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Figure 1: Real-world object dynamicity — pixel dynamicity — fluid dynamicity. The object dynamicity
in the open world manifests through deformation and self-occlusion, as exemplified by the bird in the figure.
From a visual perspective, such object dynamicity can be decomposed into pixel dynamicity. The pixels are
subsequently modeled as fluid lattices that simulate hydrodynamic streaming and collision processes, and the
pixel motion states are efficiently addressed with the proposed lattice Boltzmann model (LBM).

Abstract

This work proposes the Lattice Boltzmann Model (LBM) to learn real-world pixel
dynamicity for visual tracking. LBM decomposes visual representations into
dynamic pixel lattices and solves pixel motion states through collision-streaming
processes. Specifically, the high-dimensional distribution of the target pixels
is acquired through a multilayer predict-update network to estimate the pixel
positions and visibility. The predict stage formulates lattice collisions among
the spatial neighborhood of target pixels and develops lattice streaming within
the temporal visual context. The update stage rectifies the pixel distributions
with online visual representations. Comprehensive evaluations of real-world point
tracking benchmarks such as TAP-Vid and RoboTAP validate LBM’s efficiency. A
general evaluation of large-scale open-world object tracking benchmarks such as
TAO, BFT, and OVT-B further demonstrates LBM’s real-world practicality.

1 Introduction

Online and real-time pixel tracking is designed to achieve continuous localization of any specified
pixel for real-world applications, such as embodied manipulation Wen et al. (2024); Zhang et al.
(2024) and medical vision Schmidt et al. (2024). However, existing solutions are predominantly
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offline Doersch et al. (2022); Cho et al. (2024) or semi-online Harley et al. (2022); Karaev et al.
(2024b); Li et al. (2024b), leading to significant practical limitations: 1) high resource consumption
from full video or time window buffering causes excessive memory usage, which is unsuitable for
edge-device deployment in embodied systems; 2) inevitable latency due to the integrity of video or
window input, preventing real-time inference; 3) inadequate dynamic responsiveness, lacking the
ability to adapt to newly emerging pixels in videos immediately; 4) privacy and storage concerns, as
storing full video data poses risks of privacy breaches and imposes substantial storage costs.
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Before introducing the proposed LBM, we system- Figure 2: Efficiency comparison on TAP-Vid
atically outline its theoretical foundation in the lat- DAVIS benchmark with an NVIDIA Jetson Orin NX
tice Boltzmann method Mohamad (2011) for fluid SYPerl LBM shows efficiency with higher inference
simulations. Fundamentally, the lattice Boltzmann speed and smaller model size.The size of the circles
method discretizes fluids into lattices where the corresponds to the number of parameters.
distribution functions undergo collision and streaming operations governed by the Boltzmann trans-
port equation. The inherent locality of collision and explicit time-stepping streaming contribute to
computational efficiency.

Analogous to the lattice Boltzmann method, LBM discretizes the video into individual pixel lattices
and estimates the motion states by characterizing the high-dimensional distributions of the lattices,
as shown in Figure 1. Specifically, LBM employs a multi-layer predict-update network to estimate
the distribution of specified pixel lattices. During the predict stage at each layer, the LBM employs
collision and streaming operations to estimate the current target particle distribution. The collision step
primarily accounts for the neighborhood distribution of lattices, modeling local lattice interactions.
The streaming step governs the temporal evolution of the distribution function by propagating particles
to adjacent lattices. In the update phase, the predicted lattice distribution is refined using online
visual features. The position and visibility of target pixels at the current timestep are derived from the
updated lattice distribution, processed through dedicated tracking and visibility heads. Compared
with existing methods, LBM exhibits a distinct efficiency advantage, as illustrated in Figure 2.

To further address the dynamicity of real-world objects, LBM decomposes targets as ensembles of
fine-grained pixels and establishes object associations through pixel tracking. Specifically, LBM
decomposes object motion into more robust multi-pixel motion patterns, thereby enabling enhanced
stability in resolving object kinematic states and stronger robustness against detection failures. In
contrast to the method Zheng et al. (2024) that adopts window-based tracking, LBM dynamically
prunes outlier pixels (e.g., background and drifted pixels) and incorporates new inliers, thereby
improving tracking responsiveness for highly dynamic objects.

2 Related Work
2.1 Tracking any point

Offline and semi-online methods The predominant frameworks for point tracking encompass offline
methods that process the entire video and semi-online methods that rely on a multi-frame sliding
window. PIPs Harley et al. (2022) and TAP-Net Doersch et al. (2022) establishes the point tracking
baseline. TAPIR Doersch et al. (2023) and LocoTrack Cho et al. (2024) provide efficient solutions
for cost volume computation. CoTracker series Karaev et al. (2024b,a) introduce proxy tokens to
reduce computational cost. TAPTR Li et al. (2024b) and TAPTRv2 Li et al. (2024a) employ an
architectural framework analogous to DETR Carion et al. (2020) and tracking points by detection.



Despite marked advancements in model performance, prevailing methods are still constrained to
offline or window-based online paradigms that incur substantial systemic latency.

Online methods Driven by the pragmatic demands of real-world applications, online methods have
witnessed a burgeoning emergence. MFT Neoral et al. (2024) extends the optical flow framework to
multi-frame contexts. TAPIR Doersch et al. (2023)-related models achieve online adaptation through
temporally causal masking. DynOMo Seidenschwarz et al. (2025) achieves online point tracking
through dynamic 3D Gaussian reconstruction. Track-On Aydemir et al. (2025) further enhances
online performance through spatiotemporal memory components. Compared to these works, the LBM
places emphasis on tracking efficiency, particularly in real-time tracking under resource-constrained
edge computing conditions, to meet the requirements of practical tracking applications.

2.2 Tracking dynamic objects

Traditional object tracking methods Multi-object tracking (MOT) predominantly focus on targets
with limited dynamic characteristics in constrained scenarios, such as pedestrians Dendorfer et al.
(2020) and vehicles Yu et al. (2020). Methods like TransTrack Sun et al. (2020), TrackFormer Mein-
hardt et al. (2022), and TransCenter Xu et al. (2022) adopt DETR Carion et al. (2020)-based
architectures that model targets as learnable queries. However, these solutions typically represent
targets as holistic entities and are vulnerable to performance degradation when handling highly
dynamic targets. Such limitations become particularly pronounced during target deformation, partial
occlusion, and fast motion.

