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Abstract
Continual learning, focused on sequentially learn-
ing multiple tasks, has gained significant atten-
tion recently. Despite the tremendous progress
made in the past, the theoretical understanding,
especially factors contributing to catastrophic for-
getting, remains relatively unexplored. In this
paper, we provide a general theoretical analysis
of forgetting in the linear regression model via
Stochastic Gradient Descent (SGD) applicable
to both under-parameterized and overparameter-
ized regimes. Our theoretical framework reveals
some interesting insights into the intricate rela-
tionship between task sequence and algorithmic
parameters, an aspect not fully captured in pre-
vious studies due to their restrictive assumptions.
Specifically, we demonstrate that, given a suffi-
ciently large data size, the arrangement of tasks in
a sequence—where tasks with larger eigenvalues
in their population data covariance matrices are
trained later—tends to result in increased forget-
ting. Additionally, our findings highlight that an
appropriate choice of step size will help mitigate
forgetting in both under-parameterized and over-
parameterized settings. To validate our theoretical
analysis, we conducted simulation experiments
on both linear regression models and Deep Neural
Networks (DNNs). Results from these simula-
tions substantiate our theoretical findings.

1. Introduction
Continual learning, also known as lifelong learning, is a sub-
field of machine learning that focuses on developing a model
capable of learning continuously from a stream of data,
which are i.i.d sampled from different tasks and presented
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sequentially to the model. A primary challenge in con-
tinual learning is the catastrophic forgetting phenomenon
(McCloskey & Cohen, 1989), wherein the model forgets
previously acquired knowledge when exposed to new data.

Previous research addressing catastrophic forgetting in
continuous learning primarily focuses on empirical stud-
ies, which can be broadly classified into three categories:
expansion-based methods, regularization-based methods,
and memory-based methods. Expansion-based methods
(Yoon et al., 2017; 2019; Yang et al., 2021) mitigate catas-
trophic forgetting by allocating distinct subsets of network
parameters to individual tasks. Regularization-based meth-
ods (Kirkpatrick et al., 2017; Aljundi et al., 2018; Serra
et al., 2018; Liu & Liu, 2022) employee structural regular-
ization in fixed capacity models to counteract forgetting,
which penalize significant changes in parameters that are
crucial for previous tasks. Memory-based methods (Shin
et al., 2017; Chaudhry et al., 2018; Riemer et al., 2018;
Saha et al., 2021; Lin et al., 2022; Hao et al., 2023) alle-
viate forgetting by storing subsets of previous task data or
synthesizing pseudo-data without data-replay.

Recently, there has been a growing body of work focused on
understanding the behavior of catastrophic forgetting from
a theoretical standpoint. For example, Bennani et al. 2020;
Doan et al. 2021 analyze the generalization of continual
learning for Orthogonal Gradient Descent (OGD) (Fara-
jtabar et al., 2020) in the Neural Tangent Kernel (NTK) (Ja-
cot et al., 2018) regime. Lee et al. 2021; Asanuma et al. 2021
explore the impact of task similarity in a teacher-student
setting. Evron et al. 2022; Lin et al. 2023 provide a detailed
forgetting analysis of the minimum-norm interpolator for
the overparameterized linear regression model. However,
the existing analyses of forgetting often rely on relatively
stringent assumptions that may not be applicable in many
scenarios. For example, Bennani et al. 2020; Doan et al.
2021; Evron et al. 2022; Lin et al. 2023 necessitate an over-
parameterized regime for their analysis, which may be in-
valid when involving large datasets. Moreover, Lee et al.
2021; Asanuma et al. 2021; Lin et al. 2023; Swartworth
et al. 2023 assume that data follows a Gaussian distribution
that may not hold in real-world datasets exhibiting more
complex distributions. Evron et al. 2022; Lin et al. 2023
focus on the minimum-norm interpolator, where each task
requires achieving zero loss on its training samples and
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hence can find a closed-form solution.

In this paper, we investigate the behavior of forgetting under
the linear regression model via the more practical Stochastic
Gradient Descent (SGD) method and provide a general theo-
retical analysis that is applicable to both over-parameterized
and under-parameterized regimes. Our main contributions
can be summarized as follows:

Firstly, our work provides a theoretical analysis for multi-
step SGD algorithms in both underparameterized and over-
parameterized regimes, with the population data covariance
matrix satisfying the general fourth moment instead of Gaus-
sian distribution as in existing studies. In specific, we pro-
vide a novel upper bound on the model forgetting, as well
as a matching lower bound that shows the tightness of our
characterization. Our bounds derive the forgetting bound
that is stated as a function of 1) the spectrum of the pop-
ulation data covariance matrices for each task, 2) the step
size, 3) the number of training samples and 4) the effective
dimensions on the forgetting.

Second, our study provides some interesting insights into
the impact of task sequence and algorithmic parameters on
the degree of forgetting. Specifically, we show that when
the data size is sufficiently large, forgetting tends to escalate
when we postpone the training of tasks, whose population
data covariance matrices possess larger eigenvalues. It is
intuitive that when tasks with larger eigenvalues are trained
later, the model might overfit these tasks due to their high
variance. In addition, our findings reveal that an appropriate
choice of step size can help mitigate forgetting in both un-
derparameterized and overparameterized settings. Note that
these results cannot be derived from existing works due to
their restrictive data distribution assumptions or closed-form
updating rules. More detailed discussions can be found in
Section 4.

Finally, we conducted simulation experiments on both linear
regression models and Deep Neural Networks (DNNs) to
validate our theoretical analysis. Our simulation results in-
dicate that both linear regression models and DNNs exhibit
increased forgetting when tasks with larger eigenvalues are
encountered later. Additionally, we demonstrate that smaller
step sizes in training can also mitigate forgetting across task
sequences, especially in under-parameterized settings. In-
terestingly, we observe that in over-parameterized DNNs,
higher dimensionality does not necessarily equate to more
forgetting if the dataset size is fixed, as opposite to the linear
regression case.

1.1. Related Work

In this section, we discuss related work on Covariate Shift,
SGD analysis in linear regression, and theoretical studies
for catastrophic forgetting.

Covariate Shift Covariate shift is a specific set-up in ma-
chine learning (Pan & Yang, 2009; Sugiyama & Kawanabe,
2012), referring to a distribution mismatch between the
training and test data. The concept is typically applied in
transfer learning, which can be seen as a particular instance
of continual learning, generally involving two tasks. For
example, Mohri & Medina 2012; Cortes & Mohri 2014;
Kpotufe & Martinet 2018; Cortes et al. 2019; Hanneke &
Kpotufe 2020; Ma et al. 2023; Wu et al. 2022b examine
the (regularized) empirical risk minimizer, which focuses
on minimizing the empirical and generalization error across
accessible datasets. Nevertheless, the standard covariate
shift is defined over two distinct data distributions, which
can not be directly applied to our case. Consequently, we
propose an extended version in Definition 2.2 to better suit
our context.

SGD Analysis Recently, several studies have investigated
the behavior of Stochastic Gradient Descent (SGD) in linear
regression models through the lens of bias-variance decom-
position (Défossez & Bach, 2015; Dieuleveut et al., 2017;
Jain et al., 2017; 2018) and the eigen-decomposition of the
covariance matrix (Chen et al., 2020; Zou et al., 2021; Wu
et al., 2022a;b). Our work closely relates to the studies in
Zou et al. 2021; Wu et al. 2022b that also characterized the
SGD dynamic in linear regression with respect to the full
eigenspectrum of the data covariance matrix. However, they
focused on either the single-task setting or the pretraining-
finetuning setting, while we studied the more challenging
continual learning problem that involves a sequence of tasks
with different data distributions. More discussion in Sec-
tion 4.

Theoretical Studies in Continual Learning Although sig-
nificant progress has been made in empirical studies address-
ing the issue of forgetting in continual learning, theoretical
insights into this area are still largely unexplored. In this con-
text, Bennani et al. 2020 established a theoretical framework
to study continual learning algorithms in the NTK regime,
and provided the first generalization bound dependent on
task similarity for SGD and OGD. Doan et al. 2021 intro-
duced the NTK overlap matrix as a task similarity metric and
proposed a data-structure-informed variant of OGD that uti-
lizes Principal Component Analysis (PCA). Asanuma et al.
2021 utilized the teacher-student framework on a single neu-
ral network and demonstrated that catastrophic forgetting
can be circumvented when the similarity among input distri-
butions is small and the similarity among teacher networks
is large. Lee et al. 2021 expanded an earlier analysis of two-
layer networks within the teacher-student setup to the setting
with multiple teachers and revealed that the highest level of
forgetting occurs when tasks have intermediate similarity
with each other. Evron et al. 2022; Swartworth et al. 2023
explained the behavior of forgetting in the linear regression
model from the perspectives of alternating projections and
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the Kaczmarz method (Karczmarz, 1937). Lin et al. 2023
investigated the impact of overparameterization, task simi-
larity, and task ordering on forgetting and generalization in
the overparameterized linear regression model.

The works most relevant to our study include (Evron et al.,
2022; Lin et al., 2023), both of which also studied the be-
havior of forgetting in the linear regression model. However,
our work differs from their studies in several aspects.

Firstly, with regard to assumptions, Evron et al. 2022 as-
sumed all data are bounded with 1 and the model is noiseless,
and Lin et al. 2023 assumed all data are sampled from a
Gaussian distribution. In contrast, our assumptions cover
more data distributions and are much milder than theirs
(see Remark 2 and Section 4 for more details). Secondly,
in terms of methods, both Evron et al. 2022 and Lin et al.
2023 analyze the problem of forgetting using the minimum
norm solution, which presupposes zero training error—a
requirement not necessary in our approach with SGD (see
Section 2 for further discussions). Third, Evron et al. 2022;
Lin et al. 2023 considered only the overparameterized case
where the data dimension is larger than the data size, while
our analysis holds for both the underparameterized and over-
parameterized settings.

Notations: In this paper, we adhere to a consistent notation
style for clarity. We use boldface lower letters such as x,w
for vectors, and boldface capital letters (e.g. A,H) for
matrices. Let ∥A∥2 denote the spectral norm of A and
∥v∥2 denote the Euclidean norm of v. For two vectors u
and v, their inner product is denoted by ⟨u,v⟩ or u⊤v. For
two matrices A and B of appropriate dimension, their inner
product is defined as ⟨A,B⟩ := tr(A⊤B). For a positive
semi-definite (PSD) matrix A and a vector v of appropriate
dimension, we write ∥v∥2A := v⊤Av. The outer product is
denoted by ⊗.

