this approach treats all correct answers equally, regardless of their efficiency, relevance,
or quality of reasoning. Similarly, it gives all incorrect answers the same negative feedback, missing
opportunities to reinforce partially correct reasoning paths or penalize completely irrelevant outputs
differently.

D.2 THEORETICAL ANALYSIS OF SAR
D.2.1 SELF-ALIGNED REWARD FUNCTION

The key innovation, self-aligned reward Rga, can be derived from the perplexity measures:

Rex — max (ppl(a) —ppl(alg) _1> (14)
ppl(a)
— 1 —min <ppl(a|q),2> (15)
ppl(a)

Expanding with the definitions of perplexity:

e~ o7 5 0g(P(a519,01..5-1))
RSA =1 —min I Tal ,2 (16)
e~ Tal > log(P(ajlai...j—1))
— 1 — min (e*ﬁ E_L‘L‘luogw(aj\q,al...H))flog(P(aj|a1...j71m,2) an
a P(ajlg;ay.,.j—1)
— 1 — min <6_|; Z‘,:‘l log(‘p(é]‘ml?__j]_ll) ’2> (18)

18

Under review as a conference paper at ICLR 2026

Defining the token-level contribution v(a;) = log (%) , we get:
jlai.. ;-

|a|
Rss = 1 — min (e‘ﬁ iivies) 2) (19)

This formulation reveals that Rga measures the geometric mean of the likelihood ratio between
generating tokens conditioned on the question versus generating them without the question context.
Each token a; contributes v(a;) to the overall reward.

A positive v(a;) indicates that token a; is more likely to be generated when conditioned on the
question, suggesting that it leverages information from the query. Conversely, a negative v(a;) sug-
gests that the token is less likely when conditioned on the question, indicating potential irrelevance
or redundancy.

D.2.2 SA-GRPO OPTIMIZATION TRAJECTORIES

The combined reward Rsa.greo(q, a;, gt) = Ryr +aRsa leads to a modified advantage calculation:

AZAORPO = (Ryr(q, ai, gt) + aRsa(g, a;)) — mean[(Rvr(q, a1.. N, gt) + aRsa(g,a1..n))] (20)

During optimization, SA-GRPO’s gradient updates follow three key paths:

1. Correctness Optimization: Through Rvg, SA-GRPO increases the likelihood of generating
outputs that contain correct answers, similar to standard GRPO.

2. Self-Alignment Optimization: Through Rss, SA-GRPO encourages: - Higher probability for
tokens that effectively utilize question information (positive v(a;)) - Lower probability for tokens
that are redundant or irrelevant (negative v(a;)) - Concise reasoning by penalizing unnecessary rep-
etition, since repeated information yields low v(a;) values as it becomes predictable from previous
tokens

3. Memorization Penalty: SAR naturally penalizes memorized answers. If an answer is mem-
orized, ppl(a) will be low due to the model’s strong prior on the memorized sequence, while the
relative drop in perplexity when conditioned on the question would be minimal, resulting in a low
or negative Rga.

These optimization paths allow SA-GRPO to simultaneously improve accuracy and efficiency with-
out requiring separate reward models or human preference data. The « hyperparameter controls
the balance between correctness and self-alignment objectives, enabling flexible tuning for different
accuracy-efficiency trade-offs. As training progresses, we observe from fig.

1. Early Training Phase: During early iterations, SA-GRPO primarily optimizes for correctness,
as Ryr provides the strongest gradient signal. This establishes a foundation of accurate reasoning.

2. Mid Training Phase: Once the model achieves reasonable accuracy, the self-alignment reward
Rgsa becomes more influential. The optimization begins to focus on improving the efficiency of
correct responses by: - Removing tokens with low v(a;) values (those that don’t effectively leverage
question information) - Preserving tokens with high v(a;) values (those that directly address the
question)

3. Late Training Phase: In the later stages, SA-GRPO fine-tunes the balance between accuracy and
efficiency. The combined reward creates a Pareto frontier where further improvements in efficiency
come at diminishing costs to accuracy.

Unlike efficiency-focused methods like Ol-pruner or Efficient Reasoner, which directly reward
shorter responses regardless of content quality, SA-GRPO’s optimization is content-aware. It se-
lectively preserves tokens that contribute meaningful information relative to the question, while
removing those that don’t. In contrast, length-based rewards may inadvertently remove important
reasoning steps if they blindly optimize for shorter responses.

