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Abstract

Massive reinforcement learning (RL) data are typically collected to train policies
offline without the need for interactions, but the large data volume can cause train-
ing inefficiencies. To tackle this issue, we formulate offline behavior distillation
(OBD), which synthesizes limited expert behavioral data from sub-optimal RL data,
enabling rapid policy learning. We propose two naive OBD objectives, DBC and
PBC, which measure distillation performance via the decision difference between
policies trained on distilled data and either offline data or a near-expert policy. Due
to intractable bi-level optimization, the OBD objective is difficult to minimize to
small values, which deteriorates PBC by its distillation performance guarantee
with quadratic discount complexity O(1/(1− γ)2). We theoretically establish the
equivalence between the policy performance and action-value weighted decision
difference, and introduce action-value weighted PBC (Av-PBC) as a more effective
OBD objective. By optimizing the weighted decision difference, Av-PBC achieves
a superior distillation guarantee with linear discount complexity O(1/(1 − γ)).
Extensive experiments on multiple D4RL datasets reveal that Av-PBC offers sig-
nificant improvements in OBD performance, fast distillation convergence speed,
and robust cross-architecture/optimizer generalization. The code is available at
https://github.com/LeavesLei/OBD.

1 Introduction

Due to the costs and dangers associated with interactions in reinforcement learning (RL), learning
policies from pre-collected RL data has become increasingly popular [Levine et al., 2020]. Con-
sequently, numerous offline RL datasets have been constructed [Fu et al., 2020]. However, these
offline data are typically massive and collected by sub-optimal or even random policies, leading to
inefficiencies in policy training. Inspired by dataset distillation (DD) [Wang et al., 2018, Zhao et al.,
2021, Lei and Tao, 2024], which synthesizes a small number of training images while preserving
model training effects, we further investigate the following question: Can we distill vast sub-optimal
RL data into limited expert behavioral data? Achieving this would enable rapid offline policy learning
via behavioral cloning (BC) [Pomerleau, 1991], which can (1) reduce the training cost and enable
green AI; (2) facilitate downstream tasks by using distilled data as prior knowledge (e.g. continual RL
[Gai et al., 2023], multi-task RL [Yu et al., 2021], efficient policy pretraining [Goecks et al., 2019],
offline-to-online fine-tuning [Zhao et al., 2022]); and (3) protect data privacy [Qiao and Wang, 2023].

Unlike DD whose objective is prediction accuracy and directly obtainable from real data, the policy
performance in RL is measured by the expected return through interactions with environment. In an
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offline paradigm, where direct interaction with environment is not possible, a metric based on RL data
is necessary to guide the RL data distillation. Therefore, we formalize the offline behavior distillation
(OBD): a limited set of behavioral data, comprising (state, action) pairs, is synthesized from
sub-optimal RL data, so that policies trained on the compact synthetic dataset by BC can achieve
small OBD objective loss, which incarnates high return when deploying policies in the environment.

The key obstacle for OBD is constructing a proper objective that efficiently and accurately estimates
the policy performance based on the sub-optimal offline dataset, allowing for a rational evaluation
of the distilled data. To this end, data-based BC (DBC) and policy-based BC (PBC) present two
naive OBD objectives. Specifically, DBC reflects the policy performance by measuring the mismatch
between the policy decision and vanilla offline data. Leveraging existing offline RL algorithms that
can extract near-optimal policies from sub-optimal data [Levine et al., 2020], PBC improves upon
DBC by correcting actions in offline data using a near-optimal policy before measuring the decision
difference. However, due to the complex bi-level optimization in OBD, the objectives are difficult to
minimize effectively, resulting in an inferior distillation performance guarantee with the quadratic
discount complexity O(1/(1− γ)2) for PBC (Theorem 1). We tackle this problem and propose the
action-value weighted PBC (Av-PBC) as the OBD objective with superior distillation guarantee by
taking inspirations from our theoretical findings. Concretely, we theoretically prove the equivalence
between the policy performance gap and the action-value weighted decision difference (Theorem
2). Then, by optimizing the weighted decision difference, we can obtain a much tighter distillation
performance guarantee with linear discount complexity O(1/(1− γ)) (Corollary 1). Consequently,
we weigh PBC with the simple action value, introducing Av-PBC as the OBD objective.

Extensive experiments on nine datasets of D4RL benchmark [Fu et al., 2020] with multiple envi-
ronments and data qualities illustrate that our Av-PBC remarkably promotes the OBD performance,
which is measured by normalized return, by 82.8% and 25.7% compared to baselines of DBC and
PBC, respectively. Moreover, Av-PBC has a significant convergence speed and requires only a
quarter of distillation steps compared to DBC and PBC. By evaluating the synthetic data in terms
of different network architectures and training optimizers, we show that distilled datasets possess
decent cross-architecture/optimizer performance. Apart from evaluations on single policy, we also
investigate policy ensemble performance by training multiple policies on the synthetic dataset and
combining them to generate actions. The empirical findings demonstrate that the ensemble operation
can significantly enhance the performance of policies trained on Av-PBC-distilled data by 25.8%.

Our contributions can be summarized as:

• We formulate the offline behavior distillation problem, and present two naive OBD objectives of
DBC and the improved PBC;

• We demonstrate the unpleasant distillation performance guarantee ofO(1/(1−γ)2) for PBC, and
theoretically derive a novel objective of Av-PBC that has much tighter performance guarantee
of O(1/(1− γ));

• Extensive experiments on multiple offline RL datasets verify significant improvements on OBD
performance and speed by Av-PBC.

