
Under review as a conference paper at ICLR 2022

PROVABLY IMPROVED CONTEXT-BASED OFFLINE
META-RL WITH ATTENTION AND CONTRASTIVE
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta-learning for offline reinforcement learning (OMRL) is an understudied prob-
lem with tremendous potential impact by enabling RL algorithms in many real-
world applications. A popular solution to the problem is to infer task identity as
augmented state using a context-based encoder, for which efficient learning of
robust task representations remains an open challenge. In this work, we provably
improve upon one of the SOTA OMRL algorithms, FOCAL, by incorporating
intra-task attention mechanism and inter-task contrastive learning objectives, to
robustify task representation learning against sparse reward and distribution shift.
Theoretical analysis and experiments are presented to demonstrate the superior
performance and robustness of our end-to-end and model-free framework compared
to prior algorithms across multiple meta-RL benchmarks. 1

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved many successes with human- or superhuman-level
performance across a wide range of complex domains (Mnih et al., 2015; Silver et al., 2017; Vinyals
et al., 2019; Ye et al., 2020). However, all these major breakthroughs focus on finding the best-
performing strategy by trial-and-error interactions with a single environment, which poses severe
constraints for scenarios such as healthcare (Gottesman et al., 2019), autonomous driving (Shalev-
Shwartz et al., 2016) and controlled-environment agriculture (An et al., 2021; Cao et al., 2021) where
safety is paramount. Moreover, these RL algorithms require tremendous explorations and training
samples, and are also prone to over-fitting to the target task (Song et al., 2019; Whiteson et al., 2011),
resulting in poor generalization and robustness. To make RL truly practical in many real-world
applications, a new paradigm with better safety, sample efficiency and generalization is in need.

Offline meta-RL, as a marriage between offline RL and meta-RL, has emerged as a promising
candidate to address the aforementioned challenges. Like supervised learning, offline RL restricts
the agent to solely learn from fixed and limited data, circumventing potentially risky explorations.
Additionally, offline algorithms are by nature off-policy, which by reusing prior experience, have
proven to achieve far better sample efficiency than on-policy counterparts (Haarnoja et al., 2018).

Meta-RL, on the other hand, exploits the shared structure of a distribution of tasks and enables the
agent to adapt to new tasks with minimal data. One popular approach is by learning a single universal
policy conditioned on a latent task representation, known as context-based method (Hallak et al.,
2015). Alternatively, the shared skills can be learned with a meta-controller (Oh et al., 2017).

In this work we restrict our attention on context-based offline meta-RL (COMRL), an understudied
framework with a few existing algorithms (Li et al., 2019; Dorfman & Tamar, 2020; Mitchell et al.,
2020; Li et al., 2021a), for a set of tasks that differ in reward or transition dynamics. One major
challenge associated with this scenario is termed Markov Decision Process (MDP) ambiguity (Li
et al., 2019; Dorfman & Tamar, 2020), namely the task-conditioned policies spuriously correlate task
identity with state-action pairs due to biased distribution of the fixed datasets. This phenomenon can
be interpreted as a special form of memorization problem in classical meta-learning (Yin et al., 2019),
where the value and policy functions overfit the training distributions without capturing causality

1Source code is provided in the supplementary material.
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from reward and transition functions, often leading to degenerate task representations (Li et al.,
2021a) and poor generalization. To alleviate such over-fitting, Li et al. (2021a) proposes a framework
named FOCAL which decouples the learning of task inference from control by using self-supervised
distance metric learning. However, they made a strong assumption on the existence of an injective
map from each transistion tuple {s, a, s′, r} to its task identity. Under extreme scenarios such as
sparse reward, where a considerable portion of aggregated experience provides little information
regarding task identity, efficient and robust learning of task representations is still challenging.

To address the aforementioned problem, in this paper we propose intra-task attention mechanism
and inter-task contrastive learning objectives to achieve robust task inference. More specifically, for
each task, we apply a batch-wise gated attention to recalibrate the weights of transition samples, and
use sequence-wise self-attention (Vaswani et al., 2017b) to better capture the correlation within the
transition (state, action, reward) dimensions. In addition, we implemented a matrix-form objective of
the Momentum Contrast (MoCo) (He et al., 2020) for task-level representation learning, by replacing
its dictionary queue with a meta-batch sampled on-the-fly. We provide theoretical analyses showing
that our objective serves as a better surrogate than naive contrastive loss for task inference and the
proposed attention mechanism on top can also reduce the variance of task representation. Moreover,
empirical evaluations demonstrate that the proposed design choices of attention and contrastive
learning mechanisms not only boost the performance of task inference, but also significantly improve
its robustness against sparse reward and distribution shift. We name our new method FOCAL++.

2 RELATED WORK

Attention in RL Although attention mechanism has proven a powerful tool across of a broad spectrum
of domains (Mnih et al., 2014; Vaswani et al., 2017a; Wang & Shen, 2017; Veličković et al., 2018;
Devlin et al., 2018), to our best knowledge, its applications in RL remain relatively understudied.
Most of previous works in RL (Mishra et al., 2018; Sukhbaatar et al., 2019; Kumar et al., 2020;
Parisotto et al., 2020) focus on applying temporal attention in order to capture the time-dependent
correlation in MDPs or POMDPs. Raileanu et al. (Raileanu et al., 2020) uses transformer as the
default dynamics/policy encoder for meta-RL, similar to our proposed sequence-wise attention,
without giving any intuition or comparative study on such design choice. Wang et al. (2021) recently
implemented attention in meta-RL but didn’t consider the offline setting.