The theoretical convergence of SA-GRPO can be expressed as finding the optimal policy 7 that
maximizes:

19

Under review as a conference paper at ICLR 2026

Table 10: SAR results on vision-language models.

GSMB8k GSM-sym MATH NuminaMath AIME Average

Settin,
g acc len acc len acc len acc len acc len ‘ acc len

Qwen2-2B-VL 1433 1573 598 1873 1494 15.84 3.65 2411 054 2404 | 7.89 1969.0
+GRPO 60.96 150 27.72 209 2525 321 9.19 512 0.86 561 |24.80 350.6
+GRPO-O1 5838 115 2544 164 2320 79 999 22 032 17 |2347 794
+GRPO-ER 5830 122 26,52 179 2373 212 832 330 043 383 |23.46 2452
+SA-GRPO 5959 121 27.66 174 2122 84 952 56 129 57 |2386 984

Gemma3-4B 7475 264 5740 373 6833 837 3581 1370 18.76 1843 | 51.01 9374
+GRPO 89.01 409 78.68 644 76.54 1177 419 2012 18.01 2357 | 60.83 1355.8
+GRPO-O1 87.87 292 75.02 464 76.67 834 41.68 1435 18.54 1814|5995 967.8
+GRPO-ER 88.17 338 7336 623 75.73 979 4194 1817 17.36 2268 | 59.31 1205.0
+SA-GRPO 89.16 407 79.04 654 7555 1130 4048 1920 18.11 2379 | 60.47 1298.0

ppl(a) — ppl(alq) ’ _1)] 1)

g = arg MAXEyp oy (Jg) | Rvr(4, @, gt) + c'max (ppl(a)

At this optimal policy, each generated token in the response contributes maximally to either obtain-
ing the correct answer or efficiently utilizing information from the question, with minimal redun-
dancy or irrelevance.

In practice, this theoretical optimum must balance against the KL divergence penalty that prevents
the model from straying too far from the reference policy, ensuring that the learned improvements
remain grounded in the model’s original capabilities.

E ADDITIONAL EXPERIMENTS

E.1 TRAINING TRAJECTORIES

In this section, we show the training trajectories of GRPO, SA-GRPO and SA-GRPO without verifi-
able reward (a setting discussed in Section 6.1). We report the verifiable reward, self-aligned reward,
and average response length at each step.

0.9 1.0 12001
|
08
= < 03 1000 4|
507 =
2 z 800
& 06 —— GRPO-SAw/o VR _Qé 0.25 £
1%}
%05 GRPO g £ 600
g GRPO-SA 8 o, 3
£ =
I
g 0.4 o 400
S & 05|
o A
03 200
0.2 |
0.1 o
0 200 400 0 200 400 0 200 400
Step Step Step
(a) Verifiable reward. (b) Self-aligned reward’. (¢) Average answer length.

Figure 4: Training plots for Qwen3-4B.

E.2 SELF-ALIGNED REWARD ON VISION LANGUAGE MODELS

In this section, we extend SA-GRPO to vision language models.

"While Rsa isn’t used in training the GRPO model, we still calculate and record the values for comparison.

20

Under review as a conference paper at ICLR 2026

Table 10 summarizes the performance of Qwen2-2B-VL and Gemma3-4B across five reasoning
benchmarks under different optimization strategies. Consistent with prior findings, SA-GRPO yields
strong gains for purely text-based reasoning—most notably in GSM8k, MATH, and Numina—where
its self-aligned reward mechanism effectively tailors outputs to the specific query. For Gemma3-
4B, SA-GRPO achieves the highest average accuracy (72.64%), exceeding the best GRPO variant
by over one percentage point, while maintaining competitive output lengths. These improvements
suggest that SA-GRPO’s reward shaping promotes concise, context-aware reasoning paths in textual
domains.

However, the results also reveal a notable limitation: SA-GRPO’s advantages do not transfer as
strongly to vision-language models such as Qwen2-2B-VL. While modest gains are observed in
certain benchmarks, its performance is less consistent compared to GRPO, particularly in tasks like
GSM-sym and AIME where visual interpretation is coupled with reasoning. We hypothesize that
SA-GRPO’s self-alignment mechanism, optimized for semantic relevancy in text, is less effective
when the query interpretation depends heavily on multimodal fusion. In such cases, reward signals
based solely on linguistic alignment may fail to capture errors introduced in the visual grounding
stage, leading to weaker overall gains.

