
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-ALIGNED REWARD: TOWARDS EFFECTIVE AND
EFFICIENT REASONERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards has significantly advanced rea-
soning with large language models (LLMs) in domains such as mathematics and
logic. However, verifiable signals provide only coarse-grained or binary correct-
ness feedback. This limitation results in inefficiencies like overly verbose or repet-
itive reasoning. Existing length-based solutions (e.g., length penalty) compromise
accuracy. To address this deficiency, we introduce self-aligned reward (SAR), a
generic, universally applicable self-guided signal that complements verifiable re-
wards to enhance both reasoning accuracy and efficiency in RL. Specifically, SAR
is defined as the relative perplexity difference between an answer conditioned on
the query and the standalone answer, thereby favoring responses that are concise
and query-specific. Quantitative analysis reveals that SAR reliably judges answer
quality: concise, correct answers score higher than redundant ones, and partially
correct answers score higher than entirely incorrect ones. Evaluation on 4 differ-
ent models across 7 benchmarks shows that integrating SAR with prevalent RL
algorithms like PPO and GRPO reduces answer length by 30%, while improving
accuracy by 4%. Our analysis also shows that SAR generalizes well to out-of-
domain tasks and achieves a Pareto-optimal frontier between correctness and ef-
ficiency compared to state-of-the-art baselines. We also show that SAR shortens
unnecessary elaboration while preserving advanced reasoning behaviors. These
results highlight the promise of self-aligned reward as a fine-grained complement
to verifiable rewards, paving the way for efficient and effective LLM training.

Qwen3-1.7B Qwen3-4B Phi-3.5-mini Gemma3-1B

Figure 1: Training with self-aligned reward enhances both efficiency and accuracy. We present
the relative gains in efficiency and accuracy compared to the respective base model in math reasoning
benchmarks. Efficiency gain is measured as the drop in average response length.

1 INTRODUCTION

Recently, reinforcement learning (RL) with verifiable rewards has attracted broad attention in LLM
training, showing remarkable improvements in reasoning skills (Guo et al., 2025; Jaech et al., 2024).
However, such verifiable signals are inherently discrete and coarse: they only judge final answer
correctness, but fail to capture finer distinctions among responses. For instance, an unnecessarily
long solution receives no penalty as long as the final answer is correct, and an almost correct response
is treated the same as a completely wrong one. This limitation often induces “overthinking”, where
models generate unnecessary elaborations that increase latency and cost (Sui et al., 2025).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of different reward designs.

Reward Continuous Internal Content-Aware Correctness Conciseness
Correctness ✗ ✓ ✓ ✓ ✗
Reward Model (Ouyang et al., 2022) ✓ ✗ ✓ ✓ ✗
Length Penalty (Chen et al., 2025a) ✓ ✓ ✗ ✗ ✓
Entropy (Agarwal et al., 2025) ✓ ✓ ✓ ✗ ✗
Self-Aligned (Ours) ✓ ✓ ✓ ✓ ✓

To this end, researchers have proposed heuristic regulations such as length penalties or brevity-
oriented objectives (Luo et al., 2025; Aggarwal & Welleck, 2025). While effective in reducing out-
put verbosity, these methods often penalize both redundant and essential reasoning, thereby harming
accuracy when necessary intermediate steps are suppressed. Consequently, this line of approaches
struggles to balance efficiency with correctness. Using external signal sources, such as reward mod-
els, is also undesirable due to their vulnerability to reward hacking. This underscores the necessity
of developing internally grounded reward mechanisms that provide precise and detailed guidance,
discerning necessary reasoning from redundant elaboration.

To close this gap, we introduce Self-Aligned Reward (SAR), a self-guided proxy to judge answer
quality (Equation (6)) based on perplexity, an informative metric modeling uncertainty (Friedland
et al., 2024; Agarwal et al., 2025). Specifically, SAR evaluates the perplexity of an answer both in
isolation and when conditioned on the query, and then measures their relative difference between the
two. Consequently, the reward promotes answers that are highly confident under the query context
but unlikely to arise independently without the query, which typically corresponds to responses that
are concise and strongly aligned with the query. Notably, SAR is the only fine-grained approach that
promotes accuracy and efficiency at the same time, as shown in Table 1.

We first conduct a quantitative analysis of different types of answers to demonstrate that SAR pro-
vides an accurate fine-grained reward landscape over answers of different qualities (Section 4). We
then train LLMs by combining SAR and verifiable reward in PPO and GRPO, two prevalent re-
inforcement learning algorithms. We find PPO and GRPO with SAR (denoted as SA-PPO and
SA-GRPO) achieve notable gains over baselines across 4 models and 7 benchmarks, improving
accuracy by 4% and efficiency by 30% (Section 5.2). Moreover, SAR outperforms length-based
rewards with a Pareto-optimal front in the accuracy-efficiency trade-off (Section 5.3). In addition,
we demonstrate the advantages of SAR over confidence-based methods (Section 6.1) and provide
an analysis of its reasoning behaviors (Section 6.2). Our findings suggest that combining verifi-
able rewards with intrinsic model self-judgment offers a new paradigm for RL training, enabling
improvements in both reasoning capability and efficiency.

2 RELATED WORK

Reinforcement Learning for LLMs. Reinforcement learning (RL) has emerged as a powerful
paradigm for fine-tuning large language models (LLMs) to enhance their performance in reasoning
tasks (Ouyang et al., 2022; Guo et al., 2025). Proximal Policy Optimization (PPO) (Schulman et al.,
2017) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024) are typical algorithms
that are widely adopted in diverse scenarios and domains (Kulkarni et al., 2024; Chen et al., 2025b;
Han et al., 2025a; Liu et al., 2025b). Improvements to these algorithms have also been proposed,
namely Dr.GRPO (Liu et al., 2025a), GSPO (Zheng et al., 2025), and Clip-Cov (Cui et al., 2025).

Efficient Reasoning. Reasoning models often suffer from overthinking (Su et al., 2025; Cuadron
et al., 2025; Sui et al., 2025), leading to unnecessary computation burdens. Prompt engineering (Han
et al., 2024; Ma et al., 2025a; Renze & Guven, 2024a) and instruction tuning (Yu et al., 2024; Kang
et al., 2025; Xia et al., 2025; Han et al., 2024; Ma et al., 2025b) have been widely used to mitigate this
drawback. Recently, researchers have also explored using RL to elicit efficient reasoning abilities
through reward signals that penalize overly lengthy answers (Aggarwal & Welleck, 2025; Team
et al., 2025b) or relatively longer answers (Luo et al., 2025; Arora & Zanette, 2025). In addition,
Yeo et al. (2025) explores the length penalty’s relationship with reasoning behaviors, and Chen et al.
(2025a) proposes a difficulty-sensitive method for token compression. However, these methods all
sacrifice accuracy to gain efficiency, which is the key issue this paper aims to address.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Self-judging of LLMs. Self-judging is a fundamental capability of LLMs (Renze & Guven, 2024b),
playing a key role in scalable training and self-evolution. The concept of self-judging is widely
adopted. For instance, confidence estimation is widely used to reduce hallucination (Geng et al.,
2023; Wen et al., 2024; Ji et al., 2023), probing internal states provides a lens to analyze model
behavior (Han et al., 2025b; Chen et al., 2024), and majority voting (Wang et al., 2022) is critical in
inference-time scaling techniques (Snell et al., 2024). Self-judging has also been used in RL to train
scalable reasoning models, with a primary focus on entropy-based metrics (Agarwal et al., 2025;
Lei et al., 2025; Zhao et al., 2025). Zhang et al. (2025) discussed the theoretical foundation and
limitations of self-judged signals.

3 METHODOLOGY

3.1 REINFORCEMENT LEARNING FORMULATION

Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) are two widely adopted RL algorithms. Given the current policy
πθ, query q, and the sampled rollout a, PPO and GRPO can be formulated as:

JPPO(πθ) = Eq∼D,a∼πθ(q)

[
1
|a|

∑|a|
j=1 min {rjAj , clip(rj , 1− ϵ, 1 + ϵ)Aj} − β KL(πθ||πref)

]
,

(1)

where rj =
πθ(aj | q, a1...j−1)

πold(aj | q, a1...j−1)
, Aj = Q(q, a1...j)− V (q, a1...j). (2)

JGRPO(πθ) = Eq∼D, a1...N∼πθ(q)

[
1
N

∑N
i=1

1
Lmax

∑|ai|
j=1 min {ri,jAi, clip(ri,j , 1− ϵ, 1 + ϵ)Ai} − βKL(πθ∥πref)

]
,

(3)

where ri,j =
πθ(ai,j | q, ai,1...j−1)

πold(ai,j | q, ai,1...j−1)
, Ai = R(q, ai)−mean[R(q, a1...N )]. (4)

In the above formulas, A is the advantage, D is the training dataset, and r refers to the importance
sampling ratio. N , ϵ, Lmax and β are hyperparameters. Specifically, we use Dr. GRPO (Liu et al.,
2025a), an unbiased variant of GRPO in this paper. For verifiable tasks, the reward for PPO and
GRPO can be obtained by comparing the model answer with the expected ground truth (gt):

RPPO/GRPO(q, a, gt) = RVR(q, a, gt) =

{
1 if gt in a,

0 otherwise.
(5)

Although RL with verifiable reward has set new benchmarks in reasoning tasks, it induces undesired
characteristics such as redundant output due to the coarse binary nature of the reward. To address this
issue, two widely used methods introduce targeted penalities on output length: O1-pruner (Luo et al.,
2025) and Efficient Reasoner (Arora & Zanette, 2025) (referred to as O1 and ER). Their detailed
formulations are provided in Appendix B.2. Despite their effectiveness, both methods inevitably
trade off accuracy, which constrains their broader applicability.