2. Preliminaries
In our setup, we consider a sequence of tasks, denoted as
M = {1, 2, . . . ,M}. For each task m in this sequence, we
have a corresponding dataset Dm, which consists of N data
points. Each of these data points, denoted as (xm,i, ym,i), is
drawn independently and identically distributed (i.i.d.) from
a specific distribution Dm = Xm × Ym ⊂ Rd × R. Here,
xm,i represents the feature vector, and ym,i is the response
variable for each data point in the dataset Dm. Assume that
{(xm,i, ym,i)}Ni=1 are i.i.d. sampled from a linear regression
model, i.e., each pair (xm,i, ym,i) is a realization of the
linear regression model ym = (x⊤

mw∗) + zm, where zm is
some randomized noise and w∗ ∈ Rd is the optimal model
parameter.

Our goal is to output a model wMN minimizing the degree

of forgetting (Evron et al., 2022) for M tasks, i.e.

G(M) =
1

M

M∑
m=1

Lm(wMN ), where (1)

Lm(w) =
1

2
E(xm,ym)∼Dm

∥x⊤
mw − ym∥2, m ∈ M

wMN represents the final output after sequentially training
on M tasks, each updated via SGD over N iterations for
each task. Equation (1) quantifies an average excess pop-
ulation risk on the final output wMN across all tasks. For
each task m, the loss Lm evaluate how well wMN performs
on it, thus assessing the degree of the model’s forgetting on
previous tasks in continual learning scenarios.

Definition 2.1 (Data Covariance). Assume that each entry
and the trace of the E[xmx⊤

m] are finite. Define Hm :=
E[xmx⊤

m] as data covariance matrix.

Let Hm denote the eigen decomposition of the data co-
variance for task m, given by Hm =

∑
i λ

i
mvi

mvi
m

⊤,
where (λi

m)i≥1 are eigenvalues in a nonincreasing order
and (vi

m)i≥1 are the corresponding eigenvectors. Define
Hm,k1:k2

as Hm,k1:k2
:=

∑
k1<i≤k2

λi
mvi

mvi
m

⊤
, and al-

low k2 = ∞ to imply that Hm,k:∞ =
∑

i>k λ
i
mvi

mvi
m

⊤.

Definition 2.2 (Covariate Shift). For each task m, the co-
variates xm,1, . . ., xm,N are i.i.d. drawn from Dm.

Compared to the concept of covariate shift in transfer learn-
ing (Pathak et al., 2022), Definition 2.2 provides a more
general scenario applicable to a series of tasks M ≥ 2. For
simplicity, in our analysis, we assume that each task m in
our model consists of N data points, differentiating it from
transfer learning approaches that typically consider the total
dataset size as N .

Assumption 2.3 (Fourth moment conditions). Assume that
for each task m, the expected fourth moment of covariates,
denoted as M := E[xm⊗xm⊗xm⊗xm], and the expected
covariance matrix Hm are finite. Moreover:

(A) There exists a constant αm > 0 such that for any
Positive Semi-Definite (PSD) matrix A, the following
holds:

E[xmxm
⊤Axmxm

⊤] ⪯ αm · tr(HmA)Hm.

(B) There exists a constant βm > 0, such that for every
PSD matrix A, the following holds:

E[xmxm
⊤Axmxm

⊤]−HmAHm ⪰ βm ·tr(HmA)Hm.

Remark 1. Assumption 2.3 is a commonly employed as-
sumption in the linear regression analysis utilizing SGD
methods (Zou et al., 2021; Wu et al., 2022a;b), which is
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much weaker than the assumptions on the aforementioned
related work. Specifically, it can be verified that Assump-
tion 2.3 holds with αm = 3 and βm = 1 for Gaussian
distribution discussed in (Asanuma et al., 2021; Lee et al.,
2021; Lin et al., 2023). Additionally, Assumption 2.3(A)
can be relaxed to E∥xm∥22 ≤ αm tr(Hm) with A = I,
where αm tr(Hm) = 1 is assumed in Evron et al. 2022.

Assumption 2.4 (Well-specified noise). Assume that for
each distribution of task m, the response (conditional on
input covariates) is given by ym = x⊤

mw∗ + zm, where
zm ∼ N (0, σ2) and zm is independent with xm.

Similar to previous works, we assume that zm is some ran-
domized noise that satisfies E[zm|x] = 0 and E[z2m] = σ2

for each task m.

Continual Learning via SGD Suppose we train the
model parameter w sequentially. Let w(m−1)N+N repre-
sent the parameter state after the completion of training on
task m, which also serves as the initial condition for the
training of task m+ 1. Starting with w0 and employing a
constant step size η, the model is updated by SGD for each
task m ∈ M over N iterations, with t = 1, . . . , N :

w(m−1)N+t = w(m−1)N+t−1 − η · gm,t, and

gm,t := (x⊤
m,tw(m−1)N+t−1 − ym,t)xm,t,

(2)

where gm,t represents the gradient of the loss function at
task m and iteration t for a given data point (xm,t, ym,t).

Contrastingly, the minimum norm solution in linear regres-
sion, particularly relevant in overparameterized settings,
aims to find a weight vector w that not only achieves zero
training error but also possesses the minimal possible norm.
Here, wm represents the outcome post-training for task m,
and it also serves as the starting point for training task m+1.
The objective, beginning from an initial condition w0 = 0,
is defined by the following optimization problem:

min
w

∥w −wm−1∥2, s.t. (Xm)⊤w = ym,

where Xm := [xm,1, . . . ,xm,N ] ∈ Rd×N and ym =
[ym,1, . . . , ym,N ] ∈ R1×N . The update rules for each it-
eration follow as:

wm = wm−1 +Xm(X⊤
mXm)−1(ym −X⊤

mwm−1), (3)

where highlights the computational intensity of inverting
the matrix (X⊤

mXm)−1. This is particularly challenging for
large datasets or overparameterized feature spaces. Unlike
the minimum norm solution, SGD does not assume the
existence of a unique, exact solution and is more adaptable
to a variety of problems, including those with non-linear
dynamics.

3. Main Results
Before presenting our upper bound, we shall establish the
following notations to facilitate comprehension of the re-
sults.

Γi
(p,q) :=

q∏
j=p

(1− ηλi
j)

2N , Γq
p :=

q∏
j=p

(I− ηHj)
2N ,

Uk∗
m

:= Im,0:k∗
m

+NηHm,k∗
m:∞, Λi :=

M∑
m=1

λi
m,

(4)

where (λi
m)i≥1 are eigenvalues of Hm in a nonincreasing

order and k∗m = max{i : λi
m ≥ 1

Nη} represents the cut-off
index for Hm. Here, Γi

(p,q) and Γq
p can be regarded as a

projection accumulation from task p to task q, and basically
capture the impact of the learning dynamic of previous tasks
on the subsequent task. Uk∗

m
is defined with respect to the

cut-off index k∗m for each task’s data covariance matrix Hm

that captures both the dominant eigenvalues and the tail of
the spectrum, and Λi denotes the sum of the i-th eigenvalue
across all tasks.

In the following, we first provide our upper bound for the be-
havior of forgetting via SGD in the linear regression model.

Theorem 3.1 (Upper Bound). Consider a scenario where
the model w undergoes training via SGD for M distinct
tasks, following a sequence 1, . . . ,M . With a constant step
size of η ≤ 1/R2 given that R2 = max{αm tr(Hm)}Mm=1,
each task m is executed for N iterations. Given that As-
sumptions (A) and 2.4 are satisfied, the following will hold:

G(M) ≤ errvar + errbias,

where the variance and bias errors are upper-bounded by

errvar ≤
∑M

m=1

M
· ησ2

(1− ηR2)
·Deff

1 ,

errbias ≤
∑M

k=1

M
∥w0 −w∗∥2ΓM

1 Hk

+

∑M
m=1

M

2αmη2 · (Deff
2 +Φm−1

1 Deff
3 )

1− ηαm tr(Hm)
· ∥w0 −w∗∥2Uk∗

m

+

∑M
m=1

M
αmη · ∥w0 −w∗∥2

ΓM
1 Hk(Hm+Φm−1

1 I)·Uk∗
m

,

where the effective dimensions are given by

Deff
1 :=

∑
i<k∗

m

Γi
(m+1,M)Λ

i +Nη
∑
i>k∗

m

Γi
(m+1,M)λ

i
mΛi

Deff
2 :=

∑
i<k∗

m

Γi
(1,M)(λ

i
m)2Λi +Nη

∑
i>k∗

m

Γi
(1,M)(λ

i
m)3Λi

Deff
3 :=

∑
i<k∗

m

Γi
(m,M)(λ

i
m)Λi + ηN

∑
i>k∗

m

Γi
(m,M)(λ

i
m)2Λi,

(5)
with k∗

m,Γi
(p,q) and Γq

p defined as in Equation (4) and denoting
Φm−1

1 :=
∑m−1

j=1

∏j
k=1 αkη

j · ⟨Hk−1, I − (I − ηHm−1)
N ⟩ ·

⟨Hj ,Hm⟩.
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In Theorem 3.1, we establish an upper bound on the forget-
ting behavior of a model trained using SGD in the continual
learning with various data distribution settings. It highlights
that the model’s performance is influenced by both errvar and
errbias, where errvar stems from the inherent noise intrinsic
to the model itself and errbias represents the bias associated
with the initial value during the learning process. Notice
that both of them are determined jointly by the spectrum of
the covariance matrices as well as the stepsizes for continual
learning.

To provide a more intuitive explanation, we explore a sim-
plified scenario by setting η = 0. Specifically, this setting
simplifies our analysis by reducing the error terms to only
the first term in bias error, which appears to depend solely
on the initial weight w0 and the data. However, this simpli-
fication might misleadingly imply that a minimal η would
result in optimal learning outcomes. A crucial aspect over-
looked in this interpretation is the role of the projection
term ΓM

1 =
∏M

j=1(I− ηHj)
2N , which becomes an identity

matrix I when η = 0. Thus, while setting η = 0 eliminates
other error terms, it also exacerbates the first term of bias
error, potentially making it the most significant error con-
tributor. Consequently, there exists a trade-off in choosing
the step size.

