Under review as a conference paper at ICLR 2026

GRAPH RANDOM FEATURES FOR SCALABLE
(GAUSSIAN PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the application of graph random features (GRFs) — a recently-in-
troduced stochastic estimator of graph node kernels — to scalable Gaussian
processes on discrete input spaces. We prove that (under mild assumptions)
Bayesian inference with GRFs enjoys O (N 3/ 2) time complexity with respect
to the number of nodes N, with probabilistic accuracy guarantees. In
contrast, exact kernels generally incur O(N 3). Wall-clock speedups and
memory savings unlock Bayesian optimisation with over 1M graph nodes
on a single computer chip, whilst preserving competitive performance.

1 INTRODUCTION AND RELATED WORK

Gaussian processes (GPs) provide a powerful framework for learning unknown functions
in the presence of uncertainty (Rasmussen, 2003). In certain applications, kernels based
on Euclidean distance may be unsuitable: for example, when modelling traffic congestion,
since pairs of locations that are spatially close may not be connected by roads. In this case,
kernels defined on the nodes of a graph § may be more appropriate (Borovitskiy et al., 2021;
Smola and Kondor, 2003). One can then perform inference and make principled predictions,
including during Bayesian optimisation, using GPs on graphs.!

Scalability of GPs on graphs. Like their Euclidean cousins, exact GPs on graphs incur
O(N3) time complexity with respect to the number of nodes N. This makes them impractical
when working with very large graphs. To mitigate this, practitioners use techniques such as
‘egraph Fourier features’, which approximate the kernel matrix with a truncated eigenvalue
expansion, or specific sparse kernel families (Borovitskiy et al., 2021). The former loses
high-frequency kernel information and the latter limits flexibility. Alternatively, one can use
kernels for small, local subgraphs, at the cost of no longer performing inference on the whole
of the graph § (Wan et al., 2023).

Graph random features. In this paper, we propose to instead use the recently-intro-
duced class of graph random features (GRFs) — sparse, unbiased estimates of graph node
kernels computed using random walks (Choromanski, 2023; Reid et al., 2023). GRFs are
Monte Carlo estimators of power series of weighted adjacency matrices, analogous to Von
Neumann’s celebrated Russian Roulette estimator (Carter and Cashwell, 1975; Hendricks
and Booth, 2006). GRFs enjoy strong concentration properties (Reid et al., 2024b). They
are able to estimate a flexible class of graph node kernels — including the popular diffusion
and Matérn kernels — by varying the so-called ‘modulation function’

GRFs for scalable GPs. Reid et al. (2024a) previously suggested using GRFs for GPs, as
part of a broader study of variance reduction techniques. However, their experiments focused
exclusively on the diffusion kernel with small graphs, failing to exploit the estimator’s
sparsity to accelerate inference. Moreover, they limited their (chiefly theoretical) study to
computing the posterior, omitting exploration of applications such as Bayesian optimisation.

'We consider GPs defined on the nodes of a fized graph. The input space is finite and we perform
inference for a finite set of random variables, one per node. The relationships between these variables
are determined by the structure of G via a graph node kernel. Whilst some might prefer to call this
a ‘Gaussian random field’ or simply a ‘multivariate Gaussian’, in this paper we use ‘GP on a graph’
for consistency with recent literature (Borovitskiy et al., 2021; Reid et al., 2024a; Wan et al., 2023).

Under review as a conference paper at ICLR 2026

[Random Walks | Graph Random Features /m\
O =) (i) = I

©

QO O

N

N
Y
A4

N\
N4

ay
O A/
/

-9

N A

Figure 1: GRFs for scalable GPs on graphs. The GRF algorithm conj@tructs random
feature (i) for node i € {1, ..., N} using random walks. K := [ga(i)Tgo(j)]i i1 is a sparse
approximation of the kernel matrix K, enabling efficient posterior inference in O(N 3/ 2).

Key contributions. We investigate graph random features (GRFs) for Gaussian processes
(GPs), unlocking scalable Bayesian inference on graphs with > 1M nodes. See Figure 1.

1. We use GRFs to construct sparse estimates of learnable graph node kernels, and use
these as covariance functions for GPs.

2. We prove that Bayesian inference with GRFs enjoys O(N 3/ 2) time complexity with prob-
abilistic guarantees on approximation quality, compared to O(N 3) for exact alternatives.
In experiments, this translates to 50 x wall-clock speedups on graphs with fewer than
10K nodes. Remarkably, the flexibility of GRFs sometimes enables them to outperform
dense alternatives on test negative log probability density and root mean squared error.

3. We showcase our new techniques by performing Bayesian optimisation on massive graphs,
implementing Thompson sampling with > 1M nodes on a single computer chip.?

2 PRELIMINARIES

Consider an undirected graph § = (V, &, W), consisting of nodes ¥V = {1, ..., N}, edges £ C
Y x V, and a weighted adjacency matrix W € RV*N_ Here W,; = 0if (4, j) ¢ €. Define the
graph Laplacian L =D — W, with D = dlag(z) The normalised graph Laplacian

is L :== D"Y/2LD /2, whose spectrum lies in [0, 2] (Chung7 1997).

Graph node kernels. A graph node kernel is a symmetric, positive semidefinite function
k:V xV — R, mapping pairs of graph nodes to real numbers (Smola and Kondor, 2003).
Heuristically, it assigns amﬂarlty scores to every pair of nodes, which are assembled into
a Gram matriz K := [k(3, j)]” 1 € RN*N_ Many popular graph node kernels are parame-
terised as functions of W, L or L, expressed using the power series

=> a,W", a,eRVre(0,1,..,00). (1)

r=0

K, (W
The coefficients (« T)T determine the behaviour of the kernel, e.g. whether it upweights
long- or short-range mteractlons For instance, the graph diffusion kernel Ky := exp(—pL)

takes a, = (—B)"/r!. Graph node kernels ﬂex1b1y capture structural information about G,
providing a natural choice for the GP covariance (Borovitskiy et al., 2021; Reid et al., 2024a).

Specifically, an NVIDIA GeForce RTX 2080 Ti GPU (11 GB memory).

Under review as a conference paper at ICLR 2026

Gaussian processes. Let us now consider modelling functions A : 7 — R defined on the
graph nodes. A common task is to identify the node that maximises h, e.g. the most
influential social media user, or ‘patient zero’ in an epidemiological contact network. We
may wish to solve z* = arg max, .y, h(z). Suppose we have access to a sequence of T noisy
observations of the objective y, = h(z,) +&,6 ~ N(0,02),t € (1,2,...,T) at distinct nodes
x, € V. 02 is the noise variance. A common choice of statistical surrogate for the objective
function h, for which we can perform analytic Bayesian inference given observations D =
{(z,, yt)}z;1 (also denoted Dy = {x,y}), is the Gaussian process (GP) (Rasmussen, 2003):

h(z) ~ GP(m(z), k(z,z")). (2)

Here, m(z) is the mean function and k(z,z’) the covariance function (‘kernel’). In our
setting, the input domain consists of the nodes of a fixed graph. We can ‘train’ the kernel
parameters (O‘r):io by maximising the log-marginal likelihood on the training data Dy, and
then compute the analytic posterior mean and covariance:

my,(z) = m(z) + k(z, @) [k(z, z) + o21] " (y — m(z)), (3)
kiy(z,2") = k(z,2") — k(z, z)[k(z, z) + J%I]flk(m, x'). (4)

Bayesian optimisation (BO) (Jones et al., 1998; Mockus, 1974) uses the posterior mean and
covariance — or related quantities, like samples from the posterior — to efficiently locate z* in
the presence of uncertainty. BO trades off exploration and exploitation in a mathematically
principled manner, helping us decide which nodes to query in our attempt to maximise h.

Efficiency and scalability. A core computational challenge with performing Bayesian
inference on graphs using GPs is that even just evaluating a dense graph kernel K, generally
incurs O(N 3) time complexity, let alone computing the matrix-vector products and matrix
inversions that we will in general require for BO. This is because it involves computing
functions like exp(+) or (-)7! of the N x N weighted adjacency matrix W, which becomes
expensive for big graphs. For Euclidean kernels, a common recourse to improve scalability
is to use random features (Rahimi and Recht, 2007; Yang et al., 2014): stochastic, finite-
dimensional features {¢ (i)}, € R™ whose dot product is equal to the kernel evaluation
in expectation, k(i,j) = E(p(i)"¢(j)). In close analogy for discrete domains, researchers
recently introduced graph random features (GRFs) (Choromanski, 2023; Reid et al., 2023)
— sparse random walk-based vectors for unbiased estimation of graph node kernels.

Graph random features: sparse, sharp kernel estimators using random walks.
The mathematical details of GRFs are involved and can be safely omitted on a first reading,
but their behaviour can be intuitively understood as follows. Consider a sequence of scalars
(f)),2, satistying 3= fif,—y = @, ¥V 7, namely, the ‘deconvolution’ of (a,.)° . We refer to f;
as the modulation function. Suppose that the power series W := ZZO fiW* converges. Then
it is straightforward to see that for symmetric W (undirected graphs), we have ¥TW¥ =
K. Powers of an adjacency matrix count walks on a graph: for instance, VVzl] gives the
(weighted) number of walks of length | between nodes ¢ and j. Since K, converges, longer
walks must eventually be discounted, either due to decaying f; or due to multiplication of
edge weights that are less than 1. The key insight of GRFs is that we can compute a Monte
Carlo estimate ® € RV*N that satisfies ¥ = E(®) by importance sampling random walks.

