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Abstract
Differentiable Neural Architecture Search (NAS)
is a popular paradigm, but scaling this approach
to models with larger parameters is severely ham-
pered by the fact that the entire supernet resides
in GPU memory. In this paper, we rethink the
gradient propagation processs of Differentiable
NAS and propose Decoupled Differentiable Neu-
ral Architecture Search (D2NAS). In our method,
the branch structure is designed to decouple the
weight update of the trainable parameters from
the backbone network, and the candidate opera-
tion selection is redesigned with Gumbel-Softmax
to make the overall differentiable process more
stable. Experiments show that D2NAS achieves
both performance and stability, with 67% mem-
ory cost compared to the best other differentiable
methods.

1. Introduction
Neural Architecture Search (NAS) [1] has made rapid
progress in neural network design for vision tasks such
as classification [2], [3], object detection [4] and segmen-
tation [5]. Early approaches based on evaluating a large
number of candidate models required an unaffordable
cost [6], [7]. Inspired by the weight sharing mechanism,
various low-cost approaches have emerged [8]. DARTS [9]
introduces architecture weights to indicate the importance
of each operation and employs first-order and second-order
approximations to update operation parameters and
architecture weights through stochastic gradient descent.
DARTS dominates with its fast speed and has a lot of
follow-up research [3], [10]–[13].
The scalability is essential since larger search spaces hold
more high quality models, as depicted by the increasing
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average accuracy of models with increasing search space
sizes. However, the comprehensive nature of the supernet,
encompassing all connections and operations in the search
space, poses a challenge of excessive GPU memory
consumption. There is an urgent need for larger-scale
models but the shortening of the search process does
not necessarily mean an equivalent reduction in GPU
memory usage [14]. Therefore, designing a new method to
effectively reduce GPU memory usage is crucial to fully
exploit the utility of Differentiable NAS.
In this paper, we revisit the gradient process of search
and point out that the intermediate gradient of caching
activation values in previous methods becomes a significant
part of GPU memory footprint. Therefore, Decoupled
Differentiable Neural Architecture Search (D2NAS) is
proposed to replace the above design of entanglement.
The Disentangled Search Space containing Branch Cell
is designed, see Fig. 1 for details. Only Branch cells are
updated during the search to avoid a large accumulation
of gradients of Normal cells. Moreover, we use Gumbel-
Softmax to make the selection of candidate operations more
stable than previous methods [10], [11].
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Figure 1. Illustration of the differences of neural architecture be-
tween D2NAS and previous approaches. (a) Vanilla Search Space
from [9] is stacked with Normal Cell (NC) and Reduction Cell
(RC). The whole architecture bears the burden of all gradient prop-
agation while searching. (b) Our proposed Disentangled Search
Space is composed of Normal Cell (NC) and Branch Cell (BC).
Only the architecture parameters of BC are updated during the
search.
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2. Related work
In order to reduce GPU memory cost, some previous studies
modified the forward process of the supernet.
DARTS-like Methods. P-DARTS [15] proposes the search
space approximation strategy, which reduces the number of
candidate operations accordingly whenever the number of
layers increases. Reducing the number of candidate opera-
tions frees up the GPU memory footprint, but also affects
the accuracy of the search. PC-DARTS [11] employs partial
connections instead of a full supernet.
Single-path Methods. Certain research works have sug-
gested consolidating all parameterized operations into a
unified convolution, with a comparable hyperkernel strategy
applied in single-path NAS studies. ProxylessNAS [10]
samples two operations per edge during the search, which
enables agent-free search on large datasets. Single-path su-
pernet like SPOS [16] and FairNAS [17] only sample one
path per iteration, however, both require additional search
phases to select the final model. Single-path differentiable
methods like GDAS [18] sample the subgraph of the Di-
rected acyclic graphs(DAG) in each iteration, which is by
far the most efficient method.
However, the iteration of the differentiable process itself
consumes a lot of GPU memory, and this problem is not
mitigated, which has been neglected in previous studies. In
our method D2NAS, the differentiable search procedure is
optimized from the decoupled space.