The closest work we found by far (Barati & Chen, 2019; Li et al., 2021b) employ attention in
multi-view/multi-agent RL, to learn different weights on various workers or agents, aggregated by a
global network to form a centralized policy. Analogous to our proposal, such architecture has the
advantage of adaptively accounting for inhomogeneous importance of each input in the decision
making process, and makes the global agent robust to noise and partial observability.

Contrastive Learning Contrastive learning (Chopra et al., 2005; Hadsell et al., 2006) has emerged
as a powerful framework for representation learning. In essence, it aims to capture data structures
by learning to distinguish between semantically similar and dissimilar pairs. Recent progress in
contrastive learning focuses mostly on learning visual representations as pretext tasks. MoCo (He
et al., 2020) formulates contrastive learning as dictionary look-up, and builds a dynamic dictionary
with a queue and a moving-averaged encoder. SimCLR (Chen et al., 2020) further pushes the
SOTA benchmark with careful composition of data augmentations. However, all these algorithms
concentrate primarily on generating pseudo-labels and contrastive pairs, whereas in COMRL scenario,
the task labels and transition samples are naturally given.

There are a few recent works which apply contrastive learning in RL (Laskin et al., 2020) or meta-RL
(Fu et al., 2020) settings. Fu et al. (2020) employs InfoNCE (Oord et al., 2018) loss to train a
contrastive context encoder. They investigated the technique in the online setting, where the encoder
requires an information-gain-based exploration strategy to be effective. In contrast, this paper focuses
on how contrastive learning performs in the fully-offline setting.

Context-Based Offline Meta-RL (COMRL) Context-based offline meta-RL employs models
with memory such as recurrent (Duan et al., 2016; Wang et al., 2016; Fakoor et al., 2020), recursive
(Mishra et al., 2018) or probabilistic (Rakelly et al., 2019) structures to achieve fast adaptation by
aggregating experience into a latent representation on which the policy is conditioned. To address
the bootstrapping error problem (Kumar et al., 2019) for offline learning, framework like FOCAL
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enforces behavior regularization (Wu et al., 2019), which constrains the distribution mismatch
between the behavior and learning policies in actor-critic objectives. We follow the same paradigm.

3 METHOD

To tackle the COMRL problem, we follow the procedure described in FOCAL (Li et al., 2021a), by
first learning an effective representation of tasks on latent space Z , on which a single universal policy
is conditioned and trained with behavior-regularized actor-critic method (Wu et al., 2019). As an
improved version of FOCAL, our main contribution is twofold:

1. To our best knowledge, we are the first to apply attention mechanism in offline multi-
task/meta-RL setting, for learning robust task representations. We combine batch-wise gated
attention with sequence-wise transformer encoder, and demonstrate its lower variance as
well as robustness against sparse reward and MDP ambiguity compared to prior COMRL
methods.

2. On top of attention, we incorporate a matrix reformulation of Momentum Contrast (He
et al., 2020) for task representation learning, with theoretical guarantees and provably better
performance than ordinary contrastive objective.

3.1 PROBLEM SETUP

Consider a family of stationary MDPs defined byM = (S,A,P,R, γ) where (S,A,P,R, γ) are
the corresponding state space, action space, transition function, reward function and discount factor.
A task T is defined as an instance ofM, which is associated with a pair of time-invariant transition
and reward functions, P (s′|s, a) ∈ P and R(s, a) ∈ R, respectively. In this work, we focus on tasks
which share the same state and action space. Consequently, a task distribution can be modeled as a
joint distribution of P andR, which usually can be factorized:

p(T ) := p(P,R) = p(P)p(R). (1)

In the offline setting, each task Ti (i being the task label) is associated with a static dataset of transition
tuples Di = {ci} = {(si, ai, s′i, Ri(si, ai))}, for which p(Di) = p(Ti). Each tuple ci ∼ Di is a
sequence along the so-called transition/sequence dimension. A meta-batch B is a set of mini-batches
Bi ∼ Di. Consider a meta-optimization objective in a multi-task form (Rakelly et al., 2019; Fakoor
et al., 2020),

L(θ, ψ) = EDi∼p(D)[Lactor(Di; θ) + Lcritic(Di;ψ)] (2)

= EDi∼p(D)[LDi(θ, ψ)], (3)

where LDi(θ, ψ) is the objective evaluated on transition samples drawn from Di, parameterized by θ
and ψ. Assuming a common uniform distribution for a set of n tasks, the meta-training procedure
turns into minimizing the average losses across all training tasks

θ̂meta, ψ̂meta = arg min
θ,ψ

1

n

n∑
k=1

E [LDk(θ, ψ)] . (4)

For COMRL problem, a task distribution corresponds to a family of MDPs on which a single universal
policy is supposed to perform well. Since the MDP family is considered partially observed if no task
identity information is given, a task inference module Eφ(z|c) is required to map context information
c ∼ D to a latent task representation z ∈ Z to form an augmented state, i.e.,

Saug ← S ×Z, saug ← concat(s, z). (5)

Such an MDP family is formalized as Task-Augmented MDP (TA-MDP) in FOCAL. Additionally,
Li et al. (2021a) proves that a good task representation z is crucial for optimization of the task-
conditioned meta-objective in Eqn 4, which is the prime focus of this paper. We now show how to
address the issue with the proposed attention architectures and contrastive learning framework.

3.2 ATTENTION ARCHITECTURES
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Figure 1: Context encoder as a stack of attention blocks.

Figure 2: Attention modules for task inference.
BA: batch-wise attention. SA: sequence-wise at-
tention.

We employ two forms of intra-task attention in
the context encoderEφ(z|c): batch-wise gated
attention and sequence-wise self-attention,
for learning better task representations. The ar-
chitectures are shown in Figure 2.