Open-world object tracking methods Recent advancements have extended MOT to diverse scenar-
ios and arbitrary object categories. extend to diverse scenarios and arbitrary targets. OVTrack Li et al.
(2023) and MASA Li et al. (2024c) integrate text encoder to specify tracking targets. UNINEXT Yan
et al. (2023) and GLEE Wu et al. (2024) adapt open-world detection architectures to tracking tasks
through fine-tuning on videos. Motion modeling methods from conventional trackers like SORT Bew-
ley et al. (2016) can achieve open-world tracking through integration with open-vocabulary detectors.
NetTrack Zheng et al. (2024) addresses dynamic targets through decomposition of holistic objects
into nets, enabling fine-grained tracking. Considering the vulnerability of most methods to catas-
trophic detection failures in applications, LBM adopts fine-grained pixel tracking and high-responsive
updates to ensure robust applicability across diverse dynamic scenarios.

3 Method

3.1 Preliminary: lattice Boltzmann method

The lattice Boltzmann method solves the discrete velocity of the fluid on the lattice with streaming
and collision processes. Given position x and time ¢, the discrete distribution function f is as follows:

F(x,t) = > [filx — ciAt,t — At) + Qi(x — c; AL, t — At)] 1)

1
where At and c; denote the time step and discrete velocity in the i-th direction, respectively. (2
describes the collision of lattices on each node, which describes the relaxation of the distribution
function towards the equilibrium distribution. By solving for streaming-collision processes, the
density p and discrete velocity u of the fluid are obtained as:

p(x,t) = Z filkx,t),  pu(x,t) = Zcifxx,t) : )

3.2 Lattice Boltzmann model for point tracking

Given the input image I € R3*#*W and N query points q € RV *2, lattice Boltzmann model
(LBM) estimates the positions p € R" *2and visibility v € R¥ of these points in subsequent image
streams in the real-time and online manner. This process is achieved by treating the query points as
fluid particles and solving their d-dimensional distribution f € RY*¢ in dynamic scenes through
streaming and collision processes. As shown in Figure 3, the specific steps include the following:

Visual encoding To model visual representations, LBM employs the first three layers of a
ResNet18 He et al. (2016) model pre-trained on ImageNet Deng et al. (2009) as the visual en-
coder. In contrast to previous methods that process multi-level features separately, we follow Xie et al.
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Figure 3: LBM framework for point tracking, illustrating 1) the distribution initialization process in LBM, 2)
the LBM update step that incorporates online visual features to update the pixel distribution, 3) the derivation of
streaming and collision distributions, and 4) the LBM predict process that utilizes both streaming and collision
distributions to predict current pixel distribution. Lightweight architectures have been implemented for LBM
modules to accommodate real-world deployment requirements.

(2021) by upsampling all feature maps to a stride of 4 and concatenating them after projections, and
acquire the output visual representations o € R%X TX°T . The design of the visual encoder primarily
considers efficiency.

Distribution initialization It is essential to initialize the distribution function when formulating
query points as fluid particles. LBM accomplishes this by sampling the visual representations o
corresponding to the query points q, i.e., fi,;; = BilinearSample(o, q) € RV x4,

Distribution prediction Corresponding to Equation 1, within a new time step, LBM learns from the
previous distribution functions and predicts the distribution functions at the current moment ¢ through
the streaming and collision processes. Differently, LBM consolidates the distribution functions from
multiple directions into a single d-dimensional distribution. In contrast to Equation 1, LBM does not
employ fixed neighboring pixels as collision elements. Instead, it computes the interaction between
the pixel distribution and a learnable neighborhood §, thereby ensuring adaptability to dynamic
scenes. At this stage, the prediction step can be formulated as follows.

£(x,]8) = £(x,t — At|5) + Q(z, t — AL5) | 3)

where the collision operator (2 is implemented as the deformable attention Zhu et al. (2020). For
stronger robustness, the temporal context is further extended from a single historical time step to Ny,
consisting of streaming distributions f, € R™*Ns*4 and collision distributions f, € RY*Nsxd To
ensure the stability of pixel distributions, we initialize the distribution with f;,,;; at each time step and
facilitate its interaction with f; and f, via cross-attention modules ¢. Equation 3 is reformulated as:

f= ¢c(¢s(finitaf5>7fc) 5 f, = {f }z t—N, > f. = {Q(fzaoupz|6 ) i= t N, 4
The details of the collision process are discussed in the Appendix A.1.

Distribution update In a new time step ¢ and its corresponding image I, pixels should dynamically
update their positions p and distribution functions f. LBM first computes the correlation map between
the pixel distribution f and visual representations o. The top-k response values from this map are then
selected as reference points r € RY***2 (o update the pixel distribution function via deformable
attention module ¢ as: 1 (f, 0,r). The update stage primarily refines the distribution function by
integrating visual representations from multiple latent potential positions. The adoption of deformable
attention remains instrumental in enhancing computational efficiency.

Multi-layer predict-update Transformer Different from approaches employing multiple iterations,
LBM employs a multi-layer Transformer architecture, which enhances inference efficiency while
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Figure 4: LBM framework for object tracking. LBM is initialized by sampling multiple fine-
grained pixels within the target boxes, matches with pixels, and dynamically prunes outliers while
replenishing with newly sampled inliers.

maintaining high tracking accuracy. Each Transformer layer comprises a prediction step and an
update step as discussed earlier. As the depth of the Transformer layers increases, the number of
reference points in the update stage progressively decreases layer by layer, and is ultimately reduced
to one in the last layer, serving as the definitive reference point r;,5; € RNV*2,

The final output distribution functions are fed into the track head and visibility head to predict the
point position p and visibility v, respectively. Corresponding to Equation 2, the track head predicts
the offset Ap € RV *2 of tracked points from the final reference points r;,s;. Following previous
work Karaev et al. (2024a), the confidence p € RY and visibility v € R" are predicted through a
coupled head. These processes are as follows:

Ap = Hirack(£,0,T1ast) ,  {p, v} = Houis(£,0,T1ast) - ®)
Both heads H . and H,;s consist of a deformable attention module and an MLP layer.
Loss The composition of the loss in LBM is as follows:
L= AasLlers + Lreg + Luis + Leonf (6)

The cross-entropy loss is employed to the correlation map c at each layer of the Transformer as
Leis = CE(c, cge|vge). The offset Ap is supervised by L1 loss as L, = L1(Ap, Apg|vge). Only
visible points are considered in the above two losses. The visibility loss and confidence loss both
adopt cross-entropy losses as:Ly;s = CE(0(v),Vgt), Leons = CE(c(p), 1[|lp — Pyl < 8]. Please
refer to Appendix A.1 for details.

3.3 Lattice Boltzmann model for object tracking

In object tracking, LBM takes image I € R3*#*W and corresponding M detection boxes b € RM x4
as input, and associates objects in the subsequent image streams.