2 Related works

Offline RL Data collection can be both hazardous (e.g. autonomous driving) and costly (e.g.
healthcare) with the online learning paradigm of RL. To alleviate the online interaction, offline RL
has been developed to learn the policy from a pre-collected dataset gathered by sub-optimal behavior
policies [Lange et al., 2012, Fu et al., 2020]. However, the offline paradigm limits exploration and
results in the distributional shift problem: (1) the state distribution discrepancy between learned policy
and behavior policy at test time; and (2) only in-dataset state transitions are sampled when conducting
Bellman backup [Bellman, 1966] during the training period [Levine et al., 2020]. Various offline RL
algorithms have been proposed to mitigate the distributional shift problem. Fujimoto and Gu [2021],
Tarasov et al. [2024] introduce policy constrain that control the discrepancy between learned policy
and behavior policy. To address the problem of over-optimistic estimation on out-of-distribution
actions, Kumar et al. [2020], Nakamoto et al. [2023], Kostrikov et al. [2022] propose to regularize the
learned value function for conservative Q learning. Moreover, ensemble approaches have also proven
effective in offline RL [An et al., 2021]. Readers can refer to [Tarasov et al., 2022] for a detailed
comparison of offline RL methods. Albeit these advancements, the offline dataset is extremely large
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(million-level) and contains sensitive information (e.g. medical history) [Qiao and Wang, 2023],
necessitating consideration of training efficiency, data storage, and privacy concerns. To address
these issues, we distill a small behavioural dataset from vast subpar offline RL data to enable efficient
policy learning via BC.

Dataset Distillation Given the resource constraints in era of big data, numerous approaches have
focused on improving learning efficiency through memory-efficient model [Han et al., 2016, Jing
et al., 2021] and effective data utilization [Mirzasoleiman et al., 2020, Jing et al., 2023, Lei et al.,
2023]. Recently, dataset distillation (DD) has emerged as a promising technique for condensing large
real datasets into significantly smaller synthetic ones, such that models trained on these tiny synthetic
datasets achieve comparable generalization performance to those trained on large original datasets
[Sachdeva and McAuley, 2023, Yu et al., 2024, Lei and Tao, 2024]. This approach addresses key
issues such as training inefficiency, data storage limitations, and data privacy concerns. There are two
primary frameworks for DD: the meta-learning framework, which formulates dataset distillation as a
bi-level optimization problem [Wang et al., 2018, Deng and Russakovsky, 2022], and the matching
framework, which matches the synthetic and real datasets in terms of gradient [Zhao et al., 2021,
Zhao and Bilen, 2021], feature [Zhao and Bilen, 2023, Wang et al., 2022], or training trajectory
[Cazenavette et al., 2022, Cui et al., 2023].

While most DD methods focus on image data, Lupu et al. [2024] propose behavior distillation
(BD), extending DD to online RL regime. In (online) BD, a small number of state-action pairs are
synthesized for fast BC training by (1) directly computing policy returns through online interactions;
and (2) estimating the meta-gradient w.r.t. synthetic data via evolution strategies (ES) [Salimans et al.,
2017]. We underline that our OBD is not an extension of online BD, but rather a novel and parallel
field because of different objectives that incur distinct challenges: (1) online BD uses the ground
truth objective, i.e., policy return, by sampling many long episodes from environments. As a result,
backpropagating the meta-gradient of return w.r.t. synthetic data is extremely inefficient, and Lupu
et al. [2024] tackle the challenge by estimating meta-gradient with the zero-order algorithm of ES;
and (2) OBD objective solely relies on offline data instead of long episode sampling, thereby making
meta-gradient backpropagation relatively efficient and feasible, and the primary obstacle for OBD
lies in designing an appropriate objective that accurately reflects the policy performance.

3 Preliminaries

Reinforcement Learning The problem of reinforcement learning can be described as the Markov
decision process (MDP) ⟨S,A, T , r, γ, d0⟩, where S is a set of states s ∈ S, A is the set of actions
a ∈ A, T (s′|s, a) denotes the transition probability function, r(s, a) is the reward function, γ ∈ (0, 1)
is the discount factor, and d0(s) is the initial state distribution [Sutton and Barto, 2018]. We assume
that the reward function is bounded by Rmax, i.e., r(s, a) ∈ [0, Rmax] for all (s, a) ∈ S × A.
The objective of RL is to learn a policy π(a|s) that maximizes the long-term expected return
J(π) = Eπ [

∑∞
t=0 γ

trt], where rt = r(st, at) is the reward at t-step, and γ usually is close to
1 to consider long-horizon rewards in the most RL tasks. We define dtπ(s) = Pr(st = s;π)
and ρtπ(s, a) = Pr(st = s, at = a;π) as t-th step state distribution and state-action distribution,
respectively. Then, the discounted stationary state distribution dπ(s) = (1− γ)

∑∞
t=0 γ

tdtπ(s), and
the discounted stationary state-action distribution ρπ(s, a) = (1− γ)

∑∞
t=0 γ

tρtπ(s, a). Intuitively,
the state (state-action) distribution depicts the overall “frequency” of visiting a state (state-action)
with π. The action-value function of π is qπ(s, a) = Eπ [

∑∞
t=0 γ

trt | s0 = s, a0 = a], which is the
expected return starting from s, taking the action a. Since rt ≥ 0, we have qπ(s, a) ≥ 0 for all (s, a).

Instead of interacting with the environment, offline RL learns the policy from a sub-optimal offline
dataset Doff = {(si, ai, s′i, ri)}

Noff
i=1 with specially designed Bellman backup [Levine et al., 2020].