Batch-Wise Gated Attention When perform-
ing task inference, transitions inside the same
batch may contribute differently to the represen-
tation learning, especially in sparse reward situa-
tions. For tasks that differ in rewards, intuitively,
transition samples with non-zero rewards con-
tain more information regarding the task identity.
Therefore, we utilize a gating mechanism sim-
ilar to (Hu et al., 2018) along the batch dimen-
sion to adaptively recalibrates this batch-wise
response by computing a scalar multiplier for
every sample as in Figure 1.

Sequence-Wise Self-Attention A naive MLP encoder maps a concatenated 1-D sequence
(s, a, s′, r) from context buffer to a 1-D embedding z. This seq2seq model can be implemented
with sequence-wise attention to apply self-attention along the sequence dimension. The intuition
behind sequence-wise attention is that the attentive context encoder should in principle better capture
the correlation in (s, a, s′, r) sequence related to task-specific reward function R(s, a) and transi-
tion function P (s′|s, a), compared to normal MLP layers employed by common context-based RL
algorithms.

Illustrated in Figure 1, since two attention modules operate on separate dimensions, we connect them
in parallel to generate task embedding z by addition.

Figure 3: Inter-task matrix-form momentum contrast.
Given two meta-batches of transitions {cq} and {ck}, a
quickly progressing query encoder and a slowly progress-
ing key encoder compute the corresponding batch-wise
mean task representations in latent space Z . A matrix mul-
tiplication is performed between the set of query and key
vectors to produce the supervised contrastive loss in Eqn
8. T,C, Z are the meta-batch, transition and latent space
dimensions respectively.
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3.3 THE CONTRASTIVE LEARNING FRAMEWORK

Inspired by the successes of contrastive learning in computer vision (He et al., 2020), we process the
raw transition data with momentum encoders to generate a latent query vector zq as classifier and a
set of K latent key vectors {zk0 , zk1 , ...,zkK} as task representations. Suppose one of the keys zk+ is
the only match to zq , we employ the InfoNCE (Oord et al., 2018) objective as the building block:

Lz = − log
exp(zq · zk+/τ)∑K
i=0 exp(z

q · zki /τ)
, (6)

where τ is a temperature hyper-parameter (Wu et al., 2018).

To ensure maximum sample efficiency, for each pair of meta-batches B = {Bi ∼ Di|i = 1, ..., T}
where T is the meta-batch size, one can construct T InfoNCE objectives by taking the average
latent vector of each task as the key, which is also crucial for our theoretical analysis (Theorem
3.1). Namely, given a meta-batch of encoded queries {zqi ∼ Eqφ(zi|Bi)|i = 1, ..., T} and keys
{zki ∼ Ekφ(zi|Bi)|i = 1, ..., T}, our proposed contrastive loss is

Lz = −
T∑
i=1

log
exp(zqi · zki /τ)∑T
j=1 exp(z

q
i · zkj /τ)

, (7)

which can be written in a matrix-form

Lz = −Tr(M), Mij = log
exp(zqi · zkj /τ)∑T
j=1 exp(z

q
i · zkj /τ)

. (8)

The training scheme of our proposed inter-task momentum contrast is illustrated in Figure 3.

Now we provide a theoretical analysis of the objective in Eqn 8. Intuitively, it is the log loss of a
T -way softmax-based classifier trying to classify each zki as zqi . With this interpretation, we compare
it to a linear classifier with supervised loss and show that it can be recovered by the linear classifier if
the weight matrix is a specific mean task classifier (Theorem 3.1). Furthermore, we prove that our
proposed objective is a better surrogate than traditional contrastive loss for task inference.

Definition 3.1 (Supervised Contrastive Loss)
Lsup(T , g) := E Ti,Ti′∼p(T )

ci∼Di,ci′∼Di′
[`({g(ci)− g(ci′)})]. (9)

where ` can be standard hinge or logistic losses as in (Saunshi et al., 2019).

Consider a linear classifier g(c) = WE(c), where the encoded latent vector E(c) is used as a
deterministic representation (Li et al., 2021a) andW ∈ RN×Z is a weight matrix trained to minimize
Lsup(T ,WE), Z is the dimension of the task latent space Z . Such construction of contrastive
objective enables self-supervised task representation learning for task inference, without requiring
access to full labels of all possible tasks, which is flexible and has better potential for generalization.
Hence the supervised loss of E on T is defined as

Lsup(T , E) = inf
W∈RN×Z

Lsup(T ,WE). (10)

Since the optimal W requires full knowledge and labels of the underlying task distribution, which is
infeasible given only training tasks. As with Saunshi et al. (2019), we consider a particular choice of
W µ:

Definition 3.2 (Mean Task Classifier) For an encoder function E and a task set T of cardinality
N , the mean task classifierW µ is an N × Z weight matrix whose ith row is the mean latent vector
µi of inputs with task label i. We use as a shorthand for its loss Lµsup(T , E) := Lsup(T ,W µE).

In pratice, we estimate the mean task representation of zq and zk using its batch-wise mean

µq,ki := E ci∼Di
zq,ki ∼E

q,k
φ (zi|ci)

[zq,ki ] ≈ E ci∼Bi
zq,ki ∼E

q,k
φ (zi|ci)

[zq,ki ], (11)

which induces the following definitions:
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Definition 3.3 (Averaged Supervised Contrastive Loss) Average supervised loss for an encoder
function E on T -way classification of task representation is defined as

Lsup(E) := E
{Ti}Ti=1∼p(T )

[
Lsup({Ti}Ti=1, E)

]
. (12)

The average supervised loss of its mean classifier (Definition 3.2) is

Lµsup(E) := E
{Ti}Ti=1∼p(T )

[
Lµsup({Ti}Ti=1, E)

]
. (13)

When the loss function ` is the convex logistic loss, we prove in Appendix B that

Theorem 3.1 The matrix-form momentum contrast objective Lz (Eqn 8) is equivalent to the average
supervised loss of its mean classifier Lµsup (Eqn 13) if E = Ek(z|c) is the key encoder and the mean
task classifierW µ whose ith row is the mean of latent query vectors with task label i.

