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ABSTRACT

Prompting vision-language models like CLIP to adapt to downstream tasks is cur-
rently topical. A seminal technique to this end is context optimization, which
replaces a subset of textual tokens with trainable parameters (a.k.a soft prompts).
However, current pipelines use a single vector embedding induced by soft prompts
as the classifier weight for visual recognition. This can lead to problems where
the learned soft prompts overfit to base classes’ training data, resulting in poor
performance when applied to novel classes. Several approaches were proposed to
address this issue by regularizing the learned soft prompts to align them with hand-
crafted text/hard prompts. However, excessive regularization of the soft prompts
can hurt the model’s performance on the base classes it is trained on. Maintaining
the right balance to ensure strong base- and novel-class performance is crucial but
non-trivial. In this paper, we introduce a novel subspace-based prompt learning
method, named SuPr, which can effectively model subspaces spanning the embed-
dings of both the learnable soft and the textual/hard prompts. Our subspace-based
alignment between hand-crafted and learnable prompts balances these effects to
achieve excellent fitting of base classes as well as generalization to novel classes.
With the advantages of subspace modelling, our SuPr shows its effectiveness on
generalization from base to new, domain generalization, cross-dataset transfer and
few-shot learning, leading to new state-of-the-art results in all settings.

1 INTRODUCTION

The recent advances in large-scale Visual-Language Models (VLMs), exemplified by models such as
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), have attracted substantial attention. These
VLMs align visual and textual modalities thanks to their extensive pretraining on large sets of visual
and textual data pairs. The learned common feature space between two modalities grants VLMs
exceptional performance across various zero-shot tasks (Alayrac et al., 2022). However, despite
their great zero-shot performance, maximizing VLM performance on a downstream task explicitly
is naturally desirable (Gao et al., 2023).

One pervasive strategy is prompt engineering (Radford et al., 2021), which optimizes the textual
prompt while keeping other VLMs parameters fixed. For one example of using VLMs for image
recognition, when these optimized prompt sentences are coupled with class names as input to the text
encoder, the pre-trained VLMs achieve an enhanced class-specific classifier. Specifically, by trans-
forming prompts such as “ a photo of a {CLASS}.” into “ a photo of a {CLASS}, a
type of bird.”, the model effectively transitions from a generic model of object classification
to a specific one of bird classification. This approach helps adapt VLMs to diverse tasks; how-
ever, its optimization relies on handcrafting. Therefore, prompt learning (Zhou et al., 2022b) as
an alternative has emerged, which replaces part of discrete textual/hard tokens with continuously
learnable parameters, a.k.a “soft prompts”, that can be updated through end-to-end training. Soft
prompt learning has proven effective by outperforming handcrafted prompt optimization when they
are tailored for known (base) classes (Yu et al., 2023; Lu et al., 2022). However, it introduces a new
problem — base-class overfitting. Essentially, the learned soft prompts overfit to solving tasks of
the base classes, and the performance significantly declines when applied to recognize novel classes
never encountered at training (Zhou et al., 2022a). This is in contrast with optimizing handcrafted
prompts, which do not break a VLM’s zero-shot capacity for novel classes.

The main current challenge in prompt learning is maintaining a VLM’s generalizable performance
on novel classes while tailoring them for the known base classes. To this end, most existing works
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Figure 1: A schematic illustration of our SuPr.

focus on aligning (handcrafted) hard1 and soft prompts (Bulat & Tzimiropoulos, 2023; Yao et al.,
2023; Zhu et al., 2023), such that the learned soft prompts still retain zero-shot generalization from
pre-training. Despite being effective, such a regularization restricts the extent of optimizing soft
prompts, thus potentially hurting their performance on base classes, as shown in some experimental
evaluations. In this paper, we take a different stance — we no longer impose strict alignment be-
tween soft- and hard-prompt embeddings and instead propose subspace prompting (SuPr) to model
the vector subspaces that can accommodate both the soft- and hard-prompt embeddings jointly, as
illustrated in Figure 1.

Specifically, instead of training a single set of soft prompts to fit the base classes, we introduce
multiple sets of soft prompts as the trainable parameters. We divide the single set of soft prompts
proposed in CoOp (Zhou et al., 2022b) into multiple sets with shorter lengths, maintaining the same
amount of total trainable parameters. Then, we generate multiple token sequences using different
sets of soft prompts for the same class and feed each of them into the text encoder to achieve an
embedding. Having a set of text embeddings representing the same class, we can form a subspace
considering those embeddings as support points. Given an image embedding and a text embedding,
CLIP calculates the cosine similarity between two embeddings for predictions. In contrast, we can
calculate the projection point of this image embedding on the text subspace and use the point-to-
subspace distance — namely, the distance between the original and projection embeddings — as an
alternative. Classification of an image sample is now equivalent to finding the nearest text subspace
by comparing point-to-subspace distances.

Now, in SuPr, the text embeddings induced by different sets of soft prompts can be relaxed to capture
different underlying aspects of the visual embeddings from the same class. Unlike a conventional
classifier using a single-point vector as the weights, classifiers using subspaces have the extrapo-
lation capability to make predictions/estimates beyond the observed data points, thus having better
generalization (Simon et al., 2020). Despite better generalization, classifiers with trained subspaces
may still break the embedded zero-shot generalization of a pre-trained VLM after finetuning on a
downstream task. However, now we don’t force the text embeddings induced by soft prompts to
align with those induced by hard prompts. Instead, we can tune the modelled subspace to span the
hard-prompt induced text embeddings to retain the zero-shot generalization for novel classes. Our
method does not restrict the number of hard prompts used for regularization. However, when vari-
ous types of hard prompts are proposed, the difficulty of spanning all of them in the same subspace
may be introduced. We empirically discover that modelling multiple subspaces and using different
groups of hard prompts with similar constraints to regularize different individual subspaces results
in a strong ensembling.

