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Abstract

Meta-learning methods leverage data from previous tasks to learn a new task in a
sample-efficient manner. In particular, model-agnostic methods look for initialisa-
tion points from which gradient descent quickly adapts to any new task. Although
it has been empirically suggested that such methods learns shared representations
during pretraining, there is limited theoretical evidence of such behavior. In this
direction, this work shows, in the limit of infinite tasks, first-order ANIL with a lin-
ear two-layer network successfully learns linear shared representations. This result
even holds under overparametrisation; having a width larger than the dimension of
the shared representations results in an asymptotically low-rank solution.

1 Introduction

Supervised learning usually requires a large amount of data. To overcome the limited number of
available training samples for a single task, multi-task learning estimates a model across multiple
tasks [Ando et al., 2005, Cheng et al., 2011]. Closely related, meta-learning aims to quickly adapt to
any new task, by leveraging the knowledge gained from previous tasks.

Meta-learning has been mostly popularised by the success of Model-Agnostic Meta-Learning
(MAML) for few-shot image classification and reinforcement learning [Finn et al., 2017]. MAML
searches for an initialisation point such that only a few task-specific gradient descent iterations yield
good performance on new tasks. It is model-agnostic as the objective is applicable to any architecture
that is trainable with a gradient procedure, without modifications. Raghu et al. [2020] empirically
claim that MAML implicitly learns a shared representation across the tasks, since its intermediate
layers do not significantly change during task-specific finetuning. Consequently, they propose Almost-
No-Inner-Loop (ANIL), which only updates the last layer during task-specific updates and performs
similarly to MAML. However, practitioners generally use first-order approximations FO-MAML or
FO-ANIL that achieve comparable performances at a cheaper cost [Nichol and Schulman, 2018].

Despite the empirical success of model-agnostic methods, little is known about their behaviors in
theory. To this end, our work considers learning of shared representations in few-shot settings with
the pretraining of FO-ANIL. Proving positive optimisation results on the pretraining of meta-learning
models is out of reach in general, complex settings in practice. Hence, to allow a tractable analysis,
we study FO-ANIL in the canonical multi-task model of a linear shared representation; and consider a
linear two-layer network [Rohde and Tsybakov, 2011, Tripuraneni et al., 2021, Boursier et al., 2022].

For meta-learning in this canonical multi-task model, Saunshi et al. [2020] has shown the first
result under overparametrisation by considering a unidimensional shared representation, infinite
samples per task, and an idealised algorithm. More recently, [Collins et al., 2022] has provided a
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multi-dimensional analysis for MAML and ANIL in which the hidden layer recovers the ground-truth
low-dimensional subspace at an exponential rate. Similar to multi-task methods, the latter result
relies on well-specification of the network width, i.e., it has to coincide with the hidden dimension of
the shared structure. Moreover, it requires a weak alignment between the hidden layer and the ground
truth at initialisation, which is not satisfied in high-dimensional settings.

The power of MAML and ANIL, however, comes from their good performance despite mismatches
between the architecture and the problem, and in few-shot settings. In this direction, we prove a
learning result under finite samples and infinite tasks that is better suited for practical scenarios.
Specifically, we show that FO-ANIL successfully learns multidimensional linear shared structures
with an overparametrised network width and without initial weak alignment. Our setting admits novel
behaviors unobserved in previous works: FO-ANIL not only learns the low-dimensional subspace,
but it also unlearns its orthogonal complement. This unlearning does not happen with infinite samples
and is crucial during task-specific finetuning. Overall, our result provides the first guarantee under
misspecifications, and shows the benefits of model-agnostic meta-learning over multi-task learning.

2 Problem setting

In the following, tasks are indexed by i ∈ N. Each task corresponds to a d-dimensional linear
regression task with parameter θ⋆,i ∈ Rd and m observation samples. For each task i, we have
observations (Xi, yi) ∈ Rm×d × Rm such that yi = Xiθ⋆,i + zi where zi ∈ Rm is some random
noise. The multi-task linear representation learning setting assumes that the regression parameters
θ⋆,i all lie in the same small k-dimensional linear subspace, with k < d. Equivalently, there is an
orthogonal matrix B⋆ ∈ Rd×k and representation parameters w⋆,i ∈ Rk such that θ⋆,i = B⋆w⋆,i for
any task i. To derive a proper analysis of this setting, we assume a random design of the different
quantities of interest, summarised in Assumption 1.
Assumption 1 (random design). Each row of Xi is drawn i.i.d. according to N (0, Id) and the
coordinates of zi are i.i.d., centered random variables of variance σ2. Moreover, the task parameters
w⋆,i are drawn i.i.d with E[w⋆,i] = 0 and covariance matrix Σ⋆ := E[w⋆,iw

⊤
⋆,i] = c Ik with c > 0.

2.1 FO-ANIL algorithm

The ANIL algorithm aims at minimising the test loss on a new task, after a small number of gradient
steps on the last layer of the neural network. For the sake of simplicity, we here consider a single
gradient step and a linear two-layer network architecture, parametrised by θ := (B,w) ∈ Rd×k′×Rk′

with k ≤ k′ ≤ d. ANIL then aims at minimising over θ the quantity

LANIL(θ) := Ew⋆,i,Xi,yi

[
Li

(
θ − α∇wL̂i(θ;Xi, yi)

)]
, (1)

where Li is the (expected) test loss on the task i, which depends on w⋆,i; L̂i(θ;Xi, yi) is the empirical
loss on the observations (Xi, yi); and α is the gradient step size.

Following Saunshi et al. [2021], we split the observations of each task as (X in
i , yini ) ∈ Rmin×d×Rmin

the min first rows of (Xi, yi); and (Xout
i , youti ) ∈ Rmout×d × Rmout the mout last rows of (Xi, yi).

While training, ANIL alternates at each step t ∈ N between an inner and an outer loop to update the
parameter θt. In the inner loop, the last layer of the network is adapted to each task i following

wt,i ← wt − α∇wL̂i(θt;X
in
i , yini ). (2)

In the outer loop, ANIL then takes a gradient step (with learning rate β) on the validation loss
obtained for the observations (Xout

i , youti ) after this inner loop. With θt,i := (Bt, wt,i), it updates

θt+1 ← θt − β
N

∑N
i=1 Ĥt,i(θt)∇θL̂i(θt,i;X

out
i , youti ), (3)

where the matrix Ĥt,i accounts for the derivative of the function θt 7→ θt,i. FO-ANIL, which is
considered in the remaining of this work, replaces Ĥt,i by the identity matrix in Equation (3).

2.2 Infinite task idealisation

In our regression setting, the empirical squared error is used and the Equation (2) reads:

wt,i = wt −
α

min
B⊤

t (X in
i )⊤X in

i (Btwt −B⋆w⋆,i) +
α

min
B⊤

t (X in
i )⊤zini . (4)
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Following multi-task learning literature that considers a large number of tasks [Thekumparampil
et al., 2021, Boursier et al., 2022], we study FO-ANIL in the limit of an infinite number of tasks
N =∞. The first-order outer loop updates of Equation (3) then simplify with Assumption 1 to

wt+1 = wt − β(Ik′ − αB⊤
t Bt)B

⊤
t Btwt, (5)

Bt+1 = Bt − βBtE[wt,iw
⊤
t,i] + αβB⋆Σ⋆B

⊤
⋆ Bt. (6)

Moreover, Lemma 15 with Assumption 1 allows computation of the exact expression of E[wt,iw
⊤
t,i]:

E[wt,iw
⊤
t,i] = (Ik′ − αB⊤

t Bt)wtw
⊤
t (Ik′ − αB⊤

t Bt) + α2B⊤
t B⋆Σ⋆B

⊤
⋆ Bt

+
α2

min
B⊤

t

(
Btwtw

⊤
t B

⊤
t +B⋆Σ⋆B

⊤
⋆ +

(
∥Btwt∥2 +Tr(Σ⋆) + σ2

)
Id
)
Bt.

(7)

3 Learning a good representation

Given the complexity of its iterates, FO-ANIL is very intricate to analyse even in this simplified
setting of infinite tasks. The objective function is non-convex in its arguments and the iterations
involve high-order terms in both wt and Bt, as seen in Equations (5) and (6).

Theorem 1. Let B0 and w0 be initialized such that B⊤
⋆ B0 is full rank,

∥B0∥22 = O
(
α−1 min

( 1

min
,
min

σ2

))
, ∥w0∥22 = O (αλmin(Σ⋆)) ,

where λmin(Σ⋆) is the smallest eigenvalue of Σ⋆, σ2 := Tr(Σ⋆) + σ2 and the O notation hides
universal constants. Let also the step sizes satisfy α ≥ β and α = O (1/σ).

Then under Assumption 1, FO-ANIL (given by Equations (5) and (6)) with initial parameters B0, w0,
asymptotically satisfies the following

lim
t→∞

B⊤
⋆,⊥Bt = 0, lim

t→∞
Btwt = 0,

lim
t→∞

B⊤
⋆ BtB

⊤
t B⋆ = Λ⋆ :=

1

α

min

min + 1

(
Ik −

(min + 1

σ2
Σ⋆ + Ik

)−1
)
,

(8)

where B⋆,⊥ ∈ Rd×(d−k) is an orthogonal matrix spanning the orthogonal of col(B⋆), i.e.,

B⊤
⋆,⊥B⋆,⊥ = Id−k, and B⊤

⋆ B⋆,⊥ = 0.

Theorem 1 yet characterizes convergence towards some fixed point (of the iterates) satisfying:

1. B∞ is rank-deficient, i.e., FO-ANIL learns to ignore the entire d−k dimensional orthogonal
subspace given by B⋆,⊥, as expressed by the first limit in Equation (8).

2. The learnt initialisation yields the zero function, as given by the second limit in Equation (8).
Note that wt does not necessarily converge to 0; however, it converges to the null space of
B⋆, thanks to the third property. Although intuitive, showing that Btwt converges to the
mean task parameter (assumed 0 here) is very challenging when starting away from it, as
discussed in Appendix A. This property is crucial for fast adaptation on a new task.

3. B⊤
⋆ B∞B⊤

∞B⋆ is proportional to identity. Along with the first property, this fact implies that
the learnt matrix B∞ exactly spans col(B⋆). Moreover, its squared singular values scale as
α−1, allowing to perform rapid learning with a single gradient step of size α.

These three properties allow to obtain a good performance on a new task after a single gradient
descent step, as quantified by Proposition 1 in Section 3.1. In addition, the limit points characterised
by Theorem 1 are shown to be global minima of the ANIL objective in Equation (1) in Appendix F.

Interestingly, Theorem 1 holds for quite large step sizes α, β and the limit points only depend on
these parameters by the α−1 scaling of Λ⋆. Also note that Λ⋆ → 1

αIk when min →∞. Yet, there is
some shrinkage of Λ⋆ for finite number of samples, that is significant when min is of order of the
inverse eigenvalues of 1

σ2Σ⋆. This shrinkage mitigates the variance of the estimator returned after a
single gradient step, while this estimator is unbiased with no shrinkage (min =∞).
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Although the limiting behavior of FO-ANIL holds for any finite min, the convergence rate can be
arbitrarily slow for large min. In particular, FO-ANIL becomes very slow to unlearn the orthogonal
complement of col(B⋆) when min is large, as highlighted by Equation (13) in Appendix B. At the
limit of infinite samples min =∞, FO-ANIL thus does not unlearn the orthogonal complement and
the first limit of Equation (8) in Theorem 1 does not hold anymore. This unlearning is yet crucial at
test time, since it reduces the dependency of the excess risk from k′ to k (see Proposition 1).

3.1 Fast adaptation to a new task

Thanks to Theorem 1, FO-ANIL learns the shared representation during pretraining. It is yet unclear
how this result enhances the learning of new tasks, often referred as finetuning in the literature.
Consider having learnt parameters (B̂, ŵ) ∈ Rd×k′ × Rk′

following Theorem 1,

B⊤
⋆,⊥B̂ = 0; B̂ŵ = 0; B⊤

⋆ B̂B̂⊤B⋆ = Λ⋆. (9)

We then observe a new regression task with mtest observations (X, y) ∈ Rmtest×d × Rmtest and
parameter w⋆ ∈ Rk such that y = XB⋆w⋆ + z, where the entries of z are i.i.d. centered σ sub-
Gaussian random variables and the entries of X are i.i.d. standard Gaussian variables following
Assumption 1. The learner then estimates the regression parameter of the new task doing one step of
gradient descent:

wtest = ŵ − α∇wL̂((B̂, ŵ);X, y) = ŵ +
α

mtest
B̂⊤X⊤XB⋆w⋆ +

α

mtest
B̂⊤X⊤z, (10)

As in the inner loop of ANIL, a single gradient step is processed here. When estimating the regression
parameter with B̂wtest, the excess risk on this task is exactly ∥B̂wtest − B⋆w⋆∥22. Proposition 1
below allows to bound the risk on any new observed task.

Proposition 1. Let B̂, wtest satisfy Equations (9) and (10) for a new task defined by w⋆. If mtest ≥ k,
then with probability at least 1− 4e−

k
2 ,

∥B̂wtest −B⋆w⋆∥2 = O
(1 + σ2

/λmin(Σ⋆)

min
∥w⋆∥+ ∥w⋆∥

√
k

mtest
+ σ

√
k

mtest

)
,

where we recall σ2 = Tr(Σ⋆) + σ2.

The first two terms come from the error due to proceeding a single gradient step, instead of converging
towards the ERM weights: the first one is the bias of this error, while the second one is due to its
variance. The last term is the typical error of linear regression on a k dimensional space. Note this
bound does not depend on the feature dimension d (nor k′), but only on the hidden dimension k.

