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ABSTRACT

Text-to-image diffusion models achieve impressive performance, but reconciling
multiple spatial conditions usually requires costly retraining or labor intensive
weight tuning. We introduce Cross-ControlNet, a training-free framework for
text-to-image generation with multiple conditions. It exploits two observations:
intermediate features from different ControlNet branches are spatially aligned,
and their condition strength can be measured by spatial and channel level vari-
ance. Cross-ControlNet contains three modules: PixFusion, which fuses features
pixelwise under the guidance of standard deviation maps smoothed by a Gaus-
sian to suppress early-stage noise; ChannelFusion, which applies per channel
hybrid fusion via a consistency ratio gate, reducing threshold degradation in high
dimensions; and K'V-Injection, which injects foreground- and background-specific
key/value pairs under text-derived attention masks to disentangle conflicting cues
and enforce each condition faithfully. Extensive experiments demonstrate that
Cross-ControlNet consistently improves controllable generation under both con-
flicting and complementary conditions, and further generalizes to the DiT-based
FLUX model without additional training.

1 INTRODUCTION

In recent years, text-to-image (T2I) diffusion models (Podell et al., 2023; Balaji et al., 2022; Saharia
et al., 2022; Chen et al., 2024b; Xue et al., 2023) have demonstrated unprecedented proficiency in
image generation. These models can produce a wide variety of high-quality images from concise text
prompts, effectively bridging the gap between human language and visual content. This achievement
has not only captured the imagination of researchers and practitioners, but has also found broad
applications in digital art, graphic design, and illustration generation (Wang et al., 2025a; Chen et al.,
2023; Wang et al., 2025c; Chen et al., 2024a). However, the inherent ambiguity and abstractness
of language make it extremely challenging for T2I models to achieve fine-grained control over the
semantic layout of images (Li et al., 2023b). To address this issue, ControlNet (Zhang et al., 2023) and
T2I-Adapter (Mou et al., 2024) incorporate spatial conditions (e.g., edges) into pretrained T2I models
by introducing additional control networks, making controllable generation under a single modality no
longer out of reach. Both approaches have achieved high-fidelity image synthesis while maintaining
strong coherence with the structural conditions. Yet, when extended to multiple conditions, the
inherent imbalance among different modalities means that each generation requires careful manual
tuning of weighting coefficients—a significant burden (Nair et al., 2024). Consequently, synthesizing
images that satisfy multiple conditions remains challenging (Wang et al., 2024).

A straightforward strategy is to train on large-scale paired data spanning diverse conditional modalities
in order to learn how to balance multiple controls (Sun et al., 2024; Qin et al., 2023; Zhao et al.,
2023a). Although effective, such approaches incur huge training costs and, when new modalities are
introduced, almost always require partial or full retraining, which limits their flexibility. Moreover,
when processing multiple control conditions, these methods tend to neglect weaker control signals.
Recognizing that powerful pretrained controllable models (e.g., ControlNet) are already publicly
available, some recent works (Nair et al., 2024; Wang et al., 2025b) such as MaxFusion avoid
retraining and instead design fusion strategies to combine multiple ControlNet branches. However,
the fusion strategy of MaxFusion is easily disrupted by the noise inherent in the denoising process,
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especially during the early sampling steps when latent variables exhibit high uncertainty (Karras
et al., 2022; Cao et al., 2023). In addition, because it does not explicitly model the relationships
between spatial conditions, it often struggles to generate harmonious images when the control signals
are complex or partially conflicting.

In this paper we present Cross-ControlNet, a training-free framework for multimodal conditional
generation (Fig. 2). Our design is driven by two key observations: (i) intermediate features from
different ControlNet branches are spatially aligned; and (ii) the strength of these conditions can
be quantified via spatial and channel-wise variance (Section 3.1). Leveraging these insights, we
introduce three tightly coupled components that progressively refine feature fusion and enhance
conditional consistency.

We first introduce PixFusion, which performs pixel-level fusion under the guidance of Gaussian-
smoothed spatial standard deviation (Section 3.2). By enhancing informative features and suppressing
early-stage noise, PixFusion offers an effective, noise-resilient approach for multi-condition feature
fusion.1 However, pixel-level decisions alone suffer from the well-known phenomenon where, as
feature dimensionality increases, cosine similarities cluster near zero, causing a fixed threshold to
lose discriminative power rapidly. To alleviate this, we propose ChannelFusion, which operates
along the channel dimension and, for each channel, adaptively applies either hard selection or
soft fusion according to the channel-wise consistency ratio R. (Section 3.2). This mechanism
effectively counteracts the loss of discriminative power in high-dimensional settings and complements
PixFusion’s pixel-level fusion. Although PixFusion and ChannelFusion enhance the fusion of
spatial conditions, conflicting multimodal signals can blur the roles of foreground and background,
undermining precise conditional control. To stabilize generation in such cases, we introduce KV-
Injection, which transfers key—value pairs across ControlNet branches under text-derived attention
masks (Section 3.3); this mechanism temporarily decouples foreground and background cues so that
each condition can be enforced more faithfully, thereby improving visual quality and conditional
consistency.

Together, these three modules enable Cross-ControlNet to handle both conflicting conditions—where
control signals impose contradictory spatial cues—and complementary conditions—where different
controls reinforce the same scene structure. Our method preserves text—image alignment while
accurately following the supplied spatial controls. On a newly curated 2,000-image multi-condition
benchmark, Cross-ControlNet improves mloU by 5.4% and lowers MSE over the strongest training-
free baseline under conflicting conditions while maintaining text alignment, and further boosts SSIM
under complementary conditions. We further demonstrate its adaptability by producing qualitative
results on the DiT-based FLUX model, showing that Cross-ControlNet transfers effectively beyond
UNet backbones (see Appendix A.5).