We have conducted a series of rigorous experiments across various datasets, spanning the settings of
generalization from base to new, domain generalization, cross-dataset transfer and few-shot learning.
The substantial improvements achieved in these experiments underscore the effectiveness of our
approach in learning representative prompts for subspace modelling.

2 RELATED WORK

Vision-Language Models Vision-Language Models (VLMs) represent a cutting-edge fusion of
computer vision and natural language processing, bridging the gap between visual and textual data.

1We sometimes refer to the handcrafted prompts as hard prompts.
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Figure 2: The architecture of our SuPr.

In recent paradigms, VLMs are pre-trained using vast image-text pairs from the internet (Schuh-
mann et al., 2021; 2022), enabling them to understand image-text relationships, form a foundational
understanding of the visual world, and excel in open-world scenarios (Radford et al., 2021; Jia et al.,
2021). VLMs can be categorized into three types based on their objective functions: contrastive (Mu
et al., 2022; Li et al., 2022a), generative (He et al., 2022), and alignment objectives (Singh et al.,
2022; Li et al., 2022b).Additionally, researchers are actively exploring more parameter-efficient
fine-tuning methods for VLMs. Techniques such as prompt learning and adaptor-based Gao et al.
(2023); Zhang et al. (2022) approaches have attracted substantial interest, holding potential for tai-
loring VLMs to specific downstream tasks. This paper builds upon the prompt learning paradigm
and introduces a novel prompt-tuning approach based on subspace modelling.

Prompt Learning Prompt learning (Jiang et al., 2020; Shin et al., 2020; Li & Liang, 2021) has
emerged as a powerful method for adapting VLMs to a wide array of tasks. CoOp (Zhou et al.,
2022b) pioneered the integration of soft prompts into VLMs, transitioning prompts from discrete
word tokens to continuous, trainable parameters. This pivotal innovation has fueled the rapid evo-
lution of prompt learning within the VLM domain. However, the potential of soft prompt learning
faces the challenge of base class overfitting. To address this concern, CoCoOp (Zhou et al., 2022a)
improves the generalization of soft prompts by introducing instance-conditional prompt refinement.
KgCoOp (Yao et al., 2023) tackles the issue through regularization, constraining the distance be-
tween hard and soft prompts. Similarly, LASP (Bulat & Tzimiropoulos, 2023) incorporates a text-
to-text loss to confine the optimization of soft prompts within a language-aware embedding space.
ProGrad (Zhu et al., 2023) fine-tunes the gradient by projecting it, ensuring that it stays aligned
with the textual prompt direction throughout the optimization process. Additionally, some stud-
ies focus addressing these challenges through a richer prompt representation. Notably, ProDA (Lu
et al., 2022) models prompts as mixtures of Gaussian distributions, while PLOT (Chen et al., 2022)
represents prompts as multiple attributes and introduces optimal transport metrics to measure their
similarity. In the sprit of these works, we model prompts as subspaces, which have the capacity to
encompass a denser spectrum of visual concepts. This approach strikes a superior balance between
training performance and generalization capability, effectively alleviating base class overfitting.

Subspace Modelling Subspace modelling is a versatile technique used in modelling concepts with
intra-class variability, such as diverse attributes. Instead of relying on a single-point estimate, learn-
ing a subspace spanning the variability of a class is a more effective choice. Subspaces have found
wide-ranging applications in fields such as few shot learning (Simon et al., 2020; Cheraghian et al.,
2021; Zhu & Koniusz, 2022; Gao et al., 2021), face recognition (Wang & Tang, 2004; Wang &
Tang), and clustering (Ji et al., 2017; Zhou et al., 2018; Cai et al., 2022). DSN (Simon et al., 2020)
introduced subspace classifiers for the first time in few-shot learning, showcasing their superior
data-efficient modelling capabilities compared to prototype networks. This highlights the potential
of subspace classifiers in prompt learning. Wang & Tang (2004) proposed constructing a set of faces
within a subspace, including distinctions in various facial attributes. This demonstrates the ability
of subspaces to represent rich semantics. It’s worth noting that SubPT (Ma et al., 2023), a closely
related concurrent work, uses gradient subspaces to constrain optimization to prevent a model from
learning spurious correlations on the training data. This approach diverges significantly from our
strategy of modelling subspaces using soft prompts, highlighting a distinct conceptual foundation.
To the best of our knowledge, we are the first to integrate soft-prompt subspace modeling into VLMs.
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3 APPROACH

3.1 PRELIMINARIES

Our method applies to different existing VLMs. For simplicity and fair comparisons to the
prior works in this stream, we stick with the Contrastive Language-Image Pre-training (CLIP)
model (Radford et al., 2021). Our overall framework is illustrated in Figure 2, and we provide
further details in the following sections.

CLIP/Prompt Engineering When performing a C-way image classification using CLIP, each class
is associated with a specific sentence, denoted as ti, i ∈ {1, . . . , C}. These sentences follow some
common prompt templates, for instance, “a photo of a {CLASS}.” where the ”{CLASS}”
placeholder can be filled with actual class names. These word tokens are then fed into CLIP’s text
encoder g(·) to generate text embeddings, represented as ω = { ωc | ωc = g(tc)}Cc=1 where each
ωc ∈ RD×1. These text embeddings serve as the classifier weights for each class for recognizing
an input image. Given an image feature f ∈ RD×1 generated by the image encoder f(x) for input
image x, the predictive probability for a particular class c is determined as follows

p(c|f) = exp (sim (f ,ωc) /τ)∑C
i=1 exp (sim (f ,ωi) /τ)

, (1)

where sim(·, ·) represents cosine similarity, and τ is a learned temperature parameter.