If we compare our proposed loss function with the classical unsupervised contrastive loss

Definition 3.4 (Unsupervised Contrastive Loss)

Lun(E) := E
[
`({E(c)T (E(c+)− E(c−))})

]
. (14)

Given T as the number of distinct tasks in meta-batches, c, c+ are contexts from the same task, and
c− is from the other T − 1 tasks. Such construction is employed by prior COMRL methods like
FOCAL, which allows for task interpolation during meta-testing.

By Lemma 4.3 in (Saunshi et al., 2019), using convexity of ` and Jensen’s inequality, assuming no
repeated task labels in each meta-batch, we have

Theorem 3.2 For all context encoder E

Lsup(E) ≤ Lµsup(E) ≤ Lun(E). (15)

Combined with Theorem 3.1, it shows that our proposed contrastive objective in Eqn 8: Lz ≡
Lµsup(Eφ(z|c)) serves as a better surrogate for Lsup than the ordinary unsupervised contrastive losses
employed by prior methods, to ensure similarity-preserving task representation for COMRL.

3.4 VARIANCE OF TASK EMBEDDINGS BY FOCAL++

In experiments, we found that our proposed algorithm, FOCAL++, which combines attention mech-
anism and matrix-form momentum contrast, exhibit significant smaller variance compared to the
baselines on tasks with sparse reward (Table 2). We provide a proof of this observation for a simplified
version of FOCAL++, by only considering the batch-wise attention along with contrastive learning
objective defined in Eqn 8, in presence of sparse reward. Assuming all tasks differ only in reward
function, we begin with the following definition:

Definition 3.5 (Absolutely Sparse Transition) Given a set of tasks {T} which only differ by reward
function, a transition tuple (s,a,s’,r) is absolutely sparse if ∀Ti ∈ {T }, Ri(s, a) = constant.

According to policy invariance under reward transformations (Ng et al., 1999), without loss of
generality, we assume the constant above to be zero for the rest of the paper.

Definition 3.6 (Task with Sparse Reward) For a dataset Di = {(si, ai, s′i, Ri(si, ai))} sampled
from any task Ti with sparse reward, it can be decomposed as a disjoint union of two sets of
transitions:

Di = {(si, ai, s′i, Ri(si, ai))} ∪ {(si, ai, s′i, 0)} (16)
= {cn} ∪ {cs}, (17)

where {cs} is the set of absolutely sparse transitions (Definition 3.5), which by definition are shared
across all tasks. {cn} consists of the rest of the transitions, and is unique to task Ti.
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Definition 3.7 (Batch-Wise Gated Attention) The batch-wise gated attention assigns inhomoge-
neous weightsW for batch-wise estimation of the mean task representation of µq,k in Eqn 11:

µq,ki (W ) := Ec∼Di [W (c)Eq,k(c)] (18)

= pnE[W (cn)E
q,k(cn)] + psE[W (cs)E

q,k(cs)], (19)

where pn, ps are the measures of {cn}, {cs} respectively and W is normalized such that
Ec∼Di [W (c)] = 1. pn + ps = 1 by Definition 3.6.

Theorem 3.3 Given a learned batch-wise gated attention weight W and context encoder E that
minimize the contrastive learning objective Lµsup(W , E), we have

Var(µq,ki (W )) ≤ Var(µq,ki ), (20)

when the sparsity ratio exceeds a threshold.

i.e., the variance of learned task embeddings with batch attention is upper-bounded by its counterpart
without attention given the dataset is sparse enough. We prove Theorem 3.3 in Appendix B.

4 EXPERIMENTS

In the following experiments, we show FOCAL++ outperforms the existing COMRL algorithms by a
clear margin in three key aspects: a) asymptotic performance of learned policy; b) task representations
with lower variance; and c) robustness to sparse reward and MDP ambiguity.

All trials are averaged over 3 random seeds. The offline training data are generated in accordance with
the protocol of FOCAL by training stochastic SAC (Haarnoja et al., 2018) models for every distinct
task and roll out policies saved at each checkpoint to collect trajectories. The offline training datasets
can be collected as a selection of the saved trajectories, which facilitates tuning of the performance
level and state-action distributions (Table 3). Both training and testing sets are pre-collected, making
our method fully-offline. Rewards are sparsified by constructing a neighborhood of goal in state or
velocity space, where transition samples which lie outside the area are assigned zero reward. Since
the focus of this paper is robust task representation learning which can be decoupled from control
according to FOCAL, we use sparse-reward data only when training the context encoders. Learning
of meta-policy in presence of sparse reward is another active but orthogonal area of research where
quite a few successful solutions have been found (Andrychowicz et al., 2017; Eysenbach et al., 2020).
A concrete description of the hyper-parameters and experimental settings is covered in Appendix D.

Table 1: Average testing return (standard deviation in parenthesis) of FOCAL and variants of
FOCAL++.