Concretely, we simulate random walks out of every node of the graph. Each random walk
of length L consists of a number of ‘prefix subwalks’ — namely, for each step I < L, the
sequence of the first | nodes visited. We keep track of 1) the weights of edges they traverse,
2) the modulation function f, and 3) their marginal probabilities. Using a simple formula,
we can construct unbiased,’ sparse N-dimensional vectors that satisfy E(p(i)T¢(j)) =

%It has been noted that the shared source of randomness actually introduces a O(1/n) bias term
for estimates of diagonal kernel entries [Ka]z i This is of little significance for large graphs with many
walkers so, following convention (Choromanski, 2023; Reid et al., 2023), we omit further discussion.
One could remove this bias by sampling two independent ensembles of random walks and taking K =

®,®, | at the cost of losing the positive definiteness guarantee and thus (typically) worse performance.

Under review as a conference paper at ICLR 2026

E([@@T]Zj) = [Ka]z i Alg. 1 below provides pseudocode. It is deliberately kept high-level

for compactness; the interested reader can find more details in App. A.

Algorithm 1: Constructing a GRF vector ¢(i) € RY to approximate K (W)

1 Inputs: Graph G, modulation function f: N — R, random walk sampler p.

2 Output: Set of sparse GRFs {¢(i)}Y, € RY that satisfy [Ka]i,j =E(p(i) " o(4)).
3 forieV:

4 | initialise p(i) < 0

5 | for walker_idx € 1,...,n

6 sample random_walk ~ p

7 for prefix_subwalk € random_walk:

o(i)[prefix_subwalk[—1]] + = (]| traversed_edge_weights) *
f(length(prefix_subwalk))/p(prefix_subwalk)

9 normalise o(i)/ =n

o]

Remarkably, under mild assumptions on G and (ozr)z o GRFs provide very sharp estimates
of K, . In particular, the estimates satisfy exponential concentration bounds, whilst storing
only (9() nonzero entries per feature. See Theorem 1 for a formal statement. As we will see
in Section 3, we can use the sparse kernel estimate K := ®®7 as an efficient alternative to
the dense exact kernel K, speeding up inference from O(N 3) to (9(N 3/ 2)

3 SCALABLE POSTERIOR INFERENCE WITH GRFS

Next, we demonstrate how GRFs speed up inference. We begin by proving novel theoretical
results (Section 3.1), and then describe our full efficient GP workflow (Section 3.2).

3.1 NOVEL THEORETICAL RESULTS

We first recall the following result for GRFs, proved by Reid et al. (2024b).

Theorem 1. (GRFs are sparse and give sharp kernel estimates (Reid et al.,
2024b)) Consider a graph § with Welghted adjacency matrix W and node degrees
{d; } . Suppose we sample GRFs {¢(i)}Y, by sampling n random walks that terminate
Wlth probablhty p at each timestep, Wlth modulation function f. Suppose also that c:
ZT ol o (maxl jept,ng Wigdi /(1 —)) is finite. Then we have that

P(\(p(i)ﬂp(]’) — [Ko‘]i,j| > t) < 2exp (—W) . (5)

Moreover, with probability at least 1 — 4, any GRF (i) is guaranteed to be sparse, with
at most nlog(1— (1 —46)Y/™)log(1 — p)~! nonzero entries.

Proof. The proof, based on McDiarmid’s inequality, is reported by Reid et al. (2024b). m

Theorem 1 demonstrates that, despite being sparse, GRFs give sharp kernel estimates. In
particular, we can use Eq. (5) to compute the number of walkers n needed to guarantee
an accurate estimate of K, with high probability. Because of the bound, this number is
independent of the graph size N. n then determines the number of nonzero entries in the
GRF, which also inherits independence of graph size N. We note that Theorem 1 makes
the assumption about the graph G that the constant ¢ is finite. This is not controversial;
Reid et al. (2024b) provide extensive discussion. Intuitively, it is natural that the spectrum
of W must lie in some radius of convergence in order for the power series Zio o, W' to

converge. The condition for its Monte Carlo estimate to converge is only slightly stronger.

Under review as a conference paper at ICLR 2026

For computational reasons we often only sample random walks up to some fixed maximum
length I, e.g. a fraction of the graph diameter, whereupon f; =0 V [> 1 . (discussed
in App. C.1). The condition thus trivially holds in any reasonable implementation. We do
not find it to be restrictive in any of our experiments.

Given Theorem 1, we will henceforth assume that the number of walkers n is constant,
confident that this gives a sharp kernel estimate. Property (2) of Theorem 2 is novel.

Theorem 2. (Properties of K) The randomised approximate Gram matrix K:=®3" =

[(p(i)Tgo(j)]Zvj:l € RV*N has the following properties.

1. Property 1. K supports @(N) matrix-vector multiplication;
2. Property 2. The condition number of the approximate Gram matrix H(K + U%I) is O(N).

Proof. Property (1) follows trivially from the fact that K has ()(N) nonzero entries,
whereupon matrix-vector multiplication only requires O(N) operatlons Considering (2),
since K is positive definite, the smallest possible eigenvalue of K + 021is 02. Then note that

N
K|y < [K]p = J YK
ij=1

Under the assumptions above |¢(i)|; < ¢ ¥ i, whereupon |p(i) "¢ (§)| < ¢? V 4, j. Hence, we
have that HJ(K + o2 I) <1+ N&, which is (9() as claimed. ®

\1 Z (@) Te(I? < N max|p(d)T (). (6)

Theorem 2 immediately implies the following corollary, which is also novel for GRFs.

Lemma 1. Solving the sparse linear system. Consider solving (K + aiI)v = b, where
v,b € RY. This can be achieved with the conjugate gradient method in 0(N3/2) time.

Proof. Using the conjugate gradient method, it is known that the system can be solved in
\/ H(K + U%I) iterations (Shewchuk, 1994), which by property (2) above is O(N'/2). Each
iteration involves matrix-vector multiplication, which is O(N) in our case due to property
(1). Combining gives a total time complexity of O(N%/2). m

We remark that this is substantially less than the O(N 3) time complexity of exact GP
methods that use K, rather than K. It is also straightforward to see that Theorem 2 and
Lemma 1 will continue to hold if we only consider a subset of the nodes of the graph, e.g.
just considering a set of training nodes of cardinality N, ., < V.

3.2 FROM PATHWISE CONDITIONING TO CONJUGATE GRADIENTS

We now introduce the three-step ‘recipe’ of posterior inference using GRFs: kernel initial-
isation, hyperparameter learning and posterior inference. We will also analyse the overall
time and space complexity of this workflow. App. C.1 gives further heuristic guidance for
practitioners, including for choosing the number of walkers n.

Kernel initialisation. We compute the Gram matrix using Alg. 1, which involves sampling
n random walks for every node on the graph. This yields a sparse kernel approximation:

K =227 = [o(i) 0(j)],,_, € RV, (7)

In practice, K does not need to be materialised as we can replace the matrix-vector product
Ko with two fast matrix-vector products ®(®'v). Each is computed in linear time.

Hyperparameter learning. Denote the training data 2, = {x,y}, containing training
nodes x and corresponding noisy observations y. We learn the hyperparameters 6, such as
observation noise and the modulation function f, by maximising the log marginal likelihood,

1 1 N
£(0) = —5y Hy'y — ; log det(Hy) — = log(27), (8)

where Hy = (Km + abe). We use the Adam optimiser and estimate the gradient,

Under review as a conference paper at ICLR 2026

TOH,

VL) = %(Hgly) 90

1 OH
(b5'y) 5 or (15 0))
using iterative methods (Gardner et al., 2018; Lin et al., 2024a). These avoid explicit matrix
inverses via iterative linear system solvers such as conjugate gradients (CGs) (Hestenes and
Stiefel, 1952; Shewchuk, 1994). Since CGs rely on matrix-vector multiplication, this allows
us to leverage the efficient structure of GRFs. Meanwhile, the trace term is estimated using
Hutchinson’s trace estimator (Hutchinson, 1990),

oH oH 1E oH
1989\ _ T-19e) o T-19116
tr (Ho 20) E(z H, 50 z) 5 8221 z, Hy 50 % (10)

where z, are random probes satisfying E [z,2]] = L. This gives a batch of linear systems,
H, [fvy,'ul,...,'vs] =y, 21, -, 25, (11)
which can be solved via iterative methods. The solutions allow us to estimate VL.

Posterior inference. We perform posterior inference using pathwise conditioning (Wilson
et al., 2020; 2021) and iterative methods — a combination that has attracted recent interest
in the literature (Lin et al., 2024b; 2025). This allows us to exploit the efficient structure
of GRFs. In particular, pathwise conditioning expresses a sample from the posterior as a
sample from the prior with an additional correction term,

9y() = 90) + K)o (Kpp +021) (y — (g(x) +€)), (12)

where (-) is any node of the graph G, g|y 1s a sample from the posterior, g is a sample
from the prior, and € ~ N (P, 021). This facilitates the use of iterative linear system solvers
to compute (K:cm + 07211) (y — (g(x) + €)), which again avoids the explicit inverse and
leverages sparse matrix multiplication.’ Once more, we use CGs (Hestenes and Stiefel, 1952;
Shewchuk, 1994) as linear system solver, though alternatives have recently been proposed
(Lin et al., 2023; 2024c). The structure of the GRFs kernel also admits efficient sampling
from the prior via g = ®w with w ~ N(0,1),” since Cov(Pw) = ®®' = K.