3.2 SELF-ALIGNED REWARD

We propose Self-Aligned Reward (SAR) (denoted as RSA), an unsupervised holistic signal that
combines generation quality, conciseness, and query-answer relevance. The self-aligned reward
is estimated entirely by the model policy without any external feedback. We then combine our
reward with the binary verifiable reward to address the shortcomings of previous methods, aiming to
improve both accuracy and generation efficiency. The reward for self-aligned PPO and self-aligned
GRPO (SA-PPO and SA-GRPO) can be formulated as follows1:

RSA-PPO/GRPO(q, ai, gt) = RVR + αRSA, RSA = clip
(ppl(ai)− ppl(ai|q)

ppl(ai)
,−1, 1

)
(6)

where ppl(a) = e
− 1

|a|
∑|a|

j=1 logP (aj |a1...j−1), ppl(a|q) = e
− 1

|a|
∑|a|

j=1 logP (aj |q,a1...j−1). (7)

1Since ppl > 0, we always have RSA < 1. In practice, RSA lies in the (0, 1) range in most cases.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The self-aligned reward captures the relative difference between ppl(a) and ppl(a|q), or the condi-
tioned perplexity drop, based on the current model policy. Perplexity reflects the likelihood that the
model will produce the given response, with lower values indicating higher confidence. Thus, RSA
can be interpreted as: “How much less likely does the answer become if the query is not present?”

When an answer is tightly tailored to the query, the conditioned perplexity ppl(a|q) will be signif-
icantly lower than the standalone perplexity ppl(a), leading to a higher RSA. In contrast, if parts
of the answer are irrelevant to the query or include noisy, verbose text, the two perplexities will be
similar, leading to a smaller RSA. Therefore, a larger value of RSA indicates the answer’s stronger
dependency and better alignment to the query.

Section 4 provides an in-depth analysis of this reward formulation, where we demonstrate that self-
aligned reward encourages concise reasoning and effective use of query information, thereby im-
proving both accuracy and training efficiency, and penalizing noisy verbose answers. In addition,
the computation of RSA integrates seamlessly into the RL pipeline with negligible computational
overhead, as shown in Section 6.3 and appendix B.

4 CASE ANALYSIS: WHY SELF-ALIGNED REWARD WORKS

This section analyzes the self-aligned reward formulation, providing insights on how SAR enhances
the reasoning effectiveness and efficiency.

4.1 SAR PROVIDES ACCURATE AND FINE-GRAINED SIGNALS

An ideal reward design should be able to rate different types of answers based on their qualities.
To assess different reward functions, we analyze 6 different types of answers to 200 math questions
sampled from five common math benchmarks (section 5.1) in Table 2. Types (1) to (4) are obtained
by sampling Qwen3-1.7B rollouts at temperature = 1, and using GPT-4o to annotate the responses
(see Appendix C for details). Types (5) and (6) are artificially synthesized to simulate memorization,
where the LLM directly extracts answers from its knowledge without reasoning.

Table 2: We calculate advantage values over the 6 types of answers to the same question (α = 1),
and report the average over 200 questions. The advantage values of SA-GRPO accurately rate
answers of different qualities.

Answer Type Length AGRPO AGRPO-o1 AGRPO-ER ASA-GRPO (Ours)
(1): Correct and concise 143.5 0.5 1.04 0.81 1.15
(2): Correct but redundant 236.0 0.5 0.35 -0.11 1.00
(3): Partly correct with wrong answer 457.1 -0.5 -1.28 -0.65 -0.01
(4): Completely wrong or irrelevant 405.8 -0.5 -1.19 -0.65 -1.44
(5): Correct but no thought 5.0 0.5 1.04 1.25 -0.04
(6): Incorrect and no thought 5.0 -0.5 0.04 -0.65 -0.68

We present the advantage values (Equation (4)) for each type of response using the following re-
wards: verifiable GRPO rewards (AGRPO), length-based rewards from the O1 and ER methods
(AGRPO-o1, AGRPO-ER) and our self-aligned reward ASA-GRPO. From Table 2, we can observe that
SAR provides rich and accurate signals to different answers, exhibiting the following features:

• SAR favors concise and correct answers; it gives a lower reward to long and redundant answers,
promoting efficiency. Section 4.2 explains this phenomenon in detail.

• SAR provides partial credit to partly correct answers and penalizes completely irrelevant ones,
helping the model learn basic reasoning patterns in the initial stage of training.

• SAR penalizes the synthesized “no thought” answers, even if they’re correct and short. This
indicates that the reasoning process plays a critical role in SAR, and memorization is discouraged.

On the other hand, the verifiable reward (GRPO) fails to discern answers that are both correct and
incorrect, and O1 or ER focus solely on response length, making signals biased and not suitable for
maximizing accuracy. For instance, ER isn’t applicable to wrong answers, and O1 favors irrelevant

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

answers over partly correct ones, simply because they’re shorter. We also provide a qualitative
example in Table 12 to illustrate the different answer types.

4.2 SAR PROMOTES EXPLOITING QUERY INFORMATION EFFICIENTLY

In this experiment, we take a deeper look at SAR at the token level, aiming to reveal which tokens
contribute more to the overall score. Specifically, we decompose the self-aligned reward (Equa-
tions (6) and (7)) to calculate the token-level score2:

RSA = 1− ppl(a|q)
ppl(a)

= 1− e
− 1

|a|
∑|a|

j=1 log
P (aj |q,a1...j−1)

P (aj |a1...j−1) . (8)

We then define v(aj) = log
P (aj |q,a1...j−1)
P (aj |a1...j−1)

to measure the importance of each token aj on the whole
metric RSA. A token with a higher v(aj) is considered valuable, while a token with a low or even
negative v(aj) indicates it’s less informative and independent of the query.

Figure 2: An illustration of token-level importance scores (i.e. v(aj)). Red color means the token
is considered informative for our self-aligned reward, and blue indicates a negative v(aj). Tokens
extracting new information from the query get high scores.

From Figure 2, we observe that tokens drawing on information from the question for the first time,
like “Janet”, “duck”, “16”, tend to receive high scores. This is because such information is present
in the query but absent from previous answer tokens, making P (aj |q, a1...j−1) relatively high while
P (aj |a1...j−1) remains low. In contrast, repeating information already generated, like mentioning
“Janet” for the second time, results in low scores as both probabilities become similarly high.

Generally, tokens in the earlier part of an answer typically achieve higher v(aj) values, since ex-
tracting new content from the query is easier at the beginning. Later tokens, by comparison, struggle
to introduce novel information once much of the query has already been incorporated. This explains
why SAR favors short, concise answers and promotes more efficient generation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We utilize five math reasoning benchmarks: GSM8k (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), NuminaMath 1.5 (Li et al., 2024), GSM-symbolic (Mirzadeh et al.,
2024), and AIME 1983–2024 (Veeraboina, 2024), covering a difficulty range from primary school
to competition level. For training, we combine the training splits of the first three datasets, while the
remaining two are not present during training to evaluate generalization.

Models. We utilize four base models: Qwen3-1.7B (Base), Qwen3-4B (Base) (Yang et al., 2025),
Phi-3.5-mini (Instruct, 3.8B) (Abdin et al., 2024), and Gemma3-1B (Instruct) (Team et al., 2025a),
covering different sizes and model families.

Settings. We train reasoning models with the following methods:

• PPO, GRPO: two traditional RL algorithms, using only the verifiable reward.

• GRPO-O1, GRPO-ER: algorithms with length penalties, aimed to enhance efficiency. See Ap-
pendix B.2 for details.

2We omit the clipping for simplicity.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Evaluation on math benchmarks. Self-aligned reward significantly reduces token usage
while achieving the best reasoning accuracy. GRPO-O1 and GRPO-ER results in the table use
α = 0.05, and SA-GRPO uses α = 0.2. Best results among each model are bolded.