2 RELATED WORK

Controllable generation. Text-to-image diffusion models often lack fine-grained spatial control,
motivating the use of auxiliary conditions in addition to text prompts. Early works introduce
specific signals—such as layouts/boxes (Zheng et al., 2023; Xie et al., 2023), semantic segmentation
maps (Avrahami et al., 2023), sketches (Bashkirova et al., 2023), and human pose keypoints (Ju et al.,
2023)—to anchor generation and enable interactive or artistic design (Bar-Tal et al., 2023).More
general frameworks (Mo et al., 2024; Zhang et al., 2023; Mou et al., 2024; Tan et al., 2024) emerged;
among them, ControlNet duplicates the UNet encoder to encode single-modal conditions (e.g., pose,
segmentation) into latent features that are injected into the diffusion UNet. To handle multiple spatial
constraints, recent methods (Hu et al., 2023; Qin et al., 2023; Sun et al., 2024; Nair et al., 2024,
Sun et al., 2025) either train unified multimodal models or combine several pretrained ControlNets.
However, these approaches (Hu et al., 2023; Sun et al., 2024; Nair et al., 2024) often fail to produce
harmonious and natural images when control signals interact in complex or conflicting ways.

Training-free image editing. Cross-attention manipulation enables text-driven edits without fine-
tuning—for example, Prompt-to-Prompt and Plug-and-Play (Hertz et al., 2022; Tumanyan et al.,
2023) preserve structural consistency by modifying queries or keys but give limited control over
value (V) features and thus struggle with large non-rigid transformations. Subsequent works inject
key—value pairs to maintain consistency across editing tasks that involve multiple images (Cao
et al., 2023; Tewel et al., 2024; Alaluf et al., 2024; Zhu et al., 2025; Li, 2024; Chung et al., 2024).
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Figure 1: Visualization of intermediate-feature statistics for different ControlNet modalities. Columns
1-2: original image and its corresponding control map. Columns 3—4: spatial-level variance maps.
Columns 5-6: feature maps from the single channel with relatively high variance across channels.
Columns 7-8: feature maps from the single channel with relatively low variance across channels.

Inspired by these ideas, we inject key—value pairs across multiple ControlNet branches, allowing
foreground-background decoupling and improving conditional consistency in both complementary
and conflicting settings while retaining the flexibility of text-to-image generation.

3 METHODS

3.1 GUIDING OBSERVATIONS

Before presenting the details of our method, we first introduce two key observations that motivate our
design.

Observation 1: Alignment of cross-modality features. Features produced by different ControlNet
branches at identical spatial locations in Stable Diffusion (SD) (Rombach et al., 2022) exhibit natural
spatial alignment. ControlNet encodes each conditional input into feature maps and injects them
into SD’s intermediate layers through element-wise summation. Because the outputs from different
ControlNets enter SD at the same spatial positions, their features share a common reference frame
and can be compared directly across modalities without any additional spatial calibration.

Observation 2: Quantifiable condition strength. The strength of each control condition can be
directly or indirectly quantified via spatial-level variance maps and channel-wise variance vectors.
As illustrated in Fig. 1, spatial variance maps of diverse control signals highlight regions where
the condition exerts stronger influence, while channels with larger variance values indicate a more
pronounced response to that condition. Together, these measures provide a reliable estimate of each
condition’s relative strength across both spatial regions and feature channels, enabling informed
feature selection during fusion.

Taken together, these observations provide empirical grounding for our design: cross-modal feature
fusion can be systematically guided by simple, quantifiable measures of condition strength. Building
on this, our approach performs targeted feature fusion across modalities, enabling more faithful and
consistent image generation under multimodal conditions.

3.2 ROBUST FEATURE FUSION

Let us begin with a simple setting: fusing two independent modalities. Consider two ControlNet
models M; and M, that process different types of input (e.g., edge detection and semantic segmenta-
tion) and produce intermediate features f; and fo, respectively. A naive strategy is to average these
features, but equal weighting often fails when each modality dominates a different spatial region
(for example, left vs. right halves of the image). In such cases, uniform averaging dilutes crucial
information, motivating the need for adaptive fusion.

PixFusion. An ideal fusion method should assign different priorities to different spatial locations
(4, k) according to the local conditional intensity, which can be measured by spatial-level variance
maps o2 € RE*W_ To make the variance maps from different modalities comparable, we introduce
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Figure 2: Cross-ControlNet Overview. (a) Intermediate features from different ControlNet modalities
are first fused through either PixFusion or ChannelFusion, and the fused features are then injected
into the main denoising backbone. In parallel, the key—value pairs from the self-attention layers of
the foreground ControlNet are injected into the corresponding layers of the background ControlNet.
(b) KV-Injection mechanism. Foreground and background key—value pairs are selectively merged
within the self-attention layers to enforce cross-modal consistency. (c) Intermediate features are
subsequently fused via PixFusion or ChannelFusion.

a relative standard-deviation metric that normalizes the variance at each spatial location:

‘ (3.k)
50 = Jz—(). 1)
Z(WI)GQ 0"

Directly comparing these normalized maps, however, can be unreliable because the standard deviation
maps themselves are contaminated by noise. Recall that the diffusion process generates images by
iterative denoising: at early sampling stages the latent space still contains strong high-frequency
noise. Pixel-wise fusion at this stage would therefore make the fused features highly susceptible to
distortion.

To mitigate this, we apply Gaussian kernel smoothing, which yields the following fusion rule:
FGk) — p(0R)  ox 5
fOR =% i =arg max [Qm * az] k)’ 2)

where G, is a fixed Gaussian kernel and [G., * ;] (; x) represents the value at location (j, k) after
smoothing, i.e., an average over its neighborhood rather than a single pixel.