Algorithm complexity. Kernel initialisation takes O(N) time, since a fixed number of
random walks are simulated from all N nodes. Training and inference are dominated by
CG solvers, with O(N 3/ 2) time complexity (Lemma 1). All stages use sparse matrices (e.g.
K + 1) with @(N) nonzero entries, giving overall space complexity @(N).

4 EXPERIMENTAL RESULTS

Here, we present empirical results demonstrating the scalability and practical effectiveness
of the GRF-GPs model. In each case, full experimental details are provided in App. C.

4.1 COMPUTATION COMPLEXITY AND ABLATIONS

Dense vs. sparse GRFs: the importance of an efficient implementation. We
benchmark posterior inference on synthetic graphs under two GRF implementations. First,
we consider a dense baseline that uses GRFs, but explicitly materialises the N x N kernel
approximation and computes its inverse. Second, we take the sparse GRF method described
in Section 3.2, storing the random walk trajectories and solving the corresponding linear
systems with CG methods. Table 1 summarises the results, with full measurements provided

*An alternative to solving this sparse linear system is to use the Johnson-Lindenstrauss trans-
formation to reduce the dimensionality of the features {¢ (i)}, € RY, whilst preserving their dot
products in expectation (Dasgupta and Gupta, 2003). At the cost of sacrificing sparsity, we can then
use the Woodbury Identity to efficiently solve a smaller linear system. We describe this in App. B.

°g is an N-dimensional vector corresponding to a sample evaluated at all N nodes. One could
consider a subset of nodes, where the prior sample g(-) now corresponds to the vector’s (-)th entry.

Under review as a conference paper at ICLR 2026

in the App. C.2 (Table 3 and Table 2). For a graph with 8192 nodes, we observe a 50X
speedup in total wall-clock time.

Table 1: GRF-GPs have sub-quadratic time scaling and linear memory scaling.
Empirical scaling exponents (+ s.d.) for memory usage, kernel initialisation, training, and
inference with respect to graph size N. In the table, an entry b indicates scaling O(N b).

Kernel Memory Kernel init. time Training time Inference time
GRFs (Dense) 2.00 + 0.00 1.21 4 0.06 1.97 4+ 0.38 2.16 £+ 0.33
GRFs (Sparse) 1.00 £ 0.00 0.81 +£0.04 1.04 £ 0.04 1.0440.05

Figure 2 shows log—log scaling curves. Exponents from the asymptotic regime match those
shown in Table 1. As expected, GRFs attain linear memory and initialisation cost, and
sub-quadratic training and inference, scaling to graphs with 1M nodes. The near-linear
runtime trends in training and inference reflect the fixed iteration budget of sparse linear
solves; conditioning effects have not yet dominated at these scales.

ry (MB)

Memor

=On
D

|

10 0 10 10 0 it
Number of nodes Number of nodes. Number of nodes Number of nodes

(a) Memory usage (b) Initialisation time (c) Training wall-clock time (d) Inference wall-clock time

Figure 2: GRFs scale better (blue curve) when sparsity is leveraged. Scaling
experiments for the GRF-GPs. Yellow: brute-force dense implementation. Blue: sparse
implementation. Panels (a)—(d) correspond to memory footprint, kernel initialisation time,
training time and inference time, respectively. The dense model is limited to 8,192 nodes
due to its higher memory demands.

Importance sampling ablation. As discussed in Section 2, the key insight of GRFs is
that one can replace a function of a weighted adjacency matrix W with a Monte Carlo
estimate. This estimate is constructed using random walks, weighted by (1) the product
of traversed edge weights and (2) the per-walk probability under the sampling mechanism.
Following Reid et al. (2024b), one can investigate the significance of this principled approach
by instead constructing a naive random walk-based empirical kernel, without appropriate
reweighting. In particular, we replace line 8 of Alg 1 by

o(i)[prefix_subwalk[—1]] + = (H traversed_edge_weights) * f(length(prefix_subwalk)), (13)

removing normalisation by p(prefix_subwalk). Crucially, this set of features still defines a
valid kernel on G, but it is no longer an unbiased estimate of a power series of W. A similar
‘ad-hoc’ kernel was used in the context of transformer position encodings by Choromanski
et al. (2022). Full empirical results are reported in App. C.3, where we find this modification
substantially degrades regression performance. Intuitively, failing to upweight long, unlikely
walks by 1/p(prefix_subwalk) makes it challenging to model longer-range dependencies.

4.2 REGRESSION TASKS

Next, we apply our method to regression with a variety of real-world datasets.

1. Traffic speed prediction. To assess predictive capability, we begin with a traffic speed
forecasting task (Figure 6) on the San Jose freeway sensor network (Chen et al., 2001). We
follow the setup of Borovitskiy et al. (2021). Experiment details can be found in App. C.4.

We compare three kernel configurations by measuring the negative log probability density
(NLPD) and the root mean squared error (RMSE) of the maximum-a-posteriori (MAP)
predictions. We consider (1) the exact diffusion kernel Ky4; (2) a GRF kernel in a ‘diffusion

Under review as a conference paper at ICLR 2026

shape’ (namely, the modulation function frozen to approximate K, with a learnable
lengthscale); and (3) a GRF kernel with a flexible, fully learnable modulation function.

Figure 3 (a)-(b) reports the test NLPD and RMSE as a function of the number of random
walks per node n. As n increases, the variance of the Monte Carlo approximation K drops.
It better captures the underlying graph structure, yielding more accurate predictions. Note
that the fully-learnable GRF kernel consistently outperforms the diffusion-shaped variant,
highlighting the benefit of implicit kernel learning via a flexible modulation function.

In addition to greater flexibility via learnable f;, another reason GRFs are able to outperform
K i may be that their inbuilt sparsity is actually a sensible inductive bias. Pairs of graph
nodes only have nonzero covariance if their respective ensembles of random walks hit, which
is more likely if they are nearby in §. This means that a node’s predictions depend mostly
on information from its local neighborhood, whilst still sampling longer dependencies with
lower probability. In contrast, dense kernels can sometimes be prone to the ‘oversmoothing’
effect as they capture spurious long-range correlations driven by noise (Keriven, 2022).

2. Wind interpolation on the globe. Next, we consider the task of interpolating monthly
average wind velocities from the ERA5 dataset (Hersbach et al., 2019), from a set of locations
on the Aeolus satellite track (Reitebuch, 2012). Our problem setup follows that of Wyrwal et
al. (2024) and Robert-Nicoud et al. (2023). We discretise the surface of the globe (formally,
the manifold S?) by computing a k-nearest neighbours graph from the observation locations.
This yields a graph G with 10K nodes, with which we can apply our scalable GRF-GPs
algorithm. The task is to predict the velocity fields of a held out test set.

The test NLPD and RMSE of the diffusion-shape and fully-learnable GRF kernels are
shown in Figure 3 (c)-(d). Similarly, the predictions improve as n increases. We provide
full results and visualisations in App. C.5. This type of implicit manifold GP regression —
approximating a (possibly unknown) manifold by computing a nearest neighbour graph §
and then performing inference therein — is a rich area of active research (Borovitskiy et al.,
2021; Dunson et al., 2021; Fichera et al., 2023). This is an exciting possible application of
GRFs; we hope our initial example will spur future work.

K (diffusion shape) 1.00
&P K (fully learnable)

o K (ruly
K

108 100 100 100

10¢ 100 10t
Number of Walkers

109
Number of Walkers

(a) Traffic NLPD (b) Traffic RMSE (c) Wind NLPD (d) Wind RMSE

Figure 3: GRFs outperforms diffusion baselines in regression tasks. Panels (a)—(d)
report test NLPD and RMSE versus the number of random walkers n. Blue: GRF kernel
with a fully learnable modulation; orange: diffusion-shape GRF. Shading shows 41 s.d. On
Traffic, the learnable GRF surpasses the exact diffusion kernel once n = 500. On Wind,
the exact diffusion kernel is omitted due to O(N3) cost. Again, the fully-learnable GRF
kernel consistently achieves lower NLPD and RMSE than the diffusion-shape variant.

4.3 SCALABLE AND ROBUST BAYESIAN OPTIMISATION

Having demonstrated the scalability of GRFs (Section 4.1) and their efficacy for GP
regression (Section 4.2), we now use them to perform efficient Bayesian optimisation (BO).
We consider large graphs with up to 108 nodes, where exact posterior inference becomes
prohibitively expensive. For the acquisition strategy we use Thompson sampling, drawing
samples from the posterior over the objective function and selecting maximisers as the next
query point (Russo et al., 2018; Thompson, 1933). Posterior sampling is made efficient by
pathwise conditioning, given in Equation (12). Alg. 3 in App. C.6 gives full details.

Under review as a conference paper at ICLR 2026

Datasets and baselines. For datasets, we consider a range of synthetic and real-world
graphs. First, we maximise a variety of scalar functions on grids, community and circular
graphs, chosen to have different properties, e.g. multimodality and periodicity. Next, we
identify ‘influential’ (high node degree) users in a range of social networks: Eron, Facebook,
Twitch and YouTube. Lastly, we predict the physical location with the greatest windspeed
for the ERAS dataset studied in Section 4.2, considering three different altitudes where the
wind behaviour is known to be qualitatively different (Wyrwal et al., 2024). In each case,
we compare our efficient BO method with random search, breadth first search and depth
first search policies. In almost all instances our algorithm achieves lower regret, showing the
benefit of uncertainty-aware strategies for large-scale optimisation on graphs.