Matching Associating instances across consecutive time steps is realized by point-based matching,
as shown in Figure 4. Compared with Zheng et al. (2024), LBM demonstrates higher efficiency
by eliminating prior coarse matching within temporal windows. Specifically, upon receiving a new
instance, [V inlier pixels are randomly sampled from the bounding box as fine-grained pixels and
initialized. As a new frame arrives, the LBM predicts both positional coordinates and visibility states
of the pixels. Instance association is subsequently achieved by evaluating the spatial correspondence
between the predicted pixels and the inlier pixels within the bounding boxes of instances in the new
frame. Please refer to Appendix A.2 for implementation details.

Update LBM’s real-time responsiveness further benefits object tracking by eliminating background
pixels, thereby enhancing robustness under noise. Specifically, LBM implements dynamic point
management: pixels persistently residing outside target bounding boxes for consecutive frames are
systematically eliminated during each update cycle. Concurrently, novel inlier pixels are replenished
within the current bounding box. The update mechanism effectively maintains instance represen-
tation integrity while accommodating challenging target dynamicity, including partial occlusions,
deformations, and background changes that usually cause tracking failures.

4 Experiments
4.1 Experimental setup

The critical details of the experimental setup are discussed as follows. Please refer to Appendix B for
more training and evaluation details.



Table 1: Real-world point tracking performance on TAP-Vid DAVIS, TAP-Vid Kinetics, and
RoboTAP datasets. * denotes training on additional data. LBM reaches SOTA online performance
with fewer parameters and higher efficiency, even compared with offline methods.

TAP-Vid DAVIS TAP-Vid Kinetics RoboTAP

Model Params Ajt Gi,T OAT AIT  4i,T OAT  AIT 0%, OAT
1) Offline
TAPIR Doersch et al. (2023) 31M 56.2 70.0 86.5 49.6 64.2 85.0 59.6 73.4 87.0
LocoTrack Cho et al. (2024) 12M 62.9 753 872 529 66.8 853 623 76.2 87.1
BootsTAPIR* Doersch et al. (2024) 78M 61.4 73.6 88.7 54.6 68.4 86.5 649 80.1 86.3
CoTracker3 Karaev et al. (2024a) 25M 63.3 76.2 88.0 535 66.5 864 599 73.4 87.1
CoTracker3* Karaev et al. (2024a) 25M 64.4 76.9 912 547 67.8 874  64.7 78.8 90.8
2) Window-based Online
PIPs Harley et al. (2022) 29M 422 64.8 71.7 31.7 53.7 72.9 - -
PIPs++ Zheng et al. (2023) 25M - 73.7 - - 63.5 - - 63.0 -
CoTracker Karaev et al. (2024b) 45M 61.8 76.1 883  49.6 64.3 833 586 73.4 87.0
TAPTR Li et al. (2024b) 42M 63.0 76.1 91.1 49.0 64.4 85.2 60.1 75.3 86.9
TAPTRV2 Li et al. (2024a) 41M 63.5 75.9 91.4 49.7 64.2 85.7 60.9 74.6 87.7
SpatialTracker Xiao et al. (2024) 34M 61.1 76.3 89.5 50.1 65.9 86.9 - - -
CoTracker3 Karaev et al. (2024a) 25M 64.5 76.7 89.7 54.1 66.6 87.1 60.8 73.7 87.1
CoTracker3* Karaev et al. (2024a) 25M 63.8 76.3 90.2 55.8 68.5 88.3 64.7 78.0 89.4
3) Online
DynOMo Seidenschwarz et al. (2025) - 45.8 63.1 81.1 - - - - - -
MFT Neoral et al. (2024) - 47.3 66.8 77.8 39.6 60.4 72.7 - - -
Online TAPIR Doersch et al. (2023) 31IM 56.7 70.2 85.7 51.5 64.4 85.2 59.1 - -
DOT Le Moing et al. (2024) - 53.5 67.8 854 453 58.0 814 519 62.9 79.9
Track-On Aydemir et al. (2025) 49M 65.0 78.0 90.8 539 67.3 87.8 635 76.4 89.4
LBM (ours) 18M 65.1 71.5 89.5 534 66.9 86.1 614 75.8 87.4

Training Consistent with previous works Doersch et al. (2022); Karaev et al. (2024b), LBM uses
TAP-Vid Kubric Greff et al. (2022) dataset for training, which contains 11% video sequences of 24
frames each. The training process encompasses 150 epochs (approximately 100k iterations) using 4
NVIDIA H800 GPUs with a total batch size of 16 and FP16 mixed-precision.

Evaluation datasets Three real-world point tracking benchmarks are employed, including TAP-Vid
DAVIS, TAP-Vid Kinetics, and RoboTAP Vecerik et al. (2024). Open-world object tracking datasets
include: TAO Dave et al. (2020) validation set, BFT Zheng et al. (2024) test set, and OVT-B Liang
and Han (2024).

Evaluation metrics For point tracking, evaluation adheres to TAP-Vid benchmark Doersch et al.
(2022), comprising average Jaccard (AJ), 67, ., and occlusion accuracy (OA). The evaluation metrics
for open-world object tracking include TETA Li et al. (2022) and OWTA Liu et al. (2022). TETA is
a comprehensive metric assessing association accuracy (AssA), localization accuracy (LocA), and

classification accuracy (CIsA). The object categories are divided into novel and base.

4.2 Main results

Point tracking performance evaluation is summarized in Table 1. State-of-the-art (SOTA) methods
are categorized into three classes: offline, window-based online, and online. Offline methods ingest
full video sequences as input, window-based approaches process temporal segments of 8 or 16
frames Karaev et al. (2024b), while online methods exclusively utilize the current frame with
per-frame inference, achieving optimal responsiveness and demonstrating strong practicality for
real-world deployment. LBM achieves SOTA performance with an exceptionally lean parameter
configuration (18 M), surpassing most existing window-based online and offline methods. Notably,
LBM reaches the SOTA performance with only 37% parameters compared with Track-On. As
quantitatively validated in Figure 2, LBM demonstrates real-time operational capability at 14.3 FPS
on the NVIDIA Jetson Orin NX Super edge platform, with a 3.9x speed advantage over Track-On,
thereby showing computational efficiency and practicality in real-world environments.

Object tracking performance of LBM and other SOTA methods is systematically compared in
Table 2 for TAO, Table 3 for OVT-B, and Table 4 for BFT. The evaluated models are categorized
into two paradigms based on training strategies: additional training with trackers fine-tuned with



Table 2: Real-world object tracking performance on TAO validation dataset. Without training on
domain-specific data of object tracking, LBM demonstrates state-of-the-art performance.