Setting GSM8k GSM-sym MATH NuminaMath AIME Average
acc len acc len acc len acc len acc len acc len AES

Qwen3-1.7B 69.22 281 46.76 365 56.89 700 24.58 1242 9.97 1539 41.48 825.4 0.000
+PPO 82.71 332 62.88 460 63.04 784 27.02 1358 9.11 1718 48.95 930.4 0.773
+SA-PPO 85.51 281 68.02 369 66.27 587 32.05 866 10.61 1015 52.49 623.6 1.572
+GRPO 84.53 335 67.66 413 67.31 697 33.44 1091 13.93 1278 53.37 762.8 1.509
+GRPO-O1 84.15 285 65.78 363 66.51 528 33.15 775 13.61 910 52.64 572.2 1.652
+GRPO-ER 82.71 244 64.74 320 66.54 557 34.35 980 12.22 1232 52.11 666.6 1.474
+SA-GRPO 85.51 267 67.66 346 67.96 564 36.03 841 13.50 992 54.13 602.0 1.795

Qwen3-4B 76.19 315 66.22 435 63.79 652 38.80 1142 20.15 1281 53.03 765.0 0.000
+PPO 91.36 373 85.42 485 82.15 1132 50.80 1995 26.90 2680 67.33 1333.0 0.606
+SA-PPO 92.12 266 83.52 345 78.67 652 49.09 1133 28.19 1397 66.32 758.6 1.260
+GRPO 92.62 320 86.30 414 82.51 821 53.79 1485 30.11 2113 69.07 1030.6 1.165
+GRPO-O1 91.89 262 86.76 350 80.41 549 51.06 866 28.62 1016 67.75 608.6 1.592
+GRPO-ER 92.80 219 85.24 297 79.48 503 50.47 854 28.94 1022 67.38 579.0 1.596
+SA-GRPO 93.40 239 87.64 323 82.63 762 57.70 1358 35.69 1788 71.41 894.0 1.564

Phi-3.5-mini 71.19 287 56.86 398 33.83 1132 11.56 1492 2.35 943 35.15 850.4 0.000
+PPO 82.49 209 64.88 322 38.56 831 11.45 1707 3.85 926 40.24 799.0 0.784
+SA-PPO 87.04 238 73.52 344 46.34 300 17.43 586 2.79 501 45.42 393.8 1.997
+GRPO 87.56 235 73.76 337 48.69 415 16.37 582 3.21 672 45.91 448.2 2.003
+GRPO-O1 79.83 203 62.24 279 44.41 390 14.08 509 2.57 583 40.62 392.8 1.316
+GRPO-ER 82.03 154 63.54 240 43.61 363 12.55 511 2.47 606 40.84 374.8 1.368
+SA-GRPO 87.95 207 72.72 289 50.99 356 16.08 455 3.22 535 46.19 368.4 2.137

Gemma3-1B 42.15 325 19.58 427 36.40 1042 12.40 1414 2.25 2279 22.56 1097 0.000
+PPO 56.86 942 30.28 1187 44.17 1408 15.57 1904 1.60 2422 29.69 1572.6 1.146
+SA-PPO 55.80 683 31.00 936 42.94 1025 14.22 1523 1.50 1683 29.10 1170.0 1.383
+GRPO 59.97 1208 34.70 1552 45.40 1693 16.59 2264 2.25 2613 31.78 1866.0 1.343
+GRPO-O1 60.80 873 32.06 1157 44.76 1298 16.16 1871 2.35 2449 31.23 1529.6 1.528
+GRPO-ER 59.44 748 32.36 1063 46.23 1131 16.41 1545 2.04 1696 31.29 1236.6 1.808
+SA-GRPO 61.26 552 34.52 772 46.60 952 16.70 1302 2.14 1509 32.24 1017.4 2.218

• SA-PPO, SA-GRPO: algorithms using self-aligned reward (SAR). See Section 3.2 for details.

For training details and hyperparameters, refer to Appendix B.3.

Metrics. In this work, we focus on accuracy and efficiency (measured by average answer length)
of LLM reasoning. We report these two metrics as well as an Accuracy-Efficiency trade-off Score
(AES). For a trained policy πθ and its base model πref, we define ∆ len = len(πref)−len(πθ)

len(πref)
and

∆acc = acc(πθ)−acc(πref)
acc(πref)

. Then, AES(πθ) = ∆ len+γ∆acc measures the trade-off.3

5.2 MAIN RESULTS

From Table 3, we observe that baseline approaches struggle to balance accuracy and efficiency.
PPO and GRPO significantly improve accuracy at the cost of longer and possibly redundant an-
swers. While GRPO-O1 and GRPO-ER effectively reduce computation overhead, they compromise
reasoning capability. In contrast, SAR delivers substantial improvements in both accuracy and
efficiency. Across four base models, SA-GRPO consistently achieves the highest reasoning accu-
racy while maintaining highly efficient reasoning, with at least 4% improvement in accuracy and
30% reduction in length compared to GRPO. Notably, SA-GRPO produces answers of comparable
or even shorter length than GRPO-O1 and GRPO-ER, which are explicitly designed for efficient rea-
soning. A similar phenomenon is observed for SA-PPO, indicating that self-aligned reward applies
to diverse RL algorithms. We show two examples comparing GRPO and SA-GRPO in Appendix F.2.

These findings highlight the superiority of the self-aligned reward mechanism. With a more fine-
grained and intelligent signal, SAR makes the model preserve the necessary reasoning which are

3The choice of γ value reflects which aspect does the user prioritize. Since accuracy is the most important
factor in most use cases, we set γ = 5 in practice.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

closely related to query information, and reduces unnecessary content that introduces token burdens,
leading to more effective and efficient reasoning.

5.3 SELF-ALIGNED REWARD ACHIEVES A PARETO-OPTIMAL IN DYNAMIC BALANCE

GRPOO1-pruner ERSA-GRPO (Ours)
.01 .03 .05

.1

.01
.03 .05

.1

.1
.2

.3
.2

.3

.1 15 30 45
-10-6-22 LengthReduction (%)

PerformanceGain (%)

(a) Qwen3-1.7B.

.01
.03

.05 .1
.01

.03 .05

.1

.2

.1 .2

.3 .3

.1 20 60
-6
-2
2 LengthReduction (%)

PerformanceGain (%)

(b) Qwen3-4B.

.01
.03

.05
.1

.01

.03
.05

.1

.1 .2

.3

.2 .3 10 20 30
-14-10-6-22 LengthReduction (%)

PerformanceGain (%)

(c) Phi-3.5-mini.

.03
.05

.1

.15

.03

.05
.1.15

.15
.2

.15 .240 80
-10-6-22 LengthReduction (%)

PerformanceGain (%)

(d) Gemma3-1B.

Figure 3: Accuracy-efficiency balance of different algorithms. SA-GRPO reaches a Pareto-
optimal curve and achieves notable gains on both axes. Numbers around each point indicate
the α values, and † indicates using 20% of the total training data with the same total training steps.

The hyperparameter α in Equation (6) controls the weights of verifiable reward and self-aligned
reward, offering flexibility to focus more on efficiency or accuracy. Therefore, we train SA-GRPO
with different α values and compare it with GRPO-O1 and GRPO-ER on 2-dimensional plots.

From Figure 3, we can observe that the curves for SA-GRPO are consistently on the top-right side
over curves for GRPO-O1 and GRPO-ER, indicating SA-GRPO balances accuracy and efficiency
better than length-based methods. Moreover, length-based methods are always under the x-axis in
most cases, showing that these methods sacrifice accuracy for reduced tokens, while SA-GRPO is
the only method consistently above the x-axis (illustrated as the light purple area in the figure),
showing better accuracy and better efficiency compared to vanilla GRPO. The Pareto-optimal bal-
ance between accuracy and efficiency of SA-GRPO further demonstrates the effectiveness of SAR.

5.4 SELF-ALIGNED REWARD GENERALIZES TO LOGICAL REASONING

In this section, we examine the generalization ability of self-aligned reward (SAR) in a different do-
main—logical reasoning. We evaluate the models on two benchmark datasets: LogicBench (Parmar
et al., 2024) and ProntoQA (Saparov & He, 2022).

From Table 4, we can find that SA-GRPO enhances accuracy compared to GRPO on 5 out of 8
columns, and outperforms length-based methods (GRPO-O1 and ER) on all cases. Similarly, SA-
PPO outperforms the PPO baseline on 6 columns. In addition, SAR also maintains an efficiency
benefit in the logical domain, not only reducing answer length compared to GRPO, but it’s even
more efficient than length-based methods in most cases. These results show that SAR generalizes
well to logical reasoning benchmarks, which are out-of-domain tasks, benefiting from the reward
design that ensures answers are tailored to the input questions and contain dense information.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: SA-PPO and SA-GRPO maintains robustness and efficiency in out-of-domain tasks.

(a) LogicBench.

Model
Qwen3
-1.7B

Qwen3
-4B

Phi-3.5
-mini

Gemma3
-1B

acc len acc len acc len acc len

Base 56.0 182 75.4 336 66.0 309 50.6 303
PPO 60.2 340 80.0 455 60.8 229 48.8 264
SA-PPO 64.6 368 77.6 342 64.2 205 55.6 241
GRPO 64.2 372 78.4 416 67.6 243 53.0 277
GRPO-O1 60.6 264 76.0 350 51.0 212 52.6 223
GRPO-ER 61.4 206 77.6 263 49.8 143 50.0 250
SA-GRPO 65.0 278 80.4 208 57.4 173 55.2 222

(b) ProntoQA.