(a) Single-modal

0.4

0.3

0.2

0.1

0.0

(b) Multi-modal

ik

0.05

(c) Community

(d) Circle

L

ad

0 200 400 600 800 1000

0 200 400 600 800 1000

200 400 600 800 1000

0 200

400 600 800 1000

6
12| (e) Enron Email 12| (f) Facebook 1.2 | (g) Twitch (h) YouTube
1.0 1.0 °
.08 0.8 1.0 4
g 0.6 L 0.6 3
3 : 0.8
T o4 04 2
0.2 \ 0.2 0.6 1
0.0 0.0 o o
0 20 40 60 80 100 0 20 40 60 80 100 "0 20 40 60 80 100 0 20 40 60 80 100
0.5 0.5 0.30
(i) 0.5km () 2km 025 (k) 5km Algorithms
0.4 ' —
04 0.20 GRFs
] 03 0.15 —
:.)70.3 o BFS
0.2 -
& . DFS

0.2

0.1

0.1

0.05
0.00

0 200 400 600 800 1000
BO iteration

0.0

0 200 400 600 800 1000
BO iteration

-0.05
0

200 400 600 800 1000
BO iteration

Random Search

Figure 4: GRF-based BO achieves lower regret than search-based baselines in
most datasets. Each panel shows the regret curve of BO for the following datasets: (a)-
(d) synthetic datasets, (e)-(h) social networks, and (i)-(k) windspeed in the ERA5 dataset.

4.4 FUTURE WORK: SCALABLE VARIATIONAL GPS FOR CLASSIFICATION

Lastly, we evaluate GRF-GPs on a multi-class node classification task using the Cora
citation network benchmark (McCallum et al., 2000). In this non-conjugate inference setting,
we handle the non-Gaussian likelihood via variational inference (Leibfried et al., 2020).
Pathwise conditioning for classification is nontrivial (Wilson et al., 2021); we defer a full
treatment to a future paper. We can nonetheless assess the performance of GRFs, even
without explicit time complexity guarantees like Lemma 1. Details are provided in App.
C.7. Once again, sparse GRF kernels achieve very strong performance.

5 CONCLUSION

We demonstrated how graph random features (GRFs), a recently-introduced Monte Carlo
algorithm, can be used to speed up training and inference with Gaussian processes on
discrete input spaces. Under mild assumptions, GRFs support O(N 3/ 2) time complexity
inference — much faster than O(N 3) for their exact counterpart — with probabilistic accuracy
guarantees. This translates to substantial wall-clock time speedups, and unlocks scalable
Bayesian optimisation on massive topologies with little or no sacrifice in performance.

Under review as a conference paper at ICLR 2026

6 ETHICS AND REPRODUCIBILITY

Ethics. Our work is methodological and does not raise direct ethical concerns. Nonetheless,
advances in scalable graph-based ML may amplify risks if misapplied, either by malicious
actors or through unforeseen downstream consequences.

Reproducibility. To ensure transparency and facilitate further research, we will make the
code public with all implementations and experimental scripts after the double-blind review.
All datasets are freely available online, with links to the original sources provided.

REFERENCES

Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P., Deisenroth, M., and Durrande, N. Matérn
Gaussian processes on graphs. International Conference on Artificial Intelligence and Statistics,
2593-2601, 2021.

Carter, L. L., and Cashwell, E. D. Particle-transport simulation with the Monte Carlo method
[Technical report], 1975.

Chen, C., Petty, K., Skabardonis, A., Varaiya, P., and Jia, Z. Freeway Performance Measurement
System: Mining Loop Detector Data. 80th Annual Meeting of the Transportation Research Board,
2001. https://people.eecs.berkeley.edu/~varaiya/papers_ ps.dir/MiningLoopDetectorData.pdf

Choromanski, K. M. Taming graph kernels with random features. International Conference on
Machine Learning, 5964-5977, 2023.

Choromanski, K., Lin, H., Chen, H., Zhang, T., Sehanobish, A., Likhosherstov, V., Parker-Holder, J.,
Sarlos, T., Weller, A., and Weingarten, T. From block-toeplitz matrices to differential equations
on graphs: towards a general theory for scalable masked transformers. International Conference
on Machine Learning, 3962-3983, 2022.

Chung, F. R. Spectral graph theory (Vol. 92). American Mathematical Soc., 1997.
contributors, O. OpenStreetMap [Data set], 2024.

Dasgupta, S., and Gupta, A. An elementary proof of a theorem of Johnson and Lindenstrauss. Random
Structures €& Algorithms, 22(1), 60-65, 2003.

Dunson, D. B., Wu, H.-T., and Wu, N. Spectral convergence of graph Laplacian and heat kernel
reconstruction in Loo from random samples. Applied and Computational Harmonic Analysis, 55,
282-336, 2021.

Fichera, B., Borovitskiy, S., Krause, A., and Billard, A. G. Implicit manifold gaussian process
regression. Advances in Neural Information Processing Systems, 36, 67701-67720, 2023.

Freksen, C. B. An Introduction to Johnson-Lindenstrauss Transforms. Corr, 2021. https://arxiv.org/
abs/2103.00564

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. GPyTorch: Blackbox Matrix-
Matrix Gaussian Process Inference with GPU Acceleration. Advances in Neural Information
Processing Systems, 2018.

Hendricks, J. S.; and Booth, T. E. MCNP variance reduction overview. Monte-Carlo Methods and
Applications in Neutronics, Photonics and Statistical Physics: Proceedings of the Joint Los Alamos
National Laboratory-Commissariat o L'energie Atomique Meeting Held at Cadarache Castle,
Provence, France April 22-26, 1985, 83-92, 2006.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Mufioz Sabater, J., Nicolas, J., Peubey,
C., Radu, R., Rozum, I., and others. ERA5 monthly averaged data on single levels from 1979 to
present. Copernicus Climate Change Service (C3s) Climate Data Store (CDS), 10, 252-266, 2019.

Hestenes, M. R., and Stiefel, E. Methods of Conjugate Gradients for Solving Linear Systems. Journal
of Research of the National Bureau of Standards, 49(6), 1952.

Hutchinson, M. A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing
Splines. Communications in Statistics - Simulation and Computation, 19(2), 1990.

10

https://people.eecs.berkeley.edu/~varaiya/papers_ps.dir/MiningLoopDetectorData.pdf
https://arxiv.org/abs/2103.00564
https://arxiv.org/abs/2103.00564

Under review as a conference paper at ICLR 2026

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4), 455-492, 1998.

Keriven, N. Not too little, not too much: A theoretical analysis of graph (over)smoothing. Advances
in Neural Information Processing Systems, 36, 2022.

Leibfried, F., Dutordoir, V., John, S. T., and Durrande, N. A Tutorial on Sparse Gaussian Processes
and Variational Inference, 2020, December. https://doi.org/10.48550/arXiv.2012.13962

Leskovec, J., and Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection, 2014.

Lin, J. A., Ament, S., Balandat, M., and Bakshy, E. Scaling Gaussian Processes for Learning Curve
Prediction via Latent Kronecker Structure. Neurips Bayesian Decision-Making and Uncertainty
Workshop, 2024b.

Lin, J. A., Ament, S., Balandat, M., Eriksson, D., Herndndez-Lobato, J. M., and Bakshy, E. Scalable
Gaussian Processes with Latent Kronecker Structure. International Conference on Machine
Learning, 2025.

Lin, J. A., Antoran, J., Padhy, S., Janz, D., Hernandez-Lobato, J. M., and Terenin, A. Sampling from
Gaussian Process Posteriors using Stochastic Gradient Descent. Advances in Neural Information
Processing Systems, 2023.

Lin, J. A., Padhy, S., Antoran, J., Tripp, A., Terenin, A., Szepesvari, C., Herndndez-Lobato, J. M., and
Janz, D. Stochastic Gradient Descent for Gaussian Processes Done Right. International Conference
on Learning Representations, 2024c.

Lin, J. A., Padhy, S., Mlodozeniec, B., Antoran, J., and Herndndez-Lobato, J. M. Improving Linear
System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes. Advances in
Neural Information Processing Systems, 2024a.

Maddox, W. J., Kapoor, S., and Wilson, A. G. When are iterative gaussian processes reliably
accurate?. Arziv Preprint Arziv:2112.15246, 2021.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., Leén-Villagra, P.,
Ghahramani, Z., and Hensman, J. GPflow: A Gaussian process library using TensorFlow. Journal
of Machine Learning Research, 18(40), 1-6, 2017. http://jmlr.org/papers/v18/16-537.html

McCallum, A., Nigam, K., Rennie, J., and Seymore, J. Automating the Construction of Internet
Portals with Machine Learning. Information Retrieval, 3(2), 127-163, 2000.

Mockus, J. On Bayesian methods for seeking the extremum. IFIP Technical Conference on Optimiza-
tion Techniques, 400-404, 1974.

Rahimi, A., and Recht, B. Random features for large-scale kernel machines. Advances in Neural
Information Processing Systems, 20, 2007.

Rasmussen, C. E. Gaussian processes in machine learning. In Summer school on machine learning,
pp. 63-71. Springer, 2003.