Algorithm Sparse-Point-Robot Point-Robot-Wind Sparse-Cheetah-Dir Sparse-Ant-Dir Sparse-Cheetah-Vel Walker-2D-Params
FOCAL 11.84(1.05) -5.61(0.59) 1351.40(90.46) 429.92(41.52) -183.32(40.16) 302.70(12.94)
FOCAL++
(contrastive) 12.53(0.31) -5.78(0.44) 1309.76(115.33) 504.00(145.80) -158.95(21.36) 366.35(55.08)
FOCAL++
(batch-wise) 12.54(0.23) -5.57(0.34) 1330.56(162.03) 687.37(85.95) -150.58(11.75) 376.52(36.59)
FOCAL++
(seq-wise) 12.64(0.14) -5.09(0.01) 1293.40(129.99) 573.26(186.22) -140.63(11.52) 375.67(45.72)
FOCAL++ 12.96(0.09) -5.39(0.57) 1470.52(68.29) 719.77(57.58) -137.31(7.06) 391.02(42.44)

Table 2: Variance of context embeddings averaged over all training tasks and latent dimensions.

Algorithm Sparse-Point-Robot Point-Robot-Wind Sparse-Cheetah-Dir Sparse-Ant-Dir Sparse-Cheetah-Vel Walker-2D-Params
FOCAL 8.54E-5 3.05E-3 4.31E-3 2.24E-3 2.57E-3 1.06E-2
FOCAL++
(contrastive) 7.83E-5 1.68E-3 6.86E-4 1.77E-3 1.73E-3 5.79E-3
FOCAL++
(batch-wise) 7.73E-5 1.70E-3 4.66E-4 7.51E-4 1.04E-3 5.85E-3
FOCAL++
(seq-wise) 7.94E-5 1.84E-3 9.43E-4 8.00E-4 9.76E-4 5.46E-3
FOCAL++ 8.27E-5 1.68E-3 7.82E-4 1.35E-3 1.06E-3 5.23E-3
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(a) FOCAL++ vs. 4 baselines.

(b) Point-Robot-Wind

(c) Sparse-Ant-Dir

Figure 4: Left: Test-task performance vs. transition steps sampled for meta-training. Right: t-SNE
visualization of the learned task embeddings zq on Point-Robot-Wind and Sparse-Ant-Dir. Each
point represents a query vector which is color-coded according to its task label.

4.1 ASYMPTOTIC PERFORMANCE

We evaluate FOCAL++ on 6 continuous control meta-environments of robotic locomotion (Todorov
et al., 2012) adopted from FOCAL. 4 (Sparse-Point-Robot, Sparse-Cheetah-Vel, Sparse-Cheetah-Fwd-
Back, Sparse-Ant-Fwd-Back) and 2 (Point-Robot-Wind, Walker-2D-Params) environments require
adaptation by reward and transition functions respectively. For inference, FOCAL++ aggregates
context from a fixed test set to infer task embedding, and is subsequently evaluated online. Besides
FOCAL, three other baselines are compared: an offline variant of the PEARL algorithm (Rakelly et al.,
2019) (Batch PEARL), a context-based offline BCQ algorithm (Fujimoto et al., 2019) (Contextual
BCQ) and a two-stage COMRL algorithm with reward/dynamics relabelling (Li et al., 2019) (MBML).

Shown in Figure 4a, FOCAL outperforms other methods across almost all domains with context
embeddings of higher quality in Figure 4b,4c. In Table 1, our ablation studies also show that each
design choice of FOCAL++ alone can improve the performance of the learned policy, and combining
the orthogonal intra-task attention mechanism with inter-task contrastive learning yields the best
outcome.

4.2 ROBUSTNESS TO MDP AMBIGUITY AND SPARSE REWARD

In our experimental setup, an ideal context encoder should capture the generalizable information for
task inference, namely the difference between reward/dynamics functions across a distribution of
tasks. However, as discussed in Section 1, there are two major challenges that impede conventional
COMRL algorithms from learning robust representations:

Table 3: Average testing return of FOCAL and FOCAL++ on Sparse-Point-Robot with different
distributions of training/testing sets. The numbers in parenthesis represent performance drop due to
distribution shift. Additional experiments are presented in Apppendix C.

Environment Training Testing FOCAL FOCAL++

Sparse-
Point-
Robot

expert
expert 8.16 12.60
medium 7.12(1.04) 12.47(0.13)
random 4.43(3.73) 10.17(2.43)

medium
medium 8.44 12.54
expert 8.25(0.19) 12.44(0.10)
random 6.76(1.68) 10.49(2.05)

Walker-2D-
Params mixed mixed 302.70 391.02

expert 271.69(31.01) 377.46(13.56)

8



Under review as a conference paper at ICLR 2022

(a) State distribution of relabeled
dataset

(b) Test-task performance (c) Batch-wise attention weight

Figure 5: Result on the relabeled Sparse-Point-Robot dataset. (a) State distributions of the expert
datasets for 20 distinct tasks, with goals uniformly distributed on a semicircle. (b) On mixed dataset,
FOCAL completely fails in this scenario whereas FOCAL++ variants with batch-wise attention are
able to learn. (c) Probability distribution of the batch-wise attention weight of samples with absolutely
zero and non-zero reward. Binary classification AUC = 0.969.

MDP ambiguity arises due to COMRL algorithms’ sensitivity to fixed dataset distributions (Li et al.,
2019; Dorfman & Tamar, 2020). Take Sparse-Point-Robot for example, as in Figure 5a, for tasks
with a goal on the semicircle, the state-action distribution exhibits specific pattern which may reflect
task identity. Given D = {(s, a, s′, r)} as input, the context encoder may learn a spurious correlation
between state-action distributions and task identity, which causes performance degradation under
distribution shifts (Table 3).

Sparse reward in meta-environments could exacerbate MDP ambiguity by making a considerable
portion of transitions uninformative for task inference, such as the samples outside any goals in Figure
5a. Attention mechanism, especially the batch-wise channel attention, helps the context encoder
attend to the informative portion of the input transitions, and therefore significantly improve the
robustness of the learned policies.