The subsequent theorem presents a nearly matching lower
bound.
Theorem 3.2 (Lower Bound). Consider a scenario where
the model w undergoes training via SGD for M distinct
tasks, following a sequence 1, . . . ,M . With a constant step
size of η ≤ 1/R2 given that R2 = max{αm tr(Hm)}Mm=1,
each task m is executed for N iterations. Given that As-
sumptions (B) and 2.4 are satisfied, the following will hold:

G(M) ≥ errvar + errbia,

where the variance and bias errors are lower bounded by

errvar ≥
∑M

m=1

M
· 9η

2σ2

20
·Deff

1 ,

errbias ≥
∑M

k=1

M
∥w0 −w∗∥2ΓM

1 Hk

+

∑M
m=1

M
· β

2
mη2

25
· (Deff

2 + Φ̂m−1
1 Deff

3 ) · ∥w0 −w∗∥2Uk∗
m

+

∑M
m=1

M

βmη2

5
· ∥w0 −w∗∥2

(I−ηHm)2NΓM
1 Hk(Hm+Φ̂m−1

1 I)·Uk∗
m

where the effective dimensions k∗m,Γi
(p,q) and Γq

p are the
same as in Theorem 3.1, and Φ̂m−1

1 :=
∑m−1

j=1

∏j
k=1 βk(

η
2
)j ·

⟨Hk−1, (I− (I− ηHm−1)
2N )⟩ · ⟨Hj ,Hm⟩.

Analogous to the Theorem 3.1, our lower bound also con-
sists of the bias term and the variance term. It is noteworthy
that our lower bound is tight with the upper bound in terms
of variance term, differing only by absolute constants. Addi-
tionally, our lower bound closely matches the upper bound

in terms of the bias term, with some differences arising from
the following quantities

Φ̂m−1
1 ∥w0 −w∗∥2Uk∗

m
, ∥w0 −w∗∥(I−ηHm)2N .

Specifically, Φ̂m−1
1 here differs from Φm−1

1 in Theorem 3.1
only by a factor of constants (i.e. αk and βk defined in
Assumption 2.3). The term ∥w0 − w∗∥(I−ηHm)2N has a
different subscript of (I− ηHm)2N compared to that of the
upper bound. Nevertheless, it can be regarded as a part of
the projection accumulation ΓM

1 that exists in the subscript
of both results simultaneously.

More importantly, we show that the upper and lower bounds
converge, ignoring constant factors, under the conditions

∥w0 −w∗∥2Uk∗
m

≲ σ2, Φ̂m−1
1 ≲ O(1),

which can be satisfied that the signal-to-noise ratios ∥w0 −
w∗∥2Uk∗

m
/σ2 is bounded and the step size is appropriate

small.

4. Discussion
Building on Theorem 3.1 and Theorem 3.2, we aim to offer
a more comprehensive understanding of our findings from
three key perspectives: 1) Technical Understanding Under
Simplified Cases; 2) Comparison with Existing Work; 3)
The Impact of Task Ordering and Parameters on Forgetting.

4.1. Technical Understanding Under Simplified Cases

In this section, we demonstrate how to achieve a vanishing
bound in the overparameterized regime.

Based on Theorem 3.1, we consider a scenario where
∥w0 − w∗∥22, σ2 ≲ 1 and tr(Hm) ≃ 1 for each task m,
implying a rapid decay in the spectrum of Hm. To obtain
a vanishing bound in the overparameterized regime, the
effective dimension should hold that

Deff
1 ≃ Deff

3 = o(
MN

e(M−m)
),

Deff
2 = o(

MN

eM
).

(6)

To meet the condition in Equation (6), for each task m̃, let
k† = min{k∗m, k∗m̃} and k⋆ = max{k∗m, k∗m̃}. It necessar-
ily holds that∑

i<k⋆

λi
m̃ ≃

∑
i<k⋆

λi
mλi

m̃ ≃
∑
i<k⋆

(λi
m)2λi

m̃ = o(N),

∑
i>k†

λi
m̃λi

m ≃
∑
i>k†

(λi
m)2λi

m̃ ≃
∑
i>k†

(λi
m)3λi

m̃ = o(
1

N
).

(7)

To clarify Equation (7), let notice the crucial cut-off index
k⋆ and k†, which divide the entire feature space into two
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k⋆-dimensional and k†-dimensional subspaces. For achiev-
ing a diminishing bound in overparameterized setting, it
is necessary that the sum of eigenvalues for indices less
than k⋆, denoted as

∑
i<k⋆ , should be o(N), and the sum

of the tail eigenvalues for indices greater than k†,
∑

i>k† ,
should be o( 1

N ). These conditions are typically met when
the dataset size N is sufficiently large, or when a smaller
step size η is chosen dependent on N . Additionally, We
note that the condition in Equation (7) can be relaxed. In
light of the definition of k∗m, the eigenvalues for task m̃ are
truncated based on the following two scenarios: 1) k∗m<k∗m̃
: Here, the cut-off for task m̃ occurs earlier, resulting in
an additional (k∗m̃ − k∗m) dimensions of eigenvalues such
that λi

m̃ ≥ 1/(Nη). To achieve a diminishing bound un-
der this condition, it is necessary that

∑
k∗
m≤i≤k∗

m̃
λi
m̃ =

o(N). 2) k∗m ≥ k∗m̃ : In this case, the cut-off for task m̃
occurs later, involving an additional (k∗m − k∗m̃) dimensions
of eigenvalues where λi

m̃ ≤ 1/(Nη), achieving the same
results.

In the under-parameterized regime, we even account for the
worst-case scenario where λi

m ≥ 1
Nη for all index i and task

m, leading to a bound of Deff
1 ≃ Deff

3 = o(
Mdλ1

m

e(M−m) ), D
eff
2 =

o(
Mdλ1

m

eM
).

4.2. Comparison with Existing work

In this section, we will first explore the challenges and par-
allels between traditional/transfer learning and continual
learning. Secondly, we examine how restrictive assump-
tions in previous studies might overshadow the impact of
key factors, thereby affecting the overall understanding of
forgetting in continual learning.

Our results reveal that compared to traditional learning (Zou
et al., 2021), which typically involves a single task, and
transfer learning (Wu et al., 2022b), which usually incorpo-
rates two data distributions, the effective dimension in con-
tinual learning scenarios is more complex. Specifically, in
our analysis, the term Λi arises from a distinct measurement
perspective (i.e. forgetting), which requires us to consider
how the final output aligns with all previously encountered
tasks in the continual learning (i.e. Hm for all m). This is
in contrast to both traditional training and transfer learning,
where the evaluation metric is uniformly focused on perfor-
mance against a single dataset (i.e. HM ). Moreover, the
multi-task nature of continual learning introduces unique
challenges considering the bias iterates and variance iterates,
where we refer to the proof in Appendix for more details.

Given that our analysis, similar to theirs, characterizes
bounds with the full eigenspectrum of the data covariance
matrix, it follows that our derived results match their find-
ings in several aspects: 1) The cutoff index k∗m is uniquely
determined for each task m in continual learning, akin to

the one in Zou et al. 2021; Wu et al. 2022b, where they
identify corresponding indices k∗training and k∗test . 2) The
projection terms Γi

(p,q) and Γq
p also occur in transfer learn-

ing (Wu et al., 2022b), showing how previous iterations/past
learning is projected onto the future updates.

Previous work (Evron et al., 2022) also explored the dynam-
ics of forgetting through the perspective of projection. We
first revisit the findings presented by Evron et al. 2022. Con-
sidering a scenario where the number of iterations N = 1,
the update rule in their analysis can be reformulated as
follows:

wm −w∗ = (I− ηmxmx⊤
m)(wm−1 −w∗), (8)

where they incorporate the noiseless model assumption that
ym = x⊤

mw∗. As a result, the forgetting in Evron et al. 2022
holds that

G(M) =
1

M

M∑
m=1

∥xm(wM −w∗)∥22, given ∥xm∥2 ≤ 1

≤ 1

M

M∑
m=1

∥(I− ηmxMx⊤
M ) . . . (I− ηmx1x

⊤
1 )(w0 −w∗)∥22,

indicating that the forgetting dynamic can be determined
by the projection of (I− ηmxmx⊤

m), where ηm = ∥xm∥−2.
However, compared to our analysis, their study exhibits sev-
eral key differences in comparison to ours. 1) The inherent
model noise: Evron et al. 2022 considers a noiseless model,
where results in the absence of an additional iterative term
xm ·zm related to noise in Equation (8). This omission leads
to a lack of accumulative variance error in the evaluation
of forgetting performance (i.e. errvar in our analysis). It
is noteworthy to mention that in numerous learning prob-
lems, the variance error often plays a dominant role in the
total error (Jain et al., 2018; Zou et al., 2021; Wu et al.,
2022b). 2) The bounded norm ∥x∥2: the assumption of
the bounded norm, which omits the interaction with pro-
jection effects, is crucial in our analysis as the factor Λi in
Theorem 3.1 and Theorem 3.2. 3) Last iterate SGD results:
Evron et al. 2022 shows that, with a ∥xm∥−2

2 step size, their
worst-case expected forgetting will become a dimension-
dependent bound of O(d/M). This analysis, conducted
under the overparameterized regime, suggests the occur-
rence of catastrophic forgetting. In contrast, our results, as
discussed earlier, offer a different perspective, suggesting
the possibility of achieving a vanishing forgetting bound in
overparameterized settings with certain conditions met.

It is noticed that Lin et al. 2023 also investigates the rela-
tionship between catastrophic forgetting and factors such as
task sequence (order) and dimensionality. However, their
results will tend to be vacuous in the under-parameterized
setting since (XmX⊤

m)−1, data matrix for task m, is non-
invertible when employing minimum norm solution, as we
discussed earlier in Section 2. Due to space constraints, a
more extensive discussion will be provided in Appendix D.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: Impact of Task Sequence and Algorithmic Parameters on Forgetting Behavior with Linear Regression Model and Deep Neural
Networks. This figure presents the relationship between task sequence order and algorithmic parameters (data size, dimensionality, and
step size) on the forgetting behavior observed in linear regression models (figures (a)-(f)) and deep neural networks (figures (g)-(l)).
Figures (a), (b), (i), and (j) illustrate how varying data sizes impact forgetting behavior for different task sequences, while figures (c), (d),
(k), and (l) demonstrate the effect of changing dimensionality on forgetting. Lastly, Figures (e)-(h) demonstrate the influence of stepsize
on the rate of forgetting across different model configurations.

4.3. The Impact of Task Ordering and Parameters on
Forgetting

In the upcoming discussion, we will present theoretical
insights derived from our results.