Model
Qwen3
-1.7B

Qwen3
-4B

Phi-3.5
-mini

Gemma3
-1B

acc len acc len acc len acc len

Base 69.0 616 89.6 988 94.8 339 56.2 712
PPO 71.8 920 97.8 561 96.4 301 56.4 904
SA-PPO 65.6 735 99.0 405 98.2 304 57.6 690
GRPO 74.0 756 100.0 546 98.2 254 57.4 963
GRPO-O1 73.0 505 98.8 469 87.2 227 59.0 938
GRPO-ER 73.6 424 99.0 309 86.6 205 58.6 919
SA-GRPO 77.8 482 99.8 301 90.8 216 60.6 733

6 ANALYSIS

6.1 ABLATION STUDY

In this section, we investigate two critical components of our algorithm that make internal signals
effective during training. Firstly, the self-aligned reward (Equation (6)) measures conditioned per-
plexity drop, which is the relative difference between ppl(a|q) and ppl(a), as a proxy for query-
answer relevancy. However, existing methods focus mainly on ppl(a|q) alone, which measures
entropy or uncertainty(Zhao et al., 2025; Agarwal et al., 2025).Secondly, our approach combines
verifiable reward with self-aligned reward. We ablate these components and derive the following
rewards to compare against SA-GRPO (R = RVR + αRSA):

• R = RSA removes the verifiable reward, using only the self-aligned reward.

• R = RVR + αREM = RVR − αlog ppl(a|q) uses “entropy minimization”, a metric measuring
self-confidence, as the internal reward, instead of conditioned perplexity drop;

• R = REM is the entropy minimization reward (Agarwal et al., 2025), ablating both components.

Table 5: GRPO training results on Qwen3-4B with different internal reward signals (α = 0.2). The
SA-GRPO formulation obtains optimal performance among baselines.

Setting GSM8k GSM-sym MATH NuminaMath AIME Average
acc len acc len acc len acc len acc len acc len

Base 76.19 315 66.22 435 63.79 652 38.80 1142 20.15 1281 53.03 765.0
RVR 92.62 320 86.30 414 82.51 821 53.79 1485 30.11 2113 69.07 1030.6
REM 79.15 319 67.94 414 68.89 970 39.86 1885 21.44 2556 55.46 1228.8
RSA 39.65 87 19.54 102 24.72 74 16.48 80 4.39 79 20.96 84.4
RVR + αREM 92.25 351 87.36 414 81.83 779 54.78 1371 33.01 1767 69.85 936.4
RVR + αRSA 93.40 239 87.64 323 82.63 762 57.70 1358 35.69 1788 71.41 894.0

From Table 5, we can observe that both verifiable signal and conditioned drop measurement are crit-
ical for optimal performance. Specifically, REM shows limited accuracy gain but a large efficiency
drop, and RSA converges to shallow reasoning with fewer tokens and poor accuracy . Failure of these
methods indicates that the ground-truth signals are still critical for models to develop reasoning skills
and ensure training stability, similar to what’s found in Zhang et al. (2025)

RVR + αREM also underperforms SA-GRPO in both accuracy and efficiency, indicating that mini-
mizing entropy is less effective than our approach, which is maximizing conditioned perplexity drop.
This is because conditioned perplexity drop provides a more accurate measure of answer quality, as
demonstrated in Section 4. Moreover, it avoids issues such as overconfidence or entropy collapse,
which can hinder exploration (Zhang et al., 2025; Cui et al., 2025). Overall, the results suggest
“verifiable signal” and “conditioned perplexity drop” are two crucial components in SAR, without
which SA-GRPO won’t be able to reach optimal performance in accuracy and efficiency.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.2 REASONING BEHAVIORS OF SA-GRPO

Previous work (Gandhi et al., 2025; Zeng et al., 2025) has shown that certain reasoning behaviors are
critical to effective and deep reasoning. In this section, we investigate four typical behaviors: back-
tracking, verification, subgoal setting, and enumeration. Specifically, we use GPT-4o to annotate the
reasoning behaviors for models trained with different algorithms (see Appendix C for details).

Table 6: Frequency of reasoning behaviors. B, V, S, E refer to Backtracking, Verification, Subgoal
setting and Enumeration, respectively. Scores are in percentages. The base model is Qwen3-1.7B.
Unlike length-based methods, SA-GRPO maintains a high usage of reasoning behaviors.

Dataset MATH NuminaMath AIME Average
Behavior B V S E B V S E B V S E

Base 0.8 24.2 90.8 12.2 5.4 27.0 93.4 34.8 4.4 36.2 93.2 37.4 38.0
GRPO 1.0 29.2 95.4 14.6 4.6 38.8 97.8 44.2 5.0 42.2 98.2 49.0 43.4

GRPO-O1 1.2 26.6 90.4 14.6 4.8 37.0 93.2 39.6 4.2 43.4 96.0 42.8 40.6
GRPO-ER 1.4 26.0 89.8 13.4 6.2 37.0 90.4 40.4 5.8 44.2 96.2 47.6 41.2
SA-GRPO 0.8 29.2 93.4 13.8 7.0 36.0 93.8 43.8 8.8 47.0 97.0 49.6 43.0

From Table 6, we can observe that GRPO-O1/ER exhibit fewer reasoning behaviors compared to
GRPO, as reasoning behaviors require additional tokens which are penalized by length-based reward
functions. However, SA-GRPO maintains almost the same frequency of reasoning behaviors
with GRPO, notably with 30% fewer tokens than GRPO. This stems from the self-aligned reward’s
content-aware feature, showcasing its ability to accurately distinguish useful reasoning behaviors
from unnecessary content, guiding model behaviors in a more accurate and unbiased manner.

6.3 TRAINING COST OF SELF-ALIGNED REWARD

Table 7: Comparison of training time. We report GPU hours
(Training time × GPU count) of training Qwen3-4B for the
first 200 steps.

Method Rollout Update Total
GRPO 32.95 15.13 48.08
GRPO-O1 30.36 15.92 46.28
GRPO-ER 30.92 15.24 46.16
SA-GRPO 31.44 15.20 46.64

We report the training cost for SA-
GRPO in Table 7, from which we
can find that SA-GRPO doesn’t in-
troduce burdens in “Update” phase
compared to vanilla GRPO. The only
additional computation in SAR is
ppl(a) (ppl(a|q) is already calculated
in GRPO, for KL penalty and impor-
tance sampling), which only requires
a forward pass, making it highly ef-
ficient. Additionally, SA-GRPO even
takes less time in the “Rollout” phase due to reduced answer lengths. This suggests that enhancing
reasoning efficiency is not only valuable during inference – it can also accelerate RL training and
maximize the gain of reasoning capability under limited computation.

7 CONCLUSION

In this work, we propose Self-Aligned Reward (SAR), an internal perplexity-based signal evalu-
ating the answer’s relevancy with the query, enabling fine-grained supervision beyond binary cor-
rectness. Through comprehensive experiments on 4 base models and 7 benchmarks, we demon-
strated that SAR enables reinforcement learning to achieve consistent gains of up to 4% in accuracy
while reducing response length and computational cost by 30%. Moreover, SAR exhibits a favor-
able accuracy–efficiency balance compared with length-based baselines, offering a fine-grained and
content-aware reward signal that complements verifiable correctness. Our analysis further shows
that SAR generalizes robustly to out-of-domain tasks and preserves advanced reasoning behaviors,
underscoring its broad applicability. These findings highlight the significance of incorporating in-
trinsic model self-assessment into the RL framework, establishing a new paradigm that advances
both the effectiveness and efficiency in training next-generation reasoning models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of the paper from the following aspects:

• Dataset: In Appendix A, we describe the datasets and their preprocessing methods. All datasets
are open-sourced.

• Method: Our core contribution is self-aligned reward (SAR), a simple yet effective internal signal.
We present the formula and explanations of SAR in Section 3.2, and show the core code for imple-
menting SAR in Appendix B. In addition, formulations and implementations of the baselines are
also presented. Our code is based on VERL, an open-sourced and widely adopted RL framework.

• Training: Training configurations are presented in Appendix B.3. Readers can reproduce the exact
training results following these settings.

• Prompting: The paper’s analytical experiments involve annotating with an LLM. Prompts for
such annotation are presented in Appendix C.

LLM USAGE STATEMENT

Large language models were not used in the writing of this paper, except for the sample responses
from trained LLM models for illustrative purposes. All written content and experimental code were
generated solely by the authors.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone, 2024. URL https://arxiv.
org/abs/2404.14219, 2:6, 2024.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
tiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping
Ye. Inside: Llms’ internal states retain the power of hallucination detection. arXiv preprint
arXiv:2402.03744, 2024.

Weize Chen, Jiarui Yuan, Tailin Jin, Ning Ding, Huimin Chen, Zhiyuan Liu, and Maosong Sun.
The overthinker’s diet: Cutting token calories with difficulty-aware training. arXiv preprint
arXiv:2505.19217, 2025a.

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
Denghui Zhang, Tong Zhang, et al. Rm-r1: Reward modeling as reasoning. arXiv preprint
arXiv:2505.02387, 2025b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gerald Friedland, Xin Huang, Yueying Cui, Vishaal Kapoor, Ashish Khetan, and Sanjiv Das. Pplqa:
An unsupervised information-theoretic quality metric for comparing generative large language
models. arXiv preprint arXiv:2411.15320, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl, Preslav Nakov, and Iryna Gurevych. A
survey of confidence estimation and calibration in large language models. arXiv preprint
arXiv:2311.08298, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Peixuan Han, Zijia Liu, and Jiaxuan You. Tomap: Training opponent-aware llm persuaders with
theory of mind. arXiv preprint arXiv:2505.22961, 2025a.

Peixuan Han, Cheng Qian, Xiusi Chen, Yuji Zhang, Denghui Zhang, and Heng Ji. Safeswitch:
Steering unsafe llm behavior via internal activation signals. arXiv preprint arXiv:2502.01042,
2025b.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
llm hallucination via self reflection. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1827–1843, 2023.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312–24320, 2025.