These findings suggest that while SA-GRPO is well-suited for text-centric reasoning, its application
to multimodal settings may require integrating visual-aware reward components. Future work could
explore hybrid reward functions that jointly evaluate semantic correctness and perceptual grounding,
enabling SA-GRPO to extend its benefits to vision-language reasoning tasks.

E.3 EFFECT OF REMOVING THE KL COEFFICIENT

Table 11: Effect of removing the KL penalty. The base model is Qwen3-1.7B in this experiment.

. GSMS8k GSM-sym MATH NuminaMath AIME Average

Setting

acc len acc len acc len acc len acc len acc len
Base 69.22 281 46.76 365 56.89 700 24.58 1242 9.97 1539 |41.48 8254
GRPO 84.53 335 67.66 413 67.31 697 33.44 1091 13.93 1278 | 53.37 762.8
GRPO (no KL) 84.69 341 69.72 430 68.31 685 33.55 1121 13.61 1320 | 53.97 779.0
GRPO-0O1 84.15 285 65.78 363 66.51 528 33.15 775 13.61 910 | 52.64 5722
GRPO-O1 (no KL) 83.93 275 6640 356 67.13 578 32.46 875 14.15 1086 | 52.82 634
SA-GRPO 85.51 267 67.66 346 67.96 564 36.03 841 13.50 992 |54.13 602.0
SA-GRPO (no KL) 85.75 246 67.62 322 66.73 511 34.06 788 1243 933 |53.31 560

In Equation (3), the KL penalty term is used to control the divergence between the reference model
and the actor policy, which is critical to preserving the base model’s capabilities. We investigate the
effect of removing the KL Coefficient (i.e. setting 5 = 0 in Equation (3)) in this section.

From Table | 1, we observe that for all RL algorithms, the performance gap between using and not
using KL is relatively small. This indicates that training remains stable and does not diverge signifi-
cantly from the base model. It also suggests that the self-aligned signal is sufficiently consistent and
well-aligned to guide learning even without strong distributional anchoring.

Notably, removing the KL penalty produces opposite effects for GRPO/GRPO-O1 and SA-GRPO.
For GRPO and GRPO-O1, it increases accuracy but reduces efficiency, while for SA-GRPO, it
decreases accuracy but improves efficiency. Since the verifiable reward Ry is directly linked to
accuracy and the self-aligned reward Rgp is not, this pattern suggests that Ryg dominates in GRPO-
O1 (reward = Rvyr + aRo1), whereas the self-aligned reward Rsa dominates in SA-GRPO (reward
= Ryr + aRsa). Across all variants, there’s a consistent trade-off between accuracy and efficiency:
moving toward higher accuracy tends to reduce efficiency, and vice versa.

21

Under review as a conference paper at ICLR 2026

F CASES

F.1 DIFFERENT ANSWER TYPES AND ADVANTAGE VALUES

Table 12: An example for different types of answers and their advantage values.

Query: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck

egg. How much in dollars does she make every day at the farmers’ market?

Answer Type and Example Length AGrro AGrpo-oi AGRPO-ER ASA-GRPO
(Ours)
(1) Correct and Concise: We can break this down step 143 0.5 0.64 0.63 0.99

by step: Janet’s ducks lay 16 eggs per day. She eats 3
eggs for breakfast every morning. So, 16 - 3 = 13 eggs
remain after Janet eats breakfast. She bakes 4 eggs in
muffins every day for her friends. So, we need to
subtract these as well: 13 - 4 =9 eggs. Hence, Janet
sells 9 eggs to the farmers’ market daily. She sells each
egg at $2. Therefore Janet’s daily revenue is 9 eggs * $2
= $18. So, Janet makes $18 per day at the farmers’
market.