Notice that the bounds in Theorem 3.1 and Theorem 3.2
contain two crucial factors: the effective dimension Deff and
the covariance accumulation Φ̂m−1

1 /Φm−1
1 . We first discuss

the effective dimension. Each Deff is consist of a projection
term Γi

(m,M) and the eigenvalues λi
m, with Λi serving as

the constant. It can be observed that when data size N ap-
proaches infinity, the projection term converges to 1

eM−m ,
implying that the eigenvalue will predominantly dictate the
larger effective dimension with respect to λi

m

eM−m . This obser-
vation highlights the substantial influence of eigenvalues on
task sequence in continual learning. Specifically, it shows
that when data size is sufficiently large, task sequences
organized in a way, where tasks associated with larger
eigenvalues in their population data covariance matrix
are trained later, exhibit more forgetting. Additionally,
if the step size is appropriately small, the projection term
stabilizes to a constant of less than 1, leading to similar
outcomes as in the first scenario. It is noteworthy that these
insights can not be derived from the existing work analysis

due to their restrictive assumptions, such as Gaussian data
distribution in Lee et al. 2021; Asanuma et al. 2021; Lin
et al. 2023 and minimum norm solution in Evron et al. 2022;
Lin et al. 2023; Swartworth et al. 2023.

The covariance accumulation term, Φ̂m−1
1 /Φm−1

1 , which
includes the covariance matrices Hj≤m and the step size
η, plays a crucial role in demonstrating how previously ac-
quired information is retained and influences the model’s
adaptability to new tasks. Notably, there is an interest-
ing contradiction in the optimal accumulation order within
Φ̂m−1

1 /Φm−1
1 compared to the projection term in Γi

(m,M).
Specifically, earlier occurrence of Hj with larger expected
eigenvalues tends to increase the degree of forgetting. Mean-
while, an important observation is that if the step size is suf-
ficiently small, the impact of the covariance accumulation
term becomes less significant. This interplay between the
effective dimension and covariance accumulation elucidates
the complexities inherent in continual learning scenarios.

5. Empirical Stimulation
In this section, we conduct experiments using synthetic
data to validate our theoretical results and shed light on
the intricate interplay between eigenvalues, step size, and

7
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dimensionality.

Experimental Setup In our study, we designed three dis-
tinct tasks, denoted as Tasks 1,2, and 3, each with a different
feature space. During the initial simulations, the eigenvalues
for the feature values of Tasks 1, 2, and 3 were set accord-
ing to λi = i−3, λi = i−2, and λi = i−1 respectively. To
mimic real-world data imperfections, Gaussian noise with
a standard deviation of 0.1 was added to the labels. We as-
sessed the impact of task sequence on the model’s tendency
to forget by evaluating six different task orders: [1,2,3],
[2,1,3], [1, 3, 2], [3, 1, 2], [2, 3, 1], and [3, 2, 1].

5.1. Linear Regression

Training and Evaluation For this experiment, a linear re-
gression model was trained using Stochastic Gradient De-
scent (SGD) with a learning rate of 0.01 or 0.001. The
model was tested in both low-dimensional (10 input fea-
tures) and high-dimensional (1000 input features) settings.
Each task sequence underwent training with various data
sizes, ranging from 100 to 950 in increments of 50, and
each task was trained for five epochs. The performance
of the model was evaluated on each task to calculate the
average excess risk (Equation (1)), quantifying the degree
of forgetting the model experienced.

Impact of Eigenvalue Sequencing The observations from
Figure 1a and Figure 1c reveal the significant impact of
eigenvalue sequencing on forgetting behavior in the under-
parameterzied regime. Notably, task sequences that are
arranged such that tasks with larger eigenvalues (i.e. Task
3 in our case, characterized by λi = i−1 ) are trained later
in the learning process tend to result in increased forget-
ting. This empirical finding aligns well with our theoretical
analysis (the term λi

m

eM−m discussed in Section 4.3). In an
under-parameterized setting, or when the eigenvalues decay
rapidly, the effective dimension — crucial in determining
the model’s forgetting performance - is largely influenced
by the eigenvalues. Such a pattern is intuitive as when tasks
with larger eigenvalues are trained later, the model might
overfit these tasks due to their high variance.

Impact of Dimensionality Our results, depicted in Fig-
ure 1c and Figure 1d, show that in under-parameterized
scenarios, performance remains relatively unaffected by an
increase in dimensionality. However, in over-parameterized
settings, the model tends to exhibit increased forgetting as
dimensionality rises, particularly when the data size is kept
constant. This highlights the varying impact of dimension-
ality on model performance in different parameterization
contexts. In higher-dimensional settings, the influence of the
projection term Γi

(p,q), as shown in Theorem 3.1, diminishes
in comparison to the impact of Λi and λi. Consequently, as
the number of features in the model increases, the sequence

in which tasks are presented becomes less significant in de-
termining the model’s forgetting behavior. This shift implies
that, in high-dimensional scenarios, the inherent complexity
and the distribution of eigenvalues of the feature space play
a more critical role than the sequence of tasks, influencing
the model’s learning and retention capabilities.

Impact of Step-size Our results, depicted in Figure 1e and
Figure 1f, reveal that a smaller step size effectively reduces
forgetting in various task sequences and across different
dimensionalities. This trend is especially noticeable in
high-dimensional feature spaces, where a reduced step size
markedly lowers the rate of forgetting. This observation is
in line with the theoretical insights provided in Theorem 3.1
and Theorem 3.2, as smaller step sizes may lead to more
refined updates during training, allowing the model to incre-
mentally adjust to new tasks while preserving knowledge
from previous ones.

5.2. Implication on DNNs

Intriguingly, our next discussion will adopt the same data
generation and task setup as outlined in Section 5.1, but shift
our focus to a different Neural Network model. This model
comprises an input layer, a hidden layer with ten neurons,
and an output layer, and it undergoes a training process akin
to that of linear regression.

Impact of Eigenvalue Sequencing In our studies with Deep
Neural Networks (DNNs), we still find that task sequences,
ending with tasks having larger eigenvalues, tend to exhibit
increased forgetting, especially in under-parameterized set-
tings, similar to linear regression models. This indicates
that the tendency of overfitting observed in linear models,
particularly when tasks with larger eigenvalues are trained
later in the sequence, may occur in DNNs as well.

Impact of Dimensionality Our results also reveal the consis-
tent behaviors between DNNs and linear regression concern-
ing dimensionality. In under-parameterized scenarios (Fig-
ure 1k), forgetting remains stable despite increased dimen-
sionality, while in over-parameterized settings (Figure 1l),
higher dimensionality leads to more forgetting when data
size is fixed. However, the adverse effects of higher di-
mensions can be alleviated by expanding the dataset size,
as demonstrated in Figure 1j. It is a notable contrast to
linear regression, which suggests that the complex struc-
tures of DNNs are better suited to manage and learn from
high-dimensional data in continual learning scenarios. The
different behaviors observed between DNNs and linear re-
gression models will be a potentially interesting direction
for future work.

Impact of Step Size Our results, depicted in Figure 1e
and Figure 1f, indicate that in under-parameterized settings,
a smaller step size significantly lessens the influence of
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task sequences on forgetting, while in models with high-
dimensional features, forgetting can be mitigated even with-
out adjusting the step size.

6. Conclusion
In this work, we contribute to the understanding of catas-
trophic forgetting in continual learning via a multi-step SGD
algorithm. Our theoretical analysis establishes bounds that
illustrate the impact of various factors on forgetting such as
data covariance matrix spectrum, step size, data size, and
dimensionality, which can not be fully captured in previous
studies due to their restrictive assumptions. This theoretical
understanding is further substantiated through simulations
conducted in linear regression models and Deep Neural
Networks, which corroborate our theoretical insights.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Support Lemmas
Notations

For two matrices A and B, their inner product is defined as ⟨A,B⟩ := tr(A⊤B). For each task m ∈ [M ], we define the
following linear operators:

I = I⊗ I, Mm = E[xm ⊗ xm ⊗ xm ⊗ xm], M̃m = Hm ⊗Hm,

T = H⊗ I+ I⊗Hm − ηMm, T̃ = Hm ⊗ I+ I⊗Hm − ηHm ⊗Hm.

We use the notation O ◦A to denote the operator O acting on a symmetric matrix A. For example, with these definitions,
we have that for a symmetric matrix A,

I ◦A = A, Mm ◦A = E[(xm
⊤Axm)xmxm

⊤], M̃m ◦A = HmAHm

(I − ηT̃m) ◦A = (I− ηHm)A(I− ηHm)

(I − ηTm) ◦A = E[(I− ηxmxm
⊤)A(I− ηxmxm

⊤)]

It can be readily understood that the following properties are satisfied:

Lemma A.1 ((Zou et al., 2021)). An operator O, when defined on symmetric matrices, is termed a Positive Semi-Definite
(PSD) mapping if A ⪰ 0 implies O ◦A ⪰ 0. Consequently, for each task m ∈ [M ] we have:

1. Mm and M̃m are both PSD mappings.

2. Mm − M̃m and T̃m − Tm are both PSD mappings.

3. I − ηTm and I − ηT̃m are both PSD mappings.

4. If 0 < η < 1/λ1
m, then T̃ −1 exists, and is a PSD mapping.

5. If 0 < η < 1/(αm tr(Hm)), then T −1
m ◦A exists for PSD matrix A, and T −1

m is a PSD mapping.

Then for the SGD iterates, we can consider their associated bias iterates and variance iterates:{
B0 = (w0 −w∗)(w0 −w∗)⊤,

B(m−1)N+t+1 = (I − ηTm(η)) ◦B(m−1)N+t;
(9){

C0 = 0,

C(m−1)N+t+1 = (I − ηTHm
(η)) ◦C(m−1)N+t + η2ΣHm

;
(10)

where t = 0, . . . , N − 1 and m = 1, . . . ,M .

Lemma A.2 (Bias-variance decomposition). Suppose that Assumption 2.4 holds. Then we have:

E[ExcessRisk(wMN )] =
1

2
⟨H,BMN ⟩+ 1

2
⟨H,CMN ⟩.

B. Variance Error
B.1. Upper Bound

The assumption presented below can be inferred from 2.3 by setting A = I, given that R2 = max{αm tr(Hm)}Mm=1.

Assumption B.1 (Relaxed version). For each task m, there exists a constant R ≥ 0 such that:

Ex∼Dm [xx⊤xx⊤] ⪯ R2Hm.

Lemma B.2. Suppose Assumptions 2.3 and 2.4 hold with step size η ≤ 1/R2, then it holds that:

Ct ≤
ησ2

1− ηR2
I, for every t = 0, 1, . . . ,MN

11
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Proof. This lemma is derived directly from the Lemmas in (Jain et al., 2018; Zou et al., 2021). To ensure completeness, we
include a proof as follows.

We prove the lemma via induction. Initially, for t = 0, it is evident that C0 = 0 ⪯ ησ2

1−ηR2 I. Now, assuming that

Ct ⪯ ησ2

1−ηR2 I, let us examine Ct+1 in light of Equation (9). When 0 ≤ t ≤ N − 1, for each task m, it implies:

C(m−1)N+t+1 = (I − ηTHm
(η)) ◦C(m−1)N+t + η2ΣHm

⪯ ησ2

1− ηR2
I · (I − ηTHm

(η)) ◦ I+ η2σ2Hm (11)

⪯ ησ2

1− ηR2
· (I− 2ηHm + η2R2Hm) + η2σ2Hm

⪯ ησ2

1− ηR2
· I.