When learning a new task without prior knowledge, e.g., with a simple linear regression on the

d-dimensional space of the features, the error instead scales as σ
√

d
mtest

[Hsu et al., 2012]. FO-ANIL
thus leads to improved estimations on new tasks, when it beforehand learnt the shared representation.
Such a learning is guaranteed thanks to Theorem 1. Surprisingly, FO-ANIL might only need a single
gradient step to outperform linear regression on the d-dimensional feature space, as empirically
confirmed in Appendix I. As explained, this quick adaptation is made possible by the α−1 scaling of
B̂, which leads to considerable updates in the model parameter after a single gradient step.

Additional material. The proofs of Theorem 1 and Proposition 1 are deferred to Appendices C
and D. An extensive discussion on the implications of these results and their limitations in compari-
son with existing literature can be found in Appendix A. Numerical experiments are presented in
Appendix I and confirm these results on more general assumptions than Assumption 1.

4 Conclusion

This work studies first-order ANIL in the shared linear representation model with a linear two-layer ar-
chitecture. Under infinite tasks idealisation, FO-ANIL successfully learns the shared, low-dimensional
representation despite overparametrisation in the hidden layer. More crucially for performance during
task-specific finetuning, the iterates of FO-ANIL not only learn the low-dimensional subspace but
also forget its orthogonal complement. As a consequence, our work suggests that model-agnostic
methods are also model-agnostic in the sense that they successfully learn the shared representation,
although their architecture is not adapted to the problem parameters.

4



References

Rie Kubota Ando, Tong Zhang, and Peter Bartlett. A framework for learning predictive structures
from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(61):1817–1853,
2005.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

Etienne Boursier, Mikhail Konobeev, and Nicolas Flammarion. Trace norm regularization for multi-
task learning with scarce data. In Conference on Learning Theory, pages 1303–1327. PMLR,
2022.

Bin Cheng, Guangcan Liu, Jingdong Wang, Zhongyang Huang, and Shuicheng Yan. Multi-task
low-rank affinity pursuit for image segmentation. In 2011 International Conference on Computer
Vision, pages 2439–2446. IEEE, 2011.

Liam Collins, Aryan Mokhtari, Sewoong Oh, and Sanjay Shakkottai. Maml and anil provably learn
representations. arXiv preprint arXiv:2202.03483, 2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in Neural Information Processing Systems,
30, 2017.

Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression. In
Conference on learning theory, pages 9–1. JMLR Workshop and Conference Proceedings, 2012.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839, 2020.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In International Conference on Learning
Representations, 2020.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. Advances in neural information processing systems, 33:21174–21187, 2020.

P Rigollet and JC Hütter. Sub-gaussian random variables. High Dimensional Statistics, 1, 2017.

Angelika Rohde and Alexandre B Tsybakov. Estimation of high-dimensional low-rank matrices. The
Annals of Statistics, 39(2):887–930, 2011.

Nikunj Saunshi, Yi Zhang, Mikhail Khodak, and Sanjeev Arora. A sample complexity separation
between non-convex and convex meta-learning. In International Conference on Machine Learning,
pages 8512–8521. PMLR, 2020.

Nikunj Saunshi, Arushi Gupta, and Wei Hu. A representation learning perspective on the importance
of train-validation splitting in meta-learning. In International Conference on Machine Learning,
pages 9333–9343. PMLR, 2021.

Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Statistically and
computationally efficient linear meta-representation learning. Advances in Neural Information
Processing Systems, 34:18487–18500, 2021.

Nilesh Tripuraneni, Michael Jordan, and Chi Jin. On the theory of transfer learning: The importance
of task diversity. Advances in neural information processing systems, 33:7852–7862, 2020.

Nilesh Tripuraneni, Chi Jin, and Michael Jordan. Provable meta-learning of linear representations. In
International Conference on Machine Learning, pages 10434–10443. PMLR, 2021.

5



Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Weihang Xu and Simon S Du. Over-parameterization exponentially slows down gradient descent for
learning a single neuron. arXiv preprint arXiv:2302.10034, 2023.

6



A Discussion

No prior structure knowledge. Previous works on model-agnostic methods and matrix factorisa-
tion consider a well-specified learning architecture, i.e., k′ = k [Tripuraneni et al., 2021, Thekumpara-
mpil et al., 2021, Collins et al., 2022]. In practical settings, the true dimension k is hidden, and
estimating it is part of learning the representation. Theorem 1 instead states that FO-ANIL recovers
this hidden true dimension k asymptotically when misspecified (k′ > k) and still learns good shared
representation despite overparametrisation (e.g., k′ = d). Theorem 1 thus illustrates the adaptivity
of model-agnostic methods, which we believe contributes to their empirical success. In addition,
Theorem 1 answers the conjecture of Saunshi et al. [2020].

Proving good convergence of FO-ANIL despite misspecification in network width is the main
technical challenge of this work. When correctly specified, it is sufficient to prove that FO-ANIL
learns the subspace spanned by B⋆, which is simply measured by the principal angle distance by
Collins et al. [2022]. When largely misspecified (k′ = d), this measure is always 1 and poorly
reflects how good is the learnt representation. Instead of a single measure, two phenomena are
quantified here. FO-ANIL indeed not only learns the low-dimensional subspace, but it also unlearns
its orthogonal complement.1 More precisely, misspecification sets additional difficulties in controlling
simultaneously the variables wt and Bt through iterations. When k′ = k, this control is possible by
lower bounding the singular values of Bt. A similar argument is however not possible when k′ > k,
as the matrix Bt is now rank deficient (at least asymptotically). To overcome this challenge, we use a
different initialisation regime and analysis techniques with respect to Saunshi et al. [2020], Collins
et al. [2022]. These advanced techniques allow to prove convergence of FO-ANIL with different
assumptions on both the model and the initialisation regime, as explained below.

Superiority of agnostic methods. When correctly specified (k′ = k), model-agnostic methods do
not outperform traditional multi-task learning methods. For example, the Burer-Monteiro factorisation
minimises the non-convex problem

min
B∈Rd×k′

W∈Rk′×N

1
2N

∑N
i=1 L̂i(BW (i);Xi, yi), (11)

where W (i) stands for the i-th column of the matrix W . Tripuraneni et al. [2021] show that any
local minimum of Equation (11) correctly learns the shared representation when k′ = k. However
when misspecified (e.g., taking k′ = d), there is no such guarantee. In that case, the optimal B
need to be full rank (e.g., B = Id) to perfectly fit the training data of all tasks, when there is label
noise. This setting then resembles running independent d-dimensional linear regressions for each
task and directly leads to a suboptimal performance of Burer-Monteiro factorisations, as illustrated
in Appendix I. This is another argument in favor of model-agnostic methods in practice: while they
provably work despite overparametrisation, traditional multi-task methods a priori do not.

Although Burer-Monteiro performs worse than FO-ANIL in the experiments of Appendix I, it still
largely outperforms the single-task baseline. We believe this good performance despite overparametri-
sation might be due to the implicit bias of matrix factorisation towards low-rank solutions. This
phenomenon remains largely misunderstood in theory, even after being extensively studied [Gu-
nasekar et al., 2017, Arora et al., 2019, Razin and Cohen, 2020, Li et al., 2020]. Explaining the
surprisingly good performance of Burer-Monteiro thus remains a major open problem.

Infinite tasks model. A main assumption in Theorem 1 is the infinite tasks model, where updates
are given by the exact (first-order) gradient of the objective function in Equation (1). Theoretical
works often assume a large number of tasks to allow a tractable analysis [Thekumparampil et al.,
2021, Boursier et al., 2022]. The infinite tasks model idealises this type of assumption and leads to
simplified parameters’ updates. Note these updates, given by Equations (5) and (6), remain intricate
to analyse. Saunshi et al. [2020], Collins et al. [2022] instead consider an infinite number of samples
per task, i.e., min = ∞. This assumption leads to even simpler updates, and their analysis can be
extended to the misspecified setting with some extra work, as explained in Appendix G. Collins et al.
[2022] also extend their result to a finite number of samples in finite-time horizon, using concentration

1Although Saunshi et al. [2020] consider a misspecified setting, the orthogonal complement is not unlearnt in
their case, since they assume an infinite number of samples per task (see Infinite tasks model paragraph).
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bounds on the updates to their infinite samples counterparts when sufficiently many samples are
available.

More importantly, the infinite samples idealisation does not reflect the initial motivation of meta-
learning, which is to learn tasks with a few samples. Interesting phenomena are thus not observed
in this simplified setting. First, the superiority of model-agnostic methods is not apparent with an
infinite number of samples per task. In that case, matrices B only spanning col(B⋆) also minimise
the problem of Equation (11), potentially making Burer-Monteiro optimal despite misspecification.
Second, a finite number of samples is required to unlearn the orthogonal of col(B⋆). When min =∞,
FO-ANIL does not unlearn this subspace, which hurts the performance at test time for large k′,
as observed in Appendix I. Indeed, there is no risk of overfitting (and hence no need to unlearn
the orthogonal space) with an infinite number of samples. On the contrary with a finite number of
samples, FO-ANIL tends to overfit during its inner loop. This overfitting is yet penalised by the outer
loss and is then mitigated by unlearning the orthogonal space.

Extending Theorem 1 to a finite number of tasks is left open for future work. Appendix I empirically
supports that a similar result should hold. An analysis similar to Collins et al. [2022] (finite tasks and
samples) is not desirable, as mimicking the infinite samples case through concentration would omit
the unlearning part, as explained above. With misspecification, we believe that extending Theorem 1
to a finite number of tasks is directly linked to relaxing Assumption 1. Indeed, the empirical task
mean and covariance are not exactly 0 and the identity matrix in that case. Obtaining a convergence
result with general task mean and covariance would then help in understanding the finite tasks case.

Initialisation regime. Theorem 1 requires a bounded initialisation to ensure the dynamics of
FO-ANIL stay bounded. Roughly, we need the squared norm of B⊤

⋆,⊥B0 to be O
(
(αmin)

−1
)

to
guarantee ∥Bt∥2 ≤ α−1 for any t. We believe the min dependency is an artifact of the analysis and it
is empirically not needed. Additionally, we bound w0 to control the scale of E[wt,iw

⊤
t,i] that appears

in the update of Bt. A similar inductive condition is used by Collins et al. [2022].

More importantly, our analysis only needs a full rank B⊤
⋆ B0, which holds almost surely for usual

initialisations. Collins et al. [2022] instead require that the smallest eigenvalue of B⊤
⋆ B0 is bounded

strictly away from 0, which does not hold when d≫ k′. This indicates that their analysis covers only
the tail end of training and not the initial alignment phase.

Rate of convergence. In contrast with the convergence result of Collins et al. [2022], Theorem 1
does not provide any convergence rate for FO-ANIL but only states asymptotic results. Appendix H
provides an analogous rate for the first limit of Theorem 1: ∥B⊤

⋆,⊥Bt∥22 = O
(

min

α2βσ2t

)
. Due to

misspecification, this rate is slower than the one by Collins et al. [2022] (exponential vs. polynomial).
A similar slow down due to overparametrisation has been recently shown when learning a single
ReLU neuron [Xu and Du, 2023]. In our setting, rates are more difficult to obtain for the second and
third limits, as the decay of quantities of interest depends on other terms in complex ways. Remark
that rates for these two limits are not studied by Collins et al. [2022]. In the infinite samples limit, a
rate for the third limit can yet be derived when k = k′.

Limitations. Assumption 1 assumes zero mean task parameters, µ⋆ := E[w⋆,i] = 0. Considering
non-zero task mean adds two difficulties to the existing analysis. First, controlling the dynamics
of wt is much harder, as there is an extra term µ⋆ in its update, but also because Btwt should not
converge to 0 anymore but B⋆µ⋆ instead. Moreover, updates of Bt have an extra asymmetric rank 1
term depending on µ⋆. Experiments in Appendix I yet support that both FO-ANIL and FO-MAML
succeed when µ⋆ is non zero.

In addition, we assume that the task covariance Σ⋆ is identity. The condition number of Σ⋆ is related
to the task diversity and the problem hardness [Tripuraneni et al., 2020, Thekumparampil et al., 2021,
Collins et al., 2022]. Under Assumption 1, the task diversity is perfect (i.e., the condition number
is 1), which simplifies the problem. The main challenge in dealing with general task covariances is
that the updates involve non-commutative terms. Consequently, the main update rule of B⊤

⋆ BtB
⊤
t B⋆

no longer preserves the monotonicity used to derive upper and lower bounds on its iterates. However,
experimental results in Appendix I suggest that Theorem 1 still holds with any diagonal covariance.
Hence, we believe our analysis can be extended to any diagonal task covariance. The matrix Σ⋆ being
diagonal is not restrictive, as it is always the case for a properly chosen B⋆.
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Lastly, the features Xi follow a standard Gaussian distribution here. It is needed to derive an exact
expression of E[wt,iw

⊤
t,i] with Lemma 15, which can be easily extended to any spherically symmetric

distribution. Whether Theorem 1 holds for general feature distributions yet remains open.

B Sketch of proof

The challenging part of Theorem 1 is that Bt ∈ Rd×k′
involves two separate components with

different dynamics:
Bt = B⋆B

⊤
⋆ Bt +B⋆,⊥B

⊤
⋆,⊥Bt.

The first term B⊤
⋆ Bt eventually scales in α−1/2 whereas the second term B⊤

⋆,⊥Bt converges to 0,
resulting in a nearly rank-deficient Bt. The dynamics of these two terms and wt are interdependent,
which makes it challenging to bound any of them.