Although Doff is normally collected by sub-optimal behavior policies, offline RL algorithms can
recapitulate a near-optimal policy π∗ and value function qπ∗ from Doff.

Behavioral Cloning [Pomerleau, 1991] can be regarded as a special offline RL algorithm and
only copes with high-quality data. Given the expert demonstrations DBC = {(si, ai)}NBC

i=1, the
policy network πθ parameterized by θ is trained by cloning the behavior of the expert dataset DBC

in a supervised manner: minθ ℓBC(θ,DBC) := E(s,a)∼DBC

[
(πθ (a|s)− π̂∗(a|s))2

]
, where π̂∗(a|s) =
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∑NBC
i=1 I(si=s,ai=a)∑NBC

i=1 I(si=s)
is an empirical estimation based onDBC. Compared to general offline RL algorithms

that deal with subpar 4-tuples ofDoff, BC only handles expert 2-tuples, while it has better convergence
speed due to the supervised paradigm. This paper aims to distill massive sub-optimal 4-tuples into a
few expert 2-tuples, thereby enabling rapid policy learning via BC.

3.1 Problem Setup

We first introduce behavior distillation [Lupu et al., 2024] that aims to synthesize few data points
D = Dsyn = {(si, ai)}

Nsyn
i=1 with small Nsyn from the environment, so the policy trained on Dsyn has

a large expected return J . The problem of behavior distillation can be formalized as follows:

D∗
syn = argmax

D
J
(
πθ(D)

)
s.t. θ(D) = argmin

θ
ℓBC(θ,D). (1)

During behavior distillation, the return J is directly estimated by the interaction between policy
and environment. However, in the offline setting, the environment can not be touched, and only the
previously collected dataset Doff is provided. Hence, we employ H(πθ,Doff) as a surrogate loss
to estimate the policy performance of πθ given the offline data Doff without interactions with the
environment. Then, by setting Nsyn ≪ Noff, offline behavior distillation can be formulated as below:

D∗
syn = argmin

D
H
(
πθ(D),Doff

)
s.t. θ(D) = argmin

θ
ℓBC(θ,D). (2)

3.2 Backpropagation through Time

The formulation of offline behavior distillation is a bi-level optimization problem: the inner loop
optimizes the policy network parameters based on the synthetic dataset with BC by multiple iterations
of {θ1, θ2, · · · , θT }. During the outer loop iteration, synthetic data are updated by minimizing the
surrogate lossH. With the nested loop, the synthetic dataset gradually converges to one of the optima.
This bi-level optimization can be solved by backpropagation through time (BPTT) [Werbos, 1990]:

∇DH =
∂H
∂D

=
∂H
∂θ(T )

(
k=T∑
k=0

∂θ(T )

∂θ(k)
· ∂θ

(k)

∂D

)
, and

∂θ(T )

∂θ(k)
=

T∏
i=k+1

∂θ(i)

∂θ(i−1)
. (3)

Although BPTT provides a feasible solution to compute the meta-gradient for OBD, the objective H
is hardly minimized to near zero in practice owing to the severe complexity and non-convexity of
bi-level optimization [Wiesemann et al., 2013].

4 Methods

The key challenge in OBD is determining an appropriate objective lossH(πθ,Doff) to estimate the
performance of πθ. While policy performance could be naturally estimated using episode return by
learning a MDP environment from Doff, as done in model-based offline RL [Kidambi et al., 2020],
this approach is computationally expensive. Apart from the considerable time required to sample
the episode for evaluation, the corresponding gradient computation is also inefficient: although
Policy Gradient Theorem ∂J

∂θ =
∑

s dπ(s)
∑

a qπ(s, a)∇θπθ(a|s) provides a way to compute meta-
gradients [Sutton and Barto, 2018], the gradient estimation often exhibits high variance due to the
lack of information w.r.t. dπ(s) and qπ(s, a).

4.1 Data-based and Policy-based BC

Compared to both sampling and gradient computation inefficiency of policy return, directly using
Doff is a more feasible way to estimate the policy performance in OBD, and a natural option is BC
loss, i.e., H(πθ,Doff) = ℓBC(θ,Doff), which we refer to as data-based BC (DBC). However, as
Doff is collected by sub-optimal policies, DBC hardly evaluates the policy performance accurately.

Benefiting from offline RL algorithms, we can extract the near-optimal policy π∗ and corresponding
value function qπ∗ from Doff via carefully designed Bellman updates. Consequently, a more rational
choice is to correct actions inDoff with π∗, leading toH(π,Doff) = Es∼Doff [DTV (π∗(·|s), π(·|s))],
where DTV (π∗(· | s), π(· | s)) = 1

2

∑
a∈A [|π∗(a|s)− π(a|s)|] is the total variation (TV) distance
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that measures the decision difference between π∗ and π at state s, and we term this metric as policy-
based BC (PBC). With the exemplar π∗, offline behavior distillation performance J(π), where π is
trained on Dsyn, can be guaranteed by the following theorem.
Theorem 1 (Theorem 1 in [Xu et al., 2020]). Given two policies of π∗ and π with
Es∼dπ∗ (s) [DTV (π∗(·|s), π(·|s))] ≤ ϵ, we have |J(π∗)− J(π)| ≤ 2Rmax

(1−γ)2 ϵ.

Remark 1. The proof of Theorem 1 does not necessitate that π∗ is superior to π, and thus substituting
s ∼ dπ∗(s) in Es∼dπ∗ (s) [DTV (π∗(·|s), π(·|s))] ≤ ϵ with s ∼ dπ(s) does not alter the outcome.

