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Abstract

Generative models such as Generative Adversarial Networks (GANs) and Variational Au-
toencoders (VAEs) play an increasingly important role in medical image analysis. They
are used to synthesize, de-noise, super-resolve, and augment medical images. The la-
tent spaces of these models often show semantically meaningful directions corresponding to
human-interpretable image transformations. However, until now, their exploration for med-
ical images has been limited due to the requirement of supervised data. Recently, several
methods for unsupervised discovery of interpretable directions in GAN latent spaces have
shown interesting results on natural images. This work explores the potential of applying
these techniques on medical images by training a deep convolutional GAN and a VAE on
thoracic CT scans and using an unsupervised method to discover interpretable directions
in the resulting latent space. We find several directions corresponding to non-trivial im-
age transformations, such as rotation or breast size, as well as directions showing that the
generative models capture 3D structure despite being presented only with two-dimensional
data. The results show that unsupervised methods to discover interpretable directions in
generative model latent spaces generalize to VAEs and can be applied to medical images.
This could open a wide array of future work using these methods in medical image analysis.
Keywords: Generative models, unsupervised learning, interpretability, CT

1. Introduction

The combination of deep learning and medical images has emerged as a promising tool for
diagnostics and treatment. Though the amount of available data is increasing, one of the
main limitations is the often small dataset sizes available to learn from. This is due to
reasons such as the high costs of collecting and labeling data, adverse effects of radiation
exposure from imaging procedures, and protection of sensitive patient data. Generative
models can be used to synthesize or augment medical images (Nie et al., 2017; Frid-Adar
et al., 2018; Hiasa et al., 2018; Zhu et al., 2019), mitigating some of these factors.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have emerged as the
prominent generative model for image synthesis in recent years. Consequently, an extensive
line of research focusing on the interpretability of GANs has unfolded. Lately, there has
been a focus on the structure and interpretability of the latent space learned by GANs.
Radford et al. (2016) showed that there is meaningful vector arithmetic in the latent space
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of Deep Convolutional Generative Adversarial Networks (DCGANs). This led to the investi-
gation of interpretable directions in GAN latent spaces. For several years, the methods used
for discovering interpretable directions in latent spaces have been supervised (Goetschalckx
et al., 2019; Shen et al., 2020; Jahanian et al., 2020; Plumerault et al., 2020). Especially in
medical image analysis, supervision is expensive as it typically involves radiologist’s or other
expert’s time. Recently, several unsupervised methods for the discovery of interpretable di-
rections in GAN latent spaces were presented (Voynov and Babenko, 2020; Harkonen et al.,
2020; Shen and Zhou, 2021). Since these methods do not require supervision, they seem
more promising for the medical domain. However, at present it is unclear if they work with
the often more homogeneous images and the smaller dataset sizes encountered in this field.
Variational Autoencoders (VAEs) (Kingma and Welling, 2014) are another popular class
of generative models that explicitly approximate the data distribution (Goodfellow, 2016).
Research on the interpretability of VAEs has mainly focused on obtaining disentangled la-
tent space representations (Higgins et al., 2017; Kim and Mnih, 2018). While this shows
promising results, there are limitations to unsupervised learning of disentangled represen-
tations, in that it might not be possible without introducing inductive biases (Locatello
et al., 2019). The approach of Voynov and Babenko (2020), does not restrict the latent
space representation as it is trained post-hoc. Thus, this and similar methods developed for
GANSs, when applied to VAEs, allow for latent spaces that need not incorporate additional
inductive biases. This allows for easier applications of discovered directions to real images.
If the same methods that have shown promising results on GANs are effective on VAEs,
then VAEs can be trained without restrictions on the latent space while still having the
benefit of interpretability and applicability to real images.

Contributions: We employ an unsupervised technique to explore the latent spaces of
DCGANSs and VAEs trained on Computed Tomography (CT) images!. We show that these
methods previously used to interpret the latent spaces of GANs generalizes to VAEs. Fur-
ther, our results provide insights into the applicability of these methods for medical image
analysis. We evaluate the directions obtained and show that there are non-trivial and se-
mantically meaningful directions encoded in the latent space of the generative models under
consideration. These directions include both transformations specific to our dataset choice
and ones that likely generalize to other data.