Nevertheless, blindly choosing the channel with the largest standard deviation is not always desirable.
When multimodal conditions overlap—meaning different modalities describe the same object—it is
preferable to integrate information from both. To this end we compute the correlation at each location
(4, k) and, whenever features are strongly correlated, we adopt mean fusion:

fl(j»k’) + f2(j7k)

FUk) —
f -

it P9 >4y, (3)
where §; is a predefined threshold and pU-*) denotes the correlation between the centered features

fl(j *) and f2(j %) Because these correlations can also be distorted by noise, we again apply Gaussian
smoothing:
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Figure 3: (a) Threshold degradation curve for different d; values. The horizontal axis indicates the
depth of the feature layer, and the vertical axis indicates the proportion reaching the fusion threshold.
(b) Variance maps of the fused intermediate features. Column 3: after PixFusion; Column 4: after
ChannelFusion.

where G,., is a fixed Gaussian kernel, f; is the channel-wise mean of f;, and the subscript group = C
indicates depth-wise convolution (the number of groups equals the channel count C).

In summary, if pU-*) > §,, we use the mean-fusion rule in equation 3; otherwise, we apply the
max-—standard-deviation rule in equation 2. This mechanism automatically selects the more relevant
spatial conditions and provides reliable conditioning even when the modalities conflict. Moreover,
Gaussian smoothing suppresses the influence of early-stage noise, greatly improving the robustness
and accuracy of the fusion process.

ChannelFusion. Before introducing ChannelFusion, we first revisit the limitations of PixFusion.
Although PixFusion shows strong robustness to noise, it relies on a fixed-threshold fusion strategy
that suffers from what we term threshold degradation in high-dimensional spaces. More precisely, as
the feature dimensionality increases, the effectiveness of any fixed-threshold fusion progressively
deteriorates.

For high-dimensional random vectors X, Y € R? with i.i.d. Gaussian components A (0, o2), their
cosine similarity p(X,Y) satisfies

Bl =0,  Var(p)= )
(See Appendix A.2 for a proof.) This indicates that, in high dimensions, similarities between random
vectors become increasingly concentrated around zero. Consequently, the pixel-level fixed-threshold
fusion strategy becomes unreliable in high-dimensional regimes. Our empirical validation (Fig. 3a)
confirms this phenomenon, showing a monotonic decrease in the proportion of features that satisfy
the threshold as dimensionality grows.

To overcome this limitation, we propose ChannelFusion, a hybrid fusion strategy that adaptively
combines hard selection and soft fusion based on a standard-deviation consistency ratio. This ratio
leverages channel-level standard deviation statistics to quantify the relative condition strength of each
modality, providing a dependable approach for feature fusion in high-dimensional embedding spaces.

Formally, consider the intermediate-layer features along the channel dimension. For the c-th channel,
let 61,,62,. € R denote the standard deviations of the two modalities. We define the standard-
deviation consistency ratio

|6-17c - &2,c|
max{&LC, &2’C} ’

R.=1- (6

which measures the relative consistency of conditional intensity between modalities for each channel
(R. € [0,1)).

Hard selection. When the consistency ratio R, is below a predefined threshold 02, we adopt a hard
selection strategy and keep only the feature from the modality with the larger standard deviation:

fc = fi*,ca = arg m;fiX &i,c- @)

This preserves the most informative features while discarding potentially noisy components.
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Soft fusion. When R, > J2, we employ a soft fusion strategy that blends the features of both
modalities using standard-deviation-proportional weights:

fe=(A1c+ Aze) - (A1, fre+ Ao f2,c)- 8)

Here A; . denotes the precision (inverse covariance) of channel c in branch :. In practice we use the
isotropic case A; . = A; .I, where the scalar ); . is proportional to the feature strength, \; . o< &; ..
Gic

For numerical stability we set \; . = X1 Ba ) (see Appendix A.3 for details). This weighted
combination fully exploits the informative features from both branches.

This channel-wise adaptive strategy enables flexible feature fusion guided by conditional intensity,
thereby improving image quality under multimodal conditions. By operating along the channel dimen-
sion rather than the spatial dimension, ChannelFusion effectively circumvents the high-dimensional
threshold degradation problem and maximizes information retention.

3.3 FOREGROUND—-BACKGROUND DECOUPLED KV-INJECTION

In multimodal settings with conflicting control signals, directly fusing intermediate-layer features of-
ten leads to ambiguous spatial conditioning, where different control inputs compete and the generator
struggles to separate their contributions. We observe, however, that most generated images naturally
exhibit a clear structural decomposition: a foreground object against a background scene. This obser-
vation suggests that treating foreground and background as distinct targets can reduce interference
between competing conditions. Guided by this insight, we propose Foreground-Background De-
coupled KV-Injection, which injects key—value pairs across ControlNet branches under text-derived
attention masks to explicitly disentangle foreground and background representations.

Following prior works (Parmar et al., 2023; Liu et al., 2024; Mou et al., 2023; Hertz et al., 2024), we
exploit the fact that cross-attention maps derived from the text prompt predominantly capture shape
and structural cues. We therefore use these semantic cross-attention maps to automatically generate
masks that distinguish foreground from background regions.

At denoising step t+1, within the backbone network’s cross-attention layers, we aggregate all
attention maps of resolution 256 x 77 (as in standard P2P practice) by averaging them to obtain 77
mask matrices of size 16 x 16, where 77 is the number of encoded prompt tokens (including padding).
At step t, we select the averaged cross-attention map corresponding to the token most semantically
relevant to the foreground object and, after post-processing, obtain the foreground mask M/ and its
complementary background mask M?.

Using these masks, we perform region-isolated injection inside the ControlNet self-attention layers:
the key—value pairs of the foreground ControlNet are constrained to their designated regions via mask
modulation, while the background ControlNet acts as the primary driver of global generation:

Ky =[K: 0 K1), Vi=[VaoVi], My=[10M,
Q2K
Vd

.
Attn® = softmanx(Qz\I/%r + log M+> Vi,

Attn’ = softmax( + log Mf> Vi,

©))

Attn = M7 Attn? 4 (1 — M/)-Attn®.