Theorem 1 elucidates that π has close performance to the good policy π∗ as long as they act similarly,
and J(π)→ J(π∗) if their decision difference DTV (π∗(· | s), π(· | s))→ 0. This is optimistic for
the conventional BC setting where the loss can be easily optimized to near zero. However, because
of intractable bi-level optimization, the empirical objective ϵ is rarely decreased to small values in
OBD. According to [Xu et al., 2020], the upper bound in Theorem 1 is tight as quadratic discount
complexity O(1/ (1− γ)

2
) is inevitable in the worst-case, implying that the distillation performance

guarantee collapses quickly as the PBC objective increases. To this end, a more effective OBD
objective should be considered to ensure stronger distillation guarantees.

4.2 Action-value weighted PBC

The preceding analysis highlights the inferior distillation guarantee of O(1/(1 − γ)2) with PBC.
To establish a superior OBD objective, we prove the equivalence between the performance gap of
J(π∗)−J(π) and action-value weighted π∗ (a|s)−π (a|s) (Theorem 2). By optimizing the weighted
decision difference, the performance gap can be non-vacuously bounded with a reduced discount
complexity of O(1/(1 − γ)) (Corollary 1). Motivated by these theoretical insights, we propose
action-value weighted PBC as the OBD objective for a tighter distillation performance guarantee.
Theorem 2. For any two policies π and π∗, we have

J(π∗)− J(π) =
1

1− γ
Es∼dπ(s) [qπ∗ (s, ·) (π∗ (·|s)− π (·|s))] , (4)

where the dot notation (·) is a summation over the action space, i.e., qπ∗ (s, ·) (π∗ (·|s)− π (·|s)) =∑
a∈A qπ∗ (s, a) (π∗ (a|s)− π (a|s)).

Proof Sketch. (1) With RL definitions, we represent J(π∗)− J(π) by

J(π∗)− J(π) = Es∼d0
π∗ (s) [qπ∗ (s, ·) (π∗(·|s)− π(·|s))] + Eρ1

π(s,a)
[qπ∗ (s, a)− qπ (s, a)] ;

(2) then we prove the iterative formula w.r.t. Eρn
π(s,a)

[qπ∗ (s, a)− qπ (s, a)]:

Eρn
π(s,a)

[qπ∗ (s, a)− qπ (s, a)]

=γEs∼dn+1
π (s) [qπ∗ (s, ·) (π∗(·|s)− π(·|s))] + γEρn+1

π (s,a) [qπ∗ (s, a)− qπ (s, a)] ;

(3) integrating the two equations above yields the desired result

J(π∗)− J(π) =

∞∑
t=0

γtEs∼dt
π(s)

[qπ∗ (s, ·) (π∗(·|s)− π(·|s))] .

The complete proof can be found in Appendix A.1. Since qπ∗ (s, a) represents the expected return
under the decent policy π∗ when staring from (s, a) and reaches the maximum if π∗ is truly optimal, it
can be interpreted as the importance of (s, a), and higher return is likely to be achieved when starting
from more important (s, a). Consequently, the gap between J(π∗) and J(π) directly depends on the
importance-weighted decision difference between π∗ and π. Based on Theorem 2 and qπ∗ ≥ 0, we
can readily derive a bound on the guarantee on |J(π∗)− J(π)| by applying the triangle inequality.
Corollary 1. Given two policies of π∗ and π with Es∼dπ(s) [qπ∗ (s, ·) |π∗(·|s)− π(·|s)|] ≤ ϵ, we
have |J(π∗)− J(π)| ≤ 1

1−γ ϵ.

Tightness Since only the triangle inequality is applied, there exists the worst case for π where
π∗(a|s)− π(a|s) < 0 holds only when qπ∗(s, a) = 0. This makes the inequality collapse to equality
in Corollary 1, thereby demonstrating that the upper bound in Corollary 1 is non-vacuous.
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Algorithm 1: Action-value weighted PBC
Input :offline RL dataset Doff, synthetic data size Nsyn, loop step T , Tout, learning rate α0,

α1, momentum rate β0, β1

Output :synthetic dataset Dsyn
π∗, qπ∗ ← OfflineRL(Doff)

Initialize Dsyn = {(si, ai)}
Nsyn
i=1 by randomly sampling (si, ai) ∼ Doff

for tout = 1 to Tout do
Randomly initialize policy network parameters θ0
▷ Behavioral cloning with synthetic data.
for t = 1 to T do

Compute the BC loss w.r.t. synthetic data Lt−1 = ℓBC(θt−1,Dsyn)
Update θt ← GradDescent(∇θt−1

Lt−1, α0, β0)
end
Construct the minibatch B = {(si, ai)}|B|

i=1 by sampling si ∼ Doff and ai ∼ π∗(·|si)
ComputeH(πθT ,B) = 1

|B|
∑|B|

i=1 qπ∗(si, ai) (πθT (ai|si)− π∗ (ai|si))2

Update Dsyn ← GradDescent(∇DsynH(πθT ,B), α1, β1)
end

Comparison to Thm. 1 With the fact qπ∗ (s, a) ≤
∑∞

t=0 Rmax = Rmax

1−γ , we have

Es∼dπ(s) [qπ∗ (s, ·) |π∗(·|s)− π(·|s)|] ≤ Rmax

1− γ
Es∼dπ(s) [|π

∗(·|s)− π(·|s)|] , (5)

therefore our bound in Corollary 1 is significantly tighter than Theorem 1, as qπ∗ (s, a) =
∑∞

t=0 Rmax

requires π∗ to achieve the maximum reward at every step. This condition is particularly difficult for
sparse-reward environments where most r(s, a) are close to zero. Moreover, combining the proof of
Theorem 2 and Eq. 5 provides a more straightforward proof of Theorem 1.