All Novel
TETAT LocAT AssocAT ClsAT TETAT LocAT AssocAT ClIsAT TETAT LocAT AssocAT ClIsAT

Base

Model

1) Additional training

Tracktor++ Bergmann et al. (2019) 28.0 49.0 22.8 12.1 28.3 474 20.5 17.0 22.7 46.7 19.3 22
DeepSORT Wojke et al. (2017) 26.0 48.4 17.5 12.1 26.9 47.1 15.8 17.7 21.1 46.4 14.7 2.3
UNINEXT Yan et al. (2023) 31.9 13.4 35.5 17.1 = - = - - = - N
AOA Du et al. (2021) 25.3 234 30.6 219 - - - - - - - -
QDTrack Pang et al. (2021) 30.0 50.5 274 12.1 27.1 45.6 24.7 11.0 22.5 42.7 24.4 0.4
TETer Li et al. (2022) 40.1 56.3 399 24.1 - - - - - - -
OVTrack Li et al. (2023) 34.7 493 36.7 18.1 355 493 36.9 20.2 27.8 48.8 33.6 1.5
GLEE-Plus Wu et al. (2024) 415 40.9 30.8 - - - - - - - -
MASA Li et al. (2024c) 46.3 44.1 289 47.0 66.0 4.5 30.5 40.8 64.4 41.2 17.0
SLAck Li et al. (2024d) 41.1 41.8 25.1 - - - - - - - -
OVTrack+ Liang and Han (2024) 384 40.8 16.9 39.2 57.5 41.0 18.9 325 57.0 38.7 1.8
2) Training-free

SORT Bewley et al. (2016) 249 48.1 143 12.1 - - - - - - - -
Tracktor Bergmann et al. (2019) 242 47.4 13.0 12.1 - - - - - - - -
ByteTrack Zhang et al. (2022) 27.6 48.3 20.2 14.4 28.2 50.4 18.1 16.0 22.0 48.2 16.6 1.0
OC-SORT Cao et al. (2023) 28.6 49.7 21.8 14.3 28.9 514 19.8 15.4 23.7 49.6 20.4 1.1
NetTrack Zheng et al. (2024) - - - - 33.0 45.7 28.6 24.8 32.6 513 33.0 13.3
LBM (ours) 45.3 70.0 324 334 46.5 69.9 33.2 36.4 36.1 70.8 26.2 11.4

Table 3: Real-world object tracking performance on OVT-B dataset. Without training on domain-
specific data of object tracking, LBM demonstrates state-of-the-art performance.

All Novel
TETAT LocAT AssocAT CIsAT TETAT LocAT AssocAT CIsAT TETAT LocAT AssocAT CIsAT

Base

Model

1) Additional training

OVTrack Li et al. (2023) 46.8 60.5 66.7 134 455 61.1 65.5 9.6 46.1 60.8 66.1 11.5
OVTrack+ Liang and Han (2024) 47.6 61.6 68.2 132 46.4 62.5 67.3 9.4 47.0 62.0 67.7 11.3
2) Training-free

ByteTrack Zhang et al. (2022) 20.6 35.6 12.7 13.4 19.6 36.6 12.0 10.3 20.1 36.1 12.4 11.9
OC-SORT Cao et al. (2023) 16.5 31.0 4.4 143 154 314 4.3 10.3 16.0 312 43 12.3
StrongSORT Du et al. (2023) 25.7 314 31.6 14.2 239 31.8 29.7 10.3 24.8 31.6 30.7 122
LBM (ours) 56.8 75.7 71.7 229 57.5 74.7 724 255 56.0 76.7 70.9 20.3

Table 4: Real-world dynamic object tracking performance

supplementary data and tracking an-
PP Y £ on BFT dataset.

notations, e.g., TAO training set,

YTVIS Yang et al. (2019)), and
training-free with models operating
without leveraging domain-specific

Model

OWTAT D.Ref A.Acc.t

1) Finetuned on BFT train set

A LS CenterTrack Zhou et al. (2020) 61.6 70.5 54.0
tracking supervision. LBM estab- FairtMOT Zhang et al. (2021) 402 575 282
lishes SOTA performance and demon- TransTrack Sun et al. (2020) 66.8 3.9 60.3
strates methodological universality TrackFormer Meinhardt et al. (2022) 67.4 74.5 61.1
outperforming bOth non ﬁnetuned ap’ TransCenter Xu et al. (2022) 63.5 73.2 55.3
proaches and domain-specific finetun- 2) Zero-shot setting
ing strategies. On the TAO bench- gg‘;{??SORIT Du ﬂll u(l5§)21?2)3) ‘5‘;; 2;‘-; 2‘61-5

. _ ewiley et al. (2 0 . . B
;nark’ LBM ali/}llllAe;eAs CIS]n]tp?)Iiable Eer IOUTracker Bochinski et al. (2017) 70.9 77.4 65.0
ormance to . INotably, when ByteTrack Zhang et al. (2022 64.1 67.9 60.5
processing identical detection inputs OC-SORT Cao et al. (2023) 69.0 70.9 67.2
as GLEE-Plus. LBM delivers statisti- NetTrack Zheng et al. (2024) 72.5 80.7 65.2
’ LBM (ours) 74.5 80.0 69.4

cally significant +4.2 gains on TETA.
LBM achieves best performance on the OVT-B benchmark with a +9.2 TETA gain over SOTA
OVTrack+. These cross-domain advancements substantiate LBM’s zero-shot generalization capacity
without dataset-specific adaptation. Further validating operational robustness, LBM attains 74.5
OWTA on the BFT benchmark to track highly dynamic objects, surpassing NetTrack by a +2.0
OWTA gain, demonstrating the ability to track highly dynamic objects.

4.3 Ablation study

Collision and streaming Module ablation is shown in Table 5, which shows 1) removing the
streaming module eliminated historical distribution, thereby erasing temporal context and making
it susceptible to abrupt changes in dynamic pixel distributions, resulting in a 0.9 AJ degradation;
2) disabling the collision module deprived pixels of neighborhood distribution, causing locality
constraints. Compared to streaming module removal, this incurred 1.2 OA reduction, indicating
heightened vulnerability to occlusions; 3) both modules contributed to performance gains at the cost
of increased parameters and approximately 11 ms latency on the NVIDIA Jetson Orin NX.



Table 5: Module ablation of LBM on TAP-Vid DAVIS benchmark. The speeds are tested on an
NVIDIA Jetson Orin NX super.

Modules
Streaming _ Collision Params  Speed?  AJT 67,7 OAT g'Pop %oy v §8peq glOpep
v v 178M 143FPS 651 77.5 895 468 70.2 84.9 91.3 94.6
X v 154M 17.1FPS 642 770 892 46.0 69.7 84.7 90.7 94.1
v X 147M 178FPS 63.6 769 88.3 46.4 69.7 839 90.6 93.9
X X 124M 21.5FPS 518 662 77.0 40.1 59.5 71.3 77.5 82.6

Table 6:  Ablation on number of predict- Tuple 7:  Ablation on the visual encoder.

update layers. 3 predict-update layers achieve  ResNet18 obtains better efficiency compared
better efficiency on TAP-Vid DAVIS. with Swin-T on TAP-Vid DAVIS.