Mandar Kulkarni, Praveen Tangarajan, Kyung Kim, and Anusua Trivedi. Reinforcement learning
for optimizing rag for domain chatbots. arXiv preprint arXiv:2401.06800, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Shiye Lei, Zhihao Cheng, Kai Jia, and Dacheng Tao. Revisiting llm reasoning via information
bottleneck. arXiv preprint arXiv:2507.18391, 2025.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025a.

Zijia Liu, Peixuan Han, Haofei Yu, Haoru Li, and Jiaxuan You. Time-r1: Towards comprehensive
temporal reasoning in llms. arXiv preprint arXiv:2505.13508, 2025b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025a.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025b.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
ability of large language models. arXiv preprint arXiv:2404.15522, 2024.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476–483. IEEE, 2024a.

Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024b.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and over-
thinking: An empirical study of reasoning length and correctness in llms. arXiv preprint
arXiv:2505.00127, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025a.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hemish Veeraboina. Aime problem set (1983–2024). https://www.kaggle.com/
datasets/hemishveeraboina/aime-problem-set-1983-2024, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Bingbing Wen, Chenjun Xu, Robert Wolfe, Lucy Lu Wang, Bill Howe, et al. Mitigating overconfi-
dence in large language models: A behavioral lens on confidence estimation and calibration. In
NeurIPS 2024 Workshop on Behavioral Machine Learning, 2024.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning.
arXiv preprint arXiv:2506.17219, 2025.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-
timization, 2025. URL https://arxiv.org/abs/2507.18071.

13

https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://arxiv.org/abs/2507.18071


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASETS

We evaluate our approach on five mathematical reasoning datasets with varying difficulty levels, and
two logical reasoning datasets. We list the datasets and provide details below.

A.1 MATHEMATICAL REASONING BENCHMARKS

1. GSM8k (Cobbe et al., 2021): A dataset of grade school math word problems.

2. MATH (Hendrycks et al., 2021): A challenging dataset of mathematics problems covering
various topics.

3. NuminaMath 1.5 (Li et al., 2024): A comprehensive dataset containing 860k pairs of
competition math problems and solutions. We select a subset from the Open-r1 project4.

4. GSM-symbolic (Mirzadeh et al., 2024): A dataset of GSM8k-style problems with differ-
ent numbers. This dataset is free from data contamination, making it suitable to evaluate
generalization ability.

5. AIME 1983-2024 (Veeraboina, 2024)5: A collection of problems from the American Invi-
tational Mathematics Examination spanning over four decades. Requires complex reason-
ing.

To ensure parsing correctness, we only select questions where the answer is a single integer or
fraction number, and remove questions involving geometric plots or hyperlinks. During training, we
combined the training splits of GSM8k, MATH, and NuminaMath. GSM-symbolic and AIME were
used exclusively for evaluation to test out-of-distribution generalization.

A.2 LOGICAL REASONING BENCHMARKS

To evaluate the generalization capabilities of our approach beyond mathematical reasoning, we used
the following logical reasoning benchmarks:

1. ProntoQA (Saparov & He, 2022): A dataset evaluating multi-step syllogistic reasoning.

2. LogicBench (Parmar et al., 2024): A comprehensive benchmark for evaluating logical
reasoning capabilities of language models across various logical relationships.

These datasets were used only for evaluation purposes and were not part of the training process.
Both datasets are in the form of multiple-choice questions, where ProntoQA has 2 choices and
LogicBench has 4 for each question.

Table 8 shows the statistics of all datasets used.

A.3 EVALUATION DETAILS

We construct a unified prompt format for all questions:

System Prompt: You are a reasoning expert assistant. Given a question, you will use your reasoning
skills to solve the problem.
User Prompt: [Question]
Please explain your reasoning process before providing an answer.

During evaluation, we parse the last integer or fraction number in the model’s output and compare
it with the ground truth using math verify package. We don’t introduce a strict answer format,
as previous work (Zeng et al., 2025) suggest it may hinder exploration.

4https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
5https://www.kaggle.com/datasets/hemishveeraboina/

aime-problem-set-1983-2024

14

https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 8: Sizes of datasets.

Dataset GSM8k MATH NuminaMath GSM-sym AIME ProntoQA LogicBench
# Train 7473 5654 10000 - - - -
# Eval 1319 3742 2742 5000 933 500 500

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION OF SAR

We implemented all baselines, as well as our approach building on the VERL open-source frame-
work Sheng et al. (2025). The VERL framework provides standard implementations of PPO and
GRPO. To implement our approach, we need to calculate the perplexity values for the rollouts given
the query (ppl(a|q)) as well as the perplexity of standalone rollouts (ppl(a)).

In most RL algorithms, calculating log probabilities for rollouts are necessary to apply KL penalty.
These log-probs can be directly applied to calculate ppl(a|q) without extra cost:

1 def compute_ppl(log_probs, mask):
2 ’’’
3 log_probs: Tensor[batch_size, seq_len]
4 mask: Boolean Tensor[batch_size, seq_len], positions of the answer part are 1; positions

of query and padding tokens are 0.
5 ’’’
6 sum_log_probs = (log_probs * mask).sum(dim=1)
7 lengths = mask.sum(dim=1)
8 avg_log_probs = sum_log_probs / lengths
9 return torch.exp(-avg_log_probs)

The calculation of ppl(a) consists of two steps. The first step is to construct the sequence without
the user prompt (we still keep the system prompt):

1 def construct_empty_question_data(data, tokenizer, q_max_len):
2 ’’’
3 data: DataProto, a standard protocol for data exchange in VERL.
4 data contains "input_ids", "attention_mask" and "position_ids", which are Tensors[

batch_size, q_max_len+a_max_len]. Query are left-padded and answers are right-padded,
which means the answer always begin at index q_max_len.

5 ’’’
6 empty_q = f"System:{sys_prompt}\nUser:\nAssistant:"
7 empty_q_tokens = tokenizer(empty_q, padding="left", max_length=q_max_len)
8
9 batch_size = data["input_ids"].shape[0]

10 for key in ["input_ids", "attention_mask", "position_ids"]:
11 data[key][:, :q_max_len] = empty_q_tokens[key].repeat(batch_size, 1)
12
13 last_query_pos = data["position_ids"][:, q_max_len - 1]
14 first_answer_pos = data["position_ids"][:, q_max_len] # the first answer token
15 gap = first_answer_pos - last_query_pos - 1 # this gap should be zero
16 data["position_ids"][:, q_max_len:] -= gap.unsqueeze(-1) # Shift the answer positions

backward by this gap so they are continuous
17
18 return data

The second step is to calculate log probabilities for the “new” sequences. Combining them, we
implement the self-aligned reward:

1 def R_SA(data, tokenizer, q_max_len, policy):
2 ppl_qa = compute_ppl(data["log_probs"], data["response_mask"])
3
4 empty_q_data = construct_empty_question_data(data, tokenizer, q_max_len)
5 empty_q_log_probs = policy.calc_log_probs(empty_q_data)
6 ppl_a = compute_ppl(empty_q_log_probs, data["response_mask"])
7
8 return max((ppl_a - ppl_qa) / ppl_a, -1)

In conclusion, the self-aligned reward calculation is fully compatible with VERL’s existing opti-
mizations, making it highly efficient for training large models.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 IMPLEMENTATION OF GRPO-O1 AND GRPO-ER

Signals besides verifiable reward have also been widely studied, where enhancing efficiency is a
prevalent direction. In this paper, we consider O1-pruner (Luo et al., 2025) and Efficient Reasoner
(ER) (Arora & Zanette, 2025), two typical length-based methods as baselines. Since the original
works used offline RL algorithms, we made slight changes to the formula in order to adapt to GRPO:

RGRPO-o1(q, ai, gt) = RVR + αRo1, Ro1 = clip(
mean[len(a1...N )]− len(ai)

len(ai)
,−1, 1) (9)

RGRPO-ER(q, ai, gt) = RVR+αRER, RER =

2 ∗ σ(mean[len(Acor)]− len(ai)

std[len(Acor)] + eps
)− 1 if RVR = 1,

0 otherwise,
(10)

where σ(x) = 1
1+e−x is the Sigmoid function, and Acor = {a|a ∈ a1...N ∧ RVR(q, a, gt) = 1}

refers to the set of all correct answers.

We also provide the pseudocode for calculating Ro1 and RER for reference.

1
2 def R_O1(length: List[int], correctness: List[bool]):
3 avg = statistics.mean(length)
4 o1_scores = []
5 for len in length:
6 x = (avg - len) / len
7 x = max(min(x, 1), -1)
8 o1_scores.append(x)
9 return o1_scores

10
11 def R_ER(length: List[int], correctness: List[bool]):
12 if correctness.count(True) <= 1:
13 return [0] * len(length)
14 cor_lens = [len for len, correct in zip(length, correctness) if correct]
15 avg = statistics.mean(cor_lens)
16 std = statistics.stdev(cor_lens)
17 er_scores = []
18 for len, cor in zip(length, correctness):
19 if cor:
20 x = (avg - len) / std
21 x = 2 / (1 + math.exp(-x)) - 1
22 er_scores.append(x)
23 else:
24 er_scores.append(0)
25 return er_scores

B.3 TRAINING SETTINGS

Table 9: Training configs for PPO and GRPO.