Lemma B.3. Suppose Assumptions 2.3 and 2.4 hold with step size η ≤ 1/R2, then it holds that:

CMN ⪯
M∏

m=2

(I − ηT̃Hm(η))N ◦CN +

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj (η))
NPm +PM ,

where Pm = η2σ2

1−ηR2

∑N−1
t=0 (I − ηT̃Hm(η))t ◦Hm and CN ⪯ ησ2

1−ηR2 · (I− (I− ηH1)
N ).

Proof. We first examine the recursion from t = 0 to t = N − 1 for each task m:

C(m−1)N+t+1 = (I − ηTHm
(η)) ◦C(m−1)N+t + η2ΣHm

⪯ (I − ηT̃Hm(η)) ◦C(m−1)N+t + η2Mm ◦C(m−1)N+t + η2σ2Hm

⪯ (I − ηT̃Hm(η)) ◦C(m−1)N+t + η2R2 · ησ2

1− ηR2
·Hm + η2σ2Hm

⪯ (I − ηT̃Hm
(η)) ◦C(m−1)N+t +

η2σ2

1− ηR2
Hm,

where the penultimate inequality is derived from the Lemma B.2.

Hence, after N iterations, we could have the following results for task m:

C(m−1)N+N ⪯ (I − ηT̃Hm
(η))N ◦C(m−1)N +

η2σ2

1− ηR2

N−1∑
t=0

(I − ηT̃Hm
(η))t ◦Hm.

Now, we consider the first task incorporating with the Lemma B.5 in (Zou et al., 2021), which implies:

CN ⪯ ησ2

1− ηR2
· (I− (I− ηH1)

N ).

By combining the aforementioned results and denoting Pm = η2σ2

1−ηR2

∑N−1
t=0 (I − ηT̃Hm

(η))t ◦Hm, we obtain:

CMN ⪯
M∏

m=2

(I − ηT̃Hm
(η))N ◦CN +

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj
(η))NPm +PM .

12
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Based on Lemma A.2, the upper bound of the variance error can be expressed as follows:

M∑
k=1

⟨Hk,CMN ⟩ ≤
M∑
k=1

ησ2

1− ηR2
⟨Hk,

M∏
m=2

(I − ηT̃Hm(η))N (I− (I− ηH1)
N )⟩︸ ︷︷ ︸

variance term 1

+

M∑
k=1

⟨Hk,

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj
(η))NPm⟩︸ ︷︷ ︸

variance term 2

+

M∑
k=1

⟨Hk,PM ⟩︸ ︷︷ ︸
variance term 3

. (12)

Let us consider the variance terms separately.

variance term 1 =

M∑
k=1

ησ2

1− ηR2
⟨Hk,

M∏
m=2

(I− ηHm)N (I− (I− ηH1)
N )(I− ηHm)N ⟩

≤
M∑
k=1

ησ2

1− ηR2
⟨

M∏
m=2

(I− ηHm)NHk, (I− (I− ηH1)
N )⟩

=
ησ2

1− ηR2

M∑
k=1

∑
i

[

M∏
m=2

(1− ηλi
m)Nλi

k(1− (1− ηλi
1)

N )]

≤ ησ2

1− ηR2
(
∑
i<k∗

1

Γi
(2,M)Λ

i +Nη
∑
i>k∗

1

Γi
(2,M)λ

i
1Λ

i),

(13)

where we use the facts that 1− (1− ηλi
m)N ≤ min{1, ηNλi

m} hold for all i ≥ 1 in the last inequality.

Before we turn our attention to the second term, we first consider the Pm:

Pm =
η2σ2

1− ηR2

N−1∑
t=0

(I − ηT̃Hm
(η))t ◦Hm

=
η2σ2

1− ηR2

N−1∑
t=0

(I− ηHm)tHm(I− ηHm)t

⪯ ησ2

1− ηR2
(I− (I− ηHm)N ).

Substituting the above to the variance term 2, we have:

variance term 2 =

M∑
k=1

⟨Hk,

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj
(η))NPm⟩

≤ ησ2

1− ηR2

M∑
k=1

⟨Hk,

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj
(η))N (I− (I− ηHm)N )⟩

≤ ησ2

1− ηR2

M∑
k=1

⟨Hk,

M−1∑
m=1

M∏
j=m+1

(I− ηHj)
N (I− (I− ηHm)N )⟩

≤
M−1∑
m=1

ησ2

1− ηR2
(
∑
i<k∗

m

Γi
(m+1,M)Λ

i +Nη
∑
i>k∗

m

Γi
(m+1,M)λ

i
mΛi) (14)

Similarly, for the last term, we have:

variance term 3 =

M∑
k=1

⟨Hk,PM ⟩ ≤ ησ2

1− ηR2
(
∑
i<k∗

M

Γi
(M+1,M)Λ

i +Nη
∑
i>k∗

M

Γi
(M+1,M)λ

i
mΛi) (15)

13
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B.2. Lower Bound

Now, we shift our focus to the lower bound of variance. Similarly, we have the following lemma hold:

Lemma B.4. Suppose Assumptions 2.3 and 2.4 hold with step size η ≤ 1/R2, then it holds that:

CMN ⪰
M∏

m=2

(I − ηT̃Hm(η))N ◦CN +

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj (η))
NP′

m +P′
M ,

where P′
m = η2σ2

∑N−1
t=0 (I − ηT̃Hm

(η))t ◦Hm and CN ⪰ ησ2

2 · (I− (I− ηH1)
2N ).

Proof. In a similar fashion, let’s first examine the recursion of C from t = 0 to t = N − 1 for each task m.

C(m−1)N+t+1 = (I − ηTHm
(η)) ◦C(m−1)N+t + η2ΣHm

= (I − ηT̃Hm
(η)) ◦C(m−1)N+t + η2(Mm − M̃m) ◦C(m−1)N+t + η2σ2Hm

⪰ (I − ηT̃Hm(η)) ◦C(m−1)N+t + η2σ2Hm,

where we utilize the fact that Mm − M̃m is a PSD mapping, as established by A.1.

Consequently, after N iterations, the following results can be deduced for task m:

C(m−1)N+N ⪰ (I − ηT̃Hm
(η))N ◦C(m−1)N + η2σ2

N−1∑
t=0

(I − ηT̃Hm
(η))t ◦Hm.

Now, we consider the first task incorporating the Lemma C.2 in (Zou et al., 2021), which implies:

CN ⪰ ησ2

2
· (I− (I− ηH1)

2N ).

By combining the aforementioned results and denoting P′
m = η2σ2

∑N−1
t=0 (I − ηT̃Hm

(η))t ◦Hm, we obtain:

CMN ⪰
M∏

m=2

(I − ηT̃Hm
(η))N ◦CN +

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj
(η))NP′

m +P′
M ,

which completes the proof.

Drawing from Lemma A.2, the lower bound of the variance error is expressed as follows:

M∑
k=1

⟨Hk,CMN ⟩ ≥
M∑
k=1

ησ2

2
⟨Hk,

M∏
m=2

(I − ηT̃Hm
(η))N (I− (I− ηH1)

2N )⟩︸ ︷︷ ︸
variance term 1′

+

M∑
k=1

⟨Hk,

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj
(η))NP′

m⟩︸ ︷︷ ︸
variance term 2′

+

M∑
k=1

⟨Hk,P
′
M ⟩︸ ︷︷ ︸

variance term 3′

. (16)

14
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Analogous to the approach for the upper bound, we will examine the terms one by one.

variance term 1′ =
M∑
k=1

ησ2

2
⟨Hk,

M∏
m=2

(I− ηHm)N (I− (I− ηH1)
2N )(I− ηHm)N ⟩

=

M∑
k=1

ησ2

2
⟨

M∏
m=2

(I− ηHm)2NHk, (I− (I− ηH1)
2N )⟩

=
ησ2

2

M∑
k=1

∑
i

[

M∏
m=2

(1− ηλi
m)2Nλi

k(1− (1− ηλi
1)

2N )]

≥ ησ2

2

∑
i

[

M∏
m=2

(1− ηλi
m)2N (

M∑
k=1

λi
k)(1− (1− ηλi

1)
2N )] (17)

To further lower bound the two terms, noticing the following inequality:

1− (1− ηλi
1)

2N ≥

{
1− (1− 1

N )2N ≥ 1− e−2 ≥ 9
10 , λi

1 ≥ 1
ηN ,

2N · ηλi
1 −

2N(N−1)
2 · η2λi

1
2 ≥ 9N

10 · ηλi
1, λi

1 < 1
ηN .

Hence, the first term, we have:

variance term 1′ ≥ 9η2σ2

20
(
∑
i<k∗

1

Γi
(2,M)Λ

i +Nη
∑
i>k∗

1

Γi
(2,M)λ

i
1Λ

i).

For the variance term 2′, we notice that:

P′
m = η2σ2

N−1∑
t=0

(I − ηT̃Hm(η))t ◦Hm = η2σ2
N−1∑
t=0

(I− ηHm)2tHm

≥ η2σ2

2
(I− (I− ηHm)2N )

Substituting the above to the variance term 2’, we have:

variance term 2′ =
M∑
k=1

⟨Hk,

M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj
(η))NP′

m⟩

≥ η2σ2

2

M∑
k=1

⟨Hk,
M−1∑
m=1

M∏
j=m+1

(I − ηT̃Hj
(η))N (I− (I− ηHm)2N )⟩

=
η2σ2

2

M∑
k=1

⟨Hk,

M−1∑
m=1

M∏
j=m+1

(I− ηHj)
2N (I− (I− ηHm)2N )⟩

≥ 9η2σ2

20

M−1∑
m=1

(
∑
i<k∗

m

Γi
(m+1,M)Λ

i +Nη
∑
i>k∗

m

Γi
(m+1,M)λ

i
mΛi).

Also, similar to the variance term 3’, it holds that:

variance term 3’ ≥ 9η2σ2

20
(
∑
i<k∗

M

Γi
(M+1,M)Λ

i +Nη
∑
i>k∗

M

Γi
(M+1,M)λ

i
MΛi).