Regularity conditions. The first part of the proof consists in bounding all the quantities of interest.
Precisely, we show by induction that the three following properties hold for any t,

1. ∥B⊤
⋆ Bt∥22 ≤ ∥Λ⋆∥2, 2. ∥wt∥2 ≤ ∥w0∥2, 3. ∥B⊤

⋆,⊥Bt∥2 ≤ ∥B⊤
⋆,⊥B0∥2. (12)

Importantly, the first and third conditions, along with the initialisation conditions, imply ∥Bt∥22 ≤
α−1. The monotonicity of the function fU described below leads to ∥B⊤

⋆ Bt+1∥22 ≤ ∥Λ⋆∥2. Also,
using the inductive assumptions with the update equations for B⊤

⋆,⊥Bt and wt allows us to show that
both the second and third properties hold at time t+ 1.

Now that the three different quantities of interest have been properly bounded, we can show the three
limiting results of Theorem 1.

Unlearning the orthogonal complement. We first show that limt→∞ B⊤
⋆,⊥Bt = 0. Equation (6)

directly yields B⊤
⋆,⊥Bt+1 = B⊤

⋆,⊥Bt

(
Ik′ − βE[wt,iw

⊤
t,i]
)
. The previous bounding conditions

guarantee for a well chosen β that ∥E[wt,iw
⊤
t,i]∥2 ≤ β−1. Moreover thanks to Equation (7),

E[wt,iw
⊤
t,i] ⪰ α2 σ2

min
B⊤

⋆,⊥BtB
⊤
t B⋆,⊥, which finally yields

∥B⊤
⋆,⊥Bt+1∥22 ≤

(
1− α2β

σ2

min
∥B⊤

⋆,⊥Bt∥22
)
∥B⊤

⋆,⊥Bt∥22. (13)

Learning the task mean. We can now proceed to the second limit in Theorem 1. Btwt can be
decomposed into two parts, giving ∥Btwt∥2 ≤ ∥B⊤

⋆ Btwt∥2 + ∥B⊤
⋆,⊥Btwt∥2. As ∥wt∥2 is bounded

and ∥B⊤
⋆,⊥Bt∥2 converges to 0, the second term vanishes. A detailed analysis on the updates of

B⊤
⋆ Btwt gives

∥B⊤
⋆ Bt+1wt+1∥2 ≤

(
1− β

4α
+ αβ∥Σ⋆∥2

)
∥B⊤

⋆ Btwt∥2 +O
(
∥B⊤

⋆,⊥Bt∥22∥wt∥2
)
,

which implies that limt→∞ Btwt = 0 for properly chosen α, β.

Feature learning. We now focus on the limit of the matrix Λt := B⊤
⋆ BtB

⊤
t B⋆ ∈ Rk×k. The

recursion on Λt induced by Equations (5) and (6) is as follows,
Λt+1 = (Ik + αβRt(Λt)) Λt (Ik + αβRt(Λt))

− 2βSym
(
(Ik + αβRt(Λt))B

⊤
⋆ BtUtB

⊤
t B⋆

)
+ β2B⊤

⋆ BtU
2
t B

⊤
t B⋆.

(14)

where Sym(A) := 1
2

(
A+A⊤), Rt(Λt) :=

(
Ik − α(min+1)

min
Λt

)
Σ⋆ − α

min

(
σ2 + ∥Btwt∥22

)
and

Ut is some noise term defined in Appendix C. From there, we can define functions fL
t and fU

approximating the updates given in Equation (14) such that

fL
t (Λt) ⪯ Λt+1 ⪯ fU (Λt).

Moreover, these functions preserve the Loewner matrix order for commuting matrices of interest.
Thanks to that, we can construct bounding sequences of matrices (ΛL

t ), (Λ
U
t ) such that

1. ΛL
t+1 = fL

t (Λ
L
t ), 2. ΛU

t+1 = fU (ΛU
t ), 3. ΛL

t ⪯ Λt ⪯ ΛU
t .

Using the first two points, we can then show that both sequences ΛL
t , ΛU

t are non-decreasing and
converge to Λ⋆ under the conditions of Theorem 1. The third point then concludes the proof.
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C Proof of Theorem 1

The full version of Theorem 1 is given by Theorem 2. In particular, it gives more precise conditions
on the required initialisation and step sizes.
Theorem 2. Assume that c1 < 1, c2 are small enough positive constants verifying

c2
min + 1

min
+

c1
(
c2 + σ2

)
2min(min + 1)

< λmin(Σ⋆),

and α, β are selected such that the following conditions hold:

1. β ≤ α,

2.
1

α2
≥ 4∥Σ⋆∥2,

3.
1

αβ
≥
(
c2

min + 2

min
+

c1c2
2min(min + 1)

+
2σ2

min
+

min + 1

min
∥Σ⋆∥2 +

4

3

min

(min + 1)2

)
,

4.
1

αβ
≥ 6

(
∥Σ⋆∥2 +

c2 + σ2

min + 1

)
.

Furthermore, suppose that parameters B0 and w0 are initialized such that the following three
conditions hold:

1. B⊤
⋆ B0 is full rank,

2. ∥B0∥22 ≤
1

α

c1
min + 1

,

3. ∥w0∥22 ≤ αc2.

Then, FO-ANIL (given by Equations (5) and (6)) with initial parameters B0, w0, inner step size α,
outer step size β, asymptotically satisfies the following

lim
t→∞

B⊤
⋆,⊥Bt = 0, (15)

lim
t→∞

Btwt = 0, (16)

lim
t→∞

B⊤
⋆ BtB

⊤
t B⋆ = Λ⋆ =

1

α

min

min + 1

(
Ik −

(
min + 1

σ2
Σ⋆ + Ik)

)−1
)
. (17)

The main tools for the proof are presented and discussed in the following subsections. Section C.1
proves monotonic decay in noise terms provided that Bt is bounded by above. Section C.2 provides
bounds for iterates and describes the monotonicity between updates. Section C.3 constructs sequences
that bound the iterates from above and below. Section C.4 presents the full proof using the tools
developed in previous sections. In the following, common recursions on relevant objects are derived.
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The recursion on Bt defined in Equation (6) leads to the following recursions on Ct := B⊤
⋆ Bt ∈

Rk×k′
and Dt := B⊤

⋆,⊥Bt ∈ R(d−k)×k′
,

Ct+1 =

(
Ik + αβ

(
Ik −

α(min + 1)

min
CtC

⊤
t

)
Σ⋆ −

α2β

min

(
∥Btwt∥2 +Tr(Σ⋆) + σ2

)
CtC

⊤
t

)
Ct

− βCt

[ (
Ik′ − αB⊤

t Bt

)
wtw

⊤
t

(
Ik′ − αB⊤

t Bt

)
+

α2

min
B⊤

t Btwtw
⊤
t B

⊤
t Bt

+
α2

min

(
∥Btwt∥2 +Tr(Σ⋆) + σ2

)
D⊤

t Dt

]
, (18)

Dt+1 = Dt

[
Ik′ − β

(
Ik′ − αB⊤

t Bt

)
wtw

⊤
t

(
Ik′ − αB⊤

t Bt

)
− α2β

min
B⊤

t Btwtw
⊤
t B

⊤
t Bt

− α2β(min + 1)

min
C⊤

t Σ⋆Ct −
α2β

min

(
∥Btwt∥2 +Tr(Σ⋆) + σ2

)
B⊤

t Bt

]
. (19)

For ease of notation, let σ2 := Tr(Σ⋆) + σ2, δt := ∥Btwt∥22 + σ2 and define the following objects,

R(Λ, τ) :=

(
Ik −

α(min + 1)

min
Λ

)
Σ⋆ −

α

min

(
σ2 + τ

)
Λ, Rt(Λ) := R(Λ, ∥Btwt∥22),

Wt :=
(
Ik′ − αB⊤

t Bt

)
wtw

⊤
t

(
Ik′ − αB⊤

t Bt

)
+

α2

min
B⊤

t Btwtw
⊤
t B

⊤
t Bt,

Ut := Wt +
α2

min
δtD

⊤
t Dt,

Vt := Wt +
α2(min + 1)

min
C⊤

t Σ⋆Ct +
α2

min
δtB

⊤
t Bt. (20)

Then, the recursion for Λt := CtC
⊤
t is

Λt+1 = (Ik + αβRt(Λt)) Λt (Ik + αβRt(Λt))
⊤
+ β2CtU

2
t C

⊤
t

− β (Ik + αβRt(Λt))CtUtC
⊤
t − βCtUtC

⊤
t (Ik + αβRt(Λt))

⊤
.

(21)

C.1 Regularity conditions

Lemmas 1 and 2 control ∥wt∥2 and ∥Dt∥2 across iterations, respectively. Lemma 3 shows that
∥Ctwt∥2 is decaying with a noise term that vanishes as ∥Dt∥2 gets small. Corollary 1 combines all
three results and yields the first two claims of Theorem 1,

lim
t→∞

B⋆,⊥Bt = 0, lim
t→∞

Btwt = 0,

under the assumption that conditions of Lemmas 2 and 3 are satisfied for all t. Lemmas 4 and 5
bound ∥Ut∥2 and ∥Wt∥2, ensuring that the recursions of Λt are well-behaved in later sections.
Lemma 1. Assume that

c0Ik′ ⪯ B⊤
t Bt ⪯

1

α

min + c1
min + 1

Ik′ ,

for constants 0 ≤ c0, 0 < c1 < 1 such that βc0(1− c1) ≤ min + 1. Then,

∥wt+1∥2 ≤
(
1− β

c0(1− c1)

min + 1

)
∥wt∥2.

Proof. From the assumption,

1− c1
min + 1

Ik′ ⪯ Ik′ − αB⊤
t Bt ⪯ (1− αc0)Ik′ ,

and

B⊤
t Bt(Ik′ − αB⊤

t Bt) ⪰
c0(1− c1)

min + 1
Ik′ .
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Recalling the recursion for wt defined in Equation (5),

∥wt+1∥2 ≤
(
1− β

c0(1− c1)

min + 1

)
∥wt∥2.

Lemma 2. Assume that

∥Bt∥22 ≤
1

α
, ∥wt∥22 ≤ cα,

for a constant c ≥ 0 and α, β satisfy

1

αβ
≥ min + 2

min
c+

1

min

(
(min + 1)∥Σ⋆∥2 + σ2

)
, (22)

1

αβ
≥ 2σ2

min
. (23)

Then,

∥Dt+1D
⊤
t+1∥2 ≤

(
1− α2β

min
σ2∥DtD

⊤
t ∥2

)
∥DtD

⊤
t ∥2.

Proof. The recursion on DtD
⊤
t is given by

Dt+1D
⊤
t+1 = Dt(Ik′ − βVt)

2D⊤
t ,

where we recall Vt is defined in Equation (20). First step is to show Ik′ − βVt ⪰ 0 by proving
∥Vt∥2 ≤ 1

β . By the definition of Vt,

∥Vt∥2 ≤ ∥Wt∥2︸ ︷︷ ︸
(A)

+
α2(min + 1)

min
∥C⊤

t Σ⋆Ct∥2︸ ︷︷ ︸
(B)

+
α2

min
δt∥B⊤

t Bt∥2︸ ︷︷ ︸
(C)

.

Term (A) is bounded by Lemma 5. For the term (B), using ∥Ct∥2 = ∥B⊤
⋆ Bt∥2 ≤ ∥Bt∥2,

∥C⊤
t Σ⋆Ct∥2 ≤

1

α
∥Σ⋆∥2.

Term (C) is bounded as

δt = ∥Btwt∥22 + σ2 ≤ 1

α
∥wt∥22 + σ2 ≤ c+ σ2, ∥B⊤

t Bt∥2 ≤ ∥Bt∥22 ≤
1

α
.

Combining three bounds and using the condition in Equation (22),

∥Vt∥2 ≤
min + 1

min
αc+

α

min

(
(min + 1)∥Σ⋆∥2 + σ2

)
+ αc ≤ 1

β
.

Therefore, it is possible to upper bound Dt+1D
⊤
t+1 as follows,

Dt+1D
⊤
t+1 = Dt(Ik′ − βVt)

2D⊤
t

⪯ Dt(Ik′ − βVt)D
⊤
t

⪯ Dt

[
Ik′ − α2β

min
σ2D⊤

t Dt

]
D⊤

t

=

[
Ik′ − α2β

min
σ2DtD

⊤
t

]
DtD

⊤
t .

Let DtD
⊤
t = ΩtStΩ

⊤
t be the SVD decomposition of DtD

⊤
t in this proof. Then,

Dt+1D
⊤
t+1 ⪯ Ωt

(
St −

α2β

min
σ2S2

t

)
Ω⊤

t .

Note that 1
α < min

2α2βσ2 by Equation (23) and for any s1 ≤ s2 < 1
α < min

2α2βσ2 ,

s2(1−
α2β

min
σ2s2) ≥ s1(1−

α2β

min
σ2s1),
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by monotonicity of x 7→ x(1− α2β
min

σ2x). Hence, if s is the largest eigenvalue of St, s(1− α2β
min

σ2s)

is the largest eigenvalue of (St − α2β
min

σ2S2
t ) and

∥Dt+1D
⊤
t+1∥2 ≤

(
1− α2β

min
σ2∥DtD

⊤
t ∥2

)
∥DtD

⊤
t ∥2.

Lemma 3. Suppose that β ≤ α and the following conditions hold,

∥Bt∥22 ≤
1

α
, ∥Λt∥22 ≤

1

α

min

min + 1
, ∥wt∥22 ≤ αc,

where c ≥ 0 is a constant such that(
1− β

4α

)
αβ

≥ σ2

min + 1
+ c

min + 2

min + 1
+

min

(min + 1)2
.

Then,

∥Ct+1wt+1∥2 ≤
(
1− β

4α
+ αβ∥Σ⋆∥2

)
∥Ctwt∥2 +M∥Dt∥22∥wt∥2,

for a constant M depending only on α.