CoOp/Prompt Learning Unlike using discrete handcrafted hard prompts in prompt engineer-
ing, context optimization (CoOp) Zhou et al. (2022b) employs soft prompts, represented as con-
tinuous vectors. Then, these soft prompts can be optimized end-to-end for downstream tasks.
Instead of using hard prompts like “a photo of a {CLASS}”, CoOp replaces them with
Tc = {v1,v2, . . . ,vL,Cc}Cc=1, where {v1,v2, . . . ,vL} represents L learnable vectors and Cc is
the token embedding for the class name. Analogously, classifier weights are derived from the soft
prompts gc = g(Tc) ∈ RD×1, and the predictive probability for class c is given by

p(c|f) = exp (sim (f , gc) /τ)∑C
i=1 exp (sim (f , gi) /τ)

. (2)

The learnable prompts can be optimized using cross-entropy loss Lce

{v1,v2, . . . ,vL} := argmin
{v1,v2,...,vL}

−
C∑

c=1

1[c == y] · log p(c|f). (3)

Here, 1[.] is an indicator function. Note that, during the optimization, the pretrained image and text
encoders f(.) and g(.) of CLIP remain frozen.

3.2 SUBSPACE MODELLING USING SOFT PROMPTS

In this section, we present a method for using soft prompts to model vector subspaces, and to sub-
sequently employ the subspaces as classifiers for image classification.

Initially, CoOp introduced a single set of soft prompts, denoted as {v1,v2, . . . ,vL}, which results
in a single text embedding serving as the classifier’s weights. However, to mitigate the sub-optimal
solutions discussed earlier, we adopt an approach to distribute this single set of soft prompts, denoted
as T = {v1,v2, . . . ,vL,C}, into K partitions, forming {T j}Kj=1 = {vj

1,v
j
2, . . . ,v

j
L
K

,C}Kj=1
2.

This distribution allows us to estimate K distinct text embeddings, denoted as {gj = g(T j)}Kj=1,
all associated with the same class C. In the following sections, we will elaborate on the process of
modeling a vector subspace with {gj}Kj=1 serving as support vectors.

Using the support vectors generated as described above, they are concatenated to create a matrix
Sc ∈ RD×K . Then, we need to generate the linearly independent bases to form a subspace ma-
trix. To this end, we employ singular value decomposition (SVD) of Sc. To mitigate the potential
issue of linear dependence among columns of Sc, we introduce a relatively small Gaussian noise

2Importantly, this partitioning maintains the same total trainable parameters.
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ϵ ∈ RD×K into the Sc before SVD decomposition: Uc,Σc,Vc = SVD(Sc + ϵ). Then, we use
orthonormal bases of the left singular matrix Uc for modelling the subspace of class c denoted as
Uc = [u1, . . . ,uK ] ∈ RD×K

Given a subspace Uc for class c and an image feature point f , we replace sim(·, ·) the function
introduced in Eq. 2, as follows

sim(f ,Uc) = cos sim(f ,fproj
c ). (4)

Here, cos sim(f ,fproj
c )3 calculates the cosine similarity between the vector f and its projection

fproj
c onto the subspace Uc. To find fproj

c is to find the closest point fproj
c to fc in Uc by solving

α = argmin
α

∥f −Ucα∥2 through a closed-form solution (Hastie et al., 2009). And given Uc is an

orthonormal matrix, the projection can be formulated as follows:

fproj
c = UcU

T
c f , α = UT

c f . (5)

As a result, for an image feature f , its predictive probability of belonging to class c is calculated as

p(c|f) = exp (sim(f ,Uc)/τ)∑K
i=1 exp (sim(f ,Ui)/τ)

. (6)

Then, we can optimize the trainable soft prompts similar to that in Eq. 3. As we discussed above,
optimizing the modelled subspaces may break the zero-shot inference capacity of a pretrained CLIP
for novel classes; thus, we introduce some regularization further to mitigate this problem.

3.3 REGULARIZATION USING HARD PROMPTS

To boost the generalization of learned soft prompts, both Yao et al. (2023) and Bulat & Tzimiropou-
los (2023) have substantiated the effectiveness of maintaining a certain degree of alignment between
soft prompts and handcrafted textual/hard prompts. Following this spirit, we regularize our mod-
elled subspace of soft prompts Uc by forcing them to span the embeddings generated by handcrafted
hard prompts maximally. To achieve this, we consider a set of handcrafted prompts (grammatically
plausible) to produce class-specific embeddings {ωm

c }Mm=1, where M is the number of hand-crafted
textual prompts, and c corresponds to class c. Then, the regularization is defined as follows

Lreg = −
M∑

m=1

C∑
c=1

sim(wm
c ,Uc), (7)

where sim(·, ·) remains consistent with Eq. 4. Consequently, the total loss for optimizing our model
is

L = Lce + γLreg, (8)
where γ controls the strength of the regularization.

Ensembling of Linear Subspaces Unlike some existing methods (Yao et al., 2023; Zhu et al.,
2023), which only use a single or few hard prompts for regularizing the soft prompts, there is no
restriction about how many hard prompts can be used in Eq. 7. Including more hard prompts in the
regularization may facilitate maintaining the better zero-shot inference yet potentially introduce the
difficulty of modelling an individual linear subspace to span all of them. To this end, one can enlarge
the complexity of the modelled subspace, e.g. make it quadratic. However, that may make the point-
to-subspace distance complex to compute and lose the chance of finding an analytic closed-form
solution. Instead, we propose an ensembling of linear subspaces to cope with this situation when
many hard prompts are proposed. Specifically, we model N different subspaces and use N groups
of hard prompts with similar constraints per group to regularize them separately. Now the predictive
probability of belonging to class c for an image feature f is calculated as

p(c|f) = 1

N

N∑
j=1

exp
(
sim(f ,U j

c )/τ
)∑C

i=1 exp
(
sim(f ,U j

i )/τ
) . (9)

3One can use the point-to-subspace distance for computing the predictive probability. We simply use this
similarity measure retaining using a sim(,) function.
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And the regularization in Eq.7 becomes

Lreg = −
N∑
j=1

M
N∑

m=1

C∑
c=1

sim({wm
c }j ,U j

c ), (10)

where U j
c denotes the subspace derived by the set j of soft prompts and {wm

c }j the set j of hard
prompts4. Basically, we train N separate sets of soft prompts using Eq. 8 by substituting Eq. 6 with
Eq. 9 and Eq. 7 with Eq. 10. Note that although this is an ensembling model, the pre-trained CLIP
remains one copy, and only the size of parameter-efficient soft prompts gets scaled N times up,
which is still tiny compared to the existing priors. We name this variant SuPr-Ens.