Reid, I., Choromanski, K., Berger, E., and Weller, A. General graph random features. Arziv Preprint
Arziv:2310.04859, 2023.

Reid, I., Dubey, K. A., Jain, D., Whitney, W., Ahmed, A., Ainslie, J., Bewley, A., Jacob, M., Mehta, A.,
Rendleman, D., and others. Linear transformer topological masking with graph random features.
Arziv Preprint Arziv:2410.03462, 2024b.

Reid, I., Markou, S., Choromanski, K., Turner, R. E., and Weller, A. Variance-Reducing Couplings
for Random Features. Arziv Preprint Arxiv:2405.16541, 2024a.

Reitebuch, O. The spaceborne wind lidar mission ADM-Aeolus. In Atmospheric physics: Background-
methods—trends, pp. 815-827. Springer, 2012.

Robert-Nicoud, D., Krause, A., and Borovitskiy, V. Intrinsic Gaussian Vector Fields on Manifolds.
Arziv Preprint Arziv:2310.18824, 2023.

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., and Wen, Z. A Tutorial on Thompson
Sampling. Foundations and Trends® in Machine Learning, 11(1), 1-96, 2018. https://doi.org/10.
1561,/2200000070

11

https://doi.org/10.48550/arXiv.2012.13962
http://jmlr.org/papers/v18/16-537.html
https://doi.org/10.1561/2200000070
https://doi.org/10.1561/2200000070

Under review as a conference paper at ICLR 2026

Shewchuk, J. R. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
[Technical report], 1994.

Smola, A. J., and Kondor, R. Kernels and regularization on graphs. Learning Theory and Kernel
Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop, Colt/kernel
2003, Washington, DC, USA, August 24-27, 2003. Proceedings, 144-158, 2003.

Thompson, W. R. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4), 285-294, 1933.

Titsias, M. Variational learning of inducing variables in sparse Gaussian processes. Artificial Intelli-
gence and Statistics, 567-574, 2009.

van der Wilk, M., Dutordoir, V., John, S., Artemev, A., Adam, V., and Hensman, J. A Framework
for Interdomain and Multioutput Gaussian Processes. Arziv:2005.01115, 2020. https://arxiv.org/
abs/2003.01115

Wan, X., Osselin, P., Kenlay, H., Ru, B., Osborne, M. A., and Dong, X. Bayesian optimisation of
functions on graphs. Advances in Neural Information Processing Systems, 36, 43012-43040, 2023.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. Efficiently Sampling
Functions from Gaussian Process Posteriors. International Conference on Machine Learning, 2020.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. Pathwise Condi-
tioning of Gaussian Processes. Journal of Machine Learning Research, 22(1), 2021.

Wyrwal, K., Krause, A., and Borovitskiy, V. Residual Deep Gaussian Processes on Manifolds. Arziv
Preprint Arziv:2411.00161, 2024.

Yang, J., Sindhwani, V., Fan, Q., Avron, H., and Mahoney, M. W. Random laplace feature maps for
semigroup kernels on histograms. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 971-978, 2014.

A FurLL GRF ALGORITHM

To complement the pseudocode provided in Alg. 1, Alg. 2 provides a more detailed expla-
nation of how one can estimate graph node kernels using graph random features (GRFs).
The motivated reader is invited to consult the works of Reid et al. (2023) and Choromanski
(2023) for the original accounts, including further intuitions and a proof of unbiasedness.

Algorithm 2: Constructing a random feature vector (i) € RY to approximate K, (W)

Inputs: weighted adjacency matrix W € RV*Y for a graph G with N nodes, vector of
1 unweighted node degrees d € RY, modulation function f: (NU{0}) — R, termination
probability p,.; € (0,1), node i € N, number of random walks to sample n € N.

2 Qutput: random walk feature vector (i) € RY.

3 initialise: (i) + 0

4 forw=1,..,n

5 | initialise: load + 1

6 | initialise: current_node <+ 1

7 | initialise: terminated < False

8 | initialise: walk_length < 0

9 | while terminated = False do

10 ©(i) [current_node] + (i) [current_node| + load X f (walk_length)

11 walk_length = walk_length-+1

12 new_node < Unif[V(current_node)] > assign to one of neighbours
13 load < load X d[cu%;'l:mde] X W{current_node, new_node] > update load
14 current_node < new_node

12

https://arxiv.org/abs/2003.01115
https://arxiv.org/abs/2003.01115

Under review as a conference paper at ICLR 2026

Algorithm 2: Constructing a random feature vector ¢(i) € RY to approximate K, (W)

15 terminated ¢ (t ~ Unif(0,1) < pyai) > draw RV to decide on termination
16 | end while
17 end for

18 | normalise (i) = p(i)/m

A,

B EFFICIENTLY SOLVING LINEAR SYSTEMS (K—i—o,%l)v: b WITH THE
WoODBURY FORMULA

In this appendix, we provide another algorithm for efficiently solving linear system (K +
U%I)v = b , with the use of Woodbury matrixz identity formula and Johnson-Lindenstrauss
Transform (JLT) (Freksen, 2021). This algorithm has time complexity O(N?m + m?), where
m < N is the number of the output dimensions (a hyperparameter of the JLT algorithm).
While this approach appears promising, we emphasise that our investigation here is prelim-
inary. A more thorough evaluation of its empirical performance and potential trade-offs is
left to future work.

Take the decomposition of K of the form K = ®®T. Construct a random Gaussian matrix
G € RY¥™_ with entries taken independently at random from the Gaussian distribution
with mean p = 0 and standard deviation o = 1. By the JLT, we can unbiasedly approximate
®d7 as K K/, where K; = \/%‘I’G € RV*™ (and with strong concentration guarantees

. -1
for m of logarithmic in N order). We can then approximately rewrite (K + 0’%1) b as
L(Iy+UUT) b, for U=%1,

Now, we can apply the following special case of the celebrated Woodbury Matrix Identity
formula:

(Iy+UUT)) 1 =1y—-U(,, +UTU) U (14)
Therefore, we conclude that the solution v to our linear system can be approximated as:

v~ [IN — U1, + UTU)*UT] b. (15)

The expression on the right side can clearly be computed in time O(Nm + m?) since
brute-force inversion of X = (I,, + UTU) = € R™™ takes O(m?) time and expression
U(XUTb)) for U € RY*™ can be computed in O(Nm) time. Thus, since the computation
of K, takes time O(N?m), total time complexity is O(N?m + m3).

This approach, using dimensionality reduction of GRFs to replace the inverse of an N x N
matrix by the inverse of an m x m matrix, provides an interesting alternative to relying on
sparse operations to achieve speedups.

C EXPERIMENT DETAILS

We provide experimental details in this section. All experiments are conducted on a single
compute node equipped with an NVIDIA GeForce RTX 2080 Ti GPU (11 GB memory).

C.1 CHOOSING GRF HYPERPARAMETERS: GUIDANCE FOR PRACTITIONERS

In this appendix, we provide further practical guidance for practitioners when choosing the
number of random walks n and (if desired) the maximum walk length [, .

13

Under review as a conference paper at ICLR 2026

Choosing n. Theorem 1 gives a precise formula for choosing the number of walkers n to
guarantee an accurate kernel estimate with high probability. In principle, one could use
this to derive the minimum n required for a sharp estimate, given the constant ¢, the
maximum permissible deviation ¢, and the maximum permissible probability of deviation

IF’(|<p(i)T<p(j) — [Ka]z]| > t). However, in practice we find this to be unecessary: choosing

n to be a small multiple of the average node degree already works well. As seen in Figure 3,
performance tends to improve as n increases, at the cost of decreasing kernel sparsity and
thus slower wall-clock times. We recommend choosing n that balances the practitioner’s
performance and efficiency requirements.

Choosing [.. In Section 3.1, we noted that in implementations it is often convenient
and memory-efficient to only sample walks up to some maximum length /.. This way, the
number of modulation function terms (fl)i‘:g that must be learned is finite and fixed. We

emphasise that this is not a requirement for the time complexity guarantees in Section 3.1 ;
it is a practical (as opposed to mathematical) detail. In principle, one could choose I, to
be sufficiently large that all n walkers will be shorter with high probability, avoiding any
truncation — see e.g. App. A.1 by Reid et al. (2023) for a mathematical bound. However,
in practice we find that choosing [, to be some modest fraction of the graph diameter
is sufficient for good performance. In each experiment, we report [l ,. in the respective
appendix.

X

C.2 TIME AND SPACE COMPLEXITY MEASUREMENTS

This section reports experimental details for the scaling results in Figure 2 and Table 1.

Synthetic data. We generate synthetic signals on ring graphs of increasing size: N =
25,26 ...,220 nodes. The groundtruth functions are smooth periodic functions on the nodes
with additive Gaussian noise (¢2 = 0.1). For graphs with more than 8192 nodes, we only use
the sparse GRF implementation, since the dense adjacency matrices exceed the available
GPU memory. Random feature matrices ® are constructed using 100 random walks per
node, with halting probability py,;; = 0.1. Walks longer than 3 hops are truncated.

Measurements taken. For each graph size, and across 5 random seeds, we measure:

¢ The memory footprint of the random feature matrices ®.
e The random-walk preprocessing time for constructing ®.
e Training wall-clock time, measured as total optimiser runtime over 50 epochs.

¢ Inference wall-clock time, measured as posterior mean and covariance evalu-
ation time on the test set.