To demonstrate the robustness of FOCAL++ in presence of the two challenges above, we tested it
against distribution shift by using datasets of various qualities: expert, medium, random and mixed
which combines all three. Shown in Table 3, we observe that overall the performance drop due to
distribution shift is significantly lower when attention and contrastive learning are applied.

Moreover, we are aware that even mixing of datasets generated by different behavior policies cannot
fully eliminate the risk of MDP ambiguity since the state-action distributions for each task still
do not completely overlap. To show that the attention modules introduced by FOCAL++ indeed
works as intended by capturing the reward-task dependency, we create a new dataset on Sparse-
Point-Robot by merging the state-action support across all tasks and relabelling the sparse reward
according to the task-specific reward functions. In principle, this fully prevents information leakage
from the state-action distributions, forcing the context encoder to learn to distinguish the reward
functions between tasks while minimizing the contrastive loss. Shown in Figure 5b, we experimented
with 3 attention variants of FOCAL++ on the relabeled dataset, and found that batch-wise attention
significantly improves the performance as intended. Additionally, we visualize the density distribution
of batch-wise attention weights assigned to samples in Figure 5c. We see a clear tendency for the
batch-attention module to assign zero weight to samples with zero rewards (the absolutely sparse data
points which lie outside all goal circles in Figure 5a) and maximum weights to the non-zero-reward
transitions, with binary classification AUC = 0.969, which is clear evidence of FOCAL++ learning
the correct correlation for task inference by attending to the informative context.

5 CONCLUSION

In this work, we address the understudied COMRL problem and provably improve upon the existing
SOTA baselines such as FOCAL, by focusing on more effective and robust learning of task represen-
tations. Key to our framework is the combination of intra-task attention mechanism and inter-task
contrastive learning, for which we provide theoretical grounding and experimental evidence on the
superiority of our design.
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APPENDIX A PSEUDO-CODE2

Algorithm 1: FOCAL++ Meta-training
• Pre-collected batch Di = {(sj , aj , s′j , rj)}j:1,...,N from a set of training tasks {Ti}i=1,...,n

drawn from p(T )
• Learning rates α1, α2, α3, temperature τ , momentum m

1 Initialize context replay buffer Ci for each task Ti
2 Initialize context encoder network Eq,kφ (z|c), learning policy πθ(a|s, z) and Q-network
Qψ(s, z, a) with parameters φq , φk, θ and ψ

3 while not done do
4 for each Ti do
5 for t = 0, T − 1 do
6 Sample mini-batches of B transitions {(si,t, ai,t, s′i,t, ri,t)}t:1,...,B ∼ Di and update

Ci
7 end
8 end
9 Sample a pair of query-key meta-batches of T tasks ∼ p(T )

10 for step in training steps do
11 for each Ti do
12 Sample mini-batches ci and bi ∼ Ci for context encoder and policy training (bi, ci are

identical by default, the rewards in bi are always non-sparse)
13 Compute zqi = Eqφ(ci)

14 for each Tj do
15 Sample mini-batches cj from Cj and compute zkj = Ekφ(cj)

16 Mij =Mz(z
q
i , z

k
j ) . matrix-form momentum contrast

17 end
18 Liactor = Lactor(bi, E

q
φ(ci))

19 Licritic = Lcritic(bi, E
q
φ(ci))

20 end
21 Lz = Tr(M)
22 φq ← φq − α1∇φqLz
23 φk ← mφk + (1−m)φq . momentum update
24 θ ← θ − α2∇θ

∑
i Liactor

25 ψ ← ψ − α3∇ψ
∑
i Licritic

26 end
27 end

Algorithm 2: FOCAL++ Meta-testing
• Pre-collected batch Di′ = {(sj′ , aj′ , s′j′ , rj′)}j′:1,...,M from a set of testing tasks
{Ti′}i′=1...m drawn from p(T )

1 Initialize context replay buffer Ci′ for each task Ti
2 for each Ti′ do
3 for t = 0, T − 1 do
4 Sample mini-batches of B transitions ci′ = {(si′,t, ai′,t, s′i′,t, ri′,t)}t:1,...,B ∼ Di′ and

update Ci′
5 Compute zqi′ = Eqφ(ci′)

6 Roll out policy πθ(a|s, zqi′) for evaluation
7 end
8 end

2To prevent conflict or misunderstanding, all non-hyperlink equation/theorem numbers in the appendix refer
to those in the main text.
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APPENDIX B DEFINITIONS AND PROOFS

B.1 PROOF OF THEOREM 3.1

Consider a task set {T } = {T1, ..., TT } drawn uniformly from p(T ). In Definition 3.1, the loss
incurred by g on point (c, Ti) ∈ C × {T }3 is defined as `({g(c)i − g(c)i′}i′ 6=i), which is a function
of a T -dimensional vector of differences in the coordinates. Given the definition of the mean task
classifierW µ that g(c) =WE(c) and `(v) = log(1 +

∑
i exp(−vi)) the standard logistic loss as

in (Saunshi et al., 2019), the supervised contrastive loss defined in Eqn 10 can be rewritten as

Lsup(T , g) := ETi∼p(T )
ci∼D

log
1 +

∑
i′ 6=i

exp

∑
j

(Wi′jE(ci)j −WijE(ci)j)

 . (21)

Since the ith row ofW is the mean of latent key vectors with task label i, and E = Ek(z|c) is the
key encoder, Eqn 21 turns into

Lsup(T , g) := ETi∼p(T )

log
1 +

∑
i′ 6=i

exp
(
zki′ · z

q
i − z

k
i · z

q
i

) . (22)