3. Preliminary
The Differentiable NAS framework is defined as follows.
Given a specific task, such as a classification task, with
training set Dtrain and validation set Dval, a unit can be
represented as a Directed Acyclic Graph (DAG) with N
nodes, each node representing a potential feature. Each
directed edge (i, j) is associated with an operation, o(i, j) ∈
O, where O is a set of candidate operations. DARTS [9]
relaxes the learnable architecture parameters α continuously
to blend the outputs of operations as

ō(i,j)(x) =
∑
k∈O

exp
(
α
(i,j)
k

)
∑
k′∈O

exp
(
α
(i,j)
k′

)o(x). (1)

Candidate architecture is an N layer convolution neural net-
work y = fN (fN−1(...f1(x))), where layer i has a weight
matrix Wi and a bias term bi. We denote oi+1, zi+1 as
the output and pre-activation of layer i, respectively. Then,
oi+1 = σ(zi+1) = σ(Wioi + bi), where σ is the activation
function.
At the search stage, NAS can be modeled as a bi-level opti-
mization problem that minimizes the loss L by alternately
updating the operation weights w (the parameters of the
candidate operations on each edge) and the architecture

parameters α,

minαLval (w∗(α), α) (2)
s.t. w∗(α) = arg min

w
Ltrain (w,α∗) . (3)

The gradients back propagated from the loss L to Wi and bi
are

∂L

∂Wi
=

∂L

∂oi+1
σ′ioi ,

∂L

∂bi
=

∂L

∂oi+1
σ′i , (4)

where σ′i is the abbreviation of ∂oi+1/∂zi+1. Furthermore,
the term ∂L/∂oi+1 can be recursively expressed as

∂L

∂oi+1
=

∂L

∂oi+2

∂oi+2

∂zi+2

∂zi+2

∂oi+1
=

∂L

∂oi+2
σ′i+1Wi+1 . (5)

To correctly calculate the gradients, except for parameters
from the model (in this case, Wi and bi), all corresponding
{σ′i} in the chain rule have to be cached during search,
which dominates the GPU memory usage.

4. Method
The gradient update is consistent with the Eq. 2 in Disen-
tangled Search Space, but the gradient merging of Normal
Cell and Branch Cell is prone to produce gradient collapse
in the computational accumulation. In order to improve the
stability of the method, instead of Eq. 1, we propose to use
Gumbel softmax for the selection of candidate operations,
which is mainly described below:
To disentangle the search for topology and operations on
each edge, we use an indicator Bi,j ∈ {0, 1} to denote
whether edge ei,j is selected, and Aoi,j ∈ {0, 1} for whether
operation o on edge ei,j is selected. Sampling architecture
z with M connections can be decomposed into two parts:
sample M edges first, and their operations second.

Sampling for edges. Topology inconsistency exists in
single-path based methods [19], [20], as all 14 edges in
a cell are selected in the search stage but the final architec-
ture only has 8 edges. To address this issue, we propose to
sample the same number of edges in search.

Each intermediate node should connect with exact two pre-
decessors, satisfying the constraint of DARTS. Formally,
we use Bi,j to indicate whether the edge ei,j between node
xi and xj is sampled, and we enforce,∑

i<j

Bi,j = 2, ∀j. (6)

Sampling for operations. We use Aoi,j to denote whether
the operator o is sampled on the edge ei,j , and we adopt
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Gumbel-Softmax technique to sample operations, where
goi,j is sampled from Gumbel(0, 1) distribution and goi,j =
− log(− log(εoi,j)), εoi,j obeys uniform distribution, and

α̃oi,j =
exp(αo

i,j)∑
o′∈O exp(αo′

i,j)
is the normalized architectural

weights:

Ai,j = Oone hot

[
arg max

o∈O
(log α̃oi,j + goi,j)

]
, (7)

To make the objective function differentiable to architectural
weights α, we relax the discrete distribution to a continuous
one by Gumbel-Softmax:

Ãoi,j =
exp

[
(log α̃oi,j + goi,j)/τ

]∑|O|
o′=1 exp

[
(log α̃o

′
i,j + go

′
i,j)/τ

] ,
Ai,j = Oone hot

[
arg max

o∈O
Ãoi,j

]
, (8)

where the temperature τ gradually decreases in the search
process.