Proof. Let Ωt := C⊤
t Ct. Expanding the recursion for wt+1,

Ct+1wt+1 = Ct+1

(
Ik′ − βΩt + αβΩ2

t

)
wt︸ ︷︷ ︸

(A)

+ αβCt+1

(
D⊤

t Dt − 2αD⊤
t Dt − α2D⊤

t DtΩt − α2ΩtD
⊤
t Dt − α2D⊤

t DtD
⊤
t Dt

)
wt︸ ︷︷ ︸

(B)

.

Since ∥Bt∥22 ≤ 1
α , there is some constant MB depending only on α such that

MB∥Dt∥22∥wt∥2 ≥ ∥(B)∥2.
Expanding term (A),

Ct+1

(
Ik′ − βΩt + αβΩ2

t

)
wt = αβ

(
I − α

min + 1

min
Λt

)
Σ⋆Ct

(
Ik′ − βΩt + αβΩ2

t

)
wt︸ ︷︷ ︸

(C)

− Ct

(
Ik′ − α2β

min
δtΩt − β (Ik′ − αΩt)wtw

⊤
t (Ik′ − αΩt)−

α2β

min
Ωtwtw

⊤
t Ωt

)(
Ik′ − βΩt + αβΩ2

t

)
wt︸ ︷︷ ︸

(D)

+ αβCt

(
D⊤

t Dtwtw
⊤
t (Ik′ − αΩt) + (Ik′ − αΩt)wtw

⊤
t D

⊤
t Dt − αD⊤

t Dtwtw
⊤
t D

⊤
t Dt

)︸ ︷︷ ︸
(E)

,

where α := αmin+1
min

. Similarly to term (B), there is a constant ME depending only on α such that

ME∥Dt∥22∥wt∥22 ≥ ∥(E)∥2.
Bounding term (C),

∥(C)∥2 =

∥∥∥∥∥
(
I − α

min + 1

min
Λt

)
Σ⋆

(
Ik − βΛt + αβΛ2

t

)
Ctwt

∥∥∥∥∥
2

≤ ∥I − α
min + 1

min
Λt∥2∥Σ⋆∥2∥Ik − βΛt + αβΛ2

t∥2∥Ctwt∥2

= ∥Σ⋆∥2
(
1− α

min + 1

min
λk(Λt)

)(
1− βλk(Λt) + αβλk(Λt)

2
)
∥Ctwt∥2.
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Re-writing term (D),

(D) =

((
Ik −

α2β

min
δtΛt

)(
Ik − βΛt + αβΛ2

t

)
− βd1 (Ik′ − αΛt)−

α2β

min
d2Λt

)
︸ ︷︷ ︸

(F)

Ctwt

where d1 and d2 are defined as

d1 :=
〈
(Ik′ − αΩt)wt,

(
Ik′ − βΩt + αβΩ2

t

)
wt

〉
, d2 :=

〈
Ωtwt,

(
Ik − βΩt + αβΩ2

t

)
wt

〉
.

As all eigenvalues of Ωt are in
[
0, 1

α
min

min+1

]
,(

1− β

4α

)
Ik′ ⪯ Ik′ − βΩt + αβΩ2

t ⪯ Ik′ ,

and

1

min + 1

(
1− β

4α

)
⪯ (Ik′ − αΩt)

(
Ik′ − βΩt + αβΩ2

t

)
⪯ Ik′ ,

0 ⪯ Ωt

(
Ik − βΩt + αβΩ2

t

)
⪯ 1

α

min

min + 1
.

Therefore, d1 and d2 are non-negative and bounded from above as follows,

αc
(
1− β

4α

)
min + 1

≤ d1 ≤ αc, 0 ≤ d2 ≤
cmin

min + 1
.

By assumptions,

α2β

min
δt
∥∥Λt

(
Ik − βΛt + αβΛ2

t

) ∥∥
2
≤ αβ

min + 1
δt ≤

αβ
(
c+ σ2

)
min + 1

,

and combining all the negative terms in (F),

α2β

min
δtΛt

(
Ik − βΛt + αβΛ2

t

)
+βd1 (Ik′ − αΛt)+

α2β

min
d2Λt ⪯ αβ

(
c+ σ2

min + 1
+ c+

min

(min + 1)2

)
Ik′ .

Hence, (F) is bounded by below and above,

0 ⪯ (F ) ⪯
(
Ik − βΛt + αβΛ2

t

)
.

Thus, the norm of (F) is bounded by above,

∥(F )∥2 ≤
(
1− β

4α

)
.

Combining all the bounds,

∥Ct+1wt+1∥2 ≤
(
1− β

4α
+ αβ∥Σ⋆∥2

)
∥Ctwt∥2 +M∥Dt∥22∥wt∥2,

where M is a constant depending only on α.

Corollary 1. Assume that conditions of Lemma 2 are satisfied for a fixed c > 0 for all times t.
Then, Lemma 2 directly implies that

lim
t→∞

B⊤
⋆,⊥Bt = lim

t→∞
Dt = 0.

Further, assume that conditions of Lemma 3 is satisfied for all times t and

1

α2
≥ 4∥Σ⋆∥2. (24)

Then, Lemmas 2 and 3 together imply that

lim
t→∞

∥Btwt∥2 = 0.
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Proof. The first result directly follows as by Lemma 2,

lim
t→∞

∥Dt∥2 = 0.

Hence, for any ϵ > 0, there exist a tϵ such that

∀t > tϵ, ∥Dt∥2 <
ϵ√
cα

.

Observe that for any t,

∥Bt+1wt+1∥2 ≤ ∥B⋆Ct+1wt+1∥2 + ∥B⋆,⊥Dt+1wt+1∥2 = ∥Ct+1wt+1∥2 + ∥Dt+1wt+1∥2.
Therefore, by Lemma 3, for any t > tϵ,

∥Bt+1wt+1∥2 ≤
(
1− β

4α
+ αβ∥Σ⋆∥2

)
∥Ctwt∥2 + ϵ2

M√
cα

+ ϵ

≤
(
1− β

4α
+ αβ∥Σ⋆∥2

)
∥Btwt∥2 + ϵ2

M√
cα

+ ϵ.

By Equation (24), (
1− β

4α
+ αβ∥Σ⋆∥2

)
< 1,

and ∥Btwt∥2 is decaying for t > tϵ as long as

∥Btwt∥2 ≥
ϵ
(
1 + ϵ M√

cα

)
αβ
(

1
4α2 − ∥Σ⋆∥2

) .
Hence, for any ϵ′ > 0, it is possible to find tϵ′ > tϵ such that for all t > tϵ′ ,

∥Btwt∥2 ≤
ϵ
(
1 + ϵ M√

cα

)
αβ
(

1
4α2 − ∥Σ⋆∥2

) + ϵ′.

As ϵ and ϵ′ are arbitrary,
lim
t→∞

∥Btwt∥2 = 0.

Lemma 4. Assume that ∥Dt∥22 ≤ 1
α

c1
2(min+1) , ∥Bt∥22 ≤ 1

α , ∥wt∥22 ≤ αc2 for constants c1, c2 ∈ R+.
Then,

∥Ut∥2 ≤ α

(
c2

min + 1

min
+

c1
(
c2 + σ2

)
2min(min + 1)

)
.

Proof. By definition of Ut,

∥Ut∥2 ≤ ∥Wt∥2︸ ︷︷ ︸
(A)

+
α2

min
δt∥D⊤

t Dt∥2︸ ︷︷ ︸
(B)

.

Term (A) is bounded by Lemma 5. For the term (B), bounding δt by conditions on Bt and wt,

δt = ∥Btwt∥22 + σ2 ≤ c2 + σ2,

one has the following bound

α2

min
δt∥D⊤

t Dt∥2 ≤
αc1

(
c2 + σ2

)
2min (min + 1)

.

Combining the two bounds yields the result,

∥Ut∥2 ≤ α

(
c2

min + 1

min
+

c1
(
c2 + σ2

)
2min(min + 1)

)
.
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Lemma 5. Assume that ∥Bt∥22 ≤ 1
α and ∥wt∥22 ≤ αc for a constant c ∈ R+. Then,

∥Wt∥2 ≤ αc
min + 1

min
.

Proof. By using 0 ⪯ B⊤
t Bt ⪯ 1

αIk′ ,

∥(Ik′ − αB⊤
t Bt)wtw

⊤
t (Ik′ − αB⊤

t Bt)∥2 = ∥(Ik′ − αB⊤
t Bt)wt∥22 ≤ ∥wt∥22 ≤ αc,

∥B⊤
t Btwtw

⊤
t B

⊤
t Bt∥2 = ∥B⊤

t Btwt∥22 ≤
1

α2
∥wt∥22 ≤

c

α
,

and the result follows by

∥Wt∥2 ≤ ∥(Ik′ − αB⊤
t Bt)wtw

⊤
t (Ik′ − αB⊤

t Bt)∥2 +
α2

min
∥B⊤

t Btwtw
⊤
t B

⊤
t Bt∥2 ≤ αc

min + 1

min
.

C.2 Bounds on iterates and monotonicity

The recursion for Λt given in Equation (21) has the following main term:

(Ik + αβRt(Λt))Λt(Ik + αβRt(Λt))
⊤.

Lemma 6 bounds Λt+1 from above by this term, i.e., terms involving Ut are negative. On the other
hand, Lemma 7 bounds Λt+1 from below with the expression

(Ik + αβRt(Λt)− αβγtIk)Λt(Ik + αβRt(Λt)− αβγtIk)
⊤, (25)

where γt ∈ R+ is a scalar such that ∥Ut∥2 ≤ αγt. Lastly, Lemma 9 shows that updates of the form
of Equation (25) enjoy a monotonicity property which allows the control of Λt over time from above
and below by constructing sequences of matrices, as described in Appendix C.3.
Lemma 6. Suppose that ∥Ut∥2 ≤ 1

β . Then,

Λt+1 ⪯ (Ik + αβRt(Λt)) Λt (Ik + αβRt(Λt))
⊤
.

Proof. As ∥Ut∥2 ≤ 1
β ,

CtUtC
⊤
t − βCtU

2
t C

⊤
t = Ct(Ut − βU2

t )C
⊤
t ⪰ 0.

Using Appendix C.2,

Λt+1 = (Ik + αβRt(Λt))
(
Λt − βCtUtC

⊤
t

)
(Ik + αβRt(Λt))

⊤ − βCtUtC
⊤
t + β2CtU

2
t C

⊤
t

⪯ (Ik + αβRt(Λt))
(
Λt − βCtUtC

⊤
t

)
(Ik + αβRt(Λt))

⊤

⪯ (Ik + αβRt(Λt)) Λt (Ik + αβRt(Λt))
⊤
.

Lemma 7. Let γt be a scalar such that ∥Ut∥2 ≤ αγt ≤ 1
2β . Then,

(Ik + αβRt(Λt)− αβγtIk)Λt(Ik + αβRt(Λt)− αβγtIk)
⊤ ⪯ Λt+1.

Proof. By using ∥Ut∥2 ≤ αγt,

αγtΛt − CtUtC
⊤
t = Ct(αγtIk − Ut)C

⊤
t ⪰ 0.

Moreover, as
x 7→ x− βx2,

is an increasing function in [0, 1
2β ], the maximal eigenvalue of

Ut − βU2
t

is s− βs2 ≤ αγt − α2βγ2
t where s is the maximal eigenvalue Ut. Hence,(

αγt − α2βγ2
t

)
Ik′ −

(
Ut − βU2

t

)
⪰ 0.
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Therefore, the following expression is positive semi-definite,

2Sym
(
(Ik + αβRt(Λt))

(
αγtΛt − CtUtC

⊤
t

))
− β(α2γ2

tΛt − CtU
2
t C

⊤
t )

= (Ik + αβRt(Λt))
(
αγtΛt − CtUtC

⊤
t

)
(Ik + αβRt(Λt))

⊤

+
((
αγtΛt − CtUtC

⊤
t

)
− β

(
α2γ2

tΛt − CtU
2
t C

⊤
t

))
⪰ Ct

[(
αγt − α2βγ2

t

)
Ik′ −

(
Ut − βU2

t

)]
C⊤

t .

The result follows by

Λt+1 = (Ik + αβRt(Λt)) Λt (Ik + αβRt(Λt))
⊤ − 2βSym

(
(Ik + αβRt(Λt))CtUtC

⊤
t

)
− β2CtU

2
t C

⊤
t

⪰ (Ik + αβRt(Λt)) Λt (Ik + αβRt(Λt))
⊤ − 2αβγtSym ((Ik + αβRt(Λt)) Λt)− α2β2γ2

tΛt

= (Ik + αβRt(Λt)− αβγtIk)Λt(Ik + αβRt(Λt)− αβγtIk)
⊤.

Lemma 8. Let Ct = ΨtStΓ
⊤
t be the (thin) SVD decomposition of Ct and let γt be a scalar such that

∥Γ⊤
t UtΓt∥2 ≤ αγt ≤ 1

2β . Then,

(Ik + αβRt(Λt)− αβγtIk)Λt(Ik + αβRt(Λt)− αβγtIk)
⊤ ⪯ Λt+1.

Proof. It is sufficient to observe that

αγtΛt − CtUtC
⊤
t = ΨtSt

(
αγtIk′ − Γ⊤

t UtΓt

)
StΨ

⊤
t ⪰ 0,

and use the same argument as in the proof of Lemma 7.

Lemma 9. For non-negative scalars τ, γ, let f(·; τ, γ) : Symk(R) → Symk(R) be defined as
follows,

f(Λ; τ, γ) := (Ik + αβR(Λ, τ)− αβγIk)Λ(Ik + αβR(Λ, τ)− αβγIk)
⊤.