The dense implementation uses the GPflow library for kernels with explicit adjacency
materialisation, while the sparse implementation uses a GPyTorch library to implement
kernels with customised sparse linear operators to maximise efficiency (Gardner et al., 2018;
Matthews et al., 2017; van der Wilk et al., 2020). Full empirical measurements are shown
in Table 2 and Table 3.

Table 2: Memory and time measurements for dense implementation: mean 4+ s.d.

14

Under review as a conference paper at ICLR 2026

Graph Size Memory (MB) Kernel init time (s) Training time (s) Inference time (s)

32 0.024 + 0.000 0.115+0.017 1.726 + 0.336 0.019 4 0.002

64 0.094 4+ 0.000 0.205 4+ 0.012 1.430 £ 0.219 0.018 4+ 0.002
128 0.375 + 0.000 0.421 £+ 0.025 1.403 +£0.116 0.017 + 0.002
256 1.500 4+ 0.000 0.840 + 0.044 1.371 £ 0.152 0.016 4 0.002
512 6.000 £ 0.000 1.800 + 0.069 1.370 + 0.288 0.021 4+ 0.004
1024 24.000 + 0.000 4.189 4+ 0.204 2.465 + 0.595 0.045 4 0.006
2048 96.000 + 0.000 10.546 4+ 0.107 7.680 4+ 1.649 0.173 £ 0.001
4096 384.000 4 0.000 31.749 + 1.246 40.376 4 4.080 1.043 + 0.006
8192 1536.000 + 0.000 104.839 + 2.026 307.188 4+ 35.938 7.572 + 0.000

Table 3: Memory and time measurements for sparse implementation: mean 4+ s.d.

Graph Size Memory (MB) Kernel init time (s) Training time (s) Inference time (s)
32 0.004 4+ 0.000 0.160 4+ 0.033 4.103 4+ 0.216 0.066 + 0.007
64 0.008 + 0.000 0.168 £ 0.022 3.823 +0.136 0.061 4 0.008
128 0.015 + 0.000 0.202 £ 0.022 4.036 +0.191 0.066 + 0.007
256 0.030 £ 0.000 0.271 4+ 0.030 4.369 + 0.349 0.079 £ 0.009
512 0.059 + 0.000 0.379 £ 0.021 4.395 4+ 0.619 0.077 £+ 0.019

1024 0.118 £ 0.000 0.552 4+ 0.024 4.549 4 0.593 0.082 4+ 0.014
2048 0.235 4+ 0.000 0.973 4+ 0.039 4.416 4+ 0.320 0.082 4 0.012
4096 0.470 4+ 0.000 1.790 + 0.028 4.185 4 0.252 0.078 £ 0.015
8192 0.938 4+ 0.000 3.481 4+ 0.074 4.247 4+ 0.143 0.076 £ 0.006
16384 1.876 4+ 0.000 6.764 + 0.052 5.117 +0.518 0.100 4+ 0.016
32768 3.751 4+ 0.000 13.297 4+ 0.050 6.623 4+ 1.048 0.129 4+ 0.040
65536 7.501 4 0.000 26.569 £ 0.063 12.566 4+ 1.188 0.254 4+ 0.061
131072 15.001 £ 0.000 53.012 + 0.156 31.534 + 6.376 0.651 +0.175
262144 30.000 + 0.000 105.901 + 0.514 60.488 + 17.849 1.216 £+ 0.443
524288 60.000 + 0.000 212.671 4+ 0.758 111.672 4+ 31.377 2.068 +0.775
1048576 120.000 + 0.000 426.074 4+ 1.562 245.060 4 65.159 4.947 £ 1.226

Scaling factor estimation. We estimate empirical complexity exponents by fitting the
measured runtime and memory data to a power-law model,

y ~ aN’,

using ordinary least squares in log—log space, where N is the number of graph nodes.
Uncertainty in the slope b is quantified with 95% confidence intervals derived from the -
distribution. To capture asymptotic scaling behavior, fits are restricted to sufficiently large
graphs: dense GP experiments are fit for N > 2°, while sparse GP experiments are fit for
N > 2'5. The fitted coefficients a and b, together with confidence intervals and R? values,
are summarised in Table 4.

15

Under review as a conference paper at ICLR 2026

Table 4: Fitted power-law scaling coefficients for memory usage, random-walk initialisation,
training, and inference time. Each row reports multiplicative constant a, exponent b with
95% confidence interval, and coefficient of determination R2. Fits performed in log-log
space.

Kernel a b 95% CI (b) R?

Memory (MB) Sparse 1.37 x 107* 1.00 [1.00,1.00] 1.00
Dense 2.29 x 107° 2.00 2.00,2.00 1.00

Kernel init time (s) Sparse 3.58 x 102 0.81 [0.73,0.88] 0.97
Dense 1.22 x 1073 1.21 1.09,1.33 0.99

[]

[]

[|
Training time (s) Sparse 1.32x 107* 1.04 [0.96,1.12] 1.00

[]

[]

[]

Dense 3.93 x 1076 1.97 1.20,2.73 0.96
Inference time (s) Sparse 2.79x 1076 1.04 [0.93,1.14] 0.99
Dense 1.92x107% 216 [1.50,2.81] 0.97

C.3 ABLATION STUDIES

This section reports the results of the ablation experiment described in Section 4.1, where
we replace the GRF estimate of a function of a weighted adjacency matrix by an ad-hoc
random walk-based kernel. As described in the main body, line 8 of Alg 1 is replaced by

o(i)[prefix_subwalk[—1]] + = (H traversed_edge_weights) * f(length(prefix_subwalk)), (16)

removing the normalisation factor p(prefix_subwalk)).

Data synthesis. We consider a synthetic dataset, consisting of a regular 30 x 30 mesh
graph (900 nodes). We compute a ground truth diffusion kernel K} = exp(—S*L) on this
mesh graph with a known length scale f* = 10 (hidden from the models), and sample a
function from the corresponding GP, shown in Figure 5. Noisy observations are made at
10% of the nodes, indicated by black dots. The task is to predict missing measurements.

Kernels comparison. For GP training and inference, we consider three kernels: the exact
diffusion kernel K 3 = UJ% exp(—BL), a GRF kernel K, and an ad-hoc random walk kernel
K, 4 poc s per Eq. (16). The learned maximum-a-posteriori predictions (posterior mean) are
shown in Figure 5 (b)-(d), and the RMSE and NLPD are reported in Table 5. For random
walk-based kernels K and K4 .., we sample 10,000 walks per node, truncating any walk
exceeding 10 steps. Models are trained using the Adam optimiser with a learning rate of

0.01 for 1,000 iterations.

Clearly, the ad-hoc kernel fails to capture the underlying structure, producing inaccurate
predictions. This shows that a principled importance sampling approach is essential for
random walk-based kernels to perform well in practice.

16

Under review as a conference paper at ICLR 2026

(b) Diffusion

04 0.08
.
0.06
0.04
0.02
0.00
-0.02
~0.04
~0.06

-0.08

(d) Ad-hoc GRFs

Figure 5: The ad-hoc kernel fails to capture longer-range relationships. Panel (a):
Ground-truth function on a 30 x 30 mesh graph; black dots mark noisy observations at 10%
of the nodes. Panels (b—d): Posterior means inferred with the exact diffusion kernel, the
GRF kernel, and the ad-hoc kernel, respectively. Unlike the principled GRF estimator, the
ad-hoc variant produces poor predictions and misses the underlying structure.

Table 5: The ad-hoc kernel yields much worse predictive accuracy. Test RMSE
and NLPD for the diffusion kernel, principled GRF kernel, and the ad-hoc variant. The ad-
hoc kernel exhibits substantially higher RMSE and NLPD.

Kernel RMSE NLPD
Diffusion 0.262 0.090
GRFs 0.339 0.339
Ad-hoc GRFs 0.573 1.265

C.4 REGRESSION TASK: TRAFFIC SPEED PREDICTION

Here we provide further details for the first regression experiment: predicting traffic speeds
in the San Jose freeway sensor network (Chen et al., 2001), following the setup of Borovitskiy
et al. (2021).

Dataset. We use the San Jose freeway sensor network combined with OpenStreetMap data
to construct a graph with 1,016 nodes and 1,173 edges (contributors, 2024). Traffic speed
measurements (in mph) are available at 325 sensor locations. These values are normalised
(zero mean, unit variance), and the data is split into a training set of 250 randomly selected
nodes and a test set of the remaining 75 nodes.

Kernel approximation with GRFs. We used two variants of GZRFS kernels. The first
GRF kernel uses a diffusion-shape modulation function f; = % This is a truncated
power series expansion of the diffusion kernel, where the learnable hyperparameters are
length scale 8 and kernel variance 7. The second kernel directly learns the modulation

17

Under review as a conference paper at ICLR 2026

coefficients (fl);):O, which are initialised randomly and learned via log marginal likelihood.
For both GRF variants, we fix p,,;; = 0.1 and truncate walks at a maximum length of
10, and vary the number of walks per node n € {1,2,4,...,8192}. Since the traffic network
contains roughly 1,000 nodes, we also include the exact diffusion kernel K as a baseline.
The kernel configurations are:

Exact Diffusion: Ky = szc exp(—pAL),

_ !
Diffusion-shape K : fi= —(ﬁl'/2) ,

Fully-learnable K: fi learned directly.