Hyperparameter PPO GRPO
Actor learning rate 1e− 6
Critic learning rate 2e− 6 -
train batch size6 128
mini batch size 64
micro batch size 16
Training step 500
Max response length 4096
Num of rollouts - 8
Rollout temp (τ ) 1.0
KL penalty (β) 1e− 3
Advantage clip (ϵ) 0.2

Models are trained on 4 NVIDIA H100 80GB
GPUs. For PPO and GRPO, we list all train-
ing hyperparameters in Table 9. PPO and SA-
PPO use the same config; GRPO, GRPO-O1,
GRPO-ER and SA-GRPO also use the same
config; the only exception is α in the reward
function. The default α for GRPO-O1 and
GRPO-ER are 0.05, and 0.2 for SA-GRPO. Us-
ing a different α will make these algorithms fo-
cus more on accuracy or efficiency, as shown in
Figure 3. We use vLLM (Kwon et al., 2023)
framework for inference. Models are evalu-
ated using 1 NVIDIA G100 80GB GPU. By
default, the maximum response length is 4096,
and greedy decoding is used (τ = 0).

6The three batch sizes in the table are hyperparameters in the VERL framework. train batch size is the batch
size for sampling rollouts, mini batch size is the batch size to perform policy updates, and micro batch size
is the batch size for rollouts and back-propagation. Theoretically, micro batch size won’t affect the training
result, so one can set a smaller or larger value depending on the compute resources.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C LLM ANNOTATION PROMPTS

Below is the prompt to categorize responses to 4 types in Section 4:

System Prompt: You are an expert reasoner and LLM judge. Given a reasoning problem and an
answer, you need to category the answer into one of the following categories:
1: Correct and concise answer. Small mistakes are acceptable.
2: Correct answer, but a bit lengthy, or contains unnecessary steps. Small mistakes are acceptable.
3: Partly correct answers, which makes some mistake and fails to reach the final ground truth.
4: Completely wrong or irrelevant answers, indicating the model doesn’t understand the problem.
0: The answer is correct but contains extra content after the answer, like random characters or talking
about an irrelevant topic.

**Output Format:**
[thought] Provide your thought process on how you identify the reasoning behaviors.[/thought]
[answer] One single number, indicating the type of the answer. [/answer]

The one-shot example:
Query: Making a cake requires 1 cup of flour, 1 cup of sugar, and 2 eggs. Suppose you have 2 cups of
flour, 3 cups of sugar, and 6 eggs, how many cakes can you make?
Ground truth answer: 2
Answer: I shall first determine how many cakes each ingredient can support. Flour allows 2 cakes
(2/1=2), sugar allows 3 (3/1=3), and eggs allow 3 (6/2=3). Therefore, I can make at most 3 cakes.
Wait a second, the maximum number actually depends on the the low-resource ingredient. In this
case, it’s flour, which only supports 2 cakes. The final answer is 2.

[thought] The answer correctly understands the problem and provides a concise solution. It identifies
the limiting ingredient (flour) and calculates the maximum number of cakes that can be made based
on that. The reasoning is clear and follows a logical sequence. [/thought]
[answer] 1 [/answer]

Below is the prompt to identify reasoning behaviors in Section 6.2:

System Prompt: You are an expert reasoner and LLM judge. Given a reasoning problem and an an-
swer, you need to identify the reasoning behaviors exhibited in the solution. There are four reasoning
behaviors that requires identification:
1. **Verification**: This behavior involves systematically checking intermediate results or assump-
tions to ensure they are correct.
- Example: ”Let’s verify this result by checking if the two expressions are always equal.”
2. **Backtracking**: This behavior occurs when the model explicitly revises its approach after de-
tecting an error or realizing that the current path won’t lead to the solution.
- Example: ”The assumption that a > 0 doesn’t work, we need to try something else.”
3. **Subgoal Setting**: This behavior involves breaking down a complex problem into smaller, more
manageable steps.
- Example: ”The first step is to find the range of a and b respectively.”
4. **Enumeration**: Solving problems by exhaustively considering multiple cases or possibilities.
- Example: ”After investigating 7 days of a week, only Wedensday and Friday satisfies the conditon.”

**Guidelines for Identification:**
- It is possible for a single solution to exhibit multiple behaviors or none of them.
- Your annotation should based on the reasoning process, not just the final answer.
- You should only count a behavior if it concretely contributes to the reasoning process.

**Output Format:**
[thought] Provide your thought process on how you identify the reasoning behaviors. [/thought]
[answer] Behavior(s) separated by commas, or ”None” if no behavior is identified. [/answer]

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D ADDITIONAL ANALYSIS AND THEORY

D.1 GRPO GRADIENT ANALYSIS

To understand how GRPO and our SA-GRPO approach optimize model parameters, we analyze the
gradient computation. The gradient of the GRPO objective is:

∇θJGRPO(θ) = ∇θ Eq∼D, {ai}N
i=1∼πθold (·|q)

[
1

N

N∑
i=1

1

|ai|

|ai|∑
j=1

wi,j(θ)Ai

]
(11)

= Eq∼D, {ai}N
i=1∼πθold (·|q)

[
1

N

N∑
i=1

Ai ·
1

|ai|

|ai|∑
j=1

ri,j ∇θ log πθ(ai,j | q, ai,<j)

]
(12)

where

ri,j =
πθ(ai,j | q, ai,<j)

πθold(ai,j | q, ai,<j)
, wi,j(θ) = ri,j .

This gradient formulation reveals that GRPO updates model parameters by adjusting the likelihood
of generating each token in the rollout responses, weighted by the importance sampling ratio ri,j and
the normalized advantage Ai. The advantage is calculated based solely on the verifiable reward or
other explicit reward functions, without considering the intrinsic quality or relevance of responses.

In standard GRPO, the advantage value Ai is the same for all tokens within a single answer, com-
puted as:

Ai = R(q, ai)− mean[R(q, a1...N )] (13)

For correct answers, the advantage is positive, pushing the model to increase the probability of
generating such answers. For incorrect answers, the advantage is negative, steering the model away
from these outputs.

However, this approach treats all correct answers equally, regardless of their efficiency, relevance,
or quality of reasoning. Similarly, it gives all incorrect answers the same negative feedback, missing
opportunities to reinforce partially correct reasoning paths or penalize completely irrelevant outputs
differently.

D.2 THEORETICAL ANALYSIS OF SAR

D.2.1 SELF-ALIGNED REWARD FUNCTION

The key innovation, self-aligned reward RSA, can be derived from the perplexity measures:

RSA = max

(
ppl(a)− ppl(a|q)

ppl(a)
,−1

)
(14)

= 1−min

(
ppl(a|q)
ppl(a)

, 2

)
(15)

Expanding with the definitions of perplexity:

RSA = 1−min

(
e−

1
|a|

∑|a|
j=1 log(P (aj |q,a1...j−1))

e−
1

|a|
∑|a|

j=1 log(P (aj |a1...j−1))
, 2

)
(16)

= 1−min
(
e−

1
|a|

∑|a|
j=1[log(P (aj |q,a1...j−1))−log(P (aj |a1...j−1))], 2

)
(17)

= 1−min

(
e
− 1

|a|
∑|a|

j=1 log
(

P (aj |q,a1...j−1)

P (aj |a1...j−1)

)
, 2

)
(18)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Defining the token-level contribution v(aj) = log
(

P (aj |q,a1...j−1)
P (aj |a1...j−1)

)
, we get:

RSA = 1−min
(
e−

1
|a|

∑|a|
j=1 v(aj), 2

)
(19)

This formulation reveals that RSA measures the geometric mean of the likelihood ratio between
generating tokens conditioned on the question versus generating them without the question context.
Each token aj contributes v(aj) to the overall reward.

A positive v(aj) indicates that token aj is more likely to be generated when conditioned on the
question, suggesting that it leverages information from the query. Conversely, a negative v(aj) sug-
gests that the token is less likely when conditioned on the question, indicating potential irrelevance
or redundancy.

D.2.2 SA-GRPO OPTIMIZATION TRAJECTORIES

The combined reward RSA-GRPO(q, ai, gt) = RVR+αRSA leads to a modified advantage calculation:

ASA-GRPO
i = (RVR(q, ai, gt) +αRSA(q, ai))−mean[(RVR(q, a1...N , gt) +αRSA(q, a1...N ))] (20)

During optimization, SA-GRPO’s gradient updates follow three key paths:

1. Correctness Optimization: Through RVR, SA-GRPO increases the likelihood of generating
outputs that contain correct answers, similar to standard GRPO.

2. Self-Alignment Optimization: Through RSA, SA-GRPO encourages: - Higher probability for
tokens that effectively utilize question information (positive v(aj)) - Lower probability for tokens
that are redundant or irrelevant (negative v(aj)) - Concise reasoning by penalizing unnecessary rep-
etition, since repeated information yields low v(aj) values as it becomes predictable from previous
tokens

3. Memorization Penalty: SAR naturally penalizes memorized answers. If an answer is mem-
orized, ppl(a) will be low due to the model’s strong prior on the memorized sequence, while the
relative drop in perplexity when conditioned on the question would be minimal, resulting in a low
or negative RSA.