4 EXPERIMENTS

We present experimental evaluations in this section. Our setup follows the protocols of CoCoOp
(Zhou et al., 2022a) and LASP (Bulat & Tzimiropoulos, 2023), covering tasks such as generaliza-
tion from base-to-new classes, domain generalization,cross-dataset transfer and few-shot learning,
ensuring a thorough evaluation of our approach. Overall, the experimental results consistently show-
case the outstanding performance of our method across all experimental settings.

Datasets Our experiments employed 11 diverse image classification datasets, encompassing a
wide spectrum of visual recognition tasks. These datasets include ImageNet (Deng et al., 2009) and
Caltech101 (Fei-Fei, 2004) for generic object classification, OxfordPets (Parkhi et al., 2012), Stan-
fordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al.,
2014), and FGVCAircraft (Maji et al., 2013) for fine-grained visual recognition, EuroSAT (Hel-
ber et al., 2019) for satellite image classification, UCF101 (Soomro et al., 2012) for action recog-
nition, DTD (Cimpoi et al., 2014) for texture classification, and SUN397 (Xiao et al., 2010) for
scene recognition. For domain generalization experiments, we treated ImageNet as the source do-
main and evaluated methods on its variants as target domains, including ImageNetV2 (Recht et al.,
2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-
R (Hendrycks et al., 2021a).

Implementation Our implementation builds on the CoCoOp and LASP codebases, with CLIP
serving as the foundation model. We follow the same training procedures, including using the Vit-
B/16 vision backbone, data augmentation, and a fixed context length of L = 4. We report the final
performance averaged over three random seeds. In Eq. 7, the number of textual templates M was set
to 60. Among these templates, 30 are drawn from CLIP (consistent with LASP), serving as dataset-
agnostic templates, while the remaining 30 are generated from Chat-GPT, tailored to the specific
dataset. For our ensembling model, the number of subspaces N is set to three, and hyperparameter
γ in Eq. 8 is consistently set to 5 across all datasets.

Baselines We compare our method with several prior arts. The pre-trained CLIP (Radford et al.,
2021) (ICML21). CoOp (Zhou et al., 2022b) (IJCV22) which uses soft prompts. CoCoOp (Zhou
et al., 2022a) (CVPR22), which improves CoOp by adding image-conditional prompts. ProDA (Lu
et al., 2022) (CVPR22), which considers soft prompt as Gaussian Distribution. ProGrad (Zhu et al.,
2023) (ICCV22), which optimizes prompts to align with the “general direction”. TaskRes (Yu et al.,
2023) (CVPR23), which optimizes task-specific residual in embedding space, and KgCoOp (Yao
et al., 2023) (CVPR23), which optimizes prompts close to fixed prompts in CLIP. LASP (Bulat
& Tzimiropoulos, 2023) (CVPR23), which focuses on language-only optimization for downstream
adaptation. And our SuPr and its ensembling variant SuPr-Ens.

4.1 GENERALIZATION FROM BASE-TO-NEW CLASSES

In this setting, each of the eleven datasets used has two splits: base and new classes, without overlap.
Methods are trained on base classes and tested on the test sets of both base and novel classes as per
CoCoOp.

Results in Table 1 show that our SuPr and SuPr-Ens achieve the best results across the majority
of datasets. Compared with ProGrad and KgCoOp, which rely on strong alignment between soft

4Displayed in detail in the supplementary
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Table 1: Comparison with the state-of-the-art on 11 datasets. ∆ denotes the absolute improvement
of our best variant, SuPr-Ens, over the previous best result LASP. Values in the brackets show the
delta performance between each baseline and SuPr-Ens.

Dataset Set CLIP CoOp CoCoOp (CVPR22) ProGrad (ICCV23) ProDA (CVPR22) KgCoOp (CVPR23) LASP (CVPR23) SuPr SuPr
∆Ens

Average
Base 69.34 82.69 80.47 (2.07 ↑) 82.48 (0.06 ↑) 81.56 (0.98 ↑) 80.73 (1.81 ↑) 83.10 (0.56 ↓) 81.47 82.54 −0.56
New 74.22 63.22 71.69 (4.67 ↑) 70.74 (5.62 ↑) 72.30 (3.98 ↑) 73.61 (2.75 ↑) 76.11 (0.25 ↑) 75.21 76.36 +0.25

H 71.70 71.66 75.83 (3.50 ↑) 76.16 (3.17 ↑) 76.65 (2.68 ↑) 77.01 (2.32 ↑) 79.45 (0.12 ↓) 78.21 79.33 −0.12

ImageNet
Base 72.43 76.47 75.98 (0.72 ↑) 77.02 (0.32 ↓) 75.40 (1.30 ↑) 75.83 (0.87 ↑) 76.25 (0.45 ↑) 76.70 76.70 +0.45
New 68.14 67.88 70.43 (0.57 ↑) 66.66 (4.34 ↑) 70.23 (0.77 ↑) 69.96 (1.04 ↑) 71.17 (0.17 ↓) 69.60 71.00 −0.17

H 70.22 71.92 73.10 (0.64 ↑) 71.47 (2.27 ↑) 72.72 (1.02 ↑) 72.78 (0.96 ↑) 73.62 (0.12 ↑) 72.98 73.74 +0.12

Caltech101
Base 96.84 98.00 97.96 (0.07 ↑) 98.02 (0.01 ↑) 98.27 (0.24 ↓) 97.72 (0.31 ↑) 98.17 (0.14 ↓) 98.00 98.03 −0.14
New 94.00 89.91 93.81 (1.02 ↑) 93.89 (0.94 ↑) 93.23 (1.60 ↑) 94.39 (0.44 ↑) 94.33 (0.50 ↑) 94.30 94.83 +0.50