Then, f(·; τ, γ) preserves the partial order between any Λ,Λ′ that commutes with each other and Σ⋆,
i.e.,

1

α

min

min + 1
Ik ⪰ Λ ⪰ Λ′ ⪰ 0 =⇒ f(Λ; τ, γ) ⪰ f(Λ′; τ, γ),

when the following condition holds,

1− αβγ ≥ 5αβ(∥Σ⋆∥2 +
σ2 + τ

min + 1
).

Proof. The result follows if and only if
(1− αβγ)2(Λ− Λ′) ⪰ αβ(1− αβγ)[R(Λ′, τ)Λ′ −R(Λ, τ)Λ]︸ ︷︷ ︸

(A)

+ αβ(1− αβγ)[Λ′R(Λ′, τ)− ΛR(Λ, τ)]︸ ︷︷ ︸
(B)

+ α2β2[R(Λ′, τ)Λ′R(Λ′, τ)−R(Λ, τ)ΛR(Λ, τ)]︸ ︷︷ ︸
(C)

. (26)

By Lemma 16,

Λ2 − Λ′2 =
1

2
(Λ− Λ′)(Λ + Λ′) +

1

2
(Λ + Λ′)(Λ− Λ′)

⪯ ∥Λ + Λ′∥2(Λ− Λ′) ⪯ 2∥Λ⋆∥2(Λ− Λ′).

Bounding term (A) by using commutativity of Λ,Λ′ with Σ⋆ and Λ,Λ′ ⪯ 1
α

min

min+1 ,

R(Λ′, τ)Λ′ −R(Λ, τ)Λ =
α(min + 1)

min
Λ

[
Σ⋆ +

σ2 + τ

min + 1
Ik

]
Λ

− α(min + 1)

min
Λ′
[
Σ⋆ +

σ2 + τ

min + 1
Ik

]
Λ′ − Σ⋆(Λ− Λ′)

⪯ α(min + 1)

min

[
∥Σ⋆∥2 +

σ2 + τ

min + 1

]
(Λ2 − Λ′2).
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The term (B) is equal to the term (A) and thus bounded by the same expression. By Lemma 17,

Λ3 − Λ′3 ⪰ 0.

Bounding term (C), using the commutativity of Λ,Λ′ with Σ⋆ and Λ,Λ′ ⪯ 1
α

min

min+1 ,

R(Λ′, τ)Λ′R(Λ′, τ)−R(Λ, τ)ΛR(Λ, τ) = 2
α(min + 1)

min

[
Σ2

⋆ +
σ2 + τ

min + 1
Σ⋆

]
(Λ2 − Λ′2)

− Σ⋆(Λ− Λ′)Σ⋆ −
(
α(min + 1)

min

)2 [
Σ⋆ +

σ2 + τ

min + 1
Ik

]2
(Λ3 − Λ′3)

⪯ 4∥Σ⋆∥2
[
∥Σ⋆∥2 +

σ2 + τ

min + 1

]
(Λ− Λ′).

Therefore, Equation (26) is satisfied if

(1− αβγ)2 ≥ 4αβ(1− αβγ)

[
∥Σ⋆∥2 +

σ2 + τ

min + 1

]
+ 4α2β2∥Σ⋆∥2

[
∥Σ⋆∥2 +

σ2 + τ

min + 1

]
,

which holds by the given condition.

Remark 1. Let τ, γ be scalars such that 0 < τ and 0 < γ < λmin(Σ⋆). Define Λ⋆(τ, γ) as follows,

Λ⋆ (τ, γ) :=
1

α

min

min + 1

(
Ik −

(
σ2 + τ

min + 1
+ γ

)(
Σ⋆ +

σ2 + τ

min + 1
Ik

)−1
)
. (27)

(Λ⋆, τ, γ) is a fixed point of the function f as

R (Λ⋆(τ, γ)) = γIk.

Corollary 2. Let Λ be a symmetric p.s.d. matrix which commutes with Σ⋆ and satisfy

Λ ⪯ Λ⋆(τ, γ),

for some scalars 0 < τ and 0 < γ < λmin(Σ⋆). Then, assuming that conditions of Lemma 9 are
satisfied,

Λ ⪯ f(Λ; τ, γ) ⪯ Λ⋆(τ, γ).

Proof. For the left-hand side, note that

R(Λ, τ, γ) ⪰ γIk ⇐⇒ Λ ⪯ Λ⋆(τ, γ).

Hence, by the given assumption and commutativity,

Λ ⪯ (Ik + αβR(Λ, τ)− αβγIk) Λ (Ik + αβR(Λ, τ)− αβγIk)
⊤
= f(Λ; τ, γ).

For the right-hand side, note that by Lemma 9

f(Λ; τ, γ) ⪯ f(Λ⋆(τ, γ); τ, γ) = Λ⋆(τ, γ).

Lemma 10. Let τt and γt be non-negative, non-increasing scalar sequences such that γ0 < λmin(Σ⋆),
and Λ be a symmetric p.s.d. matrix that commutes with Σ⋆ such that

Λ ⪯ Λ⋆(τ0, γ0),

where Λ⋆(τ, γ) is defined in Equation (27). Furthermore, suppose that α and β satisfy

1

αβ
≥
(
s⋆ +

σ2 + τ0
min + 1

)
.

Then, the sequence of matrices that are defined recursively as

Λ(0) := Λ, Λ(t+1) := f(Λ(t); τt, γt),

satisfy
lim
t→∞

Λ(t) = Λ⋆( lim
t→∞

τt, lim
t→∞

γt).
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Proof. By the monotone convergence theorem, τt and γt are convergent. Let τ∞ and γ∞ denote the
limits, i.e.,

τ∞ := lim
t→∞

τt, γ∞ := lim inf
t→∞

γt.

As Λ(0) and Σ⋆ are commuting normal matrices, they are simultaneously diagonalisable, i.e., there
exists an orthogonal matrix Q ∈ Rk×k and diagonal matrices with positive entries D(0), D⋆ such that

Λ(0) = QD(0)Q⊤, Σ⋆ = QD⋆Q
⊤.

Then, applying f to any matrix of from Λ = QDQ⊤, where D is a diagonal matrix with positive
entries, yields

f(Λ; τ, γ) = Q

(
Ik + αβD⋆ − α2β

min + 1

min
D

(
D⋆ +

σ2 + τ

min + 1
Ik

)
− αβγ

)2

DQ⊤.

Observe that f operates entry-wise on diagonal elements of D, i.e., for any diagonal element s of D,
the output in the corresponding entry of f is given by the following map g(·, s⋆, τ, γ) : R→ R,

g(s; s⋆, τ, γ) :=

(
1 + αβs⋆ − α2β

min + 1

min
s(s⋆ +

σ2 + τ

min + 1
)− αβγ

)2

s,

where s⋆ is the corresponding diagonal entry of D⋆. Hence, Lemma 10 holds if

lim
t→∞

st = s∞(τ∞, γ∞),

where st is defined recursively from an initial value s0 for any t ≥ 1 as follows,

st+1 := g(st; s⋆, τt, γt),

and s∞(τ, γ) is defined as

s∞(τ, γ) :=
1

α

min

min + 1

(
1−

(
γ +

σ2 + τ

min + 1

)(
s⋆ +

σ2 + τ

min + 1

)−1
)
.

Observe that

s∞(τ, γ)

(
s⋆ +

σ2 + τ

min + 1

)
=

1

α

min

min + 1
(s⋆ − γ) ,

and

g(st; s⋆, τt, γt) =

(
1 + αβ (s∞(τ, γ)− st)

(
s⋆ +

σ2 + τ

min + 1

)−1
)
st.

Hence,

s∞(τt, γt)− st+1 = (s∞(τt, γt)− st)

(
1− αβ

(
s⋆ +

σ2 + τ

min + 1

)−1
)
,

and in each iteration st takes a step towards s∞(τt, γt). By assumptions s0 ≤ s∞(τ0, γ0) and as

1

αβ
≥
(
s⋆ +

σ2 + τt
min + 1

)
,

for all t, st+1 never overshoots s∞(τt, γt), i.e.,

st ≤ st+1 ≤ s∞(τt, γt) ≤ s∞(τt+1, γt+1).

Therefore, st is an increasing sequence bounded above by s∞(τ∞, γ∞) and by invoking the monotone
convergence theorem, st is convergent. Assume that st convergences to a s′∞ < s∞(τ∞, γ∞). Then,
there exist a tϵ such that s∞(τtϵ , γtϵ) > s′∞ + ϵ. By analysing the sequence,

s′tϵ = stϵ , s′tϵ+s = g(s′tϵ+s−1, s⋆, τtϵ , γtϵ),

it is easy to show that

stϵ+s ≥ s′tϵ+s, and lim
s→∞

s′tϵ+s = s∞(τtϵ , γtϵ) > s′∞,

which leads to a contradiction. Hence, limt→∞ st = s∞(τ∞, γ∞).

Remark 2. Assume the setup of Lemma 10 and that the sequences τt and γt converge to 0. Then, as
t→∞, Λt convergences to Λ⋆,

lim
t→∞

Λt = Λ⋆.
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C.3 Sequence of bounds

Lemma 11 constructs a sequence of matrices ΛU
t that upper bounds iterates of Λt. The idea is to use

the monotonicity property described in Lemma 9, together with the upper bound in Lemma 6, to
control Λt from above. Lemma 10 with Remark 2 then allow to conclude limt→∞ ΛU

t = Λ⋆. For
this purpose, Lemma 11 assume a sufficiently small initialisation that leads to a dynamics where
∥Bt∥2 ≤ α−1/2 and ∥wt∥2, ∥Dt∥2 are monotonically decreasing.

In a similar spirit, Lemma 12 construct a sequence of lower bound matrices ΛL
t given that it is possible

to select two scalar sequences τt and γt. At each step, the lower bounds ΛL
t takes a step towards

Λ⋆(τt, γt) described by Remark 1. For ensuring that Λt does not decay, the sequences τt and γt are
chosen to be non-increasing, which results in increasing Λ⋆(τt, γt) and ΛL

t . In the limit t→∞, ΛL
t

convergences to the fixed-point Λ⋆(limt→∞ τt, limt→∞ γt), which serves as the asymptotic lower
bound. Finally, Corollary 3 shows that it is possible to construct these sequences with the limit 0
under some conditions.
Lemma 11. Assume that B0 and w0 are initialized such that

∥B0∥22 ⪯
c1
α

1

min + 1
, ∥w0∥22 ≤ αc2,

for constants 0 < c1 < 1, 0 < c2 and α, β satisfy the following conditions:

1.
1

αβ
≥ max

(
c2

min + 2

min
+

1

min

(
(min + 1)∥Σ⋆∥2 + σ2

)
,
2σ2

min

)
,

2.
1

αβ
≥ 2

(
c2

min + 1

min
+

c1
(
c2 + σ2

)
2min(min + 1)

)
,

3.
1

αβ
≥ 5(∥Σ⋆∥2 +

σ2

min + 1
),

4. β ≤ α.

The series ΛU
t defined recursively as

ΛU
0 := ∥Λ0∥2Ik,

ΛU
t+1 := ∥(Ik + αβR(ΛU

t ))Λ
U
t (Ik + αβR(ΛU

t ))∥2Ik,
upper bounds the iterates Λt, i.e., for all t, ΛU

t ⪰ Λt. Moreover, Λ⋆ ⪰ ΛU
t for all t.

Proof. The result follows by induction. It is easy to check that the given assumptions satisfy the
conditions of Lemmas 2 and 9 for all time steps. Assume that for time t, the following assumptions
hold.

1. ∥DsD
⊤
s ∥2 is a non-increasing sequence for s ≤ t.

2. ∥ws∥2 is a non-increasing sequence for s ≤ t.

3. Λs ⪯ ΛU
s ⪯ Λ⋆ for all s ≤ t.

Then, for time t+ 1, the following conditions holds:

1. By using Λt ⪯ Λ⋆ ⪯ 1
α

min

(min+1) and DtD
⊤
t ⪯ B0B

⊤
0 ⪯ c1

α
1

min+1 ,

BtB
⊤
t ⪯

1

α

min + c1
min + 1

, ∥Bt∥2 ≤
1

α
.

Therefore, by Lemma 1, and Lemma 2,

∥wt+1∥2 ≤ ∥wt∥2, ∥Dt+1D
⊤
t+1∥2 ≤ ∥DtD

⊤
t ∥2.
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2. By applying Lemma 4,

∥Ut∥2 ≤ α

(
c2

min + 1

min
+

c1
(
c2 + σ2

)
2min(min + 1)

)
≤ 1

2β
.

Therefore, by Lemma 6,

Λt+1 ⪯ (Ik + αβRt)Λt(Ik + αβRt)
⊤.

3. By applying Lemma 9 with Λ := ΛU
t and Λ′ := Λt,

(Ik + αβRt)Λt(Ik + αβRt)
⊤ = f(Λt; 0, 0) ⪯ f(ΛU

t ; 0, 0) ⪯ ΛU
t+1.

4. By applying Lemma 9 with Λ := Λ⋆ ⪰ Λ′ := ΛU
t ,

f(ΛU
t ; 0, 0) ⪯ f(Λ⋆; 0, 0) = Λ⋆.

Therefore, ΛU
t+1 ⪯ ∥Λ⋆∥2Ik = Λ⋆.

5. Combining all the results,

Λt+1 ⪯ ΛU
t+1 ⪯ Λ⋆.

Lemma 12. Let τt and γt be non-increasing scalar sequences such that

∥Btwt∥22 ≤ τt, ∥Ut∥2 ≤ αγt ≤
1

2β
,

and τ0 ≤ c2, γ0 < λmin(Σ⋆). Assume that all the assumptions of Lemma 11 hold with constants c1
and c2. and α, β satisfy the following extra conditions

1

αβ
≥ 5(∥Σ⋆∥2 +

c2 + σ2

min + 1
) + λmin(Σ⋆).