Here @1, K1, V1 denote the query, key, and value from the ControlNet conditioned on the foreground
map, while Qs, Ko, V5 are from the background ControlNet; @ indicates matrix concatenation.
The final attention output Aftn ensures that each region retrieves information exclusively from its
designated feature domain rather than from global features (see Fig. 2(b)).

In practice, KV-Injection is applied to all self-attention layers beginning at denoising step 5. This
timing allows the early stages of the diffusion process to establish coarse structure before the
injected signals guide finer foreground—background alignment, consistent with established denoising
principles (Cao et al., 2023; Tewel et al., 2024).
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Figure 4: Qualitative comparison under conflicting conditions. Prompts: (1) "Teddy bear in red scarf
on train windowsill." (2) "A woman stands in a golden rapeseed field." (3) "Po meditates beneath the
ginkgo tree, watercolor style".

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

All experiments are conducted on a single NVIDIA RTX 3090 GPU. We adopt Stable Diffusion
v1.5 as the T2I backbone because of its rich ControlNet ecosystem and relatively low GPU-memory
footprint. Our Cross-ControlNet is also compatible with DiT-based architectures, as demonstrated
in Appendix A.5. Sampling uses the UniPC scheduler (Zhao et al., 2023b) with 50 steps and a
classifier-free guidance scale of 7.5. The correlation threshold d; and the consistency ratio threshold
02 are both set to a unified value § = 0.7. ChannelFusion is applied only in the final ControlNet
layer, whereas PixFusion is used in all remaining layers. The kernels G, and G, are standard 3x3
Gaussian kernels normalized to unit sum.

Because no public dataset exists for conflicting multi-condition generation tasks, we construct a
synthetic dataset based on COCO2017 (Lin et al., 2014). Following the procedure of the original
ControlNet paper, we generate multiple conditional maps—Canny edges, depth maps, HED soft
edges, OpenPose keypoints, and segmentation masks—using publicly available pre-trained models
(Ranftl et al., 2020; Xie & Tu, 2015; Cao et al., 2019; Ravi et al., 2024). These maps are combined to
form our synthetic dataset. For evaluation, 2,000 images are randomly sampled from the COC0O2017
validation set, and BLIP-2 (Li et al., 20232) is used to produce descriptive captions as text prompts.
We compare Cross-ControlNet with state-of-the-art approaches including Multi-ControlNet (Zhang
et al., 2023), Multi-Adapter (Mou et al., 2024), Cocktail (Hu et al., 2023), Uni-ControlNet (Zhao
et al., 2023a), AnyControl (Sun et al., 2024), and MaxFusion (Nair et al., 2024).

4.2 QUALITATIVE EVALUATIONS

We present qualitative comparisons of Cross-ControlNet under both conflicting and complemen-
tary control conditions in Fig. 4 and Fig. 5, respectively. For conflicting conditions, where two
control inputs impose contradictory spatial cues, we compare our method with Multi-Adapter, Multi-
ControlNet, AnyControl, Uni-ControlNet, and MaxFusion. These baselines often fail to reconcile
the conflicting signals: they typically introduce artifacts or degrade one of the intended structures.
In contrast, Cross-ControlNet preserves both control cues and aligns more faithfully with the text
prompt, producing sharp and semantically consistent results. For complementary conditions, where
the control inputs reinforce each other, all methods generally generate plausible images. Neverthe-
less, our approach yields crisper object boundaries and more coherent backgrounds, demonstrating
stronger alignment with both local and global structures. Overall, these results show that Cross-
ControlNet achieves robust conditional consistency and high visual fidelity across both challenging
conflicting scenarios and easier complementary ones. Additional qualitative examples are provided
in Appendix A.6 for reference.
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Figure 5: Qualitative comparison under complementary conditions. Prompts: (1) "Brown-white dog
on bench, blue sky." (2) "A deer in the snowy forest" (3) "A Corgi by red ancient wall.".

Table 1: Quantitative results for conflicting conditions. 1 means higher is better, | lower is better.
Best in bold, second-best underlined.

Method | Tfrain— | Pose, Seg | Pose, Depth
| ¢ | CLIPt MSE-S| mloU-P+ | CLIPT MSE-D| mloU-P1

Multi-Adapter v 0.2738 0.2606 0.2911 0.2860 0.0516 0.2589
Multi-ControlNet v 0.2999 0.2282 0.3145 0.2978 0.0625 0.3150
AnyControl X 0.2853 0.2522 0.2042 0.2638 0.0338 0.1519
Uni-ControlNet X 0.2748 0.2310 0.1858 0.2695 0.0355 0.1445
Cocktail X 0.2946 0.2037 0.1079 - - -
MaxFusion v 0.2945 0.2016 0.3528 0.2870 0.0498 0.3555
PixFusion (ours) v 0.2947 0.2004 0.3610 0.2887 0.0495 0.3583
+ChannelFusion (ours) v 0.2952 0.2009 0.3648 0.2865 0.0476 0.3618
Cross-ControlNet (ours) v 0.2978 0.1983 0.3719 0.2893 0.0456 0.3671

4.3 QUANTITATIVE EVALUATIONS

Analysis of Conflicting Conditions. The dataset constructed in Section 4.1 is insufficient for this
analysis because it lacks cleanly separated foreground and background images. To address this
limitation, we curated background images from BG-20K (Li et al., 2022) and generated pose maps
for human-centric images selected from COCO2017, forming roughly 2,000 foreground-background
pairs. For evaluation, we use CLIP-Score to measure text—image alignment and MSE and mIoU to
quantify condition fidelity. As shown in Table 1, Cross-ControlNet consistently outperforms all other
multimodal methods in condition fidelity while maintaining competitive text alignment. These results
indicate that our model can reconcile complex combinations of conflicting conditions and produce
high-quality outputs that remain faithful to both the text prompt and the control inputs.