Nigyer Params  Speed? AIf 67, 1 OAf

avg

2 147M I85FPS 642 773 893 4
R IR A S Swin-T  273M  89FPS 630 766 887

1 210M 112FPS 649 773 896 ResNetl8 17.8M 143FPS 651 77.5 895

Encoder Params  Speed? AJT 4%,.1T OA?T

avg

Transformer layer The number of predict-update layers in the Transformer is discussed in Table 6.
Each predict-update layer contains approximately 3.1 M parameters and introduces a computational
latency of 18 ms. Compared to the 2-layer architecture, the 3-layer model demonstrates a performance
gain of +0.9 AJ metric. However, the 4-layer configuration shows negligible improvement over its 3-
layer counterpart, indicating the existence of performance saturation in deeper network configurations
for point tracking. Therefore, LBM adopts the 3-layer configuration as the default architectural
setting, achieving an optimal balance between computational efficiency and model performance.

Visual encoder As shown in Table 7, we substituted ResNet18 with Swin-T Liu et al. (2021) while
maintaining identical implementation protocols: utilizing ImageNet pre-trained weights, extracting
hierarchical features from blocks with stride configurations of [4, 8, 16], and spatially aligning
these multi-scale representations through convolutional projection layers to stride=4 followed by
channel-wise concatenation. Despite introducing 9.5 M additional parameters and incurring a 42
ms computational overhead, the architectural substitution demonstrated a 2.1 AJ metric degradation
compared to the ResNet18 baseline, highlighting the non-trivial performance trade-offs. The observed
performance discrepancy could be attributed to ResNet’s superior capability in preserving spatial
integrity, particularly through enhanced spatial alignment during hierarchical

Spatial awareness CoTracker proposes expanding the number of queries to enhance the model’s
spatial awareness. Therefore, Track-On, CoTracker3, and CoTracker employ initialized K x K grid
points as extended queries. However, increasing query number typically compromises the model’s
inference speed, especially in real-world applications. In contrast, LBM benefits from learning the
pixel collision process and inherently possesses stronger spatial perception capabilities, as illustrated
in Figure 5. Without additional extended queries, the performance improvement of LBM is less
pronounced compared to other methods (+0.1 against -1.7, -1.6, and -1.8 on AJ metric), demonstrating
its better spatial awareness.

Dynamic object tracking on BFT benchmark is shown in Figure 6. The tolerance timeout denotes
the maximum frames allowed for allocated pixels to be outliers. A higher timeout slows pixel updates,
reduces fine-grained dynamicity, and hence degrades tracking performance. A timeout of 1 frame
induces excessively low tolerance and influences the stability of fine-grained pixels. Therefore, a

76

-0.3 OWTA
90 I extend 74 )
OA 72
871 -
T T 68 Tolerance timeout
1 3 5 7 9 11 13 15 17 19
76 83
1 L OWTA
_ +0.1 - 73
65T ¢ e cond & o 16 25 36 49 64 81 100
Al -1. 15 exten o /
-1.8 .
60 53 11 Allocated pixels
LBM (ours) Track-On CoTracker3 CoTracker 0 10 20 30 40 50 60 70 80 9 100

Figure 5: Ablation on extended queries. LBM  Figure 6: Ablation on LBM for object track-
benefits from spatial awareness and reduces de- ing. The tolerance timeout and number of allo-
pendency on extended queries for efficiency. cated pixels are taken into account.



Figure 7: Dynamic neighbor visualization. A single pixel is tracked, and its neighbors are visualized.
The tracked pixels are marked by red circles.

7%

T,
AT

Detection Detection Detection Detection Detection
success success success failure recovered
- ) 5
Fine-grained 4 Remove outliers Environment N Fine-grained [
association " Add new points change ﬂ association
_— —_— —_—
" {
ID: 0 ID: 0 ID: 0 o ID: 0 o4 ID: 0
Initialized Tracked Tracked Kept Tracked

Figure 8: Object tracking visualization. LBM achieves robust object tracking by learning the
dynamic pixel trajectories of the object, effectively mitigating the issue of detection failure.

timeout of 2 frames is set by default. Furthermore, tracking performance improves with increased
pixel allocation per object, but plateaus beyond 16 pixels.

4.4 Efficiency

Efficiency comparison on an NVIDIA Jetson Orin NX super (16 GB) is shown in Figure 2. The speed
of online and semi-online models is evaluated on TAP-Vid DAVIS, and the runs of TAPTRv2, TAPTR,
and CoTracker2 fail due to insufficient resources. LBM demonstrates higher efficiency due to its
lightweight architecture and inference speed. Although CoTracker3 adopts a window-based online
structure capable of processing 16 images in a single pass, its inference speed remains significantly
slower than LBM under resource constraints of edge devices, while still suffering from semi-online
latency. None of the models employs extended queries in this comparison for efficiency.

TensorRT quantization To further mitigate deployment complexity in real-world applications, LBM
is compiled into an ONNX format to enhance cross-platform deployment compatibility. Furthermore,
FP16 quantization via TensorRT was implemented to accelerate inference on widely adopted embed-
ded systems such as the NVIDIA Jetson series. After quantization, the quantized model realizes a
% 3.5 acceleration with 49 FPS.

4.5 Visualization

Dynamic neighbors Benefiting from multi-scale deformable attention, the tracked pixels learn
from dynamic neighboring regions during collision process, thereby enhancing spatial perception
capabilities. The dynamic neighbors are visualized in Figure 7. This enables LBM to maintain robust
target tracking even when dynamic objects undergo deformation and fast motion. As the camera
advances toward the target, the enlarged target scale stabilizes the appearance of tracked pixels,
while observable dynamic neighbors demonstrate enhanced spatial aggregation characteristics and
concentrate on adjacent spatial regions.

Tracking against detection failure As shown in Figure 8, LBM demonstrates tracking robustness
against detection failures. During initialization, the object detection yields favorable results, and
fine-grained pixels are sampled from the bounding box. Over the subsequent frames, the fine-grained
pixels are tracked, with their trajectories utilized for association. During this process, pixels that
extend beyond the bounding box are removed, while new pixels are sampled within the bounding box.
When detection fails due to environmental changes, the tracking method typically also fails, which is
detrimental to real-world applications. In contrast, LBM can persistently track the fine-grained pixels
of the object, maintaining robust tracking once detection recovers. The detection results are provided
by YOLOE-11-L Wang et al. (2025).



Figure 9: LBM in real-world applications: behavioral analysis of zebrafish. Given two inde-
pendent multi-view videos, LBM enables three-dimensional trajectory reconstruction of zebrafish,
facilitating quantitative behavioral analysis.