Then, the series ΛL
t defined as follows

ΛL
0 = min (λmin (Λ0) , λmin (Λ⋆ (τ0, γ0))) Ik,

ΛL
t+1 = λmin

(
(Ik + αβR(ΛL

t , τt)− αβγtIk)Λ
L
t (Ik + αβR(ΛL

t , τt)− αβγtIk)
⊤) Ik,

lower bounds the iterates Λt, i.e., for all t, ΛL
t ⪯ Λt. Moreover, ΛL

t ⪯ ΛL
t+1 for all t.

Proof. The result follows by induction. It is easy to check that given assumptions satisfy the
conditions of Lemmas 2 and 9 for all time steps. Suppose that for all time s ≤ t,

ΛL
s ⪯ Λs ⪯ Λ⋆, ΛL

s ⪯ Λ⋆(τt, γt).

Then, for time t+ 1, the following conditions hold:

1. By Lemma 7,

Λt+1 ⪰ (Ik + αβRt(Λt)− αβγtIk)Λt(Ik + αβRt(Λt)− αβγtIk)
⊤.

2. By Lemma 9,

(Ik + αβRt(Λt)− αβγtIk)Λt(Ik + αβRt(Λt)− αβγtIk)
⊤

⪰ (Ik + αβRt(Λ
L
t )− αβγtIk)Λ

L
t (Ik + αβRt(Λ

L
t )− αβγtIk)

⊤.

3. Using commutativity of Σ⋆ and ΛL
t ,

(Ik + αβRt(Λ
L
t )− αβγtIk)Λ

L
t (Ik + αβRt(Λ

L
t )− αβγtIk)

⊤

⪰ (Ik + αβR(ΛL
t , τt)− αβγtIk)Λ

L
t (Ik + αβR(ΛL

t , τt)− αβγtIk)
⊤

⪰ ΛL
t+1.
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4. By Corollary 2,
ΛL
t ⪯ ΛL

t+1 ⪯ Λ⋆(τt, γt).

As τt+1 ≤ τt and γt+1 ≤ γt,

ΛL
t+1 ⪯ Λ⋆(τt, γt) ⪯ Λ⋆(τt+1, γt+1).

5. Combining all the results,

ΛL
t+1 ⪯ Λt+1, ΛL

t+1 ⪯ Λ⋆(τt, γt) ⪯ Λ⋆(τt+1, γt+1).

Remark 3. The condition on γt in Lemma 12 can be relaxed by the condition used in Lemma 8.

Corollary 3. Assume that Lemma 12 holds with constants c1, c2, and constant sequences

τ := c2, γ :=

(
c2

min + 1

min
+

c1
(
c2 + σ2

)
2min(min + 1)

)
< λmin(Σ⋆).

Furthermore, suppose α, β satisfy the following extra properties,

1

α2
≥ 4∥Σ⋆∥2,(

1− β
4α

)
αβ

≥ σ2

min + 1
+ c2

min + 2

min + 1
+

min

(min + 1)2
.

Let Ct = ΨtStΓ
⊤
t be the (thin) SVD decomposition of Ct. Then, there exist non-increasing scalar

sequences τt and γt such that

∥Btwt∥22 ≤ τt ≤ c2, ∥ΓtUtΓ
⊤
t ∥2 ≤ αγt ≤

1

2β
,

with the limit
lim
t→∞

τt = 0, lim
t→∞

γt = 0.

Proof. All the assumptions of Corollary 1 are satisfied with constant c := c2. Hence,

lim
t→∞

∥Dt∥2 = 0, lim
t→∞

∥Btwt∥2 = 0. (28)

Moreover, the sequence ∥Btwt∥2 is upper bounded above,

∥Btwt∥2 ≤ ∥Bt∥2∥wt∥2 ≤ c2.

Take any sequence 0 ≤ τ ′t ≤ c2 that monotonically decays to 0. Set τ0 = τ ′0 and st = 0. Recursively
define τt as follows: for each t > 0, find the smallest st such that

∥Bsws∥2 ≤ τ ′t ,

for all s ≥ st. Then, set τst = τ ′t and for all st−1 ≤ s < st, set τs = τ ′t−1. It is easy to check that
this procedure yields a non-increasing scalar sequence τt with the desired limit.

By Lemma 12 with γt := γ, Λt is non-decaying, and its lowest eigenvalue is bounded from below.
Using the limits in Equation (28),

lim
t→∞

CtUtC
⊤
t = 0,

which implies that limt→∞ ∥ΓtUtΓ
⊤
t ∥2 = 0. A similar argument yields a non-increasing scalar

sequence γt with the desired limit.
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C.4 Proof of Theorem 2

By Lemma 11, Λt ⪯ ΛU
t ⪯ Λ⋆ and ∥Dt+1∥2 ≤ ∥Dt∥2 for all t. Using the initialisation condition,

∥Bt∥22 = ∥Ct∥22 + ∥Dt∥22 ≤ ∥Λt∥2 + ∥D0∥22 ≤ ∥Λ⋆∥2 + ∥B0∥22 ≤
1

α
.

Now, the conditions of Corollary 1 are satisfied with c := c2. By Corollary 1,
lim
t→∞

Dt = 0, lim
t→∞

Btwt = 0.

Moreover, by Corollary 3, there exist non-increasing sequences τt and γt that are decaying. By
Lemma 12 with these sequences yield ΛL

t ⪯ Λt, for all t. Finally, by Lemma 10,

lim
t→∞

ΛL
t → Λ⋆ and lim

t→∞
ΛU
t → Λ⋆,

which concludes Theorem 2.

D Proof of Proposition 1

Proposition 2 below gives a more complete version of Proposition 1, stating an upper bound holding
with probability at least 1− δ for any δ > 0.

Proposition 2. Let B̂, wtest satisfy Equations (9) and (10) for a new task defined by ??. For any
δ > 0 with probability at least 1− δ,

∥B̂wtest −B⋆w⋆∥2 = O
(
1 + σ2

/λmin(Σ⋆)

min
∥w⋆∥+max

√k +
√
log( 4δ )√

mtest
,
k + log( 4δ )

mtest

 ∥w⋆∥

+ σ

√
k

mtest

1 +

√
log( 4δ )

k

1 +

√
log( 4δ )

mtest

),
where we recall σ2 = Tr(Σ⋆) + σ2.

Using Equation (10), it comes

B̂wtest −B⋆w⋆ =
(
αB̂B̂⊤ΣtestB⋆ −B⋆

)
w⋆ +

α

mtest
B̂B̂⊤X⊤z

= B⋆ (αΛ⋆ − Ik)w⋆︸ ︷︷ ︸
(A)

+αB⋆Λ⋆

(
B⊤

⋆ ΣtestB⋆ − Ik
)
w⋆︸ ︷︷ ︸

(B)

+
α

mtest
B⋆Λ⋆B

⊤
⋆ X⊤z︸ ︷︷ ︸

(C)

.

The rest of the proof aims at individually bounding the norms of the terms (A), (B) and (C). First
note that by definition of Λ⋆,

αΛ⋆ − Ik = − 1

min + 1
Ik −

minσ
2

(min + 1)2

[
Σ⋆ +

σ2

min + 1
Ik

]−1

.

This directly implies that

∥αΛ⋆ − Ik∥2 =
1

min + 1
+

minσ
2

(min + 1)2
· 1

λmin(Σ⋆) +
σ2

min+1

≤
1 + σ2

λmin(Σ⋆)+σ2/min

min + 1
. (29)

Moreover, the concentration inequalities of Lemmas 13 and 14 claim that with probability at least 1−δ:

∥B⊤
⋆ ΣtestB⋆ − Ik∥2 ≤ 3max


√
k +

√
2 log(4δ )√

mtest
,

(√
k +

√
2 log(4δ )

)2
mtest

 ,

∥B⊤
⋆ X⊤z∥2 ≤ 16σ

√
mtestk (1 +

√
log( 4δ )

2k
)(1 +

√
log( 4δ )

2mtest
).
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These two bounds along with Equation (29) then allow to bound the terms (A), (B) and (C) as follows

∥(A)∥2 ≤
1 + σ2

λmin(Σ⋆)+σ2/min

min + 1
∥w⋆∥

∥(B)∥2 ≤ 3

1−
1 + σ2

∥Σ⋆∥2+σ2/min

min + 1

max


√
k +

√
2 log( 4δ )√

mtest
,

(√
k +

√
2 log(4δ )

)2
mtest

 ∥w⋆∥

∥(C)∥2 ≤ 16

1−
1 + σ2

∥Σ⋆∥2+σ2/min

min + 1

σ

√
k

mtest
(1 +

√
log( 4δ )

2k
)(1 +

√
log( 4δ )

2mtest
),

where we used in the two last bounds that α∥Λ⋆∥2 ≤ 1 −
1+ σ2

∥Σ⋆∥2+σ2
/min

min+1 . Summing these three

bounds finally yields Proposition 2, and Proposition 1 with the particular choice δ = 4e−
k
2 .

Lemma 13. For any δ > 0, with probability at least 1− δ
2 ,

∥B⊤
⋆ ΣtestB⋆ − Ik∥2 ≤ 3max


√
k +

√
2 log(4δ )√

mtest
,

(√
k +

√
2 log(4δ )

)2
mtest


and ∥B⊤

⋆ X⊤∥2 ≤
√
mtest

(
1 +

√
k+
√

2 log( 1
4δ )√

mtest

)
.

Proof. Note that B⊤
⋆ X⊤ is a matrix in Rk×mtest whose entries are independent standard Gaussian

variables. From there, applying Corollary 5.35 and Lemma 5.36 from Vershynin [2010] with

t =
√
2 log( 1

4δ ) directly leads to Lemma 13.

Lemma 14.

P

∥B⊤
⋆ X⊤z∥2 ≥ 16σ

√
mtestk (1 +

√
log( 4δ )

2k
)(1 +

√
log( 4δ )

2mtest
)

 ≤ δ

2
.

Proof. Let A = B⊤
⋆ X⊤ in this proof. Recall that A has independent entries following a standard

normal distribution. A and z are independent, which implies that A z
∥z∥ ∼ N (0, Ik). Typical bounds

on Gaussian variables then give [see e.g. Rigollet and Hütter, 2017, Remark 2.2.2]

P

∥Az∥
∥z∥ ≥ 4

√
k (1 +

√
log( 4δ )

2k
)

 ≤ δ

4
.

A similar bound holds on the σ sub-Gaussian vector z, which is of dimension mtest:

P

∥z∥ ≥ 4
√
mtest (1 +

√
log( 4δ )

2mtest
)

 ≤ e−
mtest

2 .

Combining these two bounds then yields Lemma 14.

E Technical lemmas

Lemma 15. Let Σ = 1
nX

⊤X where X ∈ Rn×d is such that each row is composed of i.i.d. samples
x ∼ N(0, Id). For any unit vector v,

E[Σvv⊤Σ] =
1

n
Id +

n+ 1

n
vv⊤.
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Proof. Let x, x′ ∼ N(0, Id). By expanding covariance Σ and i.i.d. assumption,

E[Σvv⊤Σ] =
1

n
E
[
⟨x, v⟩2xx⊤]︸ ︷︷ ︸

(A)

+
n− 1

n
E
[
⟨x, v⟩⟨x′, v⟩xx′⊤]︸ ︷︷ ︸

(B)

.

For the term (A),

E
[
⟨x, v⟩2xx⊤]

jk
= E

[
(

d∑
i=1

xivi)
2xjxk

]
.

Any term with an odd-order power cancels out as the data is symmetric around the origin, and

E
[
⟨x, v⟩2xx⊤] = 2vv⊤ + Id,

by the following computations,

E
[
⟨x, v⟩2xx⊤]

jj
= v2jE[x4

j ] +
∑
i ̸=j

v2i E[x2
ix

2
j ] = 3v2j +

∑
i ̸=j

v2i = 2v2j + 1,

E
[
⟨x, v⟩2xx⊤]

jk
= 2vjvkE[x2

jx
2
k] = 2vjvk.

For the term (B), by i.i.d. assumption,

E
[
⟨x, v⟩⟨x′, v⟩xx′⊤] = E[⟨x, v⟩x]E[⟨x, v⟩x]⊤.

With a similar argument, it is easy to see

E[⟨x, v⟩x]i = E[x2
i vi] = vi, and E[⟨x, v⟩x] = v.

Combining the two terms yields Lemma 15.

Lemma 16. Let A and B be positive semi-definite symmetric matrices of shape k×k and AB = BA.
Then,

AB ⪯ ∥A∥2B.

Proof. As A and B are normal matrices that commute, there exist an orthogonal Q such that
A = QΛAQ

⊤ and B = QΛBQ
⊤ where ΛA and ΛB are diagonal. Then,

AB = QΛAΛBQ
⊤ ⪯ ∥A∥QΛBQ

⊤,

as for any vector v ∈ Rk,

v⊤ABv =

k∑
i=1

(ΛA)ii(ΛB)ii(Qvi)
2 ≤ ∥A∥2

k∑
i=1

(ΛB)ii(Qvi)
2 = ∥A∥2B.