C. Bias Error
Before providing the proof of bias bound, we first introduce the following lemmas for tradition SGD training in Zou et al.
2021.
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Lemma C.1 (Summation of bias iterates (Zou et al., 2021)). Suppose that Assumption 2.3 holds. Suppose that η <
1/(α tr(Hm)). Then for every N ≥ 1 and each task m, it holds that:

1

2η
· (I− (I− ηHm)2N ) ⪯

N−1∑
t=0

(I − η · THm(η))t ◦Hm ⪯ 1

η
· (I− (I− ηHm)2N )

Lemma C.2. Under Assumptions 2.3, let Ba,b = Ba − (I − ηHm)b−aBa(I − ηHm)b−a, if the stepsize satisfies η <
1/(αm tr(Hm)), then for any t ≤ N , it holds that for each task m:

St ⪯
t−1∑
k=0

(I− ηHm)k(
ηαm tr(B0,N )

1− ηαm tr(Hm)
·Hm +B0)(I− ηHm)k,

where denoting St =
∑t−1

k=0(I − T (η) ◦B0.

Lemma C.3. Suppose Assumptions 2.3 and 2.4 hold with step size η ≤ 1/R2, then it holds that:

St ⪰
βm

4
tr
((

I− (I− ηHm)t/2
)
B0

)
·
(
I− (I− ηHm)t/2

)
+

t−1∑
(I− ηHm)t ·B0 · (I− ηHm)t,

where denoting St =
∑t−1

k=0(I − T (η) ◦B0.

C.1. Upper Bound

Lemma C.4. Suppose Assumptions 2.3 and 2.4 hold with step size η ≤ 1/R2, then it holds that:

BMN ⪯
M∏

m=1

(I − ηT̃Hm
(η))N ◦B0 +

M∑
m=1

M∏
j=m

(I − ηT̃Hj
(η))NPm,

where Pm = αmη2
∑N−1

t=0 (I− ηHm)2tHm⟨Hm,B(m−1)N+t⟩ and
∏k2

k1
= 1 if k1 > k2.

We first examine the recursion from t = 0 to t = N − 1 for each task m:

B(m−1)N+t+1 = (I − ηTHm
(η)) ◦B(m−1)N+t (18)

= (I − ηT̃Hm
(η)) ◦B(m−1)N+t + η2(Mm − M̃m) ◦B(m−1)N+t

⪯ (I − ηT̃Hm
(η)) ◦B(m−1)N+t + αmη2 ·Hm · ⟨Hm,B(m−1)N+t⟩.

where the penultimate inequality is derived from the assumption 2.3.

Hence, after N iterations, we could have the following results for task m:

B(m−1)N+N ⪯ (I − ηT̃Hm(η))N ◦B(m−1)N + αmη2
N−1∑
t=0

(I − ηT̃Hm
(η))tHm⟨Hm,B(m−1)N+t⟩

= (I − ηT̃Hm(η))N ◦B(m−1)N + αmη2
N−1∑
t=0

(I− ηHm)2tHm⟨Hm,B(m−1)N+t⟩

= (I − ηT̃Hm
(η))N ◦B(m−1)N + αmη2

N−1∑
t=0

(I− ηHm)2tHm⟨Hm, (I − ηTHm
(η))tB(m−1)N ⟩

⪯ (I − ηT̃Hm(η))N ◦B(m−1)N + αmη2
N−1∑
t=0

Hm⟨Hm, (I − ηTHm(η))tB(m−1)N ⟩

16
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We now examine the second term for each m:
N−1∑
t=0

⟨Hm, (I − ηTHm
(η))tB(m−1)N ⟩

=

N−1∑
t=0

⟨Hm, (I − ηTHm(η))t(I − ηTHm−1(η))
N . . . (I − ηTH1(η))

NB0⟩

=

N−1∑
t=0

⟨(I − ηTHm−1
(η))N . . . (I − ηTH1

(η))NHm, (I − ηTHm
(η))tB0⟩,

where we know the following holds:

(I − ηTHm−1
(η)) ◦Hm = (I − ηT̃Hm−1

(η)) ◦Hm + (M−M̃) ◦Hm

⪯ (I − ηT̃Hm−1(η)) ◦Hm + αm−1η
2 ·Hm−1 · ⟨Hm−1,Hm⟩.

Moreover, we have
∑N−1

t=0 η ·Hm−1 · (I − ηT̃Hm−1
(η))t ⪯ I− (I− ηHm−1)

N ⪯ I. Therefore, it holds that:

(I − ηTHm−1(η))
N ◦Hm ⪯ (I − ηT̃Hm−1(η))

N ◦Hm + αm−1η · I · ⟨Hm−1,Hm⟩.

It implies:

(I − ηTH1(η))
N . . . (I − ηTHm−1(η))

N ◦Hm ⪯ (I − ηT̃H1(η))
N . . . (I − ηT̃Hm−1(η))

N ◦Hm

+

m−1∑
j=1

j∏
k=1

αkη
j · ⟨Hk−1, I− (I− ηHm−1)

N ⟩ · ⟨Hj ,Hm⟩ · I,

where we denote H0 = I and define Φm−1
1 :=

∑m−1
j=1

∏j
k=1 αkη

j · ⟨Hk−1, I− (I− ηHm−1)
N ⟩ · ⟨Hj ,Hm⟩. Therefore,

Equation (19) can be represented as follows:
N−1∑
t=0

⟨(I − ηT̃H1(η))
N . . . (I − ηT̃Hm−1(η))

N ◦Hm +Φm−1
1 · I, (I − ηTHm(η))tB0⟩

≤
N−1∑
t=0

⟨(I − ηT̃H1(η))
N . . . (I − ηT̃Hm−1(η))

N ◦Hm, (I− ηHm)t(
ηαm tr(B0,N )

1− ηαm tr(Hm)
·Hm +B0)(I− ηHm)t⟩︸ ︷︷ ︸

term 1

+

N−1∑
t=0

⟨Φm−1
1 · I, (I− ηHm)t(

ηαm tr(B0,N )

1− ηαm tr(Hm)
·Hm +B0)(I− ηHm)t⟩︸ ︷︷ ︸

term 2

.

We first consider the term 1 with Lemma C.2.

term 1

=

N−1∑
t=0

⟨
m−1∏
j=1

(I− ηHj)
2N (I− ηHm)2tHm, (

ηαm tr(B0,N )

1− ηαm tr(Hm)
·Hm +B0)⟩

=

N−1∑
t=0

ηαm tr(B0,N )

1− ηαm tr(Hm)
⟨
m−1∏
j=1

(I− ηHj)
2N (I− ηHm)2tHm,Hm⟩+

N−1∑
t=0

⟨(I− ηHm)2tHm,B0⟩

≤ αm tr(B0,N )

1− ηαm tr(Hm)
⟨
m−1∏
j=1

(I− ηHj)
2N (I− (I− ηHm)N ),Hm⟩+ 1

η
⟨
m−1∏
j=1

(I− ηHj)
2N (I− (I− ηHm)N ),B0⟩

=
αm tr(B0,N )

1− ηαm tr(Hm)

∑
i

Γi
(1,m−1)[1− (1− ηλi

m)N ]λi
m +

1

η

∑
i

Γi
(1,m−1)ω

2
i [1− (1− ηλi

m)N ]

≤ αm tr(B0,N )

1− ηαm tr(Hm)

∑
i

Γi
(1,m−1) min{1, ηNλi

m}+ 1

η

∑
i

Γi
(1,m−1)ω

2
i min{1, ηNλi

m}

≤ αm tr(B0,N )

1− ηαm tr(Hm)
(
∑
i≤k∗

m

Γi
(1,m−1)λ

i
m

Nη
+Nη

∑
i>k∗

m

Γi
(1,m−1)(λ

i
m)2) +

1

η
∥w0 −w∗∥2

Γm−1
1 Im,0:k∗

m

+N∥w0 −w∗∥2
Γm−1
1 Hm,k∗

m:∞

17
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where k∗m is the index of the smallest eigenvalue of Hm satisfying λi
k∗
m

≥ 1/(ηN), and denotes Um =

αm tr(B0,N )
1−ηαm tr(Hm) (

∑
i≤k∗

m

Γi
(1,m−1)

Nη +Nη
∑

i>k∗
m
(λi

m)2) + 1
η∥w0 −w∗∥2

Γm−1
1 Im,0:k∗

m

+N∥w0 −w∗∥2
Γm−1

1 Hm,k∗
m:∞

.

Moreover, . tr(B0,N ) = tr(B0 − (I− ηHm)NB0(I− ηHm)N )) =
∑

(1− (1− ηΛi)2N ) · (⟨w0 −w∗,vi⟩)2, Hence:

tr(B0,N ) ≤ 2
∑
i

min{1, NηΛi}(⟨w0 −w∗,vi⟩)2 ≤ 2(∥w0 −w∗∥2Im,0:k∗
m
+Nη∥w0 −w∗∥2Hm,k∗

m:∞
).

Now we are ready to examine the term 2.

term 2 =

N−1∑
t=0

⟨Φm−1
1 · I · (I− ηHm)2t, (

ηαm tr(B0,N )

1− ηαm tr(Hm)
·Hm +B0)⟩

≤
N−1∑
t=0

ηαm tr(B0,N )

1− ηαm tr(Hm)
⟨Φm−1

1 · (I− ηHm)2t,Hm⟩+
N−1∑
t=0

⟨Φm−1
1 · (I− ηHm)2t,B0⟩

≤ αm tr(B0,N )

1− ηαm tr(Hm)
⟨Φm−1

1 I, (I− (I− ηHm)N )⟩+ 1

η
⟨
m−1∑
j=1

⟨Hj , α
jΓj−1

1 ·Hm⟩H−1
m (I− (I− ηHm)N ),B0⟩

=
αm tr(B0,N )

1− ηαm tr(Hm)

∑
i

Φm−1
1 [1− (1− ηλi

m)N ] +
1

η

∑
i

Φm−1
1

i
ω2
i (λ

i
m)−1[1− (1− ηλi

m)N ]

≤ αm tr(B0,N )

1− ηαm tr(Hm)

∑
i

Φm−1
1 min{1, ηNλi

m}+ 1

η

∑
i

Φm−1
1 ω2

i (λ
i
m)−1 min{1, ηNλi

m}

≤ αm tr(B0,N )Φm−1
1

1− ηαm tr(Hm)
(k∗m +Nη

∑
i>k∗

m

(λi
m)) +

Φm−1
1

η
∥w0 −w∗∥2

H−1
m,0:k∗

m

+NΦm−1
1 ∥w0 −w∗∥2Im,k∗

m:∞
.

Let us denote Vm =
αm tr(B0,N )Φm−1

1

1−ηαm tr(Hm) (k∗m+Nη
∑

i>k∗
m
(λi

m))+
Φm−1

1

η ∥w0−w∗∥2
H−1

m,0:k∗
m

+NΦm−1
1 ∥w0−w∗∥2Im,k∗

m:∞
.