As shown by the theoretical analysis, action-value weighted objective offers stronger distillation
guarantees due to the linear discount factor complexityO(1/(1−γ)). This improvement alleviates the
loose guarantee caused by limited optimization in OBD compared to former quadraticO(1/(1−γ)2).
Accordingly, we propose action-value weighted PBC (Av-PBC) as the OBD objective:

H(π,Doff) = Es∼Doff

[
qπ∗(s, ·) (π (·|s)− π∗ (·|s))2

]
. (6)

While Av-PBC is theoretically induced, it is quite intuitive to understand: states s inDoff are normally
sampled by a mixture of policies instead of the expert π∗. If we sampled a bad state s with extremely
small qπ∗(s, a), measuring the decision difference between π and π∗ will be less important. As
for practical implementation, Eq. 6 requires summing over the entire action space A to compute∑

a∈A, which is highly inefficient for large |A|. Considering the expert policy is typically highly
concentrated, i.e., only a few actions are selected by π∗ with large action values, we instead sample
a ∼ π∗(·|s) to efficiently estimate Eq. 6. The pseudo-code of Av-PBC is presented in Algorithm 1.

5 Experiments

In this section, we evaluate the proposed ODB algorithms across multiple offline RL datasets from
perspectives of (1) distillation performance, (2) distillation convergence speed, (3) cross-architecture
and cross-optimizer generalization, and (4) policy ensemble performance w.r.t. distilled data.

Datasets We conduct offline behavior distillation on D4RL [Fu et al., 2020], a widely used offline
RL benchmark. Specifically, OBD algorithms are evaluated on three popular environments of
Halfcheetah, Hopper, and Walker2D. For each environment, three offline RL datasets of varying
quality are provided by D4RL, i.e., medium-replay (M-R), medium (M), and medium-expert
(M-E) datasets. Thus, a total of 3× 3 = 9 datasets are employed to assess OBD algorithms. medium
dataset is collected from the environment with “medium” level policies; medium-replay dataset
consists of recording all samples in the replay buffer observed during training this “medium” level
policy; and medium-expert dataset is a mixture of expert demonstrations and sub-optimal data.
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Table 1: Offline behavior distillation performance on D4RL offline datasets. The result for Random
Selection (Random) is obtained by repeating 10 times. For DBC, PBC, and Av-PBC, the results are
averaged across five seeds and the last five evaluation steps. The best OBD result for each dataset is
marked with bold scores, and orange-colored scores denote instances where OBD outperforms BC.

Method Halfcheetach Hopper Walker2D AverageM-R M M-E M-R M M-E M-R M M-E

Random 0.9 1.8 2.0 19.1 19.2 11.6 1.9 4.9 6.7 7.6
DBC 2.5 28.2 29.0 12.1 37.8 31.1 6.1 29.3 11.7 20.9
PBC 19.4 30.9 20.5 35.6 25.1 33.4 41.5 33.2 34.0 30.4

Av-PBC 35.9 36.9 22.0 40.9 32.5 38.7 55.0 39.5 42.1 38.2

BC (Whole) 14.0 42.3 59.8 22.9 50.2 51.7 14.6 65.9 89.6 45.7
OffRL (Whole) 45.8 47.6 50.8 98.0 56.4 107.3 87.4 84.0 109.0 70.1

Setup The advanced offline RL algorithm of Cal-QL [Nakamoto et al., 2023] is utilized to extract
the decent π∗ and qπ∗ from Doff. A four-layer MLP serves as the default architecture for policy
networks. The size of synthetic data Nsyn is set to 256. Standard SGD is employed in both inner
and outer optimization, and learning rates α0 = 0.1 and α1 = 0.1 for the inner and outer loop,
respectively, and corresponding momentum rates β0 = 0 and β1 = 0.9. Additional implementation
details are provided in Appendix B.

Evaluation To accesss the performance of Dsyn, we train policy networks on Dsyn with standard
BC, and obtain the corresponding averaged return by interacting with the environment for 10 episodes.
We use normalized return [Fu et al., 2020] for better visualization: normalized return =
100× return - random return

expert return - random return , where random return and expert return refer to returns of
random policies and the expert policy (online SAC [Haarnoja et al., 2018]), respectively.

Baselines (1) Random Selection: randomly selecting Nsyn real state-action pairs from Doff; (2)
DBC; (3) PBC; (4) Av-PBC. We also report policy performance of behavioral cloning and Cal-QL in
terms of training on the whole offline dataset Doff for a comprehensive comparison.

5.1 Main Results

We first investigate the performance of various OBD algorithms (DBC, PBC, Av-PBC) across offline
datasets of varying quality and environments, as detailed in Table 1. Several observations are obtained
from the results: (1) offline behavior distillation effectively synthesize informative data that enhance
policy training (DBC/PBC/Av-PBC vs. Random Selection); (2) PBC demonstrates better distillation
performance than the basic DBC, especially given the low-quality RL data, highlighting the benefit
of action correction in the sub-optimal data (30.4 vs. 20.9); (3) Av-PBC considerably outperforms
PBC across all datasets (38.2 vs. 30.4); (4) when the offline data are collected by low-quality
policies (medium-replay), Av-PBC can surpass BC trained on the whole data, while it gradually
lags behind BC with higher-quality offline data (medium-replay and medium-expert); (5) given
that the objective of OBD is to approximate the decent policy extracted by offline RL algorithms,
offline RL serves as an upper bound for OBD performance. In summary, the empirical results show
that Av-PBC increases OBD performance by a substantial margin compared to the baselines (82.8%
for DBC and 25.7% for PBC).