H 95.40 93.73 95.84 (0.56 ↑) 95.91 (0.49 ↑) 95.86 (0.54 ↑) 96.03 (0.37 ↑) 96.21 (0.19 ↑) 96.11 96.40 +0.19

OxfordPets
Base 91.17 93.67 95.20 (0.70 ↑) 95.07 (0.83 ↑) 95.43 (0.47 ↑) 94.65 (1.25 ↑) 95.73 (0.17 ↑) 95.37 95.90 +0.17
New 97.26 95.29 97.69 (0.29 ↓) 97.63 (0.23 ↓) 97.83 (0.43 ↓) 97.76 (0.36 ↓) 97.87 (0.47 ↓) 97.00 97.40 −0.47

H 94.12 94.47 96.43 (0.21 ↑) 96.33 (0.31 ↑) 96.62 (0.02 ↑) 96.18 (0.46 ↑) 96.79 (0.15 ↓) 96.18 96.64 −0.15

StanfordCars
Base 63.37 78.12 70.49 (4.94 ↑) 77.68 (2.25 ↓) 74.70 (0.73 ↑) 71.76 (3.67 ↑) 75.23 (0.20 ↑) 72.90 75.43 +0.20
New 74.89 60.40 73.59 (1.14 ↑) 68.63 (6.10 ↑) 71.20 (3.53 ↑) 75.04 (0.31 ↓) 71.77 (2.96 ↑) 75.13 74.73 +2.96

H 68.85 68.13 72.01 (3.07 ↑) 72.88 (2.20 ↑) 72.91 (2.17 ↑) 73.36 (1.72 ↑) 73.46 (1.62 ↑) 74.00 75.08 +1.62

Flowers102
Base 72.08 97.60 94.87 (2.63 ↑) 95.54 (1.96 ↑) 97.70 (0.20 ↓) 95.00 (2.42 ↑) 97.17 (0.33 ↑) 96.17 97.50 +0.33
New 77.80 59.67 71.75 (4.45 ↑) 71.87 (4.33 ↑) 68.68 (7.52 ↑) 74.73 (1.47 ↑) 73.53 (2.75 ↑) 75.93 76.20 +2.67

H 74.83 74.06 81.71 (3.83 ↑) 82.03 (3.51 ↑) 80.66 (4.88 ↑) 83.65 (1.89 ↑) 83.71 (1.83 ↑) 85.19 85.54 +1.83

Food101
Base 90.10 88.33 90.70 (0.23 ↑) 90.37 (0.56 ↑) 90.30 (0.63 ↑) 90.50 (0.43 ↑) 91.20 (0.27 ↓) 90.77 90.93 −0.27
New 91.22 82.26 91.29 (0.88 ↑) 89.59 (2.58 ↑) 88.57 (3.60 ↑) 91.70 (0.47 ↑) 91.90 (0.27 ↑) 92.13 92.17 +0.27

H 90.66 85.19 90.99 (0.56 ↑) 89.98 (1.57 ↑) 89.43 (2.12 ↑) 91.10 (0.45 ↑) 91.54 (0.01 ↑) 91.44 91.55 +0.01

FGVCAircraft
Base 27.19 40.44 33.41 (3.82 ↑) 40.54 (3.31 ↓) 36.90 (0.33 ↑) 36.21 (1.02 ↑) 38.05 (0.82 ↓) 37.00 37.23 −0.82
New 36.29 22.30 23.71 (13.2 ↑) 27.57 (9.30 ↑) 34.13 (2.74 ↑) 33.55 (3.32 ↑) 33.20 (3.67 ↑) 34.13 36.87 +3.67

H 31.09 28.75 27.74 (9.31 ↑) 32.82 (4.23 ↑) 35.46 (1.59 ↑) 34.83 (2.22 ↑) 35.46 (1.59 ↑) 35.51 37.05 +1.59

SUN397
Base 69.36 80.60 79.74 (2.56 ↑) 81.26 (1.04 ↑) 78.67 (3.63 ↑) 80.29 (2.01 ↑) 80.70 (1.60 ↑) 81.70 82.30 +1.60
New 75.35 65.89 76.86 (1.94 ↑) 74.17 (4.63 ↑) 76.93 (1.87 ↑) 76.53 (2.27 ↑) 79.30 (0.50 ↓) 78.80 78.80 −0.50

H 72.23 72.51 78.27 (2.24 ↑) 77.55 (2.96 ↑) 77.79 (2.72 ↑) 78.36 (2.15 ↑) 80.00 (0.51 ↑) 80.22 80.51 +0.51

DTD
Base 53.24 79.44 77.01 (4.26 ↑) 77.35 (3.92 ↑) 80.67 (0.60 ↑) 77.55 (3.72 ↑) 81.10 (0.17 ↑) 78.20 81.27 +0.17
New 59.90 41.18 56.00 (6.70 ↑) 52.35 (10.4 ↑) 56.48 (6.22 ↑) 54.99 (7.71 ↑) 62.57 (0.13 ↑) 61.07 62.70 +0.13

H 56.37 54.24 64.85 (5.94 ↑) 62.44 (8.35 ↑) 66.44 (4.35 ↑) 64.35 (6.44 ↑) 70.64 (0.15 ↑) 68.58 70.79 +0.15

EuroSAT
Base 56.48 92.19 87.49 (0.44 ↑) 90.11 (2.18 ↓) 83.90 (4.03 ↑) 85.64 (2.29 ↑) 95.00 (7.07 ↓) 86.07 87.93 −7.07
New 64.05 54.74 60.04 (16.1 ↑) 60.89 (15.2 ↑) 66.00 (10.1 ↑) 64.34 (11.8 ↑) 83.37 (7.27 ↓) 71.83 76.10 −7.27