5. Experiment
5.1. Settings

Search space. The search space of DARTS is denoted as
S0, which includes a stack of duplicate normal cells and
reduction cells. Each cell is represented by a DAG with four
intermediate nodes. The candidate operations between every
two nodes are {maxpool, avgpool, skip connect, sep conv
3×3 and 5×5, dil conv 3×3 and 5×5}.We search and eval-
uate on CIFAR-10 [21] and ImageNet [22] under S0 search
space, respectively.
We also perform experiments on the four reduced search
spaces, S1-S4, introduced by R-DARTS [23] to assess the
stability of our approach. S1 represents a pre-optimized
search space where each edge in the supernet is associated
with a predefined set of candidate operations. In the remain-
ing three search spaces, the candidate operations on each
edge remain consistent. Consistent with R-DARTS [23], the
search and evaluation are conducted within these four search
spaces using CIFAR-10, CIFAR-100 [21], and SVHN [24]
datasets.

Search Settings Similar to DARTS, the supernet comprises
8 cells with 16 initial channels. The search is conducted
over 50 epochs with a sampling number set to K = 7. The
operation parameters are optimized using the SGD optimizer
with a momentum of 0.9 and an initial learning rate of 0.05.
As for the architectural weights, the Adam optimizer is
employed with an initial learning rate of 3× 10−4.

Evaluation Settings The evaluation settings mirror those
of DARTS [9], where the inferred model is trained for 600
epochs using SGD with a batch size of 96. In the search

space S0, inferred models are built by stacking 20 cells with
36 initial channels and trained under the same conditions
as outlined in [9], [15]. For S1-S4, we adhere strictly to
the settings established in R-DARTS [23] to ensure a fair
comparison.

5.2. Results

Performance in S0 on CIFAR. We follow DARTS [9] and
search on the CIFAR-10. Table 1 shows that achieves state-
of-the-art performance with only 0.3 GPU-days. D2NAS
has an average of 2.58±0.07% error rate, which is slightly
higher than up-to-date SOTAs such as SDARTS-ADV [25].
However, D2NAS is more than 4× faster. Compared with R-
DARTS [23], D2NAS robustly outperforms it with 5× fewer
search costs. Our best model achieves 97.52% accuracy
with 3.6M parameters.

Models Params FLOPs Error Cost SP
(M) (M) (%) (GPU Days)

DARTS-V1 [9] 3.3 528 3.38±0.23 0.4 ×
P-DARTS [15]‡ 3.3±0.2 540±34 2.81±0.14 0.3 ×
PC-DARTS [26]‡ 3.6±0.5 592±90 2.89±0.22 0.1 ×
PR-DARTS [27]‡ 3.4 - 2.68±0.10 0.2 ×
R-DARTS [23] - - 2.95±0.21 1.6 ×
SDARTS-ADV [25] 3.3 - 2.61±0.02 1.3 ×
ZARTS [28] 3.7 - 2.54±0.07 1.0 ×
Few-shot NAS [29] 3.8 - 2.31±0.08 1.35 ×
GDAS [19] 3.4 - 2.93 0.2 X
SNAS [20] 2.8 - 2.85±0.02 1.5 X

D2NAS (best) 3.5 593 2.29 0.3
D2NAS (avg.) 3.7±0.4 595±25 2.31±0.08 0.3

Table 1. Averaged performance among 4 independent runs of
search on CIFAR-10. ‡: reproduced result using their released
code since they didn’t report the average performance. †: FLOPs
are calculated by their released architecture. SP: single-path based
method

We also search on CIFAR-100 and show the results in Ta-
ble 2. D2NAS surpasses all the methods and achieves state-
of-the-art with only 0.3 GPU-days search cost.