An interesting phenomenon observed with Av-PBC is that synthetic data distilled from
medium-replay offline datasets exhibit better performance than those distilled from
medium-expert offline datasets. We explain here: while medium-expert data offer better quality,
medium-replay data contains more diverse states due to being sampled by a mixture of less-trained
policies that explore a wider rage of states. This is similar to exploration-exploitation dilemma in RL
[Sutton and Barto, 2018] and underscores the importance of state coverage in original data for OBD.

Training Time Comparison To further illustrate the advantages of OBD, we compare the time
required for training polices on original data versus OBD-distilled data. For synthetic data with a size
of 256, only 100 optimization steps are necessary, corresponding to a training time of 0.2s, while
25k∼125k steps are required for BC on original data. With distilled data, the training time can be
reduced by over 99.5%. A detailed list of training steps for all datasets is provided in Appendix C.
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Figure 1: Plots of OBD performance, represented by the normalized returns of policies trained on
synthetic data, as functions of distillation steps on (a) Halfcheetah; (b) Hopper; and (c) Walker2D
environment. Each curve is averaged over five random seeds.

Table 2: Offline behavior distillation performance across various policy network architectures and
optimizers (Optim). Red-colored scores and green-colored scores in brackets denote the performance
degradation and improvement, respectively, compared to the default training setting. The results are
averaged over five random seeds and the last five evaluation steps.

Arch/Opt Halfcheetach Hopper Walker2D AverageM-R M M-E M-R M M-E M-R M M-E

A
rc

hi
te

ct
ur

e 2-layer 37.1 35.9 10.9 29.9 26.2 33.9 49.2 41.3 51.1 35.1 (3.1)
3-layer 38.6 39.7 19.4 39.0 28.1 41.5 63.2 44.1 55.3 41.0 (2.8)
5-layer 36.1 37.7 20.0 37.1 29.1 36.6 52.0 36.7 31.6 35.2 (3.0)
6-layer 32.1 36.0 17.3 36.9 29.6 32.8 47.1 28.2 25.5 31.7 (6.5)

Residual 36.9 36.4 20.0 38.8 29.8 40.3 47.5 35.7 37.1 35.8 (2.4)

O
pt

im Adam 35.8 37.6 22.9 40.5 31.2 40.2 55.8 41.9 47.7 39.3 (1.1)
AdamW 36.8 37.9 21.4 40.6 33.3 41.1 55.4 44.2 43.2 39.3 (1.1)
SGDm 36.4 37.3 21.8 40.4 30.9 39.2 54.7 40.2 42.1 38.1 (0.1)

Convergence Speed of OBD To compare the convergence speed of OBD algorithms, we plot
the performance of various OBD algorithms over distillation step; please see Figure 1. These plots
demonstrate that Av-PBC not only improves the OBD performance, but has significant convergence
speed and requires only a quarter of the distillation steps compared to DBC and PBC, which is
essential for OBD considering the compute-intensive bi-level optimization.

Cross Architecture and Optimizer Performance We evaluate the synthetic data across various
training configurations to assess the cross-architecture/optimizer generalization of Av-PBC. Con-
cretely, we employ the data distilled by Av-PBC with the default network (4-layer MLP) and optimizer
(SGD) to train (1) different networks of 2/3/5/6-layer and residual MLPs and (2) the default 4-layer
MLP with different optimizers of Adam, AdamW, and SGDm (SGD with momentum=0.9). The
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Table 3: Offline behavior distillation performance on D4RL offline datasets with ensemble num of 10.
Green-colored scores in brackets denote the performance improvement compared to the non-ensemble
setting. The results are averaged over five random seeds and the last five evaluation steps.

Method Halfcheetach Hopper Walker2D AverageM-R M M-E M-R M M-E M-R M M-E

DBC 2.0 30.0 31.8 9.3 44.9 43.3 5.8 50.6 33.6 27.9 (7.0)
PBC 12.9 33.4 31.6 36.6 36.7 41.8 64.1 41.6 42.0 37.9 (7.3)

Av-PBC 39.8 41.4 37.2 39.7 27.6 38.8 75.9 58.6 73.7 48.1 (9.9)

results are presented in Table 2. As shown in the last column of average performance, we observe that
(1) albeit a slight drop, synthetic data distilled by Av-PBC are still valid in training different policy
networks, and (2) the performance of distilled data is relatively robust to the variation of optimizers.
Therefore, the Av-PBC-distilled data possess satisfied cross-architecture/optimizer performance.

Policy Ensemble on OBD Data With the tiny distilled dataset, policy ensemble can be efficiently
performed to further enhance policy performance. This is achieved by training multiple policy
networks on synthetic data and then combining their outputs to generate actions. To evaluate the
performance gain from policy ensemble, we train 10 policy networks with different seeds; please
see Table 3. The results demonstrate that (1) policies trained on synthetic data can be substantially
boosted through ensemble (25.8% for Av-PBC); and (2) Av-PBC exhibits a larger performance gain
than DBC and PBC (9.9 vs. 7.0/7.3), highlighting the advantages of Av-PBC in policy ensemble.