Analysis of Complementary Conditions. Al-

though Cross-ControlNet is primarily designed for Table 2: complementary results (Hed, Seg)
conflicting-condition scenarios, it also performs
strongly on complementary tasks. Here we em- Method |SSIM 1 NIQE | CLIP t MSE-H | MSE-S |
ploy the dataset introduced in Section 4.1 and fol- ~Multi-Adapter| 0.2021 3.9493 0.2802 0.0746 ~ 0.1512
low the experimental setup of MaxFusion. Image - NGO | 6557 Z5olg 02089 00854 0llose
quality is assessed with NIQE, text-image align-  ours 0.2404 32434 03005 00736  0.1008
ment with CLIP-Score, and condition fidelity with

MSE and SSIM. As reported in Tables 2 and 3, Cross-ControlNet surpasses competing models overall,
particularly in condition consistency and text-image alignment.

4.4 ABLATION STUDY

We conduct systematic ablation studies (Table 1) to assess the contribution of each core component in
Cross-ControlNet. Three critical modules—PixFusion, ChannelFusion, and KV-Injection—are inte-
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Table 3: Quantitative results for complementary conditions.

Method ‘ Hed, Depth ‘ Seg, Depth

‘ SSIM 1 NIQE| CLIP1 MSE-H] MSE-D | ‘ SSIM 1 NIQE | CLIPtT MSE-S| MSE-D|
Multi-Adapter | 0.2411  3.5993 0.2962 0.0617  0.0218 | 0.2186 3.7793 0.2824 0.1384  0.0314
MaxFusion 0.2561 3.3913 0.2961 0.0615  0.0231 | 0.2358 3.4324 0.3022 0.1126  0.0257

AnyControl 0.2276  4.7683 0.2986 0.0549  0.0222 | 0.1975 4.5265 0.3014 0.1116  0.0241
Ours 0.2622 3.4153 0.2971 0.0570  0.0212 | 0.2428 3.3887 0.3022 0.1105  0.0241

grated incrementally, and we evaluate performance at each stage. Quantitative results show that each
added component progressively improves conditional consistency while preserving textual alignment.
In particular, even the standalone PixFusion configuration already surpasses the MaxFusion baseline
in image synthesis metrics under conflicting scenarios. These findings highlight that the combined
use of our proposed modules establishes state-of-the-art performance for controllable generation
under conflicting conditions.

We also analyze the influence of the threshold § on image synthesis. As illustrated in Fig. 6, when
0 = 0 the strategy degenerates to naive averaging, which weakens conditional information and yields
images that are not faithful to the pose map. This effect persists until § reaches roughly 0.6, where
the images become more faithful to the conditions; however, some artifacts remain, such as faint
“lines” in front of the person. At § = 0.8, the results achieve the best trade-off between conditional
faithfulness and image quality. When § = 1.0, the boundary between the person and the mountain
becomes noticeably unclear. Overall, we find that § = 0.7 provides a favorable balance between
semantic coherence and detail preservation.

F R e— T X S ST X T N “ - = l“
T ¢ = a3 oo e =
| A e - | g s § ~

Conditions

Figure 6: Ablation study on different § values. The prompt is "A man in a mountain, Monet style."

Furthermore, we perform a fine-grained ablation of KV-Injection to determine its optimal insertion
policy (see Appendix A.4). By varying both the starting denoising timestep and the first Cross-
ControlNet block that receives injection, we find that beginning injection at an early but not initial
timestep (timestep = 5) and starting from the earliest Cross-ControlNet block (layer = 0) yields
the best trade-off: injecting at step O can slightly destabilize early denoising and harm perceptual
scores, while very late injection reduces controllability; similarly, delaying the start-layer to deeper
blocks weakens foreground—background propagation. These observations validate our default choices
(starting timestep = 5, starting layer = 0).

5 CONCLUSION AND LIMITATION

We presented Cross-ControlNet, a training-free framework for multimodal conditional image genera-
tion that effectively handles both conflicting and complementary control signals. By integrating three
key modules—PixFusion, ChannelFusion, and KV-Injection—our method mitigates challenges such
as noise sensitivity and the degradation of fixed-threshold strategies in high-dimensional settings.
These modules work synergistically to strengthen feature-fusion robustness, improve conditional
consistency, and preserve semantic alignment with text prompts. Extensive experiments demonstrate
that Cross-ControlNet delivers high-quality, harmonious images and consistently outperforms existing
multimodal baselines. Looking ahead, we plan to refine these mechanisms and explore their extension
to spatiotemporal domains such as video synthesis and 3D scene generation.

Limitation. Our framework relies on the availability of pre-trained single-condition ControlNets; it
cannot directly support novel control modalities without such models. Combining multiple ControlNet
branches also increases memory footprint and inference latency, which may limit deployment at very
high resolutions or in real-time settings. Moreover, while our method improves consistency under
conflicting conditions, extreme and mutually incompatible constraints can still lead to foreground-
boundary artifacts or color bleeding.
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A APPENDIX

A.1 STATEMENT

LLM Usage Statement. This paper’s ideas, methodology, code, and experimental design were
entirely conceived and implemented by the authors. Large Language Models (OpenAl GPT-5) were
used only for minor English language polishing of the manuscript; no model output contributed to
the research content itself.

Ethics Statement. Our work focuses on improving controllable text-to-image generation. All datasets
used in experiments are publicly available and contain only non-personal, non-sensitive images. The
proposed method does not introduce additional privacy, safety, or fairness concerns beyond those
already present in standard diffusion models.

Reproducibility Statement. We release source code at https://anonymous.4open.science/r/
Cross-ControlNet-6C5F. All implementation details, hyperparameters, and experimental settings are
provided in the main text and appendix to facilitate full replication of our results.