In practice, we estimate the latent vectors zq,ki using batch-wise mean to approximate the the mean
task representation µq,ki . Therefore Lsup in 22 is equivalent to the mean task classifier Lµsup defined
in Definition 3.2. One step futher, assuming uniform distribution of the task set {T }4, the averaged
supervised contrastive loss by Definition 3.3 is

Lµsup(E) := E
{Ti}Ti=1∼p(T )

[
Lµsup({Ti}Ti=1, E)

]
=

1

T

T∑
i=1

log
1 +

∑
i′ 6=i

exp
(
zki′ · z

q
i − z

k
i · z

q
i

) (23)

= − 1

T

T∑
i=1

log
exp (zqi · zki )∑T
j=1 exp (z

q
i · zkj )

, (24)

which is precisely the matrix-form momentum contrast objective (Eqn 8,9) if one rescalesW by a
factor of τ .

B.2 PROOF OF THEOREM 3.3

With Definition 3.5, 3.6 and 3.7, we hereby provide a simplified proof by assuming a constant weight
W (c) on the non-sparse set {cn} and the absolutely sparse set {cs} (Definition 3.5) respectively,
then we have

µq,ki (W ) = pnW (cn)Ecn∼{cn}[E
q,k(cn)] + psW (cs)Ecs∼{cs}[E

q,k(cs)], (25)

where the normalization condition Ec∼Di [W (c)] = 1 implies pnW (cn)+psW (cs) = 1. Therefore,
adding the batch-wise attention is effectively modulating pn and ps. Since pn + ps = 1, without loss
of generality, we apply the following notations:

3C = {(si, ai, s
′
i, Ri(si, ai))} is the context space

4Note that the task set {T } discussed here is a subset of the whole task set and does not necessarily
cover the whole support of p(T ). It is sampled for the sole purpose of computing the contrastive loss.
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pn = p, pnW (cn) = p′ (26)

Ecn∼{cn}[E
q,k(cn)] = x

q,k
n , Ecs∼{cs}[E

q,k(cs)] = x
q,k
s . (27)

Assuming i.i.d xn and xs, which gives

Var(µq,ki (W )) = Var(p′xq,kn + (1− p′)xq,ks ) = (p′)2Var(xq,kn ) + (1− p′)2Var(xq,ks ) (28)

Var(µq,ki ) = Var(pxq,kn + (1− p)xq,ks ) = p2Var(xq,kn ) + (1− p)2Var(xq,ks ). (29)

By B.1, the averaged supervised loss Lµsup(W , E) is equivalent to the matrix-form contrastive
objective, which can be written as

Lµsup(W , E) =
1

T

T∑
i=1

log
1 +

∑
i′ 6=i

exp
(
(µki′ − µki ) · µ

q
i

)
=

1

T

T∑
i=1

log
1 +

∑
i′ 6=i

exp
(
p′(xki′ − xki ) · µ

q
i

) , (30)

where we use the definition of µ in Eqn 25 and the fact that xq,ks is the same across all tasks. Since
the learned Ŵ , Ê ∈ arg minW∈A,E∈EL

µ
sup(W , E), and p′ ≈ p by the identity map initialization of

the residual attention module, we have, for learned p̂′, x̂ and µ̂,

p̂′ ≥ p, (x̂ki′ − x̂ki ) · µ̂
q
i < 0. (31)

Now subtract Eqn 28 by 29, we have

Var(µq,ki (Ŵ ))− Var(µq,ki ) = [(p̂′)2 − p2]Var(xq,kn ) + [(1− p̂′)2 − (1− p)2]Var(xq,ks )

= (p̂′ − p)
[
(p̂′ + p)Var(xq,kn )− (2− p− p̂′)Var(xq,ks )

]
≤ 0, if p ≤ p̂′ ≤ (2− p)Var(xq,ks )− pVar(xq,kn )

Var(xq,kn ) + Var(xq,ks )
. (32)

The left inequality automatically holds by Eqn 31, the RHS is satisfied when

p ≤ Var(xq,ks )

Var(xq,kn ) + Var(xq,ks )
, (33)

or equivalently,

ps = (1− p) ≥ Var(xq,kn )

Var(xq,kn ) + Var(xq,ks )
, (34)

which means when the sparsity of reward exceeds the threshold, a learned batch attention module can
reduce the variance of the mean task representation µq,ki . Eqn 34 is corroborated by our experiments
on the relabeled Sparse-Point-Robot dataset (Figure 6).
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APPENDIX C ADDITIONAL EXPERIMENTS

In Table 4, we present more experimental evidence that FOCAL++ is more robust against distribution
shift compared to FOCAL on Walker-2D-Params, which is consistent with Table 3 in the main text.

Table 4: Extension of Table 3 in the main text. Average testing return of FOCAL and FOCAL++ for
more settings of distribution shift on Walker-2D-Params.

Environment Training Testing FOCAL FOCAL++

Walker-2D-
Params

expert
expert 373.92 364.75
mixed 322.24(51.68) 340.60(24.15)
random 284.94(88.98) 297.43(67.32)

mixed
mixed 302.70 391.02
expert 271.69(31.01) 377.46(13.56)
random 260.02(42.68) 346.95(44.07)

Figure 6: The variance-sparsity relation for FOCAL++/FOCAL on the relabeled Sparse-Point-Robot
dataset. The y-axis measures the variance of the bounded task embeddings z ∈ (−1, 1)l averaged
over all l latent dimensions. See more details in D.2.