2. Background
2.1. Generative Adversarial Networks

GANs (Goodfellow et al., 2014) are a class of deep generative models that implicitly model
the data generating distribution (Goodfellow, 2016). They optimize a zero-sum game be-
tween a generator neural network that synthesizes new data from random samples and
a discriminator neural network that classifies real and synthesized data. The generator,
G :z e Rl - 2 € D, maps from a L-dimensional latent variable z to the data space D.
The discriminator, D : x € D — {0,1}, presented with G(z) and real samples, is tasked
with classifying them as real or fake.

Given the latent distribution p,, the data distribution pgu:q, and binary cross-entropy as
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the loss we can define the min-max game as:

minmaz V(D, G) = Eonpyy,,[l0g D(@)] + Eznp, [log(1 = D(G(2)))]- (1)

The introduction of DCGANs (Radford et al., 2016) has increased the use of GANs on
images. In particular, there is a vast amount of work showing their effectiveness in medical
imaging (Zhang et al., 2018; Diaz-Pinto et al., 2019; Alyafi et al., 2020; Bushra and Shobana,
2020; Fujioka et al., 2019).

2.2. Variational Autoencoders

VAEs (Kingma and Welling, 2014) are another popular class of deep latent variable models
used for generative modelling and approximating the data generating distribution explic-
itly (Goodfellow, 2016). The standard VAE uses a probabilistic encoder-decoder architec-
ture. The probabilistic encoder, parameterised by @, is given by qy(-) : @ € D — 2 € RE,
where z is the L-dimensional latent variable. The encoder approximates the true posterior
distribution, p(z|z), with a Gaussian density with mean py € RY and variance o7 € RE,
i.e., go(z|w) ~ N (pg,03). The decoder, given by pys(z|2) and parameterised by ¢, is trained
to reconstruct the input x based on the latent variable z.

The VAE is optimized using the Evidence Lower Bound (ELBO) as the objective (Kingma
and Welling, 2014). The ELBO is given by:

Lyvag = —Eqlog ps(z[2)] + D r[ge(2]2)][p(2)] (2)

where the first term is referred to as the reconstruction loss L., and the second term as
the regularization loss £, given by the Kullback-Leibler Divergence (KLD) and p(z) is the
prior given by p(z) ~ N(0,I). The regularization loss forces the encoder density to match
the prior during training, enabling generative sampling from the prior density at inference.
To balance latent space regularization and reconstruction quality, an additional scaling
factor 3, suggested by Higgins et al. (2017), is introduced, giving:

LVAE - Erec + ﬁﬁreg (3)

VAEs often suffer from "posterior collapse’ (Bowman et al., 2016; Kingma et al., 2016) which
can be alleviated when using a 5 < 1.

2.3. Unsupervised Discovery of Interpretable Directions in Latent Spaces

Recently, several unsupervised methods to find interpretable directions in GAN latent spaces
have been proposed (Voynov and Babenko, 2020; Harkonen et al., 2020; Shen and Zhou,
2021). In Hérkonen et al. (2020); Shen et al. (2020) the interpretable directions are con-
strained to be orthogonal, whereas this constraint is relaxed in Voynov and Babenko (2020).
As interpretable directions do not necessarily have to be orthogonal, we employ the method
suggested by Voynov and Babenko (2020). The proposed method is model agnostic and
can be applied to any latent generative model G. The goal of this unsupervised method is
to learn distinct directions from a trained latent generative model, by learning a directions
matrix A and a reconstructor R to distinguish between the directions. Since the method
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jointly learns a set of directions and a model that distinguishes the resulting transforma-
tions, the directions are likely to be interpretable if the model can distinguish between them
with high accuracy. If the directions do not affect all images the same or are semantically
not meaningful, distinguishing them would be hard.