Regression task. We apply GP inference using the 250 labeled nodes as training data to
predict traffic speeds at all 1,016 nodes in the network. The kernel hyperparameter and noise
variance o2 are learned by maximising the log marginal likelihood, using Adam. Posterior
inference then yields the predicted mean fi and covariance 3 of the latent traffic speed
function over the graph.

To quantify accuracy, we compute the negative log probability density (NLPD) and root
mean squared error (RMSE) on the 75 test nodes between the true speeds y'*' and the
MAP estimate fi:

N,
1 test R
RMSE:\] (N)Z(M_yi)2
test i=1
1 NLesL
NLPD = —() > 10gp(y; | 74, Disain)
]Vtest i=1

The experiment is repeated five times with different random seeds. The results are shown
in Figure 3 (a)-(b) in the main text.

Capturing global and local patterns. Using the visualisation toolkits by Borovisky et
al., we illustrate the GRF-GPs posterior inference results on the San Jose traffic network in
Figure 6. The left panel provides a global view over the full network, while the right panel
zooms in on a specific highway junction. We observe that the global inferred mean (top left)
captures large-scale spatial variation across the network—speeds are higher on main freeway
segments and lower in peripheral or downtown regions. Notably, in the zoomed-in view (top
right), the model successfully distinguishes speeds across tightly packed lanes running in
opposite directions. Despite spatial proximity, the posterior assigns significantly different
mean values to adjacent but directionally distinct segments, demonstrating that GRF-GPs
capture connectivity-aware patterns rather than relying solely on Euclidean distance. The
bottom row visualises posterior uncertainty, with standard deviation plotted over the full
graph (bottom left) and zoomed in section (bottom right).These results confirm that GRF-
GPs respect both global graph structure and local topology, delivering interpretable and
spatially coherent predictions on complex, real-world networks.

18

Under review as a conference paper at ICLR 2026

Mean (zoomed in)

60

50

40

30

20

10

(€) Oy Tiles/style by. fo] Team 0
hosted by OpenstreetMap France

Standard deviation

(©)0 Tiles style by, oy Team, (©)
hosted]by OpensStreetMap France - 3 hosted by OpenStreetMap France

Tiles style by Openstregtiap Team

Figure 6: Posterior inference using GRF-GPs on the San Jose traffic network. Top left:
Mean predictions across the full graph. Top right: Zoomed-in directional differences be-
tween closely spaced lanes. Bottom left: Posterior uncertainty over the network. Bottom
right: Zoomed view reveals local variation in confidence. Coloured dots are sensor nodes;
white dots indicate training nodes.

C.5 REGRESSION TASK: WIND VELOCITY INTERPOLATION

Here we provide further details about the wind velocity interpolation task from the ERAS
dataset (Hersbach et al., 2019). Our problem setup follows that of Wyrwal et al. (2024) and
Robert-Nicoud et al. (2023).

Dataset. We use the average wind velocity field from the ERA5 dataset at three altitudes:
0.1 km, 2 km, and 5 km. The surface of the globe (formally, the manifold S?) is discretised
at a resolution of 2.5° longitude by 2.5° latitude, yielding a k-nearest neighbours graph G
with roughly 10K nodes, on which we apply our scalable GRF-GPs algorithm. The task
is to predict the velocity fields on the held-out test nodes. The locations along the Aeolus
satellite track (1441 nodes) serve as training data, while all remaining nodes are treated as
the test set.

19

Under review as a conference paper at ICLR 2026

Figure 7: Ground-truth wind velocity field from the ERA5 dataset at 0.1 km above sea
level. Black vectors show local wind velocities. Red dots mark 1441 Aeolus satellite track
locations, used as training data in the interpolation task (Reitebuch, 2012).

Figure 8: Predicted wind velocity field using GRF-GPs. Blue vectors represent MAP
predictions (GP posterior mean).

Figure 9: Prediction uncertainty (GP posterior covariance) using GRF-GPs. Brighter
regions indicate higher uncertainty, which is significantly reduced near satellite track.

Absolute Error (mis)

Figure 10: Absolute error between ground-truth and MAP-predicted velocities. GRF-GPs
i@hieve, accurate predi.%ion% Wﬁth eliforl patteﬁls alig;rgs% with uﬂcertaci;%% stimates. .
xperiment setup. We use the fully-learnable and diffusion-shape ernels, varying
the random walk budget, similar to the method described in App. C.4. Note the exact
diffusion kernel Ky cannot be applied on this large graph. We measure the NLPD and

RMSE to evaluate the kernel performance. The results are shown in Figure 3 (c-d) in the
main text.

Uncertainty-aware wind velocity interpolation. Figures 7-10 visualise GRF-GPs
inference on the ERA5 wind dataset at 0.1 km altitude. For visualisation clarity, the k-
nearest neighbour graph on the globe is downsampled. Figure 7 shows the ground-truth
wind field with training node positions marked in red. Figure 8 shows the MAP prediction,
and Figure 9 shows the posterior uncertainty, which is notably reduced along the Aeolus
satellite track. Finally, Figure 10 displays the absolute error field.

20

Under review as a conference paper at ICLR 2026

C.6 LARGE SCALE BAYESIAN OPTIMISATION ON GRAPHS

Here, we describe our evaluations of the performance and scalability of GRF-GPs on
Bayesian optimisation (BO) tasks, as detailed in Section 4.3. We test the methodology
across three settings: (1) four synthetic graph benchmarks, (2) four real-world social network
datasets for identifying influential users, and (3) three wind interpolation datasets. First,
let us describe the benchmark datasets.

1. Synthetic benchmarks. We consider four synthetic graph benchmarks.

e Unimodal function on grid: a function with a smooth central peak, discretised
on a 1000 x 1000 grid graph.

¢ Multi-modal fucntion on grid: a function with several randomly placed peaks,
discretised on a 1000 x 1000 grid graph.

¢ Community graph: a community graph generated via a stochastic block model

(SBM), with nodes in a community C; assigned a score by sampling from N (y;, 07).

e Circular graph: a sinusoidal function defined on a ring, discretised into a k-nearest
neighbour graph with 10® nodes.

All signals are perturbed with Gaussian noise (02 = 0.1). Random features ® are computed
with 100 walks per node, with halting probability p;,; = 0.1. Random walks longer than 5
hops are truncated.

2. Social networks benchmarks: identify the most influential user.

We consider four real-world social network datasets (Table 6) from the Stanford Network
Analysis Project (SNAP) (Leskovec and Krevl, 2014), with up to 1.1M nodes. Each node
represents a user in the network. Following Wan et al. (2023), we use node degree as a proxy
for user influence, and the task is to identify the most ‘influential’ users in each network.

Table 6: Summary of four SNAP datasets used for large-scale BO experiments. Each dataset
corresponds to a user-level social network, with node degree used as a proxy for influence.

Dataset Nodes Edges Maximum Degree Description
YouTube 1,134,890 2,987,624 28754 Youtube online social network
Facebook 22,470 171,002 709 Facebook page-page network
with page names.
Twitch 168,114 6,797,557 35279 Social network of Twitch users.
Enron 36,652 183,831 1383 Email communication network

from Enron

3. ERA5 wind velocity field: predict the location with greatest wind speed.

To demonstrate the utility of GRFs for BO on manifolds, we use the ERA5 wind datasets
at three altitudes. Full details of dataset processing are provided in App C.5.

Algorithm Baselines. We compare GRF-based Thompson Sampling against three search
heuristics:

¢ Random search: uniformly samples nodes without replacement.

e Breadth-first search (BFS): sequentially expand observed nodes along the
adjacency structure in breadth-first order.

o Depth-first search (DFS): sequentially expand observed nodes along the adja-
cency structure in depth-first order.

BO setting. In each experiment, algorithms are initialised with up to 1,000 samples and
then run for up to 1,000 BO iterations, repeated across five random seeds. At each iteration,

21

Under review as a conference paper at ICLR 2026

we report simple regret, defined as the difference between the global maximum and the best
function value observed so far.

Algorithm 3: Graph Thompson Sampling with GRFs

Inputs: black-box function h, candidate nodes x_all, initial sample size N_0, number
of BO steps T.
2 OQutput: augmented dataset (x_obs, y_obs).
N_O .
=13 @i ~ Unif(x_all)

initialise y_obs « {h(z;) + s,-}?;(;
fort=1,..,T

3 initialise x_obs + {z;}

model.train(x_obs, y_obs)

x_t + ArgMax(s_t)
y_t< h(x_t) +e¢
10 X_obs < x_obsUs_t

4
5
6
7 | s_t + PosteriorSample(model, x_all)
8
9

11 | y_obs <~ y_obsUy_t
12 end for

13 return (x_obs,y_obs)

C.7 CLASSIFICATION TASK: CORA CITATION NETWORK

Here we provide more experimental details about the classification task on the Cora scientific
citation network (McCallum et al., 2000). This experiment highlights the application of
GRF-GPs in a more challenging, non-conjugate inference setting.

Dataset and preprocessing. The Cora dataset is a standard benchmark in graph-based
machine learning. It consists of a citation network, where each node corresponds to a
scientific publication and each edge represents a citation. Each publication is labeled with
one of seven machine learning topics (Figure 11). While Cora also includes textual features,
we focus solely on the graph structure. We extract the largest connected component of the
citation graph, resulting in a subgraph with 2,485 nodes and 5,069 edges.