These optimization paths allow SA-GRPO to simultaneously improve accuracy and efficiency with-
out requiring separate reward models or human preference data. The α hyperparameter controls
the balance between correctness and self-alignment objectives, enabling flexible tuning for different
accuracy-efficiency trade-offs. As training progresses, we observe from fig. 4:

1. Early Training Phase: During early iterations, SA-GRPO primarily optimizes for correctness,
as RVR provides the strongest gradient signal. This establishes a foundation of accurate reasoning.

2. Mid Training Phase: Once the model achieves reasonable accuracy, the self-alignment reward
RSA becomes more influential. The optimization begins to focus on improving the efficiency of
correct responses by: - Removing tokens with low v(aj) values (those that don’t effectively leverage
question information) - Preserving tokens with high v(aj) values (those that directly address the
question)

3. Late Training Phase: In the later stages, SA-GRPO fine-tunes the balance between accuracy and
efficiency. The combined reward creates a Pareto frontier where further improvements in efficiency
come at diminishing costs to accuracy.

Unlike efficiency-focused methods like O1-pruner or Efficient Reasoner, which directly reward
shorter responses regardless of content quality, SA-GRPO’s optimization is content-aware. It se-
lectively preserves tokens that contribute meaningful information relative to the question, while
removing those that don’t. In contrast, length-based rewards may inadvertently remove important
reasoning steps if they blindly optimize for shorter responses.

The theoretical convergence of SA-GRPO can be expressed as finding the optimal policy π∗
θ that

maximizes:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: SAR results on vision-language models.

Setting GSM8k GSM-sym MATH NuminaMath AIME Average
acc len acc len acc len acc len acc len acc len

Qwen2-2B-VL 14.33 1573 5.98 1873 14.94 15.84 3.65 2411 0.54 2404 7.89 1969.0
+GRPO 60.96 150 27.72 209 25.25 321 9.19 512 0.86 561 24.80 350.6
+GRPO-O1 58.38 115 25.44 164 23.20 79 9.99 22 0.32 17 23.47 79.4
+GRPO-ER 58.30 122 26.52 179 23.73 212 8.32 330 0.43 383 23.46 245.2
+SA-GRPO 59.59 121 27.66 174 21.22 84 9.52 56 1.29 57 23.86 98.4

Gemma3-4B 74.75 264 57.40 373 68.33 837 35.81 1370 18.76 1843 51.01 937.4
+GRPO 89.01 409 78.68 644 76.54 1177 41.9 2012 18.01 2357 60.83 1355.8
+GRPO-O1 87.87 292 75.02 464 76.67 834 41.68 1435 18.54 1814 59.95 967.8
+GRPO-ER 88.17 338 73.36 623 75.73 979 41.94 1817 17.36 2268 59.31 1205.0
+SA-GRPO 89.16 407 79.04 654 75.55 1130 40.48 1920 18.11 2379 60.47 1298.0

π∗
θ = argmax

πθ

Eq∼D,a∼πθ(·|q)

[
RVR(q, a, gt) + αmax

(
ppl(a)− ppl(a|q)

ppl(a)
,−1

)]
(21)

At this optimal policy, each generated token in the response contributes maximally to either obtain-
ing the correct answer or efficiently utilizing information from the question, with minimal redun-
dancy or irrelevance.

In practice, this theoretical optimum must balance against the KL divergence penalty that prevents
the model from straying too far from the reference policy, ensuring that the learned improvements
remain grounded in the model’s original capabilities.

E ADDITIONAL EXPERIMENTS

E.1 TRAINING TRAJECTORIES

In this section, we show the training trajectories of GRPO, SA-GRPO and SA-GRPO without verifi-
able reward (a setting discussed in Section 6.1). We report the verifiable reward, self-aligned reward,
and average response length at each step.

0 200 400Step0.20.30.40.50.60.70.80.9

Correc
tness R

eward GRPO-SA w/o VRGRPOGRPO-SA

(a) Verifiable reward.

0 200 400Step0.1
0.15

0.2
0.25

0.3
1.0

Self-ali
gned R

eward

(b) Self-aligned reward7.

0 200 400Step0
200
400
600
800

1000
1200

Length

(c) Average answer length.

Figure 4: Training plots for Qwen3-4B.

E.2 SELF-ALIGNED REWARD ON VISION LANGUAGE MODELS

In this section, we extend SA-GRPO to vision language models.

7While RSA isn’t used in training the GRPO model, we still calculate and record the values for comparison.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10 summarizes the performance of Qwen2-2B-VL and Gemma3-4B across five reasoning
benchmarks under different optimization strategies. Consistent with prior findings, SA-GRPO yields
strong gains for purely text-based reasoning—most notably in GSM8k, MATH, and Numina—where
its self-aligned reward mechanism effectively tailors outputs to the specific query. For Gemma3-
4B, SA-GRPO achieves the highest average accuracy (72.64%), exceeding the best GRPO variant
by over one percentage point, while maintaining competitive output lengths. These improvements
suggest that SA-GRPO’s reward shaping promotes concise, context-aware reasoning paths in textual
domains.

However, the results also reveal a notable limitation: SA-GRPO’s advantages do not transfer as
strongly to vision-language models such as Qwen2-2B-VL. While modest gains are observed in
certain benchmarks, its performance is less consistent compared to GRPO, particularly in tasks like
GSM-sym and AIME where visual interpretation is coupled with reasoning. We hypothesize that
SA-GRPO’s self-alignment mechanism, optimized for semantic relevancy in text, is less effective
when the query interpretation depends heavily on multimodal fusion. In such cases, reward signals
based solely on linguistic alignment may fail to capture errors introduced in the visual grounding
stage, leading to weaker overall gains.

These findings suggest that while SA-GRPO is well-suited for text-centric reasoning, its application
to multimodal settings may require integrating visual-aware reward components. Future work could
explore hybrid reward functions that jointly evaluate semantic correctness and perceptual grounding,
enabling SA-GRPO to extend its benefits to vision-language reasoning tasks.

E.3 EFFECT OF REMOVING THE KL COEFFICIENT

Table 11: Effect of removing the KL penalty. The base model is Qwen3-1.7B in this experiment.

Setting GSM8k GSM-sym MATH NuminaMath AIME Average
acc len acc len acc len acc len acc len acc len

Base 69.22 281 46.76 365 56.89 700 24.58 1242 9.97 1539 41.48 825.4
GRPO 84.53 335 67.66 413 67.31 697 33.44 1091 13.93 1278 53.37 762.8
GRPO (no KL) 84.69 341 69.72 430 68.31 685 33.55 1121 13.61 1320 53.97 779.0
GRPO-O1 84.15 285 65.78 363 66.51 528 33.15 775 13.61 910 52.64 572.2
GRPO-O1 (no KL) 83.93 275 66.40 356 67.13 578 32.46 875 14.15 1086 52.82 634
SA-GRPO 85.51 267 67.66 346 67.96 564 36.03 841 13.50 992 54.13 602.0
SA-GRPO (no KL) 85.75 246 67.62 322 66.73 511 34.06 788 12.43 933 53.31 560

In Equation (3), the KL penalty term is used to control the divergence between the reference model
and the actor policy, which is critical to preserving the base model’s capabilities. We investigate the
effect of removing the KL Coefficient (i.e. setting β = 0 in Equation (3)) in this section.

From Table 11, we observe that for all RL algorithms, the performance gap between using and not
using KL is relatively small. This indicates that training remains stable and does not diverge signifi-
cantly from the base model. It also suggests that the self-aligned signal is sufficiently consistent and
well-aligned to guide learning even without strong distributional anchoring.

Notably, removing the KL penalty produces opposite effects for GRPO/GRPO-O1 and SA-GRPO.
For GRPO and GRPO-O1, it increases accuracy but reduces efficiency, while for SA-GRPO, it
decreases accuracy but improves efficiency. Since the verifiable reward RVR is directly linked to
accuracy and the self-aligned reward RSA is not, this pattern suggests that RVR dominates in GRPO-
O1 (reward = RVR + αRo1), whereas the self-aligned reward RSA dominates in SA-GRPO (reward
= RVR +αRSA). Across all variants, there’s a consistent trade-off between accuracy and efficiency:
moving toward higher accuracy tends to reduce efficiency, and vice versa.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F CASES

F.1 DIFFERENT ANSWER TYPES AND ADVANTAGE VALUES

Table 12: An example for different types of answers and their advantage values.

Query: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck
egg. How much in dollars does she make every day at the farmers’ market?
Answer Type and Example Length AGRPO AGRPO-o1 AGRPO-ER ASA-GRPO

(Ours)
(1) Correct and Concise: We can break this down step
by step: Janet’s ducks lay 16 eggs per day. She eats 3
eggs for breakfast every morning. So, 16 - 3 = 13 eggs
remain after Janet eats breakfast. She bakes 4 eggs in
muffins every day for her friends. So, we need to
subtract these as well: 13 - 4 = 9 eggs. Hence, Janet
sells 9 eggs to the farmers’ market daily. She sells each
egg at $2. Therefore Janet’s daily revenue is 9 eggs * $2
= $18. So, Janet makes $18 per day at the farmers’
market.