Formally, the unsupervised direction discovery method learns two things: First, a matrix
A € R>K where d is the dimensionality of the latent space of G, and K is the number
of directions that will be discovered. I.e., the columns of A correspond to the directions.
Second, a reconstructor R, mapping from an image pair (G(2),G(z + A(eeg))), with the
shifted latent vector z + A(eey), where ey is an axis-aligned unit vector and e is a scalar.
The reconstructor predicts the direction k£ by determining e; and the scalar €. In other
words, the reconstructor is given an image and a shifted version and tries to determine the
amount, and direction of the shift. The optimization objective is given by:

TIALZ.RZL Ez7k7e[LCl<k7 I%) + 7L5(67 €)] (4)

)

where k and € are the actual direction and amount respectively, and k and é are the
predictions, L.; is the classification loss based on the Reconstructor Classification Accu-
racy (RCA), L is the shift loss, and + is a regularization factor.

3. Material & Methods
3.1. Data

We use The Lung Image Database Consortium image collection (LIDC-IDRI) (Armato III
et al., 2011) provided by The Cancer Imaging Archive (TCIA). It consists of clinical thoracic
CT scans of 1010 patients, collected from diagnostic and lung cancer screenings and is
assembled by seven academic centers and eight medical imaging companies. We consider
each axial CT slice as an individual image. This results in a dataset of 246,016 512 x 512
pixel CT images, which are resized to 128 x 128 pixels to limit computational demands.

3.2. Models & Training

We use a DCGAN based on Radford et al. (2016), improving training stability by introduc-
ing one-sided label smoothing (Salimans et al., 2016). One-sided label smoothing replaces
the fixed targets 1 of the real labels with smoothed values randomly chosen from the in-
terval [0.9,1]. Additionally, we add 0-mean and 0.1 standard deviation Gaussian noise to
the discriminator input (Arjovsky and Bottou, 2017), incrementally reducing the standard
deviation and finally removing it at epoch 25. The encoder and decoder of the VAE are
based on ResNet (He et al., 2016), and we use $ = 0.01 to improve reconstruction quality.
For both generative models, we use a latent space size of L = 32 as it showed the best
trade-off between image quality and compactness of the latent space. We refer to the pro-
vided GitHub repository for implementation details. We train the GAN and the VAE for
50 epochs selecting the best weights out of the last 5 by considering the models Fréchet
Inception Distance (FID) (Heusel et al., 2017) on test data. We use binary cross-entropy as
loss for the GAN and log mean squared error (Yu, 2020) as reconstruction loss for the VAE.
We use Adam (Kingma and Ba, 2015) with a learning rate of 0.0002 and 0.0001 to optimize
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the GAN and VAE, respectively. The best GAN and VAE weights yield a FID of 33.4 on
and 93.9 on the test data, respectively. Appendix C offers a short study of memorization.
To find interpretable latent directions, we use two different reconstructors, based on LeNet
(Lecun et al., 1998) and ResNet. We experiment with A having unit length or orthonormal
columns as suggested by Voynov and Babenko (2020). We set the number of directions
K equal to the size of the latent space, i.e., K = 32, and experiment with increasing it to
K = 100. We observe significantly faster convergence when using the ResNet reconstructor.
Thus, when using K = 32, we train the model for 25,000 iterations when using LeNet and
3,000 iterations when using the ResNet reconstructor. When K = 100, we train the VAE
for 75,000 and 4, 000 iterations with the LeNet and ResNet reconstructors respectively. For
the GAN we observe slower convergence. Therefore, we train the GAN for 250,000 and
10,000 iterations with the LeNet and ResNet reconstructors, respectively. Since we cannot
have K > L for orthonormal directions, we only use A with columns of unit length for
K =100. We evaluate direction models using the RCA and the shift loss L from Equation
4. Further, we follow the ablation provided by Voynov and Babenko (2020) and use a regu-
larization factor v = 0.25. To evaluate the directions, preliminary labeling was done by the
first author with eight animations, each showing different latent vectors per direction. Next,
each direction and preliminary label was considered on eight static images. The evaluator
does not have formal training in medical image interpretation, and it is possible that more
experienced evaluators could have discovered more interesting directions.