A.2 COSINE SIMILARITY OF INDEPENDENT GAUSSIANS

Let X, Y € R? be two independent random vectors with i.i.d. components X;,Y; ~ A (0,02).
Define the cosine similarity
XY
p= L (10)
XY
It is well known that for a Gaussian vector X ~ N(0, 021,), the direction U = X /||X]| is indepen-
dent of the radius ||X|| and is uniformly distributed on the unit sphere S¢~!. The same holds for Y.
Hence we can write
p=U-V, (11)

where U, V' € S9! are independent and uniformly distributed on the sphere.

By symmetry, the mean of each coordinate of V is zero, which implies E[V] = 0. Therefore

Elp] =E[U - V] =E[U -E[V]] = 0. (12)
To compute the variance, observe that
Var(p) = E[p’] = E[(U - V)?]. (13)
Since U and V are independent, we can condition on U:
E[(U- V)| =E[E(U -V)*|U]]. (14)
For fixed U, we have
E[(U-V)? | U =EU"(VV)U |U =U"E[VVT]U. (15)

Rotational invariance of the uniform distribution on the sphere implies that E[V'V "] must be a scalar
multiple of the identity, say E[V'V '] = cI,. Taking traces gives

cd = tr(cly) = tr(E[VVT]) = E[|V|]*] = 1, (16)
hence ¢ = 1/d. Therefore
E(U-V)? U] =U" (31a) U = 3IU|* = §. (17)
Since this conditional expectation is constant (does not depend on U), we have
Ep*)=E[3] = 3, (18)
and consequently
Elp] =0, Var(p) = 5. (19)

This completes the proof of Formula 5. Notably, the result does not depend on the variance o2, but
only on the rotational symmetry of the Gaussian distribution.
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A.3 DERIVATION OF CHANNELFUSION VIA VARIATIONAL INFERENCE

We derive the ChannelFusion method using variational inference and evidence lower bound (ELBO)
maximization. For a fixed channel index ¢, we consider two feature maps ki, ko € RHEXW which
we vectorize to treat as vectors in R,

Notation clarification: in the main text, these correspond to the channel-specific features f; . and f5 .,
ie., ki =f; . and ky = f5 .. We assume that the actual semantic feature is y, which is unobservable,
while the observable features are k; and k. Since y has no exact observed value, we can only use
q(y) to describe its distribution and estimate ¢(y) through k; and k.

A.3.1 GENERATIVE MODEL AND VARIATIONAL SETUP

To enhance robustness, we assume that in the absence of any observed values, y generally follows a
Gaussian distribution p(y). Furthermore, since k; and ko are observations from potentially biased
channels, they inevitably deviate from y. We model this observation bias using a diffusion process,
where k; and k, follow Gaussian distributions p(k;|y) and p(ka|y) with y as the mean and 331, 35
(representing the respective channel biases) as the covariance matrices:

p(y) = N(ylpo, o)

p(kily) = N(kily, =), i=1,2 20)

Similarly, we also use a Gaussian distribution to model the estimated ¢(y).

q(y) = N(ylpe, =y) 21)

where 14 is the mean and X, is the covariance matrix.

A.3.2 EVIDENCE LOWER BOUND (ELBO)

We perform variational inference by maximizing the Evidence Lower Bound (ELBO) of ¢(y) given
the two observations k; and ks, where the ELBO £L(q) is defined as:

p(ky, kaly)p(y) ]
q(y)

p(Y? k17 k2)

A.3.3 DETAILED DERIVATION OF THE ELBO AND OPTIMAL PARAMETERS

Substituting the Gaussian densities into the ELBO and letting D = HW denote the dimensionality,
we have:

2 ] .
L(q) = /N(Y|M9,Ey)10g (N(Y|uo,j§\3/o(lfll'{ze_lé\:)(kz|y,22)> dy

— [ Nlna. )

N y—po) T (y— 2 1k TS (ks
y—wo) E5 (¥ Ho)” (ki—y) = (ki—y)
e 2 0 i=1 (r e 2 i

1 1
(2m)P/2[35[1/2 )Pz

log ; = dy
We—g(y—uef&, (y—ro)
(23)
Simplifying the logarithm, we obtain:
2
L(g) = / N (ylpo. By) | log |By| /2 — log| o[> — 3 " log ((2m)P/2[2:|'/2)
i=1
2
— %((y—uo)T261(y—uo)+Z(ki -y) =k - y) (24)

=1

— (v~ 1) =, (y — o)) | dy.
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Since N (y|po, Xy) is a probability density, the terms independent of y can be moved outside the
integral. The integral of N (y|pg, X)) is 1, leading to:

£(q) = 3 log|By| — 3 log [Zo| = > 5 log((2m)” %))
2
- %/(I(Y) {(y — o) "S5 (y — o) + Z(ki ~-y) =7 ki —y)

i=1

(25)

—(y—mo) T,y — ua)] dy.
We now expand the quadratic forms and use the properties of expectations under ¢(y): E[y] = po
and E[yy '] = 3y + poug -
El(y — p0) "2 (y — po)] = (1o — o) "5 (1o — po) + t2(5 ' 2,
El(ki —y) "= (ki —y)] = (ki — po) ' By (ki — po) + tr(2;'5,) (26)
El(y — po) "2, My — po)] = tr(2,'E,) = D
Substituting these expectations back into the ELBO, we get the final expression:

2

1 1 1 D
L(q) = 3 log |2, ] — Elog [Zo] — Z 3 log ((2m)"|%;]) — 5
=1
(1t — 10) "25 (1o — po) + (25 ' 2] 27

t\')\»—l m\»—x

2
— o> (ki — o) TS (ki — o) + (TS
i=1
Optimal Variational Parameters
To find the optimal variational parameters, we maximize the ELBO with respect to fsg.
Optimal Mean pj: The terms containing peg are:

1
—=(po — 10) " Bq " (o — po)

2
5 Z (ki — o) " 27 (ki — po) (28)

l\D\’—‘

Taking the gradient with respect to py and setting it to zero:

[

Vi £ = =25 (1o — o) Z Yk — po) =0

= , (29)
<2 +Zz ) (201u0+22i1ki) =0
i=1
Solving for py gives the optimal mean:
. _ _ I _ -
po= (gt + 27+ 300 (20 o + 27k + 25 ko) (30)

A.3.4 SPECIALIZATION TO CHANNELFUSION

For practical 1mplementat10n in ChannelFusion, we make the following simplifying assumptions: 1.
Isotropic Covariances: X~ = \;I, where I is the identity matrix. 2. Uninformative Prior: Ao —

0, which implies EO — 0. 3. Precision Proportional to Feature Strength: \; = m,
where &; . represents the feature strength of the c-th channel in the ¢-th feature map.