By combining the aforementioned results, we obtain:

BMN ⪯
M∏

m=1

(I − ηT̃Hm(η))N ◦B0 +

M∑
m=1

M∏
j=m

(I − ηT̃Hj (η))
NPm,

where denoting Pm = αmη2(Um + Vm) ·Hm.

Based on Lemma A.2, the upper bound of the bias error can be expressed as follows:

M∑
k=1

⟨Hk,BMN ⟩ ≤
M∑
k=1

⟨Hk,

M∏
m=1

(I − ηT̃Hm
(η))N ◦B0⟩︸ ︷︷ ︸

bias term 1

+

M∑
k=1

⟨Hk,

M∑
m=1

M∏
j=m

(I − ηT̃Hj
(η))NPm⟩︸ ︷︷ ︸

bias term 2

.
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For each k:

⟨Hk,BMN ⟩ = ⟨
M∏

m=1

(I− ηHm)2NHk,B0⟩+ ⟨Hk,

M∑
m=1

M∏
j=m

(I− ηHj)
2Nαmη2(Um + Vm) ·Hm⟩

≤ ∥w0 −w∗∥2∏M
m=1(I−ηHm)2NHk

+

M∑
m=1

αmη2(
αm tr(B0,N )

1− ηαm tr(Hm)
(
∑
i<k∗

m

Γi
(1,M)(λ

i
m)2λi

k

Nη
+Nη

∑
i>k∗

m

Γi
(1,M)(λ

i
m)3λi

k))

+

M∑
m=1

αmη2(∥w0 −w∗∥2(ΓM
1 HmHk)0:k∗

m

+Nη∥w0 −w∗∥2(ΓM
1 H2

mHk)k∗
m:∞

) (19)

+

M∑
m=1

αmη2Φm−1
1 (

αm tr(B0,N )

1− ηαm tr(Hm)
(
∑
i<k∗

m

Γi
(m,M)(λ

i
m) +Nη

∑
i>k∗

m

Γi
(m,M)(λ

i
m)2))

+

M∑
m=1

αmη2Φm−1
1 (

1

η
∥w0 −w∗∥2

(ΓM
mH−1

m )0:k∗
m
+N∥w0 −w∗∥2(ΓM

m )k∗
m:∞

)

Hence,
M∑
k=1

⟨Hk,BMN ⟩ ≤
M∑
k=1

∥w0 −w∗∥2∏M
m=1(I−ηHm)2NHk

+

M∑
k=1

M∑
m=1

αmη2
αm tr(B0,N )

1− ηαm tr(Hm)
(
∑
i<k∗

m

Γi
(1,M)(λ

i
m)2λi

k

Nη
+Nη

∑
i>k∗

m

Γi
(1,M)(λ

i
m)3λi

k)

+

M∑
k=1

M∑
m=1

αmη2(∥w0 −w∗∥2(ΓM
1 HmHk)0:k∗

m

+Nη∥w0 −w∗∥2(ΓM
1 HkH2

m)
k∗
m:∞

)

+

M∑
k=1

M∑
m=1

αmη2Φm−1
1 (

αm tr(B0,N )

1− ηαm tr(Hm)
(
∑
i<k∗

m

Γi
(m,M)λ

i
k(λ

i
m) +Nη

∑
i>k∗

m

Γi
(m,M)(λ

i
m)2λi

k))

+

M∑
k=1

M∑
m=1

αmηΦm−1
1 (∥w0 −w∗∥2(ΓM

mHk)0:k∗
m
+N∥w0 −w∗∥2(ΓM

mHkHm)k∗
m:∞

)

C.2. Lower Bound

We first examine the recursion from t = 0 to t = N − 1 for each task m:

B(m−1)N+t+1 = (I − ηTHm(η)) ◦B(m−1)N+t (20)

= (I − ηT̃Hm(η)) ◦B(m−1)N+t + η2(Mm − M̃m) ◦B(m−1)N+t

⪰ (I − ηT̃Hm(η)) ◦B(m−1)N+t + βmη2 ·Hm · ⟨Hm,B(m−1)N+t⟩.

Hence, after N iterations, we could have the following results for task m:

B(m−1)N+N ⪰ (I − ηT̃Hm
(η))N ◦B(m−1)N + βmη2

N−1∑
t=0

(I − ηT̃Hm
(η))tHm⟨Hm,B(m−1)N+t⟩

= (I − ηT̃Hm(η))N ◦B(m−1)N + βmη2
N−1∑
t=0

(I− ηHm)2tHm⟨Hm,B(m−1)N+t⟩

= (I − ηT̃Hm
(η))N ◦B(m−1)N + βmη2

N−1∑
t=0

(I− ηHm)2tHm⟨Hm, (I − ηTHm
(η))tB(m−1)N ⟩

(21)
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We now examine the second term for each m:

βmη2
N−1∑
t=0

(I− ηHm)2tHm⟨Hm, (I − ηTHm(η))tB(m−1)N ⟩

= βmη2
N−1∑
t=0

(I− ηHm)2tHm⟨Hm, (I − ηTHm
(η))t(I − ηTHm−1

(η))N . . . (I − ηTH1
(η))NB0⟩

(22)

Acccording to Assumption 2.3 (B), we have:

(I − ηTHm−1
(η)) ◦Hm = (I − ηT̃Hm−1

(η)) ◦Hm + (M−M̃) ◦Hm

⪰ (I − ηT̃Hm−1
(η)) ◦Hm + βm−1η

2 ·Hm−1 · ⟨Hm−1,Hm⟩

→ (I − ηTHm−1
(η))N ◦Hm ⪰ (I − ηT̃Hm−1

(η))N ◦Hm + βm−1η
2 ·

N−1∑
t=0

(I − ηT̃Hm−1
(η))t ◦Hm−1 · ⟨Hm−1,Hm⟩

⪰ (I − ηT̃Hm−1(η))
N ◦Hm +

βm−1η

2
· (I− (I− ηHm−1)

2N ) · ⟨Hm−1,Hm⟩.

Therefore, we have iterations that:

(I − ηTH1
(η))N . . . (I − ηTHm−1

(η))N ◦Hm ⪰ (I − ηT̃H1
(η))N . . . (I − ηT̃Hm−1

(η))N ◦Hm

+

m−1∑
j=1

j∏
k=1

βk(
η

2
)j · ⟨Hk−1, (I− (I− ηHm−1)

2N )⟩ · ⟨Hj ,Hm⟩ · I.

Subsituting the above to Equation (22) and denoting Φ̂m−1
1 :=

∑m−1
j=1

∏j
k=1 βk(

η
2 )

j · ⟨Hk−1, (I − (I − ηHm−1)
2N )⟩ ·

⟨Hj ,Hm⟩, we have:

N−1∑
t=0

⟨Hm, (I − ηTHm
(η))tB(m−1)N ⟩ ⪰

N−1∑
t=0

⟨(I − ηT̃Hm−1
(η))N . . . (I − ηT̃H1

(η))NHm, (I − ηTHm
(η))tB0⟩

+

N−1∑
t=0

⟨Φ̂m−1
1 I, (I − ηTHm

(η))tB0⟩

= ⟨
m−1∏
p=1

(I− ηHp)
2NHm,

N−1∑
t=0

(I − ηTHm(η))tB0⟩︸ ︷︷ ︸
term 1

+ ⟨Φ̂m−1
1 I,

N−1∑
t=0

(I − ηTHm(η))tB0⟩︸ ︷︷ ︸
term 2

From the Lemma, we have:

N−1∑
t=0

(I − ηTHm(η))tB0 ⪰ βm

4
tr((I− (I− ηHm)N/2)B0) · (I− (I− ηHm)N/2)

+

N−1∑
t=0

(I− ηHm)t ·B0 · (I− ηHm)t.
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Then, for each task m, we examine the term 1:

term 1 =⟨
m−1∏
p=1

(I− ηHp)
2NHm,

N−1∑
t=0

(I − ηTHm
(η))tB0⟩

≥⟨
m−1∏
p=1

(I− ηHp)
2NHm,

βm

4
tr((I− (I− ηHm)N/2)B0) · (I− (I− ηHm)N/2)⟩

+⟨
m−1∏
p=1

(I− ηHp)
2NHm,

N−1∑
t=0

(I− ηHm)t ·B0 · (I− ηHm)t⟩

=
βm

4
tr((I− (I− ηHm)N/2)B0) · ⟨

m−1∏
p=1

(I− ηHp)
2NHm, (I− (I− ηHm)N/2)⟩︸ ︷︷ ︸

bias term bm1

+
1

2η
⟨
m−1∏
p=1

(I− ηHp)
2N · (I− (I− ηHm)2N ),B0⟩︸ ︷︷ ︸
bias term bm2

The first bias item is lower bounded by:

bias term bm1 =
βm

4
(
∑
i

(1− (1− ηλi
m)N/2)ω2

i ) · (
∑
i

m−1∏
p=1

(1− ηλi
p)

2Nλi
m(1− (1− ηλi

m)N/2)),

The second bias item is lower bounded by:

bias term bm2 ≥ (
∑
i

m−1∏
p=1

(1− ηλi
p)

2N (1− (1− ηλi
m)2N )ω2

i )

To further lower bound the two terms, we notice that:

1− (1− ηλi
m)

N
2 ≥

{
1− (1− 1

N )
N
2 ≥ 1− e−

1
2 ≥ 1

5 , λi
m ≥ 1

ηN
N
2 · ηλi

m − N(N−2)
8 · η2λi

m
2 ≥ N

5 · ηλi
m, λi

m < 1
ηN

Substituting to the previous results, we have:

bias term bm1 ≥ βm

4
(
1

5
·
∑
i≤k∗

m

ω2
i +

ηN

5

∑
i>k∗

m

(λi
m)ω2

i ) · (
1

5
·
∑
i≤k∗

m

Γi
(1,m−1)λ

i
m +

ηN

5

∑
i>k∗

m

Γi
(1,m−1)(λ

i
m)2)

=
βm

25
· (∥w0 −w∗∥2Im,0:k∗

m
+Nη∥w0 −w∗∥2Hm,k∗

m:∞
) · (

∑
i≤k∗

m

Γi
(1,m−1)(λ

i
m) + ηN

∑
i>k∗

m

Γi
(1,m−1)(λ

i
m)2)

and

bias term bm2 ≥ (
1

5
·
∑
i≤k∗

m

Γi
(1,m−1)ω

2
i +

ηN

5

∑
i>k∗

m

Γi
(1,m−1)λ

i
mω2

i )