(a) Ground-truth labels. Each color denotes a class (b) Prediction errors using graph GP with Matern
kernel. Red nodes are misclassified

Figure 11: Cora dataset classification with graph GP.

22

Under review as a conference paper at ICLR 2026

Sparse variational inference for classification. In classification tasks, the likelihood
functions are usually non-Gaussian (softmax), so the posterior is not analytically tractable.
Denote the N, training nodes as x and the M inducing nodes as z. Define latent
function values at the training inputs as h = (h(z) : € x) and function values at induc-
ing nodes as u = (u(z) : z € z). Assume a GP prior p(u) = N(0,K,,,) and a likelihood
p(y; | h;) (softmax). Choose a Gaussian variational posterior ¢(u) = N(p,¥) and induce
the marginal g(h) = [p(h | u)q(u)%u Under this approximation we maximise the evidence
lower bound (ELBO): Lgipo = >, "1" Eqn[logp(y; | hi)] — KL(g(u) | p(w)). This varia-
tional treatment replaces the intractable posterior with a tractable family and supplies a
principled objective (a lower bound on logp(y)); it yields coherent predictive distributions
by integrating over g(h) rather than relying on point approximations, which is especially
important when the likelihood breaks conjugacy.

Experiment setup. We compare classification accuracy across exact kernels (diffusion and
Matérn) and the GRF kernel. We use an 80/20 train-test split on the largest connected
component of the graph. The goal is to predict the class labels of all nodes based on the
graph structure alone. All models are trained using softmax likelihood. Optimisation is
performed for up to 1000 iterations using the Adam optimiser. To reduce uncertainty and
assess variability, each configuration is repeated five times with different random seeds. We
also measure the sparsity of the resulting GRF kernels. Results are reported in Table 7,
showing that with a sufficient number of random walkers, the flexibility of the GRF kernel
allows it to capture the graph structure effectively and outperform the exact kernel baselines.

Table 7: The GRF kernel reaches highest accuracy in the Cora benchmark.
Classification accuracy on the Cora dataset with different graph kernels. With n = 16384
walks per node (22.17% non-zero entries), the GRF kernel outperforms both diffusion and
Matérn kernels.(Borovitskiy et al., 2021).

Kernel Form Accuracy
Diffusion Ky = exp(—pL) 85.31 £ 0.61%
GRFs K=2d" 87.04 4+ 0.53%

Matérn Kypem = (% +L) 86.724+0.31%

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D REBUTTALS: EXTRA CONTENT

Here, we provide extra content to reflect discussions during reviews.

D.1 CONJUGATE GRADIENTS CONVERGENCE

Theorem 2 asserts that the condition number of the GRF Gram matrix K is O(N),
assuming that ¢ := Z:‘;O|fr| (maxi,je[[l)N]] W,;d; /(1 —p)) is constant across the class of
graphs considered. We empirically confirm that this is the case below in Figure 12. Lemma
1 also uses that the conjugate gradient (CG) method can solve the corresponding linear
system in 4/ &(K + O%I) iterations (Shewchuk, 1994), which ultimately unlocks our (9(N3/2)
scaling. This implicitly assumes that we run CG to a fixed error ratio € — in our case, 1072
— which follows convention for efficient GP methods in the literature (Maddox et al., 2021).
We find this CG termination criterion to be empirically robust, but agree that investigating
more sophisticated strategies might be an interesting direction for future work.

5
10 ®O® Empirical mean P 108 W Empirical mean 103 | === Empirical fit: iter ~ k%53

e Empirical fit: k ~ N02 s iter «N°2° (from VK scaling) - é{#
.
5 2. O
2 2 o0
£ 10 E 10? g1 ; '../ /o'o
El = 2
Z =] = Gl
z] & X
= g £) N
K] 2 8 ° n(.
E = = b
© o 10t . .
o 8 8 L, s iee
S0 10! € o0d’’ N
- /‘ cee oo o
100
V4

22 2t 26 28 210 2! 20 28 27 20 21 21 218 100 10! 10% 10° 104 10°
Graph Size N Graph Size N Condition Number k

(a) Conditional number k scaling (b) CG iterations scaling (¢) CG iterations vs k

Figure 12: Empirical scaling behaviour of CG iterations (a) Condition number vs.
the graph size for Erd6s—Rényi graphs with edge probability p = 0(%) The linear fit in
log-log space shows that & ~ N2, which lies well within the upper bound proved in in
Theorem 2, i.e., n(f{ + U%I) is O(N). (b) CG iterations to solve the (K + O‘%I)CIJ =y to
a fixed relative error tolerance e = 1072 as N increases. (c) CG iterations plotted directly
against . A log-log fit gives iter~ £%-53, which match the expected O(y/k) behaviour.

D.2 MORE GUIDANCE ON HYPERPARAMETER SELECTION

Section C.1 provides guidance for choosing GRF hyperparameters like the number of
walkers. Section C.3 provides detailed ablations to isolate the effects of different aspects of
GRFs. The maximum walk length is mainly an implementation consideration; in practice,
one can make it sufficiently large that all walkers terminate beforehand with high proba-
bility. More quantitatively, given n terminating walkers, with probability at least 1 — ¢, the
GRF for node 4 will have nlog(1 — (1 —6)"/™)log(1 —p)~* or fewer nonzero entries, which
upper bounds the cost of matrix-vector multiplication at each CG iteration. Meanwhile, the
condition number is bounded by a constant multiplied by N, as described in the main text.
This relates the number of walkers to the GRF sparsity and thus the computational cost.
Automatic tuning strategies provide an exciting direction for future work.

D.3 OTHER EFFICIENT BENCHMARKS FOR GRAPHS: SVGP

Efficient GP methods are less well-studied for graphs than Euclidean data. A core difficulty
is the fact that, in order to compute a smaller kernel matrix at some subset of inducing
points, we still need to compute the entire Gram matrix which is in general O(N?).

Comparison with Euclidean setting. Let us make this more explicit. Suppose V denotes
the full set of N training datapoints, and V, 4 C V denotes a subset of m inducing points.
For e.g. the Gaussian kernel, one can compute

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2
K, = |exp[- Z=) — .
ind. exXp 202 € ()
4,7€Vina

in (9(m2) time and space complexity. One need not compute the kernel at points in ¥V \ V, 4.
Conversely, for graphs, it is not straightforward to compute some specific [Ka]ij without

first computing the full N x N matrix

K,(W)=) 0a,W", o, R Vre(0,1,..,0) (18)

(o7
r=0

where W is the adjacency matrix for the entire graph G. One can then extract the corre-
sponding subset of entries corresponding to the m inducing points. This means that methods
like sparse variational Gaussian processes (SVGPs) (Titsias, 2009) may not actually provide
time complexity gains, since we are still bottlenecked by O(N?) to compute the kernel at
the m inducing points in the first place.

SVGPs on graphs. Notwithstanding the above, we can implement SVGPs on graphs to
compare performance to GRFs, even if (unlike our method) this baseline may not be truly
efficient in practice. On the traffic speed prediction task, we trained SVGP models with 150
inducing points for 1000 iteration using Adam. We get the results shown in Figure 13. As
expected, SVGP underperforms compared to exact kernel. Even with a modest number of
walkers, GRFs provide lower test RMSEs.

107.5 17.0

P (fully learnable) P K (fully learnable)
105.0 @O K (diffusion shape) 16.5 @OP K (diffusion shape)
B Kirr (exact) B Kairr (exact)
102.5 I SvGP 16.0 N B NN
B e svee 1
100.0 : I - . 15.5
53]
g 97.5 . 50
Z 95.0 E 14.5
|
92.5 14.0
90.0 13.5
87.5 13.0
10° 10! 102 103 104 100 10! 102 103 104
Number of Walkers Number of Walkers
(a) Traffic NLPD (b)Traffic RMSE

Figure 13: Extra baselines. Companion results to Figure 3, with additional baselines. We
have added SVGP, which as expected performs slightly worse than the K (exact) baseline
in terms of both NLPD and RMSE. GRFs achieve lower NLPD beyond ~ 100 walkers and
lower RMSE beyond ~ 10 walkers. For the RMSE comparison, we also include a 3-layer
Graph Convolutional Network with hidden dimensions [64, 32, 16], trained for 500 steps.
which in this case performs worse than probabilistic methods.

25

	1 Introduction and related work
	2 Preliminaries
	3 Scalable posterior inference with GRFs
	3.1 Novel theoretical results
	3.2 From pathwise conditioning to conjugate gradients

	4 Experimental results
	4.1 Computation complexity and ablations
	4.2 Regression Tasks
	4.3 Scalable and robust Bayesian optimisation
	4.4 Future work: scalable variational GPs for classification

	5 Conclusion
	6 Ethics and reproducibility
	References
	A Full GRF Algorithm
	B Efficiently solving linear systems (K + σ2n I)v = b with the Woodbury Formula
	C Experiment Details
	C.1 Choosing GRF hyperparameters: guidance for practitioners
	C.2 Time and space complexity measurements
	C.3 Ablation studies
	C.4 Regression task: traffic speed prediction
	C.5 Regression task: wind velocity interpolation
	C.6 Large scale Bayesian optimisation on graphs
	C.7 Classification task: Cora citation network

	D Rebuttals: Extra Content
	D.1 Conjugate gradients convergence
	D.2 More guidance on hyperparameter selection
	D.3 Other efficient benchmarks for graphs: SVGP