4.6 Real-world application

Figure 9 shows the behavioral analysis of zebrafish with target gene knockout. Utilizing two
orthogonal perspectives (top and lateral views), the LBM enables researchers to reconstruct three-
dimensional trajectories of zebrafish swimming behavior induced by pipette transfer into a container.
The quantitative analysis revealed that with the specific gene knockout, zebrafish exhibited pronounced
rotational swimming patterns, thereby demonstrating LBM’s practical utility in quantifying complex
biomechanical phenotypes.

5 Limitations and Future Work

While LBM achieves efficient learning of real-world pixel dynamicity and demonstrates effective-
ness in both point tracking and object tracking tasks, certain limitations persist. In point tracking
applications, the collision-streaming processes remain constrained by inherent locality, leading to
discontinuity issues in long-term tracking. Regarding object tracking, the current random sampling
within bounding boxes exhibits vulnerability to background interference, which could potentially be
mitigated by employing instance segmentation masks instead of conventional detection frameworks in
future implementations. From a practical perspective, LBM shows promising potential for integration
with embodied tracking tasks, where its computational efficiency and practical applicability could be
further exploited through synergistic system development. Future research directions should prioritize
addressing these identified constraints while exploring novel application domains.

6 Conclusion

This work presents the LBM, a novel framework for real-time pixel tracking. By decomposing visual
objects into dynamic pixel lattices and solving motion states through collision-streaming processes,
LBM achieves efficient, iteration-free tracking with the multi-layer predict-update architecture.
Comprehensive evaluations on point tracking and open-world object tracking benchmarks demonstrate
SOTA performance in both accuracy and efficiency. Notably, the fine-grained pixel tracking of LBM
alleviates detection failure challenges inherent in object tracking applications. The lightweight design
of LBM establishes new possibilities for real-world deployment in animal behavior analysis and
future embodied tracking systems. LBM extends the paradigm of physics-inspired visual tracking,
offering practical utility in dynamic real-world perception.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction claim that the lattice Boltzmann model (LBM) is
proposed for learning to track real-world dynamic pixels.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper proposes an efficient pixel tracking model and does not include
theoretical results.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details are provided in Section 4.1. The code for training
and evaluation is provided. The data for training and evaluation is public.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for training and evaluation is provided. The links to public datasets
are also provided.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The code for training and evaluation is provided. The implementation details
is provided in Section 4.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results to validate the efficiency of this work is provided mainly in
Section 4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The details of used computation resources are provided in Section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts are discussed in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper provides a pixel tracking model, and safeguards are not applicable.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The use of assets is mentioned and properly respected.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: There is a document for demo, data preparation, training, and evaluation
alongside the provided code.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed architecture of LBM

A.1 LBM for Point tracking

d)(i)(i Exixi
ResBlock2 [ R""16"16 —| Conv |- R4 16" 16
d_h_w

i Upx 4
d _h w d h w
ResBlock1 [— RZ*8*8 — Conv [~ R# 88
i Upx 2
d _h_ w

d_h w
1€ R¥>*M™W_] ResBlock0 [— RZT*Z7 —| Conv — R#*%*z —(@©—| Conv |—o € R

h w
dxz

7%

a) Backbone

fc € ]RNXNSXd fs € ]RNXNSXd
| kv | kv

Multi-head | 4 | Multi-head

attention attention

q ”
finie € RVX4— —f € RV

b) LBM predict in multi-layer Transformer i e gV*e

h
0 € RYT¥T f e RVxd 14q
| 14 kv{ Multi-head

h w
dx2x¥ kv . .
H 0 € RY%*7 5] Multiscale attention
f € R¥*4 —| Correlation [~ TopK
P - r e RV*¥x2 - deform attn

> f e RNVxd

MLP —— p, € RVK

c) LBM update in multi-layer Transformer

fe ]RNXd fs I lRNXd
q q
0E Rdx%x% k) Multilscale MLP Ap e RNx2 ©€ IR{dX%X% k) Multilscale MLP (p, v} € RN¥2
Iiqst € RV*2 —| deform attn P Iqst € RV*2 —| deform attn P
d) Track head e) Visibility head
fe RNXd
dxﬂxﬂ kv l 1

o € R""474 —| Multiscale

> Q(f, 0,p|6) € RV*d
Tgse + Ap = p € R¥*2 —[ deform attn (f.0,pl5)

f) Collision distribution update

Figure 10: Detailed architecture of the proposed LBM.

Architecture configuration of the LBM framework is illustrated in Figure 10. Specifically, in a)
backbone module, given image I, the feature dimension d of the output o is 256. In b) LBM predict
module, f;,,;; denotes the initial sampled distribution functions. N refers to the number of points.
Ny denotes the number of memorized streaming distributions f, and collision distributions f.. fis
the predicted query distribution. For ¢) LBM Update module, K is the number of reference points
for a query point, which decreases progressively as the predict-update layers deepen, with K = 9
in the first layer, K = 1 in the final layer, and K = 4 in the intermediate layers. p, quantifies the
positional uncertainty of reference points, enforcing the spatial confinement of reference points to
neighborhoods of tracked pixels. In d) track head and e) visibility head modules, the final distribution
f and reference points r;,; are derived from the last predict-update layer. Here, Ap represents the
predicted positional offset of the pixel coordinates relative to ry,s;, while v and p are visibility and
uncertainty. The streaming distributions f, and collision distributions f, are initialized as zero and
updated as f, = {fz-}ﬁ;LNS and f. = {Q(f;, 0;, Pi| ;) E;tlst )

Training loss In Section 3.2, we discussed the fundamental loss components in LBM. Here, we
provide further supplementation. The classification loss L. = CE(c, cg|vy) is applied at each
layer of the Transformer to supervise the correlation at each level. Specifically, c4; represents the
index in the correlation map corresponding to the point’s ground-truth position. The classification
loss ensures that the correlation value at the ground-truth position is the highest. In regression
loss L£req = LI(Ap, Apgi|vge), APgt = Pgt — Tiast» Where 1y, is the reference point from
the last Transformer layer and pg4; denotes the ground-truth point location. In the confidence loss
Leons = CE(a(p), 1[|lp — pgtll < 8], the ground-truth confidence is 1 if the mean square error
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between the predicted and ground-truth points is within a threshold of 8 and the ground-truth points
are not occluded; otherwise, it is 0. In addition to computing the confidence of final output points, we
also supervise reference points at each layer as an auxiliary constraint to regularize their positions,
i.e., Loonfref = CE(o(pr), L[|t — pgt|| < 8], where r is the reference point.