H 60.03 68.90 71.21 (10.4 ↑) 72.67 (8.92 ↑) 73.88 (7.71 ↑) 73.48 (8.11 ↑) 88.81 (7.22 ↓) 78.31 81.59 −7.22

UCF101
Base 70.53 84.69 82.33 (2.44 ↑) 84.33 (0.44 ↑) 85.23 (0.46 ↓) 82.89 (1.88 ↑) 85.53 (0.76 ↓) 83.33 84.77 −0.76
New 77.50 56.05 73.45 (5.68 ↑) 74.94 (4.19 ↑) 71.97 (7.16 ↑) 76.67 (2.46 ↑) 78.20 (0.93 ↑) 76.47 79.13 +0.93

H 73.85 67.46 77.64 (4.21 ↑) 79.36 (2.49 ↑) 78.04 (3.81 ↑) 79.66 (2.19 ↑) 81.70 (0.15 ↑) 79.75 81.85 +0.15

Table 2: a) Domain Generalization and b) Cross-dataset transfer.

(a) Comparison of prompt learning in domain general-
ization with 16-shot source samples. The best results
are marked bold.

Source Target Avg.ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CLIP 66.73 60.83 46.15 47.77 73.96 57.17
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.90
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
ProGrad 72.24 64.73 47.61 49.39 74.58 59.07
KgCoOp 71.20 64.10 48.97 50.69 76.70 60.11
TaskRes 73.90 65.85 47.70 49.17 75.23 59.49
LASP 71.10 63.96 49.01 50.70 77.07 60.19

SuPr 71.70 64.50 49.40 50.30 77.20 60.35

(b) Comparison in the cross-dataset transfer learning
by learning the prompts from ImageNet (16-shots) with
ViT/B16, and evaluating on the other 10 datasets. The
best results are marked bold. * reimplemented.

Datasets CoOp CoCoOp ProGrad KgCoOp LASP* SuPr

Source ImageNet 71.51 71.02 72.24 70.66 71.40 71.70

Target

Caltech101 93.70 94.43 91.52 93.92 93.30 94.20
OxfordPets 89.14 90.14 89.64 89.83 89.88 89.80
StanfordCars 64.51 65.32 62.39 65.41 65.01 64.90
Flowers102 68.71 71.88 67.87 70.01 70.20 70.70
Food101 85.30 86.06 85.40 86.36 85.39 86.30
FGVCAircraft 18.47 22.94 20.61 22.51 20.88 23.00
SUN397 64.15 67.36 62.47 66.16 66.74 66.50
DTD 41.92 45.73 39.42 46.35 43.67 45.50
EuroSAT 46.39 45.37 43.46 46.04 45.32 50.20
UCF101 66.55 68.21 64.29 68.50 69.07 67.70

Avg. 63.88 65.74 62.71 65.51 64.95 65.88

and hard prompts, our SuPr relaxes this strong regularization and outperforms them in both the
base- and novel-class results. LASP is a strong competitor, considering the overall average perfor-
mance. However, its primary improvement comes from the EuroSat dataset, without which our ap-
proach outperforms LASP significantly (see Figure 3a). Notably, our method excels on fine-grained
datasets, emphasizing the effectiveness of subspace modelling in capturing diverse underlying se-
mantic concepts, which greatly benefit fine-grained recognition tasks.

4.2 DOMAIN GENERALIZATION & CROSS DATASET TRANSFER

To further assess the robustness of our method, we perform experiments in domain generalization
and cross-dataset transfer scenarios. In both settings, methods are trained on ImageNet as the source
domain. However, they are evaluated on ImageNet variants in Table 2a in a closed-set setting and
on novel datasets in Table 2b in an open-set setting.

It is seen in Tables 2a&2b, our approach consistently demonstrates excellent performance on target
domains in both settings, emphasizing its impressive generalization capabilities. In domain general-
ization, we achieve the best results in two out of four domains, with the highest overall average per-
formance. In cross-dataset transfer, we again outperform other methods by having the best average
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Table 3: a) Few-shot learning within base classes. b) Ablation study.
(a) Accuracy (%) of few-shot (4 shots) learning on 11
datasets using the ViT/B16 backbone. The best results
are marked bold. * reimplemented.

Datasets CoOp CoCoOp ProGrad KgCoOp LASP* SuPr

ImageNet 69.38 70.55 70.21 70.19 70.47 69.77
Caltech101 94.44 94.98 94.93 94.65 94.70 95.17
OxfordPets 91.30 93.01 93.21 93.20 92.58 93.13
StanfordCars 72.73 69.10 71.75 71.98 71.97 76.80
Flowers102 91.14 82.56 89.98 90.69 89.48 94.23
Food101 82.58 86.64 85.77 86.59 85.85 86.00
FGVCAircraft 33.18 30.87 32.93 32.47 30.60 35.53
SUN397 70.13 70.50 71.17 71.79 72.32 73.60
DTD 58.57 54.79 57.72 58.31 58.39 64.97
EuroSAT 68.62 63.83 70.84 71.06 68.80 73.23
UCF101 77.41 74.99 77.82 78.40 78.24 79.97

Avg. 73.59 71.98 74.21 74.48 73.95 76.58

(b) Ablation study for each component.

Set CoOp CoOp SuPr SuPr SuPr
Ensemble w/o reg Ens

Multiple Prompts % ! ! ! !

Subspace Modeling % % ! ! !

Regularization % % % ! !

Subspace Ensemble % % % % !

Base 82.69 80.02 81.18 81.47 82.54
New 63.22 68.51 73.30 75.21 76.36

H 71.66 73.82 77.04 78.21 79.33

(a) Harmonic mean.(a) Effect of different SuPr components (b) Effect of number K (b) Soft prompts number K.
Figure 3: a) overall performance of Table 1 and b) varying K.

performance. These findings highlight the robustness of our method and its superior generalization
capabilities across various datasets compared to point-estimate methods.