Moreover, to testify our conclusion in B.2, we present the variance of task embedding vectors of
FOCAL++ and FOCAL under various sparsity levels. Shown in Figure 6, the variance of the weighted
embeddings µq,ki (Ŵ ) becomes lower than its unweighted counterpart µq,ki when sparse ratio exceeds
a threshold about 0.6. The observation matches well with Eqn 34 we derived in B.2.

17



Under review as a conference paper at ICLR 2022

APPENDIX D EXPERIMENTAL DETAILS AND HYPERPARAMETER

D.1 OVERVIEW OF THE META ENVIRONMENTS

The meta-environments could be divided into two categories: meta-environments that only differ in
reward function and that only differ in transition function. For the meta-environments that only differ
in reward functions, we additionally introduce sparsity to the reward function.

• Sparse-Point-Robot is a 2D-navigation task with sparse reward, introduced in Rakelly et al.
(2019). Each task is associated with a goal sampled uniformly on a unit semicircle. The
agent is trained to navigate to set of goals, then tested on a distinct set of unseen test goals.
Tasks differ in reward function only.

• Point-Robot-Wind is another variant of Sparse-Point-Robot. Each task is associated with
the same reward but a distinct ”wind” sampled uniformly from [−l, l]2. Every time the
agent takes a step, it drifts by the wind vector. We set l = 0.05 in this paper. Tasks differ in
transition function only.

• Sparse-Cheetah-Vel, Sparse-Ant-Fwd-Back, Sparse-Cheetah-Fwd-Back are sparse-
reward variants of the popular meta-RL benchmarks Half-Cheetah-Vel, Sparse-Ant-Dir
and Sparse-Cheetah-Fwd-Back based on MuJoCo environments, introduced by Finn et al.
(2017) and Rothfuss et al. (2018). Tasks differ in reward function only.

• Walker-2D-Params is a unique environment compared to other MuJoCo environments.
Agent is initialized with some system dynamics parameters randomized and must move
forward. Transitions function is dependent on randomized task-specific parameters such as
mass, inertia and friction coefficients. Tasks differ in transition function only.

The way we sparsify the reward functions is as follows.

sparsified reward =

{ reward−goal radius
| goal radius | , if reward > goal radius

0, otherwise .
(35)

Intuitively, we set rewards of states that lie outside a neighborhood of the goal to 0, and re-scaled
the rewards otherwise so that the sparse reward function is continuous. For each of the sparsified
environments other than the relabeled Sparse-Point-Robot, we set its goal radius to achieve a non-
sparse rate of about 50%. Note that only the transitions used for training the context-encoder are
sparsified, since the focus of this paper is learning effective and robust task representations.

D.2 RELABELED DATASET

As discussed in Section 4.3, to prevent information leakage of task identity from state-action distri-
bution, we construct the relabeled Sparse-Point-Robot dataset from a pre-collected dataset of the
Sparse-Point-Robot environment.

Figure 7 illustrates the generating process for task 2 of the original dataset. The original state
distribution of five example tasks on Sparse-Point-Robot is shown in the upper-left. After merging
the transition state-action support across all tasks, the (state, action, next state) distribution are
identical for every specific task. Then we recompute the reward for each transition according to the
task-specific reward functions and sparsify the result. We perform the merge-relabel-sparsify process
for all tasks on Sparse-Point-Robot to enhance the importance of the non-sparse samples for task
inference. The sparse samples in Figure 7 of the main text are those that lie outside of all goals, i.e.
transitions with zero reward across all tasks.

The dataset can be accessed and downloaded from relabeled dataset.

D.3 HYPERPARAMETERS

Tables 5 and 6 describe the hyperparameters used in our empirical evaluations.
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Figure 7: Generating process of the relabeled Sparse-Point-Robot dataset.

Table 5: Specifications of the environments experimented in our paper.

Training Set Training Tasks Testing Tasks Goal Radius
Sparse-Point-Robot 80 20 -0.2

Sparse-Point-Robot (relabeled) 80 20 -0.5
Point-Robot-Wind 40 10 N/A

Sparse-Cheetah-Vel 80 20 -0.1
Sparse-Ant-Fwd-Back 2 2 3

Sparse-Cheetah-Fwd-Back 2 2 6
Walker2d-Rand-Params 20 5 N/A

D.4 IMPLEMENTATION

All experiments are carried out on 64-bit CentOS 7.2 with Tesla P40 GPUs. Code is implemented
and run with PyTorch 1.2.0. One can refer to the source code in the supplementary material for a
complete list of dependencies of the running environment.
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Table 6: Hyperparameters used for training to produce Figure 4(a). Meta-batch size refers to the
number of distinct tasks for computing the DML or contrastive loss at a time. Larger meta-batch size
leads to faster convergence but requires greater computational power. For Fwd-Back environments, a
meta-batch size of 4 suffices for stability and efficiency.

Hyperparameters Point-Robot Mujoco
reward scale 100 5

discount factor 0.9 0.99
maximum episode length 20 200

target divergence N/A 0.05
behavior regularization strength(α) 0 500

latent space dimension 5 20
meta-batch size 16 16*

dml lr(α1) 1e-3 3e-3
actor lr(α2) 1e-3 3e-3
critic lr(α3) 1e-3 3e-3

DML loss weight(β) 1 1
contrastive T 0.5 0.5
contrastive m 0.9 0.9

buffer size (per task) 1e4 1e4
batch size (sac) 256 256

batch size (context encoder) 512 512
g lr(f-divergence discriminator) 1e-4 1e-4

transformer hidden size (context encoder) 128 128
multihead (if enabled) 8 8

reduction (batch attention) 16 16
transformer blocks (context encoder) 3 3

dropout (context encoder) 0.1 0.1
network width (others) 256 256
network depth (others) 3 3
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