143 0.5 0.64 0.63 0.99

(2) Correct but redundant: To answer the question,
we need to first calculate how many eggs Janet uses for
breakfast and for baking daily. Janet eats 3 eggs for
breakfast every morning. Additionally, she bakes
muffins with 4 eggs daily. Let’s sum the total number of
eggs used for both breakfast and baking: 3 (breakfast) +
4 (baking) = 7 eggs total used daily. Now that we know
she uses 7 eggs daily, we can determine how many fresh
eggs she has left after accounting for her usage. Since
her ducks lay 16 eggs per day, we subtract her total egg
usage from the daily egg production: 16 (total eggs
produced) - 7 (total eggs used) = 9 fresh eggs
remaining. Finally, to find out how much money Janet
makes selling the fresh eggs, we multiply the number of
remaining fresh eggs by the price per egg. She makes
$2 per fresh duck egg: 9 (fresh eggs left) × $2 (price per
egg) = $18 daily revenue. Therefore, Janet makes $18
per day at the farmers’ market, selling the leftover fresh
eggs from her ducks.

236 0.5 0.29 -0.29 0.84

(3) Partly Correct, Wrong Answer: Janet’s ducks lay
16 eggs per day. To determine how many fresh eggs she
sells each day, we need to subtract the number of eggs
she eats for breakfast and the number she uses for
muffins: Fresh eggs daily = 16 eggs per day - 3 eggs for
breakfast - 4 eggs for muffins = 16 - 3 - 4 = 2 eggs per
day So, Janet sells 2 fresh duck eggs daily at the
farmers’ market. Since she sells each egg for $2, her
daily earnings can be calculated by multiplying the
number of fresh ducks by their price: Daily earnings =
Number of eggs sold x Price per egg = 2 eggs x $2 per
egg = $4 Therefore, Janet makes $4 every day at the
farmers’ market... (Truncated)

457 -0.5 -1.5 -0.83 -0.16

(4) Irrelevant or Completely Wrong: It is never 30 °C
in winter. On the shortest day, in the Arctic Circle, the
low is -17 °C. On the longest day, the low is 17 °C.
Thus, 10 °C is the average low. We can transform this
into a simpler version. Janet’s ducks lay 16 eggs per
day, eat 3, use 4. Janet makes 13 eggs. She sells them
for $0.05 each: 13 × 0.05 = $0.65... (Truncated)

256 -0.5 -0.77 -0.83 -0.29

(5) Correct, but no reasoning (likely memorized):
The answer is 18.

5 -0.5 1.17 1.17 -0.16

(6) Incorrect, and no reasoning: The answer is 0. 5 -0.5 0.17 0.17 -1.20

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F.2 COMPARISON OF GRPO AND SA-GRPO

F.2.1 CASE 1: IMPROVED CONCISENESS

Question: Let r, s, and t be solutions to the equation

2x3 − 3x2 + 4x− 1 = 0.

Find r2 + s2 + t2.

Ground truth: −7

4

Qwen3-1.7B + GRPO Answer:

To find r2 + s2 + t2 where r, s, and t are the solutions to the equation 2x3 − 3x2 + 4x − 1 = 0, we
can use the relationships between the roots and the coefficients of the polynomial. Specifically, we can use the
identity:

r2 + s2 + t2 = (r + s+ t)2 − 2(rs+ rt+ st)

First, we need to find the values of r + s+ t, rs+ rt+ st, and rst using the coefficients of the polynomial.

The general form of a cubic polynomial is ax3+bx2+cx+d = 0. For our polynomial 2x3−3x2+4x−1 = 0,
we have:

a = 2, b = −3, c = 4, d = −1

Using Vieta’s formulas, we know:

r + s+ t = − b

a
= −−3

2
=

3

2
,

rs+ rt+ st =
c

a
=

4

2
= 2,

rst = −d

a
= −−1

2
=

1

2
.

Now, we can substitute these values into the identity for r2 + s2 + t2:

r2 + s2 + t2 = (r + s+ t)2 − 2(rs+ rt+ st)

Substituting the values we found:

r2 + s2 + t2 =

(
3

2

)2

− 22

Calculating each term:

(
3

2

)2

=
9

4
, 22 = 4

So,

r2 + s2 + t2 =
9

4
− 4

To subtract these, we need a common denominator:

4 =
16

4

Thus,

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

r2 + s2 + t2 =
9

4
− 16

4
=

9− 16

4
=

−7

4

Therefore, the answer is:

−7

4

Qwen3-1.7B + SA-GRPO Answer:

To solve this problem, we can use Vieta’s formulas, which relate the coefficients of the polynomial to
sums and products of its roots. For the polynomial

2x3 − 3x2 + 4x− 1 = 0,

the roots are r, s, and t.

Vieta’s formulas tell us:

• The sum of the roots r + s+ t = −−3
2

= 3
2

.

• The sum of the product of the roots taken two at a time rs+ rt+ st = 4
2
= 2.

• The product of the roots rst = −−1
2

= 1
2

.

We need to find r2 + s2 + t2. We can use the identity:

r2 + s2 + t2 = (r + s+ t)2 − 2(rs+ rt+ st).

Substituting the values from Vieta’s formulas:

r2 + s2 + t2 =

(
3

2

)2

− 2(2).

r2 + s2 + t2 =
9

4
− 4.

r2 + s2 + t2 =
9

4
− 16

4
.

r2 + s2 + t2 =
9− 16

4
.

r2 + s2 + t2 =
−7

4
.

Therefore, the answer is −7

4
.

F.2.2 CASE 2: IMPROVED CONCISENESS AND ACCURACY

Question: How many integers x satisfy

|x|+ 5 < 7 and |x− 3| > 2 ?

Ground truth: 2

Qwen3-1.7B + GRPO Answer:

To solve the problem, we need to find the integers x that satisfy both inequalities:

1.|x|+ 5 < 7 2.|x− 3| > 2

Let’s solve each inequality step by step.

Step 1: Solve the first inequality |x|+ 5 < 7

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Subtract 5 from both sides:
|x| < 2

This absolute value inequality can be rewritten as:

−2 < x < 2

So, the integers x that satisfy this inequality are:

x = −1, 0, 1

Step 2: Solve the second inequality |x− 3| > 2

This absolute value inequality can be split into two separate inequalities:

x− 3 > 2 or x− 3 < −2

Solving these inequalities:
x > 5 or x < 1

So, the integers x that satisfy this inequality are:

x = . . . ,−2,−1, 0, 1, 2, 3, 4, 5, . . .

Step 3: Find the intersection of the solutions from both inequalities

We need to find the integers that satisfy both −2 < x < 2 and x > 5 or x < 1.

From the first inequality, the integers are:
x = −1, 0, 1

From the second inequality, the integers are:

x = . . . ,−2,−1, 0, 1, 2, 3, 4, 5, . . .

The intersection of these two sets of integers is:

x = −1, 0, 1

Step 4: Count the number of integers in the intersection

The integers that satisfy both inequalities are:

x = −1, 0, 1

There are 3 integers in this set.

Therefore, the number of integers x that satisfy both inequalities is:

3

Qwen3-1.7B + SA-GRPO Answer:

To solve the problem, we need to analyze the two inequalities separately and then find the intersection
of the solutions.

Step 1: Solve the first inequality |x|+ 5 < 7

Subtract 5 from both sides:
|x| < 2

This means that x must be within 2 units of 0:

−2 < x < 2

Step 2: Solve the second inequality |x− 3| > 2

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

This inequality can be broken into two separate inequalities:

x− 3 > 2 or x− 3 < −2

Solving these, we get:
x > 5 or x < 1

Step 3: Find the intersection of the solutions

We need to find the values of x that satisfy both inequalities:

−2 < x < 2

x > 5 or x < 1

The intersection of these intervals is:
−2 < x < 1

Step 4: Identify the integers in the interval −2 < x < 1

The integers in this interval are:
−1, 0

Step 5: Count the integers

There are 2 integers that satisfy both inequalities.

Therefore, the number of integers x that satisfy the given conditions is:

2

26


	Introduction
	Related Work
	Methodology
	Reinforcement Learning Formulation
	Self-Aligned Reward

	Case Analysis: Why Self-aligned Reward Works
	SAR Provides Accurate and Fine-grained Signals
	SAR Promotes Exploiting Query Information Efficiently

	Experiments
	Experimental Settings
	Main Results
	Self-aligned Reward Achieves a Pareto-Optimal in Dynamic Balance
	Self-aligned reward Generalizes to Logical Reasoning

	Analysis
	Ablation Study
	Reasoning Behaviors of SA-GRPO
	Training Cost of self-aligned reward

	Conclusion
	Datasets
	Mathematical Reasoning Benchmarks
	Logical Reasoning Benchmarks
	Evaluation Details

	Implementation Details
	Implementation of SAR
	Implementation of GRPO-O1 and GRPO-ER
	Training Settings

	LLM Annotation Prompts
	Additional Analysis and Theory
	GRPO Gradient Analysis
	Theoretical Analysis of SAR
	Self-aligned Reward Function
	SA-GRPO Optimization Trajectories


	Additional Experiments
	Training Trajectories
	Self-aligned Reward on Vision Language Models
	Effect of Removing the KL Coefficient

	Cases
	Different Answer Types and Advantage Values
	Comparison of GRPO and SA-GRPO
	Case 1: Improved Conciseness
	Case 2: Improved Conciseness and Accuracy