4.3 FEW SHOT LEARNING WITHIN BASE CLASSES

In addition, we conduct experiments in the few-shot learning setting (only base class) following (Yao
et al., 2023). Unlike other methods that compromise their performance on base classes due to strong
regularization, our method demonstrates a remarkable average performance improvement of 2.1%
across the eleven datasets. Notably, our approach outperforms existing methods on eight of the
eleven datasets in this particular setting, as detailed in Table 3a. Again, these results underscore the
versatility of our approach, which maintains superior performance on both base and new classes.

4.4 ABLATION STUDY AND FURTHER ANALYSIS

We conduct an ablation study to analyse each component in our proposed SuPr and SuPr-Ens in
Table 3b5. We also randomly select six classes from the Food101 dataset and perform t-SNE vi-
sualizations. Figure 4a/b illustrates the t-SNE visualizations for novel classes, while Figure 4c for
base classes. Image features, soft- and hard-prompt embeddings are represented by circles, inverted
triangles, and pentagrams. Different colours indicate distinct classes. Furthermore, we employ least
square to fit linear subspaces to the soft-prompt embeddings, resulting in linear planes correspond-
ing to each class, visually represented by large squares.

Ablation study. From the results in Table 3b, it is seen that CoOp-Ensemble improves CoOp with
about 2.16% accuracy by learning separately multiple learnable sets of soft prompts and ensem-
bling the learned CoOp models. Incorporating the subspace modelling on top of CoOp-Ensemble
to replace the simple ensembling improves its performance further by 3.22%, evidencing the ef-

5CoOp: Vanilla CoOp, assuming the parameter size of learnable soft prompts is M . CoOp-Ensemble:
Multiple CoOp models are introduced, i.e., multiple sets of soft prompts are learnable, whose total parameter
size is also M . During inference, prediction is based on the ensembling of multiple CoOp models. SuPr w/o
reg: Adding subspace modeling on top of CoOp-Ensemble. SuPr: Adding hard-prompt based regularization
on top of SuPr w/o reg. SuPr-Ens: Ensembling separate linear subspaces, which are regularized by different
subsets of hard prompts for a class.
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SuPr SuPr - Ens

SuPr w/o Reg

(a) Image Features

SuPr w Reg

(c)Mixture of Subspace 

(b) Hard Prompts

Hard Prompt Soft Prompt Image FeatureSubspace

SuPr w/o Reg SuPr w Reg

5 Hard Prompts 30 Hard Prompts 30 Hard Prompts

Figure 4: t-SNE visualization.

fectiveness of SuPr w/o reg. Furthermore, adding the hard-prompt-based regularization pushes the
model performance up by 1.17%, as the achievement of SuPr, which is further improved with 1.12%
accuracy by subspace ensembling – SuPr-Ens.

What is the effect of varying K of soft prompts? In Figure 3b, we conduct experiments to evaluate
the impact of varying the number of sets of soft prompts. Our observations reveal that the overall
performance remains relatively stable as K changes. Using more soft prompts slightly improves
base class accuracy but decreases accuracy for novel classes. The optimal performance is achieved
when K is set to three, which is used in all experiments.

How does hard-prompt regularization help? From the comparison between SuPr w/o reg and
SuPr in Table 3b, we can see a notable improvement brought by the regularization. The reason
is reflected in Figure 4a. We can see in Figure 4a that SuPr w/o reg does not generalize to novel
classes since the image features are not associated with the correct subspaces. However, SuPr w/reg
mitigates this issue noticeably and now the image features can be assigned to the right subspaces.
Figure 4b explains it. We can see that after regularization, the modelled subspaces get tuned to align
better hard-prompt embeddings, leading to better zero-shot inference on novel classes.

What is the benefit of SuPr-Ens compared with SuPr? We conduct t-SNE visualizations for
both SuPr and SuPr-Ens (two subspaces per class). Through Figure 4c, we observe that when only
five hard prompts are used the modelled subspace can span them well in Figure 4c (left), but when
the number of hard prompts goes up to thirty, spanning all of them on a single subspace is hard
as shown in Figure 4c (mid). However, using the same hard prompts, the accommodation of hard-
prompt embeddings becomes less difficult when multiple subspaces are introduced, as shown in
Figure 4c (right). Different subspaces can embed different subsets of the hard prompts, capturing
different spectrums of textual/visual details.

5 CONCLUSION

We introduced SuPr, a linear subspace-based prompt learning method for adapting vision-language
models in this paper. Our approach marks the first integration of subspace modelling with VLMs,
allowing the model to encompass a wider spectrum of visual semantics. Our proposed subspace
modelling addresses the challenge of base class overfitting by accommodating hard prompts within
the subspace modelled by the learned soft prompts. SuPr excels in fitting to the base classes while
generalizing to novel classes. Our SuPr achieved strong performance on various tasks, including
generalization from base to novel, domain generalization, cross-dataset transfer and few shot learn-
ing. Interestingly, a simple ensembling of modelling multiple linear subspaces using different sets of
hard prompts results in a more leading variant, achieving state of the art performance on all settings.
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A HARD PROMPTS

Dataset Specific Prompt Template

ImageNet “ a photo of a {CLASS}.”

“ itap of a {CLASS}.”

“ a bad photo of the {CLASS}.”

“ a origami {CLASS}.”

“ a photo of the large {CLASS}.”

...

Caltech101 “ a photo of a {CLASS}.”

“ a painting of a {CLASS}.”

“ a plastic {CLASS}.”

“ a sculpture of a {CLASS}.”

“ a sketch of a {CLASS}.”

...

OxfordPets “ a photo of a {CLASS}, a type of pet.”

“ a photo of a {CLASS}, a type of cat.”

“ a photo of a {CLASS}, a type of dog.”

“ a photo of a {CLASS} pet.”

“ a picture of a {CLASS} animal companion.”

...

StanfordCars “ a photo of a {CLASS}.”