A.2  Object tracking

The similarity metric for association is derived from NetTrack Zheng et al. (2024), with the cross-
temporal correspondence between the i-th tracked instance in historical observations and the j-th
candidate instance in current detections being formally expressed through the following formulation:

N;

A;
o —min{1. 2} .
Sij = min{ ’A]—} N+ Now, 7

where A; represents the area corresponding to the bounding box of the i-th instance. The scaling
factor min{1, :21 } penalizes current detection instances with larger bounding areas, as expansive
regions exhibit higher probabilities of containing more tracked pixels. In LBM, the similarity metric
undergoes reweighting through multiplicative integration of detection scores and categorical labels.

Specifically, the detection score s; and label /; of current j-th instances is considered:

. A; N;
Si}j = Sj . (05 + 0'56li;lj> . mln{l, Aij}’ . m s

®

where §, ;, is the Kronecker delta function, defined such that 5;1.,1]. = 1if l; and [; are equal, and
01,1, = 0 otherwise. In this context, when the label /; differs from /;, a penalty weight of 0.5 is
imposed. This mechanism effectively suppresses detections with ambiguous class assignments and
low confidence scores by applying multiplicative attenuation to inconsistent label predictions. The
final matching correspondence is determined through the normalized aggregation of the cross-frame
similarity matrix S € RM XN computed as the arithmetic mean of bidirectional softmax-normalized
distributions along both spatial dimensions (row-wise and column-wise). M and N respectively
represent the number of tracked and newly detected instances.

B Implementation details

Training details We employ the AdamW optimizer with a peak learning rate of 5 x 10~* and weight
decay of 1 x 10~°, implementing a cosine decay schedule with 5% linear warm-up initialization.
The whole training process takes over 2 days on 4 NVIDIA H800 GPUs with 4 batches each. LBM
adopts identical data augmentation strategies as CoTracker Karaev et al. (2024b), processing input
images at 384 x512 resolution while sampling 256 points per batch.

Evaluation datasets TAP-Vid DAVIS comprises 30 real-world videos sourced from the DAVIS
dataset; TAP-Vid Kinetics contains 1,184 challenging real-world videos; and RoboTAP Vecerik
et al. (2024) consists of 265 real-world robotic videos. Open-world object tracking datasets include:
TAO Dave et al. (2020) validation set, containing 988 videos spanning 330 object categories annotated
at 1 frame per second; BFT Zheng et al. (2024) test set, comprising 36 videos featuring highly dynamic
avian objects; and OVT-B Liang and Han (2024), a large-scale open-world object tracking benchmark
encompassing 1,973 videos with 1,048 object categories.

Evaluation metrics AJ serves as a comprehensive metric quantifying both position precision of
predicted positions and the accuracy of visibility predictions. 7, evaluates the position precision of
visible points by calculating the average proportion of predicted positions falling within specified
thresholds (1, 2, 4, 8, 16 pixels) relative to ground-truth positions. OA specifically quantifies
the accuracy of visibility predictions for occluded states. The evaluation metrics for open-world
object tracking include TETA Li et al. (2022) under the open-vocabulary setting, a comprehensive
metric assessing association accuracy (AssA), localization accuracy (LocA), and classification
accuracy (CIsA), with rare categories in the LVIS Gupta et al. (2019) dataset designated as novel
and the remaining categories categorized as base; OWTA Liu et al. (2022), a holistic evaluation
metric integrating open-world object detection recall (D. Re.) and association accuracy (A. Acc.).
Specifically, TETA is used for validation on TAO and OVT-B benchmarks, and OWTA is evaluated
on BFT benchmark.
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Figure 12: Ablation on tracking manipulation of deformable objects. A subset of RoboTAP for
manipulating deformable objects was selected with video IDs. In the comparative analysis, LBM
demonstrated superior tracking capabilities.

Table 8: Ablation on the fine-grained similarity on TAO validation benchmark. The combination
of the label penalty term and detection score weight achieves the best performance.

All Base Novel
Label  Score "TETA™ LocA AssocA ClsA TETA LocA AssocA ClsA TETA LocA AssocA  ClsA
v v/ 453 700 324 334 465 699 332 364 361 708 262 114
v X 452 698 325 333 464 697 334 363 359 708 255 114
X V443 696 298 334 455 695 307 363 349 700 233 113
X X 446 694 311 334 459 692 320 364 357 710 246 114

C Detailed ablation study

Ablation on the number of active dynamic neighbors on TAP-Vid DAVIS is illus-
trated in Figure 11. Enhanced active neighbor participation improves the accuracy of col-
lision process, thereby optimizing LBM’s spatial localization precision for target pixels.
This enhancement manifests through three compu-
tational phases: 1) collision distribution acquisition,
2) collision attention, and 3) inference of tracking
and visibility heads. Empirical observations indi-
cate negligible GPU memory overhead and infer-
ence speed degradation with increased neighbor
counts. Given the plateau effect observed in preci-
sion gains beyond 7 neighbors, LBM establishes 9
neighbors as the optimal configuration.
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Ablation on tracking deformable objects in ma- . .
nipulation is shown in Figure 12. A subset com- Flféure 11: Ablation on the number of active
prising 9 data entries is extracted from RoboTAP neighbors. For enha_lnced visualization clarity, the
d . . . . segment of the Y-axis below 60 has been rescaled

ataset, specifically focusing on manipulation tasks ™ ) . .
. . . . with a factor of 0.1. More active neighbors bring
involving highly deformable objects such as ropes /... oo ¢

; ; 5 . performance.

and fabrics. This selection explicitly excluded mod-
erately deformable objects, including toys and shoes. A comparative analysis is conducted on this
subset across three models: LBM (18 M), Track-On (49 M), and CoTracker3 (a semi-online method
based on 16-frame window processing). For fairness, queries are not extended globally, but local
extension is still performed in CoTracker3. Experimental results demonstrated that LBM achieved
superior performance in d;;,,,, exhibiting enhanced localization accuracy attributed to its strengthened
spatial perception capability regarding pixel-level neighborhood relationships in deformable object
manipulation. This empirical investigation reveals promising potential of LBM for applications
involving deformable objects.

C.1 Ablation on object tracking

Ablation on fine-grained similarity on TAO validation benchmark is shown in Table 8. The label
penalty term and detection score weight term in Equation 8 are comprehensively considered. As
evidenced by experimental results, the label penalty term contributes a +1.4 performance gain in
overall association metrics while moderately improving localization accuracy. Although isolated
introduction of the detection score weight marginally enhances localization capability, it concurrently
induces deterioration in association performance. Significantly, simultaneous incorporation of both

23



Table 9: Ablation on AnimalTrack subset of OVT-B. LBM shows better tracking performance
against real-world object dynamicity. Best results shown in bold.