4. Experiments & Results

We perform several experiments to investigate the unsupervised exploration of latent spaces
of deep generative models. First, we train using orthonormal directions and directions of
unit length. We also experiment with increasing the number of directions. Finally, we
perform all experiments both with a DCGAN and a VAE as generative model.

All results are obtained without supervision, with the exception of the labeling of the se-
lected directions. The RCA and L; of the different experiments are presented in Tables
1(b) and 1(a) for the LeNet and ResNet reconstructors respectively. There are several key

Table 1: Reconstructor Classification Accuracy (RCA) and L, for all model configurations
for ResNet (a) and LeNet (b) as reconstructor.

(a) RCA and Lg for ResNet reconstructor.

Orthogonal Unit Length | 100 Directions
RCA | Ly | RCA | L, | RCA | L,
GAN | 0.9236 | 0.2538 | 0.9383 | 0.1949 | 0.9522 | 0.1560
VAE || 0.9939 | 0.1040 | 0.9947 | 0.1086 | 0.9861 | 0.1117
(b) RCA and L for LeNet reconstructor.
Orthogonal Unit Length | 100 Directions
RCA | Ly | RCA | L, | RCA | L,
GAN || 0.8559 | 0.3317 | 0.9062 | 0.2439 | 0.9305 | 0.1406
VAE | 0.9800 | 0.1421 | 0.9895 | 0.1090 | 0.9791 | 0.0962
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observations. First, the VAE always outperforms the GAN with respect to both RCA and
Lg. Second, using directions of unit length achieves higher RCA than orthonormal direc-
tions and lower L, in all but one case. We also observe higher RCA when using ResNet
over LeNet as a reconstructor. In contrast, LeNet achieves a lower Ly when K is set to 100.
Voynov and Babenko (2020) mention that a larger K does not harm interpretability but
alleviates entanglement, and may, lead to more duplicate directions. We observe the same
behaviour with K = 100 as opposed to K = 32.

We consistently observe eight key directions in our results. Namely, width, height, size,
y-translation, rotation, breast size, thickness, and z-Position. All model configurations find
all eight directions with varying degrees of entanglement. In this work, we omit directions
entangled to such a degree that there is no clear interpretation dominating the image trans-
formation. Thus, all configurations find at least a subset of the aforementioned directions
in a sufficiently disentangled manner. We present animations of all discovered directions in
the provided GitHub repository. Figures 1(a) and 1(b) show all eight directions for the VAE
and GAN respectively. The directions presented in Figure 1 are obtained using LeNet as
reconstructor and K = 100. For images of the other model configurations, we refer to Ap-
pendix A. Our results show that enforcing orthonormal directions increases entanglement.

- Width + - Width +

- Height + - Height +

- Size +

Rotation Rotation
- y-Position + - y-Position +
- Thickness + - Thickness +

- Breast +

- z-Position + - z-Position +

(a) (b)

Figure 1: Interpretable directions using A32*190 with columns of unit length, LeNet as

reconstructor, and the VAE (a) and GAN (b) as underlying generative models. The central
images correspond to the original latent vector. The left/right images correspond to shifts.
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Finally, we observe that when using a LeNet reconstructor, more of the obtained directions
are easily interpretable compared to using a ResNet reconstructor.

5. Discussion

In this work, we explored the latent spaces of deep generative models, such as GANs and
VAEs, to discover semantically meaningful directions. We next elaborate on some of the
findings from our experiments.

Influence of K: The main effects of variations in the number of directions, K, is that lower
K likely makes the reconstructor classification task easier. It is possible that this lessens
the need for disentanglement. If so, when increasing K to 100, the increasing classification
difficulty forces the model to disentangle the directions to make them easier to classify.
Orthonormal Directions: While constraining the directions to be orthonormal still leads
to the same subset of interpretable directions being discovered, the quality of the directions
suffers. This aligns with the observations of Voynov and Babenko (2020). However, their
results show that some datasets benefit from orthonormal directions, leading to more in-
teresting directions. We do not observe this on our data, and the lack of disentanglement
is also clear from the lower RCA of the methods using orthonormal directions. Thus, we
conclude that for our purpose, directions of unit length are preferable.