Remark. Here the quantity &; . is the empirical standard deviation of pixel values within the c-th
channel of the feature map, obtained by treating the channel elements as samples. It serves only as
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Table 4: Ablation on the starting timestep and starting layer under conflicting conditions.

‘ Pose, Seg ‘ Pose, Depth
| CLIP+ MSE-s | mloU-p 1 |CLIP+ MSE-d | mloU-pt

Cross-ControlNet (step-0, layer-0) | 0.2976 0.2003  0.3741 | 0.2898 0.0478  0.3587
Cross-ControlNet (step-5, layer-0) | 0.2978 0.1983  0.3719 | 0.2893 0.0456  0.3671
Cross-ControlNet (step-10, layer-0) | 0.2968 0.1981  0.3712 | 0.2862 0.0447  0.3647
Cross-ControlNet (step-15, layer-0) | 0.2956  0.1989  0.3725 | 0.2863 0.0449  0.3657
Cross-ControlNet (step-20, layer-0) | 0.2952  0.2011 0.3736 | 0.2862 0.0462  0.3641

Cross-ControlNet (layer-0, step-5) | 0.2978 0.1983  0.3719 | 0.2893 0.0456  0.3671
Cross-ControlNet (layer-2, step-5) | 0.2974 0.2068  0.3703 | 0.2877 0.0483  0.3680
Cross-ControlNet (layer-4, step-5) | 0.2970 0.2072  0.3691 | 0.2902 0.0448  0.3653

Variant

a proxy for the amount of useful information carried by that channel and should not be confused
with the observation—noise variance in the Gaussian generative model. Accordingly, in practice we
instantiate the Bayesian “precision” weights )\; via a monotonic proxy of channel strength, setting
Ai o 0 .. This serves as a practical surrogate for the (typically unavailable) inverse noise variance
and does not alter the underlying model.

Substituting these assumptions into the optimal mean equation 30:
ph = (ol + MI+ AoD) ™ (Moo + AiTky + AoTko)
~ ()\11 + )\21)_1 ()\11(1 + /\2k2) (since Ao — 0) 31)
A1 A2
= ki + k
MAXd AN
This gives us the ChannelFusion soft fusion rule:
A1 A2
p— ki + k
Ho VD Vi D VNI W

(32)

The hard selection rule is obtained in the limit where one \; dominates the other (effectively setting
the smaller A to zero), which corresponds to complete certainty in one feature map.

A.3.5 DISCUSSION

This derivation shows that ChannelFusion can be interpreted as performing variational Bayesian
inference under a conjugate Gaussian generative model. The optimal fusion rule 32 is derived
by maximizing the ELBO, providing a principled justification for the weighted average of feature
maps. The precision parameters \; act as reliable estimates of the useful information content in each
feature map, determining their contribution to the fused output. The assumptions of isotropy and an
uninformative prior make the method computationally efficient and suitable for integration into deep
neural networks.

A.4 ADDITIONAL ABLATION STUDIES

We further examine the control policy of KV-Injection by varying (1) the starting timestep in the
denoising process and (2) the starting layer within Cross-ControlNet at which injection begins. Here,
we explicitly clarify that the term starting layer denotes the index of the first Cross-ControlNet block
that receives KV-Injection; injection is applied from this block onward to subsequent blocks in the
network. This distinction is important because earlier vs. later start layers determine how much of the
feature hierarchy is exposed to the injected key—value information.

All other components are kept identical to the main experiment; only the KV-Injection settings are
modified.

The upper block of Table 4 reports the results when the starting layer is fixed to 0 and the starting
timestep is varied. Intuitively, an earlier timestep gives the injected correlation signal more opportunity
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Conditions 6=0 6=0.2 6=04 6=0.6 6=0.8 6=1.0

Figure 7: Visual comparison under varying threshold §. For small § (< 0.4) the generated image is
not sufficiently faithful to the given foreground/background conditions. As d increases, adherence
gradually improves; however, for large § (> 0.6) a distinct white rim appears between foreground and
background. Although such results are extremely faithful, the rim destroys photorealism and breaks
the overall harmony. Prompt: " photo of a cowboy riding a black horse in a street, harmoniously".

Figure 8: Spatial variance maps of image tokens processed by the MM-DIiT blocks of FLUX.1-dev
ControlNets. These variance maps also reflect the strength of the conditional information.

to shape the denoising trajectory, whereas a very late injection fails to sufficiently influence the
reconstruction. Empirically, starting too early (e.g., step 0) can slightly destabilize the early denoising
dynamics and degrade perceptual scores, while starting too late reduces controllability. A starting
timestep of 5 therefore provides a favorable trade-off between influence and stability.

In the lower block, we fix the starting timestep at 5 and vary the starting layer. Injection beginning
at layer O yields the best performance: by introducing the conditioning signal at the earliest Cross-
ControlNet block, the guidance can propagate through the full depth of the module and influence both
low- and high-level features. Delaying the start to deeper layers reduces this propagation, leaving
earlier features effectively unconditioned and weakening foreground—background alignment; this
manifests as lower scores in the reported metrics.

Overall, these ablations validate the default choice used in the main paper (starting timestep = 5,
starting layer = 0). They also show that KV-Injection is reasonably robust across a range of timesteps
and start-layer choices, but attains the strongest and most consistent control when initialized early in
both the denoising schedule and the Cross-ControlNet hierarchy.