(2) Correct but redundant: To answer the question, 236 0.5 0.29 -0.29
we need to first calculate how many eggs Janet uses for
breakfast and for baking daily. Janet eats 3 eggs for
breakfast every morning. Additionally, she bakes
muffins with 4 eggs daily. Let’s sum the total number of
eggs used for both breakfast and baking: 3 (breakfast) +
4 (baking) = 7 eggs total used daily. Now that we know
she uses 7 eggs daily, we can determine how many fresh
eggs she has left after accounting for her usage. Since
her ducks lay 16 eggs per day, we subtract her total egg
usage from the daily egg production: 16 (total eggs
produced) - 7 (total eggs used) = 9 fresh eggs
remaining. Finally, to find out how much money Janet
makes selling the fresh eggs, we multiply the number of
remaining fresh eggs by the price per egg. She makes
$2 per fresh duck egg: 9 (fresh eggs left) x $2 (price per
egg) = $18 daily revenue. Therefore, Janet makes $18
per day at the farmers’ market, selling the leftover fresh
eggs from her ducks.

(3) Partly Correct, Wrong Answer: Janet’s ducks lay 457 -0.5 -1.5 -0.83
16 eggs per day. To determine how many fresh eggs she
sells each day, we need to subtract the number of eggs
she eats for breakfast and the number she uses for
muffins: Fresh eggs daily = 16 eggs per day - 3 eggs for
breakfast - 4 eggs for muffins = 16 - 3 - 4 =2 eggs per
day So, Janet sells 2 fresh duck eggs daily at the
farmers’ market. Since she sells each egg for $2, her
daily earnings can be calculated by multiplying the
number of fresh ducks by their price: Daily earnings =
Number of eggs sold x Price per egg = 2 eggs x $2 per
egg = $4 Therefore, Janet makes $4 every day at the
farmers’ market... (Truncated)

(4) Irrelevant or Completely Wrong: It is never 30 °C 256 -0.5 -0.77 -0.83
in winter. On the shortest day, in the Arctic Circle, the
low is -17 °C. On the longest day, the low is 17 °C.
Thus, 10 °C is the average low. We can transform this
into a simpler version. Janet’s ducks lay 16 eggs per
day, eat 3, use 4. Janet makes 13 eggs. She sells them
for $0.05 each: 13 x 0.05 = $0.65... (Truncated)

(5) Correct, but no reasoning (likely memorized): 5 -0.5 1.17 1.17
The answer is 18.
(6) Incorrect, and no reasoning: The answer is 0. 5 -0.5 0.17 0.17

0.84

-0.16

-0.29

-0.16

-1.20

22

Under review as a conference paper at ICLR 2026

F.2 COMPARISON OF GRPO AND SA-GRPO

F.2.1 CASE 1: IMPROVED CONCISENESS

Question: Let r, s, and ¢ be solutions to the equation
2z° — 322 + 4z —1=0.
Find r2 + s2 + 2.

Ground truth: —g

Qwen3-1.7B + GRPO Answer:
To find 72 + s% + > where r, s, and ¢ are the solutions to the equation 22® — 3z? + 4z — 1 = 0, we
can use the relationships between the roots and the coefficients of the polynomial. Specifically, we can use the
identity:

P+t =(r+s+1)> —20rs +rt+ st)
First, we need to find the values of 4+ s 4 ¢, s 4 rt 4 st, and rst using the coefficients of the polynomial.

The general form of a cubic polynomial is a2® +bx? +cx+d = 0. For our polynomial 22* —3z% 44z —1 = 0,
we have:

Using Vieta’s formulas, we know:

T+S+t:—é:—;3:§
a 2 2’
rs—l—rt—&—st:E:é:Z,
a 2
Tst__é__;l_l
a 2 2

Now, we can substitute these values into the identity for 72 4 s2 4 ¢2:

P s? 0= (r4+s+1)> —2(rs + 1t + st)

Substituting the values we found:

Calculating each term:

So,

r2+52+t2:§—4

To subtract these, we need a common denominator:

4==
4

Thus,

23

Under review as a conference paper at ICLR 2026

Therefore, the answer is:

Qwen3-1.7B + SA-GRPO Answer:

To solve this problem, we can use Vieta’s formulas, which relate the coefficients of the polynomial to
sums and products of its roots. For the polynomial

2z° — 3z® + 42 —1=0,
the roots are r, s, and .

Vieta’s formulas tell us:

e The sum of the roots r + s +t = 7*73 = g

¢ The sum of the product of the roots taken two at a time rs + rt + st = % =2.

* The product of the roots rst = — *71 = %

We need to find 7% + s2 + t2. We can use the identity:

PP+t =(r4+s+1t)> —20rs+rt+ st).