“ a photo of the {CLASS}.”

“ a photo of my {CLASS}.”

“ I love my {CLASS}.”

“ a photo of my dirty {CLASS}.”

...

Flowers102 “ a photo of a {CLASS} flower.”

“ a photo of a {CLASS} bloom.”

“ a picture of a {CLASS} flower.”

“ an image of a {CLASS} bloom .”

“ a close-up of a {CLASS} flower.”

...

Food101 “ a photo of {CLASS}, a type of food.”

“ a photo of a {CLASS}, a type of food.”

“ a photo of the {CLASS}, a type of food.”

“ a photo of a plate of {CLASS}.”

“ a picture of a dish of {CLASS}.”

...
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FGVCAircraft “ a photo of a {CLASS}, a type of aircraft.”

“ a photo of the {CLASS}, a type of aircraft.”

“ a photo of a {CLASS} airliner.”

“ a picture of a {CLASS} passenger plane.”

“ an image of a {CLASS} commercial aircraft.”

...

SUN397 “ a photo of a {CLASS}.”

“ a photo of the {CLASS}.”

“ itap of a {CLASS}.”

“ a bad photo of the {CLASS}.”

“ a origami {CLASS}.”

...

DTD “ {CLASS} texture.”

“ a photo of a {CLASS} texture.”

“ a photo of a {CLASS} pattern.”

“ a photo of a {CLASS} thing.”

“ a photo of a {CLASS} object.”

...

EuroSAT “ a centered satellite photo of {CLASS}.”

“ a centered satellite photo of a {CLASS}.”

“ a centered satellite photo of the {CLASS}.”

“ an aerial view showcasing {CLASS}.”

“ a satellite image capturing {CLASS}.”

...

UCF101 “ a photo of a person doing {CLASS}.”

“ a photo of a person {CLASS}.”

“ a video of a person {CLASS}.”

“ a example of a person {CLASS}.”

“ a demonstration of a person {CLASS}.”

...

B QUALITATIVE VISUALIZATION

Analysis on subspace. We conduct the qualitative visualization using Paella Rampas et al. (2023)
to synthesize images based on different (hard & learned) prompts. The visualizations in Figure 5-8
show that soft prompts learned by subspace modelling capture different intra-class variations, such
as fine-grained attributes in terms of colour, texture and depiction styles. This explains why our
SuPr improves over CoOp, which is stuck with learning only dominating concepts. Also, walking in
the subspace across different subspace bases shows interesting transitions along different attributes,
showing the wealth of semantic information learned in each subspace, as shown in Figure 9-11.

14



Under review as a conference paper at ICLR 2024

Imagenet

11
goldfinch

13
junco

21
kite

17jayhas_all

97
 duck

153
Maltese

187
Yorkshire 
Terrier

Domain

48
Komodo
dragon

CLIP embedding

Subspace basis 1

Subspace basis 2

Subspace basis 3

Ba
si
s1

Ba
si
s2

Ba
si
s3

Su
bs
pa
ce

ImageNet

CLIP

Figure 5: Text to image synthesis using different prompts on ImageNet.

3
Basset
_houn
d

12English
Cocker
spaniel

13
English
_setter

2
american
_
pit_bull
_terrier

14
German
shorthaired

16
havanese

1
American
bulldog

CLIP embedding

Subspace basis 1

Subspace basis 2

Subspace basis 3 Ba
si
s1

Ba
si
s2

Ba
si
s3

Su
bs
pa
ce

Oxford Pets

CLIP

Figure 6: Text to image synthesis using different prompts on Oxford Pet.

How do subspaces enable better inference compared with vector classifiers? We compute the
prediction scores for all the test samples for some datasets and visualize the top 10% prediction-
confident samples in Figure 12-14. To better understand the selected samples, we cluster them into
three clusters using K-means. From the results, we can see that the test samples that simulate the
vector classifiers are less diverse than the subspace ones, indicating the issue of learning only the
dominating concepts of vector classifiers. Among them, we can also see the samples predicted right
using subspace classifiers but not by vector classifiers.

15



Under review as a conference paper at ICLR 2024

1
hard-
leaved 
pocket 
orchid

6moon orchid

9
globe 
thistle

12
king 
protea

27
stemless 
gentian

21
pincushion 
flower marigold

48
oxeye 
daisy

CLIP embedding

Subspace basis 1

Subspace basis 2

Subspace basis 3

Ba
si
s1

Ba
si
s2

Ba
si
s3

Su
bs
pa
ce

Oxford Flowers

CLIP

Figure 7: Text to image synthesis using different prompts on Oxford Flower.DTD

Cross
hatched

Dotted 19
interl
aced

5
chequered

9
crystalline

16
grid

7
cracked

CLIP embedding

Subspace basis 1

Subspace basis 2

Subspace basis 3 Ba
si
s1

Ba
si
s2

Ba
si
s3

Su
bs
pa
ce

DTD

CLIP

Figure 8: Text to image synthesis using different prompts on DTD.
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Figure 11: Subspace walking — depiction styles.
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Figure 12: Prediction-confident test samples of Freckled for vector v.s. subspace classifiers. Sam-
ples with red boxing are wrong predictions, and samples with blue boxing are predicted right with
subspace classifiers but not with vector classifiers.

Cluster 1

Cluster 2

Cluster 3

CoOp

SuPr

Petunia

Test Sample

Train Sample
4 shots

Vector Based

Subspace Based

Cluster 1

Cluster 2

Cluster 3

Figure 13: Prediction-confident test samples of Petunia for vector v.s. subspace classifiers. Sam-
ples with red boxing are wrong predictions, and samples with blue boxing are predicted right with
subspace classifiers but not with vector classifiers.
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Figure 14: Prediction-confident test samples of Ostrich for vector v.s. subspace classifiers. Sam-
ples with red boxing are wrong predictions, and samples with blue boxing are predicted right with
subspace classifiers but not with vector classifiers.
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