Choice of Reconstructor: When K = 32 both reconstructors show similar qualitative re-
sults, more entangled directions, L is larger and ResNet quantitatively outperforms LeNet.
For K = 100, LeNet produces better qualitative results than ResNet. This is also evident
in the quantitative results with LeNet and K = 100 achieving the lowest Ls. While ResNet
has a higher RCA, RCA gives a measure of duplicate directions and only describes inter-
pretability to a certain degree. Since LeNet performed best when using K = 100 and the
increased number of directions benefited disentanglement we prefer LeNet as reconstructor.
Consistent Discovery of the Same Human Interpretable Directions: The same
subset of interpretable directions appears for all models with varying degree of entangle-
ment. Recent work has shown non-linear directions to be less entangled (Tzelepis et al.,
2021) which could be studied further. The directions are validated by showing that the
same set is discovered in the latent space of both the DCGAN and the VAE as shown in
Figure 1. The resulting directions we discover show non-trivial image transformations. In
particular, the directions changing the z-Position of the latent vector are interesting. It
demonstrates that the models learn the 3-dimensional structure of the data despite being
trained on 2-dimensional images. We provide further illustrations of the z-Position changes
and a comparison of random directions with the discovered directions in Appendix B.
While the focus of discovery of directions in latent spaces has mainly been on GANs in
recent years, we see that the same methods apply to VAEs. Since VAEs allow for easy
mapping of real images to latent vectors, they have a practical benefit over GANs when
considering the usefulness of these methods as covered in the following.

Impact & Applications: Improving interpretability of GANs and VAEs is important and
addressed in this work by finding and visualizing meaningful latent space directions and pro-
viding novel insights into the learned representations. The method is shown to generalize
to VAEs, indicating that the latent spaces of VAEs and GANs can be interpreted in similar
ways. However, shorter convergence times on the VAE when learning interpretable direc-
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tions indicate that VAEs latent space could be inherently easier to interpret. Unsupervised
exploration further benefits the medical image domain due to the lack of well-supervised
datasets and more importantly, it could lead to surprising results outside of what we are
explicitly supervising methods to find.

Context-aware image augmentation and editing is another application of our approach.
Image augmentation using synthetic data improves downstream machine learning tasks on
medical images over standard augmentation methods (Frid-Adar et al., 2018; Sandfort et al.,
2019; Ge et al., 2020; Shin et al., 2018; Chaitanya et al., 2021) and GANSs can alleviate both
the small dataset sizes and imbalance inherent to medical imaging (Kazeminia et al., 2020;
Yi et al., 2019). Our results could be used to explore more diverse augmentations and
the capability of adjusting for sex and weight imbalances. A recent supervised approach
explored disease-aware image editing (Saboo et al., 2021), alleviating class imbalances. Our
work might offer an alternate unsupervised approach. Using VAEs or reverse latent vector
search (Ferndndez Blanco et al., 2021) allows for image editing and augmentation.

We see further applications needing more investigation, such as exploring the potential in
consistency regularization and multi-modal datasets. For example, finding directions cor-
responding to adding or removing contrast in scans. Further, the approach we use has
been shown to be effective in unsupervised saliency detection, and segmentation on natural
images (Voynov et al., 2021; Melas-Kyriazi et al., 2021; Voynov and Babenko, 2020).
Limitations: The main limitations we observe in our work are based on the methodol-
ogy for unsupervised exploration. First, while the reconstructor’s classification accuracy
and shift loss give some insights into convergence, the implications of overfitting need to
be investigated further. In particular, since the method does not rely on data, techniques
such as evaluation of hold-out data are not available. This makes the decision of how many
training iterations to use difficult as model performance can not be assessed on independent
data. Further, the lack of evaluation metrics makes the choice of reconstructor difficult. We
tried to mitigate this by using RCA and L, for quantitative and human interpretation for
qualitative analysis. Nevertheless, further investigation is needed to find good evaluation
metrics. Second, the large amount of resulting directions makes evaluation difficult and
time-consuming. This is particularly challenging in medical image analysis as evaluation
may need to involve trained evaluators such as radiologists. Further automation or intro-
ducing a hierarchy of interpretability could be a focus of future work.