Lemma 17. Let A and B be positive semi-definite symmetric matrices of shape k × k such that
AB = BA and A ⪯ B. Then, for any k ∈ N,

Ak ⪯ Bk. (30)

Proof. As A and B are normal matrices that commute, there exist an orthogonal Q such that
A = QΛAQ

⊤ and B = QΛBQ
⊤ where ΛA and ΛB are diagonal. Then,

Bk −Ak = Q(Λk
B − Λk

A)Q
⊤ ⪰ 0,

as B ⪰ A implies ΛB ⪰ ΛA.
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F Fixed points characterized by Theorem 1 are global minima

The ANIL loss with m samples in the inner loop reads,

LANIL(B,w;m) =
1

2
Ew⋆,i,Xi,yi

[
∥Bw̃(w;Xi, yi)−B⋆w⋆,i∥2

]
, (31)

where is the updated head after a step of gradient descent, i.e.,

w̃(w;Xi, yi) :=
(
w − α

m
B⊤X⊤

i (XiBw − yi)
)
. (32)

Whenever the context is clear, we will write w̃ or w̃(w) instead of w̃(w;Xi, yi) for brevity. Theo-
rem 1 proves that minimising objective in Equation (31) with FO-ANIL algorithm asymptotically
convergences to a set of fixed points, under some conditions. In Proposition 3, we show that these
points are global minima of the Equation (31).

Proposition 3. Fix any (B̂, ŵ) that satisfy the three limiting conditions of Theorem 1,

B⊤
⋆,⊥B̂ = 0,

B̂ŵ = 0,

B⊤
⋆ B̂B̂⊤B⋆ = Λ⋆.

Then, (B̂, ŵ) is the minimiser of the Equation (31), i.e.,

(B̂, ŵ) ∈ argmin
B,w

LANIL(B,w;min).

Proof. The strategy of proof is to iteratively show that modifying points to satisfy these three limits
reduce the ANIL loss. Lemmas 18 to 20 demonstrates how to modify each point such that the
resulting point obeys a particular limit and has better generalisation.

For any (B,w), define the following points,

(B1, w1) =
(
B −B⊤

⋆,⊥B
⊤
⋆,⊥B,w

)
,

(B2, w2) =
(
B1, w1 −B⊤

1

(
B1B

⊤
1

)−1
B1w1

)
.

Then, Lemmas 18 to 20 show that

LANIL(B,w;min) ≥ LANIL(B1, w1;min) ≥ LANIL(B2, w2;min) ≥ LANIL(B̂, ŵ;min).

Since (B,w) is arbitrary,
(B̂, ŵ) ∈ argmin

B,w
LANIL(B,w;min).

Lemma 18. Consider any parameters (B,w) ∈ Rd×k′ × Rk′
. Let B′ = B − B⋆,⊥B

⊤
⋆,⊥B. Then,

for any m > 0, we have
LANIL(B,w;m) ≥ LANIL(B

′, w;m).

Proof. Decomposing the loss into two orthogonal terms yields the desired result,

LANIL(B,w;m) =
1

2
Ew⋆,i,Xi,yi

[∥∥B⊤
⋆ Bw̃ − w⋆,i

∥∥2]+ 1

2
EXi,yi

[∥∥B⊤
⋆,⊥Bw̃

∥∥2]
≤ 1

2
Ew⋆,i,Xi,yi

[∥∥B⊤
⋆ Bw̃ − w⋆,i

∥∥2]
= LANIL(B

′, w;m).

Lemma 19. Consider any parameters (B,w) ∈ Rd×k′ × Rk′
such that B⊤

⋆,⊥B = 0. Let w′ =

w −B⊤ (BB⊤)−1
Bw. Then, for any m > 0, we have

LANIL(B,w;m) ≥ LANIL(B,w′;m),
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Proof. Expanding the square,

LANIL(B,w;m)− LANIL(B,w′;m) =
1

2
Ew⋆,i,Xi,yi

[∥∥B⊤
⋆ Bw̃(w)− w⋆,i

∥∥2 − ∥∥B⊤
⋆ Bw̃(w′)− w⋆,i

∥∥2]
=

1

2
Ew⋆,i,Xi,yi

[
∥Bw̃(w)∥2 − ∥Bw̃(w′)∥2

]
︸ ︷︷ ︸

(A)

− Ew⋆,i,Xi,yi
[⟨B⋆w⋆,i, Bw̃(w)−Bw̃(w′)⟩]︸ ︷︷ ︸

(B)

.

First, expanding w̃(w) and w̃(w′) by Equation (32),

Bw̃(w) =
(
Id −

α

m
BB⊤X⊤

i Xi

)
Bw +

α

m
BB⊤X⊤

i yi, Bw̃(w′) =
α

m
BB⊤X⊤

i yi.

For the first term,

(A) = EXi

[∥∥∥(Id − α

m
BB⊤X⊤

i Xi

)
Bw
∥∥∥2]+ 2α

m
Ew⋆,i,Xi

[〈(
Id −

α

m
BB⊤X⊤

i Xi

)
Bw,BB⊤X⊤

i XiB⋆w⋆

〉]
= EXi

[∥∥∥(Id − α

m
BB⊤X⊤

i Xi

)
Bw
∥∥∥2] ≥ 0,

where we have used that the tasks and the noise are centered around 0. For the second term,

(B) =

〈
Ew⋆,i [B⋆w⋆,i] ,EXi

[(
Id −

α

min
BB⊤X⊤

i Xi

)
Bw

]〉
= 0,

where we have again used that the tasks are centered around 0. Putting two results together
yields Lemma 19.

Lemma 20. Consider any parameters (B,w) ∈ Rd×k′ × Rk′
such that B⊤

⋆,⊥B = 0, Bw = 0. Let
(B′, w′) ∈ Rd×k′ × Rk′

such that B⊤
⋆,⊥B

′ = 0, B′w′ = 0 and B⊤
⋆ B′B′⊤B⋆ = Λ⋆. Then, we have

LANIL(B,w;min) ≥ LANIL(B
′, w′;min).

Proof. Let Λ := B⊤
⋆ BB⊤B⋆ in this proof. Using B⊤

⋆,⊥B = 0, we have

LANIL(B,w;min) =
1

2
Ew⋆,i,Xi,yi

[∥∥B⊤
⋆ Bw̃ − w⋆,i

∥∥2] .
Plugging in the definition of w̃,

LANIL(B,w;min) =
α2

2

1

m2
in

Ew⋆,i,Xi,yi

[∥∥B⊤
⋆ BB⊤X⊤

i yi
∥∥2]︸ ︷︷ ︸

(A)

− α
1

min
Ew⋆,i,Xi,yi

[
⟨w⋆,i, B

⊤
⋆ BB⊤X⊤

i yi⟩
]

︸ ︷︷ ︸
(B)

+
1

2
tr (Σ⋆) .

Using that the label noise is centered,

(A) = Ew⋆,i,Xi

[∥∥B⊤
⋆ BB⊤ΣiB⋆w⋆

∥∥2]︸ ︷︷ ︸
(C)

+ EXi,zi

[∥∥B⊤
⋆ BB⊤X⊤

i zi
∥∥2]︸ ︷︷ ︸

(D)

,

where Σi :=
1

min
X⊤

i Xi. By the independence of w⋆,i, Xi and Lemma 15,

(C) = tr
(
B⊤

⋆ BB⊤Ew⋆,i,Xi

[
ΣiB⋆w⋆w

⊤
⋆ B

⊤
⋆ Σi

]
BB⊤B⋆

)
= tr

(
B⊤

⋆ BB⊤EXi

[
ΣiB⋆Σ⋆B

⊤
⋆ Σi

]
BB⊤B⋆

)
=

min + 1

min
tr
(
B⊤

⋆ BB⊤B⋆Σ⋆B
⊤
⋆ BB⊤B⋆

)
+

1

min
tr
(
B⊤

⋆ BB⊤BB⊤B⋆

)
=

min + 1

min
tr (ΛΣ⋆Λ) +

1

min
tr (Σ⋆) tr

(
Λ2
)
.
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For the term (D), we have

(D) =
1

min
tr
(
B⊤

⋆ BB⊤EXi,zi

[
X⊤

i ziz
⊤
i Xi

]
BB⊤B⋆

)
= σ2tr

(
B⊤

⋆ BB⊤EXi [Σi]BB⊤B⋆

)
= σ2tr

(
B⊤

⋆ BB⊤BB⊤B⋆

)
= σ2tr

(
Λ2
)
.

Lastly, for the term (B), we have

(B) =
1

min
Ew⋆,i,Xi

[
⟨w⋆,i, B

⊤
⋆ BB⊤X⊤

i XiB⋆w⋆,i⟩
]

= Ew⋆,i

[
⟨w⋆,i, B

⊤
⋆ BB⊤B⋆w⋆,i⟩

]
= tr (ΛΣ⋆) .

Putting everything together using Σ⋆ is scaled identity,

LANIL(B,w;min) =
α2

2min

(
(min + 1) tr (ΛΣ⋆Λ) + tr (Σ⋆) tr

(
Λ2
))
− αtr (ΛΣ⋆) +

1

2
tr (Σ⋆)

=
α2

2min

(
(min + 1) ∥Σ⋆∥2 + σ2

)
tr
(
Λ2
)
− α∥Σ⋆∥2tr(Λ) +

1

2
tr (Σ⋆) .

Hence, the loss depends on B only through Λ := B⊤
⋆ BB⊤B⋆ for all (B,w) such that B⊤

⋆,⊥B =
0, Bw = 0. Taking the derivative w.r.t. Λ yields that Λ is a minimiser if and only if

α

min

(
(min + 1) ∥Σ⋆∥2 + σ2

)
Λ− λmax (Σ⋆) I = 0.

This quantity is minimised for Λ⋆ as

α
min + 1

min
Λ⋆

(
Σ⋆ +

σ2

min + 1
Λ⋆

)
= Σ⋆.

G Extending Collins et al. [2022] analysis to the misspecified setting

We show that the dynamics for infinite samples in the misspecified setting k < k′ ≤ d is reducible
to a well-specified case studied in Collins et al. [2022]. The idea is to show that the dynamics is
restricted to a k-dimensional subspace via a time-independent bijection between misspecified and
well-specified iterates.

In the infinite samples limit, min =∞,mout =∞, the outer loop updates of Equation (3) simplify
with Assumption 1 to

wt+1 = wt − β∆tB
⊤
t (Btwt −B⋆µ⋆) ,

Bt+1 = Bt − βBt∆twt

(
∆twt + αB⊤

t B⋆µ⋆

)⊤
+ β

(
Id − αBtB

⊤
t

)
B⋆

(
µ⋆ (∆twt)

⊤
+ αΣ⋆B

⊤
⋆ Bt

)
.

(33)

where µ⋆ and Σ⋆ respectively are the empirical task mean and covariance, and ∆t := Ik′ − αB⊤
t Bt.

This leads to following updates on Ct := B⊤
⋆ Bt,

Ct+1 =
(
Ik + αβ

(
Ik − CtC

⊤
t

)
Σ⋆

)
Ct − βCt∆twt

(
∆twt + αC⊤

t µ⋆

)⊤
+ β

(
Ik − αCtC

⊤
t

)
µ⋆ (∆twt)

⊤
.

A key observation of this recursion is that all the terms end with Ct or ∆t. This observation is
sufficient to deduce that Ct is fixed in its row space.

Assume that B0 is initialised such that

ker(C0) ⊆ ker(∆0).
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This condition is always satisfiable by a choice of B0 that guarantees B⊤
0 B0 = αIk′ , similarly

to Collins et al. [2022]. With this assumption, there is no dynamics in the kernel space of C0. More
precisely, we show that for all time t, ker(C0) ⊆ ker(Ct) ∩ ker(∆t). Then, it is easy to conclude
that Bt has simplified rank-deficient dynamics.

Assume the following inductive hypothesis at time t,

ker(C0) ⊆ ker(Ct) ∩ ker(∆t).

For time step t + 1, we have for all v ∈ ker(Ct) ∩ ker(∆t), Ct+1v = 0. As a result, the next step
contains the kernel space of the previous step, i.e., ker(C0) ⊆ ker(Ct) ∩ ker(∆t) ⊆ ker(Ct+1).
Similarly, inspecting the expression for ∆t+1, we have for all v ∈ ker(Ct) ∩ ker(∆t), ∆t+1v = 0
and ker(C0) ⊆ ker(Ct) ∩ ker(∆t) ⊆ ker(∆t+1). Therefore, the induction hypothesis at time step
t+ 1 holds.

Now, using that ker(Ct) = col(C⊤
t )⊥, row spaces of Ct are confined in the same k-dimensional

subspace, col(C⊤
t ) ⊇ col(C⊤

0 ). Let R ∈ Rk×k′
and R⊥ ∈ R(k′−k)×k′

be two orthogonal matrices
that span col(C⊤

0 ) and col(C⊤
0 )⊥, respectively. That is, R and R⊥ satisfy RR⊤ = Ik, col(R) =

col(C⊤
0 ) and R⊥R

⊤
⊥ = Ik′−k, col(R⊥) = col(C⊤

0 )⊥. It is easy to show that updates to Bt and wt

are orthogonal to col(R⊥), i.e.,

BtR
⊤
⊥ = B0R

⊤
⊥, and R⊥wt = R⊥w0.

With this result, we can prove that there is a k-dimensional parametrisation of the misspecified
dynamics. Let ŵ0 ∈ Rk, B̂0 ∈ Rd×k defined as

B̂0 := B0R
⊤, ŵ0 := Rw0.

Running FO-ANIL in the infinite samples limit, initialized with B̂0 and ŵ0, mirrors the dynamics of
the original misspecified iterations, i.e., B̂t and ŵt satisfy,

B̂t = BtR
⊤, ŵt = Rwt, B̂tŵt = Btwt −B0R

⊤
⊥R⊥w0.

This given bijection proves that iterates are fixed throughout training on the k′ − k-dimensional
subspace col(R⊥). Hence, as argued in Appendix A, the infinite samples dynamics do not capture
unlearning behavior observed in Appendix I. In contrast, the infinite tasks idealisation exhibits both
learning and unlearning dynamics.