Performance in S0 on ImageNet. First, we transfer the
architecture searched on CIFAR-10 to ImageNet following
the common practice [9], [15], [17]. Same as [17], we train
models for 250 epochs with a batch size of 1024 by SGD
optimizer with a momentum of 0.9 and an initial lr of 0.5
base learning rate. We also utilize an auxiliary classifier
strategy. The results are shown in Table 3, where D2NAS
achieves 75.3% top-1 accuracy.
Second, as D2NAS features low memory cost and great
robustness, we directly search on ImageNet as well. We
randomly sample 10% images to train operation parameters
and another 10% to train architectural weights. A supernet
is constructed by stacking 8 cells with 16 initial channels.
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Models Params Error Cost
(M) (%) (GPU Days)

ResNet [30] 1.7 22.10� -
AmoebaNet [31] 3.1 18.93� 3150
PNAS [32] 3.2 19.53� 150
ENAS [33] 4.6 19.43� 0.45
DARTS [9] - 20.58±0.44? 0.4
GDAS [19] 3.4 18.38 0.2
P-DARTS [15] 3.6 17.49‡ 0.3
R-DARTS [23] - 18.01±0.26 1.6
ZARTS [28] 4.1 16.29±0.53 1.0

D2NAS (best) 3.2 17.39 0.3
D2NAS (avg.) 3.4±0.5 17.52±0.13 0.3

Table 2. Comparison of searched models on CIFAR-100. �: Re-
ported by [19], ?: Reported by [23], ‡:Rerun their code.

We search for 30 epochs with K = 3. The batch size is set
as 256. Our search cost is reduced to 0.4 GPU days on a sin-
gle Tesla V100. We fully train the discovered model for 250
epochs with the same evaluation settings as above. Results
are illustrated in Tabel 3, showing that D2NAS achieves
75.8% top-1 accuracy. To make fair comparisons, we re-
produce GDAS [19] under the same settings (90 epochs).
However, the network is dominated by skip connections and
only achieves 72.5% top-1 accuracy.

Robustness Evaluation. We follow the recommended best
practices for NAS by [23], [25] to report the mean and
variance across several times of parallel searching with
various random seeds, through which the robustness of a
method can be measured.
We follow R-DARTS [23] to evaluate the performance and
across 3 datasets in S1-S4 search spaces, see Table 5(Ap-
pendix). Our methods robustly outperform other methods
with a clear margin across all these benchmarks.

Memory Analysis. Table 4 compares GPU memory cost
in S0 search space on CIFAR-10. D2NAS has the lowest
memory cost thanks to our disentanglement of the search for
topology. Unlike GDAS that preserves multiple edges for
each node, we strictly sample 2 edges for each node leading
to 26% memory reduction compared to GDAS.
PC-DARTS [26] uses partial channels during the search
stage to reduce GPU memory cost, in which the partial
ratio is controlled by a hyperparameter M . But M requires
careful calibration for different tasks. In contrast, D2NAS
doesn’t require calibrating such an extra hyperparameter
and is more memory-efficient.

Models FLOPs Params Top-1 Cost
(M) (M) (%) (GPU days)

AmoebaNet-A [31] 555 5.1 74.5 3150
NASNet-A [34] 564 5.3 74.0 2000
PNAS [35] 588 5.1 74.2 225
DARTS [9] 574 4.7 73.3 0.4
P-DARTS [15] 577 5.1 75.3 0.3
FairDARTS-B [17] 541 4.8 75.1 0.4
SNAS [20] 522 4.3 72.7 1.5
PC-DARTS [26] 586 5.3 74.9 0.1
GDAS [19] 581 5.3 74.0 0.2
D2NAS (ours) 576 5.2 75.3 0.3