6. Conclusion

In this work, we have demonstrated for the first time that techniques for unsupervised
discovery of interpretable directions in the latent space of generative models yield good
results on medical images and for dataset sizes typically encountered in this field. The results
show that generative models, such as a DCGAN and VAE learn non-trivial, semantically
meaningful directions when trained on CT images of the thorax. We encounter directions
with the same semantic meaning regardless of the generator or direction discovery model,
indicating a general structure of the latent spaces. Further, our results show that the latent
spaces of the generative models capture the 3D structure of the CT scans despite only being
trained on 2D slices. The work opens up the possibility of exploring these techniques for
unsupervised medical image segmentation, interpolation, augmentation, and more.
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Appendix A. Discovered Directions for all Model Configurations.
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Figure 2: Example of interpretable directions using A32*3? with orthonormal columns,
LeNet as reconstructor, the VAE (a) and GAN (b) as underlying generative models. The
central images correspond to the original latent vector. The images to the left/right of that
correspond to a negative/positive shift. We observed fewer disentangled directions than
with other methods.
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Figure 3: Example of interpretable directions using A32*32 with orthonormal columns,
ResNet as reconstructor, the VAE (a) and GAN (b) as underlying generative models. The
central images correspond to the original latent vector. The images to the left /right of that
correspond to a negative/positive shift. Again, we observe far fewer disentangled directions
compared to the other methods limiting the amount of directions we report.
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Figure 4: Example of interpretable directions using A32*32 with columns of unit length,
LeNet as reconstructor, the VAE (a) and GAN (b) as underlying generative models. The
central images correspond to the original latent vector. The images to the left /right of that
correspond to a negative/positive shift.
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Figure 5: Example of interpretable directions using A32*32 with columns of unit length,
ResNet as reconstructor, the VAE (a) and GAN (b) as underlying generative models. The
central images correspond to the original latent vector. The images to the left /right of that
correspond to a negative/positive shift.
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Figure 6: Example of interpretable directions using A32*1%0 with columns of unit length,

ResNet as reconstructor, the VAE (a) and GAN (b) as underlying generative models. The
central images correspond to the original latent vector. The images to the left /right of that
correspond to a negative/positive shift.
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Appendix B. Supplementary Images
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Figure 7: 24 Randomly sampled latent vectors shifted along the directions corresponding to
z-Position. The central images correspond to the original latent vector. The images to the
left /right of that correspond to a negative/positive shift. Each latent vector shows biological
variation and all shifts show realistic changes in anatomy corresponding to different z-
positions in order of the amount of shift, such as different anatomical areas of the airways,
heart, lungs, and liver.
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Figure 8: 5 Random directions (left) next to the first 5 discovered directions (right) using
A32X100 with columns of unit length, LeNet as reconstructor and the GAN as underlying
generative model. The central images correspond to the original latent vector. The images
to the left /right of that correspond to a negative/positive shift. The results show a marked
difference in interpretability of the discovered directions in contrast to random directions.
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Figure 9: 5 Random directions (left) next to the first 5 discovered directions (right) using
A32X100 with columns of unit length, LeNet as reconstructor and the VAE as underlying
generative model. The central images correspond to the original latent vector. The im-
ages to the left /right of that correspond to a negative/positive shift. We can see that the
random directions are continues and some of them somewhat interpretable. In particular,
the random direction results are better than what we observe with the GAN. This is most
likely due to the regularization of the latent space as well as the VAE learning a structured
latent space which is in contrast to the GAN.
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Appendix C. Memorization

Figure 10: When considering generative latent models, memorization is a concern. To
address this, we embed two random images from hold out data (original images are in the
top left and bottom right) using reverse latent vector search Ferndndez Blanco et al. (2021)
for the GAN and the encoder for the VAE and move between the two resulting latent vectors
to investigate the smoothness of the latent space. As can be seen, the resulting images
appear anatomically correct, and interpolation is smooth, indicating that the generative
models are not memorizing the data.
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