6 Discussion

Applications Distilled behavioral data encapsulate critical decision-making knowledge from offline
RL data and associated environment, making them highly applicable to various downstream RL
tasks. Through BC on distilled data, we can rapidly pretrain a good policy for online RL fine-tuning
[Goecks et al., 2019]. On the other hand, after offline pretraining, the policy can be further enhanced
by online fine-tuning, while there exists catastrophic forgetting w.r.t. offline data knowledge during
fine-tuning [Luo et al., 2023]. To tackle this challenge, Zhao et al. [2022] propose to use BC loss w.r.t.
offline data as a constraint during the fine-tuning phase. By replacing the massive offline data with
distilled data, we can achieve more efficient loss computation and thus better algorithm convergence.
A similar approach can be achieved to circumvent catastrophic forgetting in continual offline RL
[Gai et al., 2023], where the goal is to learn a sequence of offline RL tasks while retaining good
performance across all tasks. Moreover, multi-task offline RL [Yu et al., 2021], which learns multiple
RL tasks jointly from a combination of specific offline datasets, also receives benefits from OBD in
terms of efficiency by alternative training on the mixture of distilled data via BC [Lupu et al., 2024].

Beyond benefits in efficient policy training, OBD shows potential for protecting data privacy: given
that offline datasets often contain sensitive information, such as medical records, privacy concerns are
significant in offline RL due to various privacy attacks on the learned policies [Qiao and Wang, 2023].
OBD can enhance privacy preservation by publishing smaller, distilled datasets instead of the full,
sensitive data. Besides, distilled behavioral data is also beneficial for explainable RL by highlighting
the critical states and corresponding actions. A example of this is provided in Appendix D.

Limitations The OBD data are 2-tuples of (state, action) and exclude reward. Thus, the
distilled data are solely leveraged by the supervised BC and invalid for conventional RL algorithms
with Bellman backup. Despite this deficiency, OBD data can still facilitate the applications above by
efficiently injecting high-quality decision-making knowledge into policy networks with BC loss.

We note that two major challenges remain in current OBD algorithms: distillation inefficiency and
policy performance degradation. While our Av-PBC substantially decreases the distillation steps,
the OBD process is still computationally expensive (25 hours for 50k distillation steps on a single
NVIDIA V100 GPU) due to the bi-level optimization involved. Moreover, there remains a notable
performance gap between OBD and the whole data with offline RL algorithms (38.2 vs. 70.1 in Table
1). These limitations also shed light on future directions in improving the efficiency of OBD and
bridging the gap between synthetic data and the original offline RL dataset.
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7 Conclusion

In this paper we integrate the advanced dataset distillation with offline RL data, formalizing the
concept of offline behavior distillation (OBD). We introduce two OBD objectives: the naive offline
data-based BC (DBC) and its policy-corrected variant, PBC. Through comprehensive theoretical
analysis, we demonstrate that PBC offers inferior OBD performance guarantee of O(1/(1 − γ)2)
under complex bi-level optimization, which inevitably incurs significant distillation loss.. To tackle
this issue, we theoretically establish the equivalence between policy performance gap and action-
value weighted decision difference, leading to the proposal of action-value weighted BC (Av-PBC).
This novel Av-PBC objective significantly improves the performance guarantee to O(1/(1 − γ)).
Extensive experiments on multiple offline RL datasets demonstrate that Av-PBC vastly enhances
OBD performance and accelerates the distillation process by several times.
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A Proofs

A.1 Proof of Theorem 2

Proof. With the definitions ρnπ(s, a) = π(a|s)dn−1
π (s) and J(π) = Eρ1

π(s,a)
[qπ (s, a)], we have

J(π∗)− J(π)

= Eρ1
π∗ (s,a) [qπ∗ (s, a)]− Eρ1

π(s,a)
[qπ (s, a)]

=
∑

(s,a)∈S×A

[
ρ1π∗(s, a)qπ∗ (s, a)− ρ1π(s, a)qπ (s, a)

]
=

∑
(s,a)∈S×A

[
π∗(a|s)d0π∗(s)qπ∗ (s, a)− π(a|s)d0π(s)qπ (s, a)

]
=

∑
(s,a)∈S×A

[
π∗(a|s)d0π∗(s)qπ∗ (s, a)− π(a|s)d0π∗(s)qπ∗ (s, a)

+π(a|s)d0π∗(s)qπ∗ (s, a)− π(a|s)d0π(s)qπ (s, a)
]

(d0π∗(s) ≡ d0π(s) ≡ d0(s))

= Es∼d0
π∗ (s)

[∑
a∈A

(π∗(a|s)− π(a|s)) qπ∗ (s, a)

]
+ Eρ1

π(s,a)
[qπ∗ (s, a)− qπ (s, a)] (7)

For the term qπ∗ (s, a)− qπ (s, a), we have

qπ∗ (s, a)− qπ (s, a)

= r(s, a) + γEs′∼T (s′|s,a)

[∑
a′∈A

π∗(a′|s′)qπ∗ (s′, a′)

]

− r(s, a)− γEs′∼T (s′|s,a)

[∑
a′∈A

π(a′|s′)qπ (s′, a′)

]

= γEs′∼T (s′|s,a)

[∑
a′∈A

π∗(a′|s′)qπ∗ (s′, a′)− π(a′|s′)qπ (s′, a′)

]
(8)

Furthermore, due to dn+1
π (s′) = ρnπ(s, a)T (s′|s, a) we have

Eρn
π(s,a)

[qπ∗ (s, a)− qπ (s, a)]

= γEρn
π(s,a)

[
Es′∼T (s′|s,a)