=
1

5
· (∥w0 −w∗∥2

(
∏m−1

p=1 (I−ηHp)2N )0:k∗
m

+Nη∥w0 −w∗∥2
(
∏m−1

p=1 (I−ηHp)2NHm)k∗
m:∞

)
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Now we are ready to examine term 2.

term 2 =⟨Φ̂m−1
1 I,

N−1∑
t=0

(I − ηTHm
(η))tB0⟩

≥⟨Φ̂m−1
1 I,

βm

4
tr((I− (I− ηHm)N/2)B0) · (I− (I− ηHm)N/2)⟩

+⟨Φ̂m−1
1 I,

N−1∑
t=0

(I− ηHm)t ·B0 · (I− ηHm)t⟩

=
βm

4
tr((I− (I− ηHm)N/2)B0) · ⟨Φ̂m−1

1 I, (I− (I− ηHm)N/2)⟩︸ ︷︷ ︸
bias term dm

1

+
1

2η
⟨Φ̂m−1

1 H−1
m · (I− (I− ηHm)2N ),B0⟩︸ ︷︷ ︸

bias term dm
2

Analogous to term 1, we have:

bias term dm1 =
βm

4
(
∑
i

(1− (1− ηλi
m)N/2)ω2

i ) · (
∑
i

Φ̂m−1
1 λi

m(1− (1− ηλi
m)N/2))

≥ βm

25
· (∥w0 −w∗∥2Im,0:k∗

m
+Nη∥w0 −w∗∥2Hm,k∗

m:∞
) · Φm−1

1 · (
∑
i<k∗

m

(λi
m) + ηN

∑
i>k∗

m

(λi
m)2)

and

bias term dm2 ≥ (
∑
i

Φ̂m−1
1 (λi

m)−1(1− (1− ηλi
m)2N )ω2

i )

≥ Φ̂m−1
1 (

1

5
·
∑
i≤k∗

m

(λi
m)−1ω2

i +
ηN

5

∑
i>k∗

m

ω2
i )

=
Φ̂m−1

1

5
· (∥w0 −w∗∥2

(H−1
m )0:k∗

m

+Nη · ∥w0 −w∗∥2I)k∗
m:∞

)

After MN iterations, it holds that:

BMN ⪰
M∏

m=1

(I − ηT̃Hm
(η))N ◦B0 +

M∑
m=1

M∏
j=m

(I − ηT̃Hj
(η))NPm,

where denoting Pm = βmη2(bm1 + bm2 + dm1 + dm2 ) · (I− ηHm)2NHm.

Then, the bias error can be represented as follows:

M∑
k=1

⟨Hk,BMN ⟩ ≥
M∑
k=1

⟨Hk,

M∏
m=1

(I − ηT̃Hm(η))N ◦B0⟩︸ ︷︷ ︸
bias term 1’

+

M∑
k=1

⟨Hk,

M∑
m=1

M∏
j=m

(I − ηT̃Hj
(η))NPm⟩︸ ︷︷ ︸

bias term 2’

.

≥
M∑
k=1

∥w0 −w∗∥2∏M
m=1(I−ηHm)2NHk

+

M∑
k=1

⟨Hk,

M∑
m=1

M∏
j=m

(I− ηHj)
2Nβmη2(bm1 + bm2 + dm1 + dm2 ) · (I− ηHm)2NHm⟩.

22



Understanding Forgetting in Continual Learning with Linear Regression

It follows that:

M∑
k=1

⟨Hk,BMN ⟩ ≥
M∑
k=1

∥w0 −w∗∥2∏M
m=1(I−ηHm)2NHk

+

M∑
k=1

∑
i

λi
k ·

M∑
m=1

M∏
j=m

(1− ηλi
j)

2Nβmη2(bm1 + bm2 + dm1 + dm2 ) · (1− ηλi
m)2Nλi

m

≥
M∑
k=1

∥w0 −w∗∥2∏M
m=1(I−ηHm)2NHk

+

M∑
k=1

M∑
m=1

(bm1
′ + bm2

′ + dm1
′ + dm2

′)

where

bm1
′ =

β2
mη2

25
· (∥w0 −w∗∥2Im,0:k∗

m
+Nη∥w0 −w∗∥2Hm,k∗

m:∞
)

· (
∑
i<k∗

m

Γi
(1,M)λ

i
k(λ

i
m)2 + ηN

∑
i>k∗

m

Γi
(1,M)(λ

i
m)3λi

k)

bm2
′ =

βmη2

5
· (∥w0 −w∗∥2(Γ(1,M)HmHk)0:k∗

m
+Nη∥w0 −w∗∥2(Γ(1,M)(I−ηHm)2NH2

mHk)k∗
m:∞

),

and

dm1
′ =

βm

25
· (∥w0 −w∗∥2Im,0:k∗

m
+Nη∥w0 −w∗∥2Hm,k∗

m:∞
)

· Φ̂m−1
1 · (

∑
i<k∗

m

Γi
(m,M)λ

i
k(λ

i
m) + ηN

∑
i>k∗

m

Γi
(m,M)(λ

i
m)2λi

k)

dm2
′ =

βmη2Φ̂m−1
1

5
· (∥w0 −w∗∥2(Γ(m,M)Hk)0:k∗

m
+Nη∥w0 −w∗∥2(Γ(m,M)(I−ηHm)2NHmHk)k∗

m:∞
).

D. Extension work
It is noticed that when the step size is set to ∥xm∥−2, the update rule for the minimum norm solution can be considered
equivalent to that of the last iterate SGD. Consequently, in this subsection, we will focus on a particular case (akin to the
setting in Lin et al. 2023) that involves this specific step size, allowing us to draw direct comparisons and insights under a
defined set of conditions.

Consider a series of tasks M = {1, 2, . . . ,M}. Given M datasets, for each dataset m ∈ M, Dm = {(xm,i, ym,i)}Ni=1 drawn
i.i.d from some fixed distribution Dm = Xm × Ym ⊂ Rd × R. Assume that {(xm,i, ym,i)}Ni=1 are i.i.d. sampled from a
linear regression model, i.e., each (xm,i, ym,i) is a realization of the linear regression model ym = (x⊤

mw∗
m) + zm, where

zm is some randomized noise satisfing well-specified condition and w∗
m ∈ Rd is the optimal model parameter for task m.

We adopt the same learning procedure with specific step size, aiming to output a model wN
M minimizing the performance

(Lin et al., 2023), i.e.

G(wN
M ) =

1

M

M∑
i=1

∥wN
M −w∗

i ∥2. (23)

Therefore, our results can be restated as follows

Theorem D.1. Consider a scenario where the model w undergoes training via SGD for M distinct tasks, following a
sequence 1, . . . ,M . With a specific step size of ηm,t = ∥xm,t∥−2, each task is executed for N iterations. Given that
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Assumption 2.4 are satisfied, the following will hold:

E[G(wN
M )] =

1

M

M∑
i=1

∥w0
0 −w∗

i ∥2∏M
m=1

∏N
t=1(I−Hmηm,t)

+
1

M

M∑
i=1

M∑
m=1

N−1∑
t=0

∥w∗
m −w∗

i ∥2∏M−m
p=1

∏N
j=1(I−Hpηp,j)

∏N−t
j=q (I−Hmηm,q)Hmηm,q

+
1

M

M∑
i=1

M∑
m=1

N−1∑
t=0

∥zm,t∥2∏M−m
p=1

∏N
j=1(I−Hpηp,j)

∏N−t
q=1 (I−Hmηm,q)ηm,q

.

Remark 2. In contrast to the approach in Theorem 3.1 and Theorem 3.2, here we do not rely on the decomposition
of bias and variance error while considering that the projection (I − ηm,txm,tx

⊤
m,t) is orthogonal to ηm,txm,tx

⊤
m,t with

a specific stepsize ηm,t = ∥xm,t∥−2
2 . This perspective allows us to derive a closed-form expression for the expected

performance, which integrates the impact of initial parameter deviations, task-specific parameter variations, and random
noise. Furthermore, Theorem D.1 in our study explores the performance behavior on general data distributions, expanding
beyond the Gaussian distribution context discussed in Lin et al. 2023. In scenarios where there is only a single sample per
training iteration, our results could cover their findings.

Proof. For each iteration, according to the update rule of SGD, it holds that

wN
m = wN−1

m − η(xm,N ((xm,N )⊤wN−1
m − ym,N )).

which can be rewritten as:

wN
m −w∗

i = (I− ηxm,N (xm,N )⊤)(wN−1
m −w∗

i ) + ηzm,Nxm,N .

We consider the expectation norm for both sides:

E[∥wN
m −w∗

i ∥2]
=E[(wN

m −w∗
i )

⊤(wN
m −w∗

i )]

=E[(wN−1
m −w∗

i )
⊤(I− ηxm,N (xm,N )⊤)⊤(I− ηxm,N (xm,N )⊤)(wN−1

m −w∗
i ) + η2(zm,Nxm,N )⊤(zm,Nxm,N )]

(∗) =E[∥(I− ηm,Nxm,N (xm,N )⊤)(wN−1
m −w∗

i )∥2 + ∥ηm,Nxm,N (xm,N )⊤(w∗
m −w∗

i )∥2 + ∥ηm,Nxm,Nzm,N∥2]
=E[∥wN−1

m −w∗
i ∥2(I−Hmηm,N )] + ηm,Nσ2 + ∥w∗

m −w∗
i ∥2Hmηm,N

=∥w0
m −w∗

i ∥2∏N
t=1(I−Hmηm,t)

+

N−1∑
t=1

∥w∗
m −w∗

i ∥2∏N−t
j=1 (I−Hmηm,j)jHmηm,N

+

N−1∑
t=1

∥zm,t∥2∏N−t
j=1 (I−Hmηm,j)jηm,N

,

where the (*) equation comes from the choice of step size such that (I − ηm,txm,t(xm,t)
⊤) and ηm,txm,t(xm,t)

⊤ are
orthogonal projection, which equals the minimum norm solution with one sample.

Considering M tasks, it holds that

E∥wm, −w∗
i ∥2 = ∥w0

0 −w∗
i ∥2∏M

m=1

∏N
t=1(I−Hmηm,t)

+

M−1∑
m=1

N−1∑
t=0

∥w∗
m −w∗

i ∥2∏M−m
p=1

∏N
j=1(I−Hpηp,j)

∏N−t
j=q (I−Hmηm,q)Hmηm,q

+

M−1∑
m=1

N−1∑
t=0

∥zm∥2∏M−m
p=1

∏N
j=1(I−Hpηp,j)

∏N−t
q=1 (I−Hmηm,q)ηm,q

.

In conclusion, we aggregate the performance metrics across tasks, ranging from i = 1 to i = M , to derive the final
result.
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