DARTS, P-DARTS OOM‡ when batch-size ≥ 32
FairNAS-C [17] 321 4.4 74.7 12
SPOS [16] 323 3.5 74.4 12
ProxylessNAS [10] 465 7.1 75.1 8.3
FBNet-C [36] 375 5.5 74.9 9
PC-DARTS [26] 597 5.3 75.4 3.8
GDAS [19] 405 3.6 72.5 0.8
D2NAS (ours) 592 4.8 75.8 0.4

Table 3. Performance on ImageNet. The first block indicates the
models transferred from CIFAR-10; The second block indicates
that the models are directly searched on ImageNet.
‡OOM: Out of Memory while running codes on GPU.

Method DARTS GDAS PC-DARTS D2NAS
M=4 M=2

Memory (G) 9.4 3.1 3.7 5.7 2.1

Table 4. GPU Memory cost comparison. We measured the cost
based on a batch size of 64, where the supernet has 16 initial
channels, and 8 layers.

6. Conclusion
This study introduces a Memory-Efficient method with Dis-
entangled Search Space in Differentiable Neural Architec-
ture Search (NAS). We show that the decoupled search
space in the differentiable search framework can search
good performance models while saving memory resources.
Experimental results on CIFAR10, CIFAR-100, SVHN and
ImageNet datasets reveal that D2NAS approach achieves
competitive performance compared to other differentiable
methods, with only about 67% of their GPU memory usage
and more stability.
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A. Appendix
A.1. The comparative experiment for the stability of D2NAS

Benchmark DARTS† ES† ADA† GDAS D2NAS

Error (%) Error (%) Error (%) Error (%) Num Error(%) Num

C10

S1 4.66±0.71 3.05±0.07 3.03±0.08 2.89±0.09 3.8±0.4 2.66±0.05 1.3±0.4
S2 4.42±0.40 3.41±0.14 3.59±0.31 3.89±0.17 6.0±0.7 3.12±0.13 2.0±0.0
S3 4.12±0.85 3.71±1.14 2.99±0.34 3.04±0.10 6.5±0.5 2.65±0.01 2.0±0.0
S4 6.95±0.18 4.17±0.21 3.89±0.67 3.34±0.10 0.0±0.0 3.20±0.14 0.0±0.0

C100

S1 29.93±0.41 28.90±0.81 24.94±0.81 24.49±0.08 4.0±0.0 22.70±0.67 2.3±0.4
S2 28.75±0.92 24.68±1.43 26.88±1.11 24.57±0.47 6.3±0.4 22.87±0.74 3.5±0.5
S3 29.01±0.24 26.99±1.79 24.55±0.63 22.86±0.17 3.0±0.7 22.41±0.32 2.5±0.5
S4 24.77±1.51 23.90±2.01 23.66±0.90 24.14±0.89 2.3±1.1 20.90±0.43 0.0±0.0

SVHN

S1 9.88±5.50 2.80±0.09 2.59±0.07 2.48±0.04 2.8±0.4 2.32±0.06 0.8±0.4
S2 3.69±0.12 2.68±0.18 2.79±0.22 3.05±0.02 7.8±0.4 2.43±0.06 1.0±0.0
S3 4.00±1.01 2.78±0.29 2.58±0.07 3.62±0.36 7.5±0.5 2.56±0.05 1.5±0.5
S4 2.90±0.02 2.55±0.15 2.52±0.06 2.51±0.06 1.5±1.5 2.32±0.01 0.0±0.0

Table 5. Comparison in 4 search spaces and 3 datasets. For each algorithm, we independently search for 3 times under the settings in
R-DARTS [23] and report the averaged performance. ‘EA’ and ‘ADA’ are two methods proposed by R-DARTS. ‘Num’: To reveal the
collapse issue, we also report the average number of parameterless operations in the discovered normal cell for GDAS and D2NAS †:
Results are obtained from R-DARTS.
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