A.5 CROSS-ARCHITECTURE GENERALIZATION: U-NET — DIT (FLUX)

Our method is not limited to U-Net architectures; it can be seamlessly transferred to diffusion-
transformer models such as FLUX. We conducted tests using FLUX.1-dev with 28 sampling steps,
and the classifier-free guidance was set to 3.5. The correlation threshold § was set to 0.50 (see Fig. 7
for visual examples). For the KV-Injection part, as the foreground mask was not readily available, we
opted for simplicity by setting it to all ones by default. KV-Injection began to take effect from step 3
onward. Beyond these changes, the model maintained the same settings as in the main paper.

Although FLUX replaces the convolutional U-Net backbone with a DiT-style Transformer architecture
that relies on global self-attention, the proposed cross-modal correlation and KV-Injection remain
entirely attention-based and therefore require no additional architectural tuning. As further evidenced
in Fig. 8, the feature variance within FLUX likewise reveals clear intensity patterns, confirming that
our correlation-based mechanism can exploit informative representations despite the architectural
change. In practice, the injection of correlation-guided key—value pairs integrates smoothly into the
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Transformer blocks, demonstrating that the method is agnostic to whether the latent features originate
from convolutional layers or purely transformer-based representations.

Qualitatively, we observe that FLUX produces sharper fine-grained textures and more globally
consistent structures compared to its U-Net counterparts, while maintaining the same level of fore-
ground—background controllability (see Figs. 9 and Figs. 10). This indicates that Cross-ControlNet
is robust to architectural changes and can preserve the intended conditioning signals even when the
underlying diffusion backbone shifts from U-Net to DiT.

Naturally, the method—originally designed for U-Net—also performs well on the U-Net-based SDXL
model; we omit these results for brevity.

A.6 ADDITIONAL QUALITATIVE RESULTS

To further illustrate the effectiveness of our Cross-ControlNet when applied to the U-Net—based
Stable Diffusion v1.5, we provide additional qualitative samples in Fig. 11 and Fig. 12. These
examples cover a diverse set of foreground—background configurations and artistic styles: single-
object foregrounds (e.g., an astronaut on the moon, a sailing boat on a calm lake, a lighthouse on
a rocky cliff, a cherry blossom tree with Mt. Fuji, a desert cactus, or a canyon hiker), everyday
still-life scenes (e.g., a vintage typewriter or camera on a wooden desk, or a macro glass terrarium),
street and architectural compositions (e.g., a classic red telephone booth or sunglasses on a marble
column framing the Parthenon), natural landscapes (e.g., a quiet snowy village or a dawn pasture
with a shepherd), cultural scenes (e.g., a Chinese lion dance), and illustrative artworks (e.g., a cartoon
dog and cat in minimal line-art or a pastel origami fox). The gallery spans rendering styles from
photorealistic to minimal line-art and painterly oil textures. Across these variations, Cross-ControlNet
consistently preserves the intended conditioning signals (foreground shape and background layout),
generates high-fidelity details, and maintains coherent foreground—background separation (see Fig. 11
and Fig. 12). These supplementary results further corroborate the robustness and versatility of our
method beyond the representative cases shown in the main paper.
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Figure 9: Qualitative results of the Cross-ControlNet on FLUX.1-dev.
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Brown bear standing on mossy rock in forest. Camping tent on grass with mountain backdrop.
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Figure 10: Qualitative results of the Cross-ControlNet on FLUX.1-dev. Because only a limited number
of open-source ControlNet extensions are currently available for FLUX, we present conditioning
only with Canny, Depth, and HED maps.
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Figure 11: More visual results from Cross-ControlNet on Stable Diffusion-v1.5 model.
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Figure 12: More visual results from Cross-ControlNet on Stable Diffusion-v1.5 model.
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A.7 ALGORITHM

Algorithm 1 PixFusion for Cross-Model Feature Fusion

Require: M layers {I{}L |, My layers {I}}£ |, conditions c1, c2, threshold &, kernels G, , G,
1: forl=1to L —1do

2 fielia); foe (o)

3 p%COSSim((fl _/Jl)*gh'w (f2_/~t2)*gﬂ'2)
4:  for all position (j, k) do

5: if p©:F) > § then

6: fOk) o BT

7: else )

8: f(j,k) — fi(f»k)’ i* = arg max; [Q,{l * &i] G
9: end if ’
10:  end for

11:  feed f to SD decoder

12: end for

Algorithm 2 ChannelFusion for Cross-Model Feature Fusion

Require: M, Ms final-layer features f1, fo, threshold §
L fi = (A1) fo e 15(f2)

2: compute R, =1 — _o1e=Ga.cl g4 each channel ¢

max(1,c,02,c)

3: for all channel ¢ do

4: if R. > ¢ then

5: w; %&i’c/zk 5’]“5

6: fc lefl,c+w2f2,c

7:  else

8: fc < fl,c if 61,C > 5’270 else f27c
9: endif

10: end for

11: feed f to SD decoder

Algorithm 3 Cross-ControlNet Inference

Require: Foreground model M, background model M,, masks M f , M b
Ensure: Denoised latent z

1: fort =T to1do

2: forl=1to L do

3: {Q17K17VI}<_M1<t7Zt); {Q27K27‘/2} <_M2(t7zt)
4: Attn’ « Attention(Qo, K1, Vi; M)

5: Attn® «+ Attention (Q2, [K2 ® K1), [Vo @ Vi]; [1 & M"])
6: Attn « M7 - Attnd + M? - Attn?

7: if | == L then A

8: f + ChannelFusion(M;, My; Attn)

9: else A

10: f < PixFusion(M7, My; Attn)

11: end if

12: feed f to SD decoder

13:  end for

14: Zi—1 SD(t, Zt)

15: end for

16: return zg
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