H Convergence rate for unlearning

In Proposition 4, we derive the rate ∥B⊤
⋆,⊥Bt∥2 = O

(
min

α2βσ2t

)
.

Proposition 4. Under the conditions of Theorem 2,∥∥B⊤
⋆,⊥Bt

∥∥2
2
≤ 1

α2β σ2

min
t+ 1

∥B⊤
⋆,⊥B0∥2

2

, (34)

for any time t ≥ 0.

Proof. Recall that Lemma 2 holds for all time steps by Theorem 2. That is, for all t > 0,∥∥B⊤
⋆,⊥Bt+1

∥∥2
2
≤
(
1− κ

∥∥B⊤
⋆,⊥Bt

∥∥2
2

)∥∥B⊤
⋆,⊥Bt

∥∥2
2
, (35)

where κ := α2β
min

σ2 for brevity. Now, assume the inductive hypothesis in Equation (34) holds for time
t. Observe that the function x 7→ (1− κx)x is increasing on [0, 1

2κ ] and

∥B⊤
⋆,⊥Bt∥22 ≤ ∥B⊤

⋆,⊥B0∥22 ≤
1

α

1

min + 1
≤ 1

2κ
,

by the assumptions of Theorem 2. Then, by Equation (35) and monotonicity of x 7→ (1− κx)x,

∥B⊤
⋆,⊥Bt+1∥22 ≤

(
1− κ

κt+ 1
∥B⋆,⊥B0∥2

2

)
1

κt+ 1
∥B⋆,⊥B0∥2

2

=
κ (t− 1) + 1

∥B⊤
⋆,⊥B0∥2

2(
κt+ 1

∥B⋆,⊥B0∥2
2

)2 .
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Using the inequality of arithmetic and geometric means,

∥B⊤
⋆,⊥Bt+1∥22 ≤

κ (t− 1) + 1
∥B⊤

⋆,⊥B0∥2
2(

κt+ 1
∥B⋆,⊥B0∥2

2

)2 · κ (t+ 1) + 1
∥B⋆,⊥B0∥2

2

κ (t+ 1) + 1
∥B⋆,⊥B0∥2

2

≤ 1

κ (t+ 1) + 1
∥B⋆,⊥B0∥2

2

.

Hence, the induction hypothesis at time step t+ 1 holds.

I Experiments

This section empirically studies the behavior of model-agnostic methods on a toy example. We
consider a setup with a large but finite number of tasks N = 5000, feature dimension d = 50, a
limited number of samples per task m = 30, small hidden dimension k = 5 and Gaussian label
noise with variance σ2 = 2. We study a largely misspecified problem where k′ = d. To demonstrate
that Theorem 1 holds more generally, we consider a non-identity covariance Σ⋆ proportional to
diag(1,· · ·, k). The complete experimental details are given in Appendix I.1.
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Figure 1: Evolution of smallest (left) and largest (right) squared singular value of B⊤
⋆ Bt during

training. The shaded area represents the standard deviation observed over 10 runs.

To observe the differences between the idealised models and the true algorithm, FO-ANIL with finite
samples and tasks is compared with both its infinite tasks and infinite samples versions. It is also
compared with FO-MAML and Burer-Monteiro factorisation.

Figure 1 first illustrates how the different methods learn the ground truth subspace given by B⋆. More
precisely, it shows the evolution of the largest and smallest squared singular value of B⊤

⋆ Bt.

Figure 2 on the other hand illustrates how different methods unlearn the orthogonal complement of
col(B⋆), by showing the evolution of the largest and averaged squared singular value of B⊤

⋆,⊥Bt.
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Figure 2: Evolution of average (left) and largest (right) squared singular value of B⊤
⋆,⊥Bt during

training. The shaded area represents the standard deviation observed over 10 runs.

Finally, Table 1 compares the excess risks achieved by these methods on a new task with both 20

and 30 samples. The parameter is estimated by a ridge regression on (XB̂, y), where B̂ is the
representation learnt while training. Additionally, we report the loss obtained for model-agnostic
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methods after a single gradient descent update. These methods are also compared with the single-task
baseline that performs ridge regression on the d-dimensional feature space, and the oracle baseline
that directly performs ridge regression on the ground truth k-dimensional parameter space. Ridge
regression is used for all methods, since regularising the objective largely improves the test loss here
(overfitting might occur otherwise). For each method, the regularisation parameter is tuned using a
grid-search over multiple values.

Table 1: Excess risk evaluated on 10000 testing tasks. The number after ± is the standard deviation
over 10 independent training runs. For model-agnostic methods, 1-GD refers to a single gradient
descent step at test time; Ridge refers to ridge estimator with respect to the learnt representation.

mtest = 20 mtest = 30

Single-task ridge 1.84± 0.03 1.63± 0.02
Oracle ridge 0.50± 0.01 0.34± 0.01
Burer-Monteiro 1.23± 0.03 1.03± 0.02

1-GD Ridge 1-GD Ridge
FO-ANIL 0.81± 0.01 0.73± 0.03 0.64± 0.01 0.57± 0.02
FO-MAML 0.81± 0.01 0.73± 0.04 0.63± 0.01 0.58± 0.01
FO-ANIL infinite tasks 0.77± 0.01 0.67± 0.03 0.60± 0.01 0.52± 0.01
FO-ANIL infinite samples 1.78± 0.02 1.04± 0.02 1.19± 0.01 0.84± 0.02

As predicted by Theorem 1, FO-ANIL with infinite tasks exactly converges to Λ⋆. More precisely,
it quickly learns the ground truth subspace. Moreover, it unlearns its orthogonal complement as
the singular values of B⊤

⋆,⊥Bt decrease to 0, yet at the slow rate given in Appendix H. FO-ANIL
and FO-MAML with a finite number of tasks almost coincide. Although very close to infinite tasks
FO-ANIL, they seem to unlearn the orthogonal space of col(B⋆) even more slowly. In particular,
there are a few directions (given by the maximal singular value) that are unlearnt either very slowly
or up to a small error. However on average, the unlearning happens at a comparable rate, and the
effect of the few extreme directions is negligible. These methods thus learn a good representation
and reach an excess risk approaching the oracle baseline when doing either ridge regression or just a
single gradient step.

On the other hand, as predicted in Appendix A, FO-ANIL with an infinite number of samples
quickly learns col(B⋆), but it does not unlearn the orthogonal complement. The singular values
along the orthogonal complement stay constant. A similar behavior is observed for Burer-Monteiro
factorisation: the ground truth subspace is quickly learnt, but the orthogonal complement is not
unlearnt. Actually, the singular values along the orthogonal complement even increase during the
first steps of training. For both methods, the inability of unlearning the orthogonal complement
significantly hurts the performance at test time. Note however that they still outperform the single-task
baseline. The singular values along col(B⋆) are indeed larger than along its orthogonal complement.
More weight is then put on the ground truth subspace when estimating a new task.

These experiments confirm the phenomena described in Section 3 and Appendix A. Model-agnostic
methods not only learn the good subspace, but also unlearn its orthogonal complement. This
unlearning yet happens slowly and many iterations are required to completely ignore the orthogonal
space.

I.1 Experimental details

In the experiments considered in Appendix I, samples are split into two subsets with min = 20 and
mout = 10 for model-agnostic methods. The task parameters w⋆,i are drawn i.i.d. from N (0,Σ⋆),
where Σ⋆ = cdiag(1, . . . , k) and c is a constant chosen so that ∥Σ⋆∥F =

√
k. Moreover, the features

are drawn i.i.d. following a standard Gaussian distribution. All the curves are averaged over 10
training runs.

Model-agnostic methods are all trained using step sizes α = β = 0.025. For the infinite tasks model,
the iterates are computed using the close form formulas given by Equations (5) and (6) for min = 20.
For the infinite samples model, it is computed using the closed form formula of Collins et al. [2022,
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Figure 3: Evolution of the excess risk (evaluated on 10000 tasks with mtest = 30) with respect to
the number of gradient descent steps processed, averaged over 10 training runs.

Equation (3)] with N = 5000 tasks. The matrix B0 is initialised randomly as an orthogonal matrix
such that B⊤

0 B0 = 1
4αIk′ . The vector w0 is initialised uniformly at random on the k′-dimensional

sphere with squared radius 0.01k′α.

For training Burer-Monteiro method, we initialise B0 is initialised randomly as an orthogonal matrix
such that B⊤

0 B0 = 1
100Ik′ and each column of W is initialised uniformly at random on the k′-

dimensional sphere with squared radius 0.01k′α. 2 Also, similarly to Tripuraneni et al. [2021], we
add a 1

8∥B⊤
t Bt −WtW

⊤
t ∥2F regularising term to the training loss to ensure training stability. The

matrices Bt and Wt are simultaneously trained with LBFGS using the default parameters of scipy.

For Table 1, we consider ridge regression for each learnt representation. For example, if we learnt the
representation given by the matrix B̂ ∈ Rd×k′

, the Ridge estimator is given by

argmin
w∈Rk′

L̂test(B̂w;X, y) + λ∥w∥22.

The regularisation parameter λ is tuned for each method using a grid search over multiple values.

I.2 Additional experiments

I.2.1 Impact of noise and number of samples in inner updates

In this section, we run additional experiments to illustrate the impact of label noise and the number of
samples on the decay of the orthogonal complement of the ground-truth subspace. The experimental
setup is the same as Appendix I for FO-ANIL with finite tasks, except for the changes in the number
of samples per task and the variance of label noise.

Figure 4 illustrates the decay of squared singular value of B⊤
⋆,⊥Bt during training. As predicted

by Appendix H, the unlearning is fastest when min = 10 and slowest when min = 30. Figure 5 plots
the decay with respect to different noise levels. The rate derived for the infinite tasks model suggests
that the decay is faster for larger noise. However, experimental evidence with a finite number of
tasks is more nuanced. The decay is indeed fastest for σ2 = 4 and slowest for σ2 = 0 on average.
However, the decay of the largest singular value slows down for σ2 = 4 in a second time, while the
decay still goes on with σ2 = 0, and the largest singular value eventually becomes smaller than in the
σ2 = 4 case. This observation might indicate the intricate dynamics of FO-ANIL with finite tasks.

I.2.2 General task distribution

In this section, we run similar experiments to Appendix I, but with a more difficult task distribution and
3 training runs per method. In particular the task parameters are now generated as w⋆,i ∼ N (µ⋆,Σ⋆),
where µ⋆ is chosen uniformly at random on the k-sphere of radius

√
k. Also, Σ⋆ is chosen proportional

to diag(e1, ..., ek), so that its Frobenius-norm is 2
√
k and its condition number is ek−1.

Similarly to Appendix I, Figures 6 and 7 show the evolution of the squared singular values on the
good subspace and its orthogonal component during the training. Similarly to the well-behaved case

2We choose a small initialisation regime for Burer-Monteiro to be in the good implicit bias regime. Note that
Burer-Monteiro yields worse performance when using a larger initialisation scale.
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Figure 4: Evolution of average (left) and largest (right) squared singular value of B⊤
⋆,⊥Bt during

training. The shaded area represents the standard deviation observed over 5 runs.
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Figure 5: Evolution of average (left) and largest (right) squared singular value of B⊤
⋆,⊥Bt during

training. The shaded area represents the standard deviation observed over 5 runs.
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Figure 6: Evolution of largest (left) and smallest (right) squared singular values of B⊤
⋆ Bt during

training. The shaded area represents the standard deviation observed over 3 runs.
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of Appendix I, model-agnostic methods seem to correctly learn the good subspace and unlearn its
orthogonal complement, still at a very slow rate. The main difference is that the matrix towards
which B⊤

⋆ BtB
⊤
t B⋆ converges does not exactly correspond to the Λ⋆ matrix defined in Theorem 1.

We believe this is due to an additional term that should appear in the presence of a non-zero task
mean. We yet do not fully understand what this term should be.
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Figure 8: Evolution of ∥Btwt −B⋆µ⋆∥22 during training. The shaded area represents the standard
deviation observed over 3 runs.

Figure 8 on the other hand shows the evolution of ∥Btwt −B⋆µ⋆∥ while training. This value quickly
decreases to 0. This decay implies that model-agnostic methods learn not only the low-dimensional
space on which the task parameters lie, but also their mean value. It then chooses this mean value
as the initial point, and consequentially, the task adaptation happens quickly at test time. Overall,
the experiments in this section suggest that model-agnostic methods still learn a good representation
when facing more general task distributions.

I.2.3 Number of gradient steps at test time

This section studies what should be done at test time for the different methods. Figure 3 illustrates
how the excess risk evolves when running gradient descent over the head parameters w, for the
methods trained in Appendix I. For all results, gradient descent is run with step size 0.01, which is
actually smaller than the α used while training FO-ANIL.

Keeping the step size equal to α leads to optimisation complications when running gradient descent:
the objective loss diverges, since the step size is chosen too large. This divergence is due to the fact
that FO-ANIL chooses a large scale Bt while training: this ensures a quick adaptation after a single
gradient step but also leads to divergence of gradient descent after many steps.

The excess risk first decreases for all the methods while running gradient descent. However, after
some critical threshold, it increases again for all methods except the Oracle. It is due to the fact
that at some point in the task adaptation, the methods start overfitting the noise using components
along the orthogonal complement of the ground-truth space. Even though the representation learnt
by FO-ANIL is nearly rank-deficient, it is still full rank. As can be seen in the difference between
FO-ANIL and Oracle, this tiny difference between rank-deficient and full rank actually leads to a
huge performance gap when running gradient descent until convergence.

Additionally, Figure 3 nicely illustrates how early stopping plays some regularising role here. Overall,
this suggests it is far from obvious how the methods should adapt at test time, despite having learnt a
good representation.
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