All Base Novel
Model TETA LocA AssocA CIsA TETA LocA AssocA CIlsA TETA LocA AssocA CIsA
SORT Bewley et al. (2016) 54.4 72.2 19.8 713 545 68.3 18.3 769 543 779 22.0 62.9

ByteTrack Zhang et al. (2022)  61.3 72.0 40.6 713 60.7 68.1 37.3 769  62.1 77.8 455 62.9
OC-SORT Cao et al. (2023) 62.1 71.9 433 712 614 679 39.4 769 633 77.8 49.1 62.9
LBM (ours) 64.3  70.0 51.6 712 621 66.0 43.6 76.7 675 76.0 63.6 63.0

Figure 13: Visualization of point tracking for dynamic object manipulation. LBM shows
robustness against the dynamicity of deformable objects.

label penalty and detection score weight terms synergistically elevates both LocA and AssocA.
This combined approach demonstrates particularly pronounced performance improvements in novel
categories, which can be attributed to the complementary mechanisms between category-aware label
penalty and detection confidence weighting that effectively address both semantic alignment and
spatial correspondence challenges.

Ablation on tracking animals is shown in Table 9. Animals typically represent highly dynamic
tracking targets. In addition to demonstrating the effectiveness of LBM compared to SOTA trackers
in tracking highly dynamic avian objects, as shown in Table 4, we further validated LBM’s capability
for animal tracking on the AnimalTrack Zhang et al. (2023) subset of OVT-B. To ensure fairness,
identical detection results from the GLEE-plus detector were employed in all experiments. The
results indicated that LBM achieved optimal performance in the AssocA metric compared to other
trackers, with particularly notable improvements in novel class tracking, demonstrating a +14.5 gain
over OC-SORT. The results substantiate the effectiveness and practical utility of LBM for real-world
dynamic object tracking scenarios.

D Comprehensive visualization

D.1 Visualization of point tracking

The visualization results of the point tracking task are presented in two distinct components: the
robotic manipulation scenario involving deformable objects from RoboTAP is illustrated in Figure 13,
while dynamic scenes from TAP-Vid Kinetics are demonstrated in Figure 14. Benefiting from the
learned collision and streaming processes, LBM maintains robust tracking performance even for

’
Ao
L3 I i~

Figure 14: Visualization of point tracking in dynamic scenes. LBM demonstrates adaptability to
dynamic environments, including scenarios involving rapid motion and viewpoint transformations.
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Figure 15: Visualization of object tracking for dynamic animals. LBM exhibits robustness against
object dynamicity, such as rapid motion, deformation, similar objects, and occlusion.

highly deformable flexible objects. In dynamic
environments characterized by rapid motion, such
as first-person skiing scenarios with intense move-
ment or situations involving repeated viewpoint
variations, LBM exhibits remarkable adaptability.
Notably, when the viewpoint temporarily loses
and subsequently reacquires the target, LBM can
precisely relocate tracked pixels through memo-
rized streaming and collision distribution patterns,
demonstrating exceptional robustness. Figure 16: Failure cases of LBM. Tracking fail-
ures can be attributed to the uniformity in target ap-
pearance characteristics and discontinuous fragments
in videos.

D.2 Visualization of object tracking

The visualization results of the target tracking task, as shown in Figure 15, are derived from the BFT
and OVT-B datasets, respectively. Birds and dolphins, as highly dynamic targets, pose challenges
including rapid motion, deformation, similar targets, and occlusion. Benefiting from the dynamic
pixel management mechanism, the LBM exhibits robustness in tracking real-world dynamic objects.

E Failure cases and potential solutions

Failure cases Figure 16 illustrates failure cases of LBM in point tracking tasks. In the first video
sample, point tracking failures on the desktop surface occur due to its uniform appearance in both
color and texture, revealing the localized nature of collision and streaming processes. In the second
scenario, discontinuities arising from the composition of multiple spliced video segments result
in observable point drift phenomena. For visual object tracking, the primary limitations persist in
two aspects: 1) the random sampling within target bounding boxes exhibits inherent susceptibility
to background interference contamination; 2) despite maintaining fine-grained pixel-level tracking
fidelity during detection failure scenarios, the framework lacks effective mechanisms for holistic
tracking state recovery at the object level, as shown in Figure 8.

Potential solutions In response to the limitations inherent in LBM, several potential solutions have
been enumerated as follows:

* Explicit temporal continuity mechanisms. While streaming distribution of pixels preserves
temporal feature learning, the correlation for reference point acquisition in online tracking
scenarios exhibits inadequate exploitation of historical positional contexts. Therefore, ex-
plicit modeling of pixel trajectory persistence emerges as a critical enhancement opportunity.

* Global semantic context augmentation. For discontinuous video sequence tracking, the
semantic state coherence of pixel-associated objects inherently governs motion pattern
interpretability. Developing hierarchical architectures to extract and propagate object-level
semantic embeddings could substantially improve pixel motion comprehension.

* Depth-aware constraint integration. Incorporating depth-aware constraints or semantic
segmentation priors could mitigate background interference during target-specific tracking,
particularly through spatial attention mechanisms that discriminatively weight foreground-
background sampling probabilities.
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* Holistic motion decomposition modules. Implementing motion composition layers that ag-
gregate pixel-wise displacements into interpretable object kinematics would benefit tracking
state estimation and downstream applications requiring macroscopic motion understanding.

F Broader impacts

The proposed LBM for real-time and online pixel tracking presents both positive and negative societal
implications that merit careful consideration.

F.1 Positive societal impacts

Enhanced efficiency in practical applications LBM’s lightweight design and edge-device com-
patibility enable real-time tracking in resource-constrained scenarios. This could benefit fields like
robotics and autonomous systems.

Scientific research advancement As demonstrated in zebrafish behavioral analysis, LBM’s ability
to reconstruct 3D trajectories of dynamic objects supports quantitative studies in biomechanics and
ecology. This may accelerate discoveries in genetic research or environmental monitoring.

Robustness against system failures By decomposing objects into fine-grained pixels and dynam-
ically pruning outliers, LBM reduces reliance on detection results. This improves reliability in
safety-critical applications like surveillance or disaster response.

F.2 Negative Societal Impacts

Privacy concerns The technology’s capacity for persistent pixel-level tracking raises risks of misuse
in unauthorized surveillance. For instance, malicious actors could exploit LBM to track individuals
across video feeds without consent.

Data bias If LBM is finetuned on data that lacks diversity, the performance could degrade for specific
demographics or scenarios, exacerbating fairness issues in deployed systems.

F.3 Mitigation Strategies

Strict Ethical Guidelines Deployment in sensitive domains, e.g., public surveillance, should require
transparency audits and opt-in consent mechanisms.

Bias mitigation Actively curate diverse training data spanning varied motion dynamics and environ-
mental contexts to minimize performance disparities.
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