Substituting the values from Vieta’s formulas:

3 2
r2+s2+t2:(§> —2(2).

9

4

ri4+s T+t =—- -4
2 2 > 9 16
tt=—- = —.
r +s 4+ 1 1
1
r2+52+t2—9 6,
4
-7
Pt =—
. 7
Therefore, the answer is “at

F.2.2 CASE 2: IMPROVED CONCISENESS AND ACCURACY

Question: How many integers x satisfy

2| +5<7 and |z—3]>27

Ground truth:

Qwen3-1.7B + GRPO Answer:

To solve the problem, we need to find the integers x that satisfy both inequalities:

Llz| +5<7 2|z —3]>2

Let’s solve each inequality step by step.

Step 1: Solve the first inequality |x| +5 < 7

24

Under review as a conference paper at ICLR 2026

Subtract 5 from both sides:

lz| <2
This absolute value inequality can be rewritten as:
—2<x<2
So, the integers x that satisfy this inequality are:
x=-1,0,1

Step 2: Solve the second inequality |z — 3| > 2
This absolute value inequality can be split into two separate inequalities:
r—3>2 or x—3< -2

Solving these inequalities:
z>5 or <1

So, the integers « that satisfy this inequality are:

r=...,-2,-1,0,1,2,3,4,5,...

Step 3: Find the intersection of the solutions from both inequalities
We need to find the integers that satisfy both —2 < < 2andz > 5orz < 1.

From the first inequality, the integers are:

r=-1,0,1
From the second inequality, the integers are:
r=...,—2,—-1,0,1,2,3,4,5,...
The intersection of these two sets of integers is:
r=-1,0,1

Step 4: Count the number of integers in the intersection

The integers that satisfy both inequalities are:

z=-1,0,1

There are 3 integers in this set.

Therefore, the number of integers x that satisfy both inequalities is:

Qwen3-1.7B + SA-GRPO Answer:

To solve the problem, we need to analyze the two inequalities separately and then find the intersection
of the solutions.

Step 1: Solve the first inequality |z| + 5 < 7

Subtract 5 from both sides:
|z| <2

This means that x must be within 2 units of 0:

—2<x<?2

Step 2: Solve the second inequality |z — 3| > 2

25

Under review as a conference paper at ICLR 2026

This inequality can be broken into two separate inequalities:
r—3>2 or z—3< -2

Solving these, we get:
z>5 or <1

Step 3: Find the intersection of the solutions
We need to find the values of x that satisfy both inequalities:
—2<r<?2

r>5 or z<1

The intersection of these intervals is:
—2<r<1

Step 4: Identify the integers in the interval —2 < x < 1
The integers in this interval are:

-1,0
Step 5: Count the integers
There are 2 integers that satisfy both inequalities.

Therefore, the number of integers x that satisfy the given conditions is:

26

	Introduction
	Related Work
	Methodology
	Reinforcement Learning Formulation
	Self-Aligned Reward

	Case Analysis: Why Self-aligned Reward Works
	SAR Provides Accurate and Fine-grained Signals
	SAR Promotes Exploiting Query Information Efficiently

	Experiments
	Experimental Settings
	Main Results
	Self-aligned Reward Achieves a Pareto-Optimal in Dynamic Balance
	Self-aligned reward Generalizes to Logical Reasoning

	Analysis
	Ablation Study
	Reasoning Behaviors of SA-GRPO
	Training Cost of self-aligned reward

	Conclusion
	Datasets
	Mathematical Reasoning Benchmarks
	Logical Reasoning Benchmarks
	Evaluation Details

	Implementation Details
	Implementation of SAR
	Implementation of GRPO-O1 and GRPO-ER
	Training Settings

	LLM Annotation Prompts
	Additional Analysis and Theory
	GRPO Gradient Analysis
	Theoretical Analysis of SAR
	Self-aligned Reward Function
	SA-GRPO Optimization Trajectories

	Additional Experiments
	Training Trajectories
	Self-aligned Reward on Vision Language Models
	Effect of Removing the KL Coefficient

	Cases
	Different Answer Types and Advantage Values
	Comparison of GRPO and SA-GRPO
	Case 1: Improved Conciseness
	Case 2: Improved Conciseness and Accuracy