[∑
a′∈A

π∗(a′|s′)qπ∗ (s′, a′)− π(a′|s′)qπ (s′, a′)

]]

= γEs∼dn+1
π (s)

[∑
a∈A

π∗(a|s)qπ∗ (s, a)− π(a|s)qπ (s, a)

]

= γEs∼dn+1
π (s)

[∑
a∈A

π∗(a|s)qπ∗ (s, a)− π(a|s)qπ∗ (s, a) + π(a|s)qπ∗ (s, a)− π(a|s)qπ (s, a)

]

= γEs∼dn+1
π (s)

[∑
a∈A

(π∗(a|s)− π(a|s)) qπ∗ (s, a)

]
+ γEs∼dn+1

π (s)

[∑
a∈A

π(a|s)qπ∗ (s, a)− π(a|s)qπ (s, a)

]

= γEs∼dn+1
π (s)

[∑
a∈A

(π∗(a|s)− π(a|s)) qπ∗ (s, a)

]
+ γEρn+1

π (s,a) [qπ∗ (s, a)− qπ (s, a)] (9)
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Plugging the iterative formula of Eq. 9 into Eq. 7 yields the desired equality:

J(π∗)− J(π)

= Es∼d0
π∗ (s)

[∑
a∈A

(π∗(a|s)− π(a|s)) qπ∗ (s, a)

]
+ Eρ1

π(s,a)
[qπ∗ (s, a)− qπ (s, a)]

=

∞∑
t=0

γtEs∼dt
π(s)

[∑
a∈A

(π∗(a|s)− π(a|s)) qπ∗ (s, a)

]

=
1

1− γ
Es∼dπ(s)

[∑
a∈A

(π∗(a|s)− π(a|s)) qπ∗ (s, a)

]
(10)

The last equation uses the definition that dπ(s) = (1−γ)
∑∞

t=0 γ
tdtπ(s). The proof is completed.

B Implementation Details

This section provides all the additional implementation details of our experiments.

OBD Settings The policy network is a 4-layer multilayer perceptron (MLP) with a width of 256.
The synthetic data are initialized by randomly selecting Nsyn state-action pairs from the offline data.
For DBC and PBC, the distillation step Tout is set to 200k for Halfcheetah and Walker2D and 50k
for Hopper, respectively. For Av-PBC, the distillation step Tout is set to 50k for Halfcheetah and
Walker2D and 20k for Hopper, respectively. The inner loop step Tin is set to 100.

Offline RL Policy Training We use the advanced offline RL algorithm of Cal-QL [Nakamoto
et al., 2023] to extract the decent policy π∗ and corresponding q value function qπ∗ from sub-optimal
offline data, and the implementation in [Tarasov et al., 2022] is employed in our experiments with
default hyper-parameter setting.

Cross-architecture Experiments. The width of MLPs are both 256. The residual MLP is a 4-layer
MLP, and the intermediate layers are packaged into the residual block.

C Training Time Comparison

Table 4: The size and required training steps for convergence for each offline dataset. M denotes the
million for simplicity. The size and step for synthetic data (Synset) are listed in the last column.

Halfcheetach Hopper Walker2D SynsetM-R M M-E M-R M M-E M-R M M-E

Size 0.2M 1M 2M 0.4M 1M 2M 0.3M 1M 2M 256

Step (k) 40 25 100 80 50 100 60 50 125 0.1

For the whole original data, offline RL algorithms require dozens of hours. Therefore, we solely
compare the training time of BC on synthetic data and BC on original data. Because the training time
varies with GPU models (NVIDIA V100 used in our experiments), we report the optimization step,
which has a linear relationship to training time, required for training convergence for each original
dataset, as shown in Table 4.
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D Examples of Distilled Data

We present several examples of distilled behavioral data for Halfcheetah in Figure 2. The top row
illustrates the distilled states, while the bottom row depicts the subsequent states after executing the
corresponding distilled actions within the environment. The figure demonstrates that (1) the distilled
states prioritize “critical states” or “imbalanced states” (for the cheetah) more than “balanced states”;
and (2) the states following the execution of distilled actions are closer to “balanced states” compared
to the initial distilled states. These examples offer insights into the explainability of reinforcement
learning processes.

Distilled 
state

Next 
state

Distilled 
action

Figure 1: Examples of distilled behavioral data. The top row shows the distilled states, and the bottom row presents the next states 
after taking the corresponding distilled actions in the environment.Figure 2: Examples of distilled behavioral data. The top row shows the distilled states, while the

bottom row presents the subsequent state following the execution of the corresponding distilled
actions within the environment.

E The Performance of Av-PBC across Different Synthetic Data Sizes

We investigate the impact of varying synthetic data size on OBD performance. The results, as shown
in Table 5, suggest that OBD performance improves with an increase in synthetic data size. This
enhancement is attributed to the larger synthetic datasets conveying more comprehensive information
regarding the RL environment and associated decision-making processes.

Table 5: The Av-PBC performance on D4RL offline datasets with different synthetic data sizes.

Dataset Synthetic Data Size
16 32 64 128 256

Halfcheetah M-R 6.9 15.3 23.8 33.2 35.9
Hopper M-R 27.3 29.9 32.3 38.1 40.9

Walker2D M-R 14.8 21.8 34.0 50.0 55.0
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please see Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Section 5 and Appendix B for implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is available at https://github.com/LeavesLei/OBD.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section 5 and Appendix B for experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Figure 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research strictly adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We study general machine learning problem of synthesizing training data.
There is no obvious negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This research poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the dataset; please refer to
Section 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This research does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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