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Abstract

Logical reasoning task has attracted great in-001
terest since it was proposed. Faced with such002
a task, current competitive models, even large003
language models (e.g., ChatGPT and PaLM 2),004
still perform badly. Previous promising LMs005
struggle in logical consistency modeling and006
logical structure perception. To this end, we007
model the logical reasoning task by transform-008
ing each logical sample into reasoning paths009
and propose an architecture PathReasoner. It010
addresses the task from the views of both data011
and model. To expand the diversity of the log-012
ical samples, we propose an atom extension013
strategy supported by equivalent logical for-014
mulas, to form new reasoning paths. From015
the model perspective, we design a stack of016
transformer-style blocks. In particular, we pro-017
pose a path-attention module to joint model018
in-atom and cross-atom relations with the high-019
order diffusion strategy. Experiments show020
that PathReasoner achieves competitive perfor-021
mances on two logical reasoning benchmarks022
and great generalization abilities.023

1 Introduction024

With the emergence of pre-trained language mod-025

els (PLMs) (Kenton and Toutanova, 2019; Brown026

et al., 2020), recent years have witnessed remark-027

able progress in the task of machine reading com-028

prehension (MRC) (Rajpurkar et al., 2016; Lai029

et al., 2017). To tackle more complex scenarios in030

reality, the challenging logical reasoning task (Yu031

et al., 2019; Liu et al., 2021a) has been proposed032

to exploit the model reasoning capability (Huang033

and Chang, 2023) over text1. Similar to the tradi-034

tional MRC task, it also takes the context, question035

and options as inputs and requires the model to036

predict the final answer. Due to the diverse logical037

characteristics implied in the text, logical reasoning038

1Logical reasoning is a broad concept covering various
tasks, but we mainly address the task in the form of MRC.

Figure 1: Probing tests on representative LMs (e.g.,
RoBERTa). (a) is about model prediction consistency.
(b) is related to the perception of logical connectives.
Detailed pilot experiments are shown in the Appendix.

task brings huge challenges to current LMs. Espe- 039

cially, faced with such tasks, large language models 040

(LLMs), e.g., ChatGPT2 and PaLM 23, also strug- 041

gle a lot which is proved by previous evaluation 042

works (Xu et al., 2023a; Liu et al., 2023). Under 043

such circumstances, this paper will focus more on 044

addressing logical reasoning tasks with small LMs, 045

which are light-weighted and more flexible for fu- 046

ture applications4. 047

Previous competitive LMs expose two limita- 048

tions in the performance. Firstly, it lacks consistent 049

model predictions on samples with equal logical 050

semantics. For example in Figure 1(a), we make 051

changes to the expression of the original context 052

while maintaining the semantic unchanged, where 053

not...unless is equally transformed into the expres- 054

sion of only if. However, the LMs give inconsistent 055

predictions between the original sample and the 056

modified one. We blame the problem on the lack of 057

2https://chat.openai.com
3https://ai.google/discover/palm2/
4The focus of this paper is mainly on small LMs, since they

are more efficient and effective compared with LLMs on the
logical reasoning tasks. But we still report LLM performances
for comparison in the experiment section.
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training samples in logical reasoning. Compared058

with some classic MRC datasets like SQuAD (Ra-059

jpurkar et al., 2016, 2018), CoQA (Reddy et al.,060

2019) with over 100,000 training samples, logical061

reasoning datasets like ReClor (Yu et al., 2019) and062

LogiQA (Liu et al., 2021a) are much more sparse063

with only several thousand samples. Thus, such064

sparsity limits the learning of logic semantics. Pre-065

vious work (Jiao et al., 2022) leverages general066

corpus to conduct continual pretraining, but it does067

not address the sparsity of logical text in essential.068

Secondly, it remains a challenge to enhance the069

model perception for logical structures. For exam-070

ple in Figure 1(b), we randomly replace the explicit071

logical relation words or inverse the negations for072

the context, which destroys the original semantics.073

But the LMs fail to change the prediction accord-074

ingly. It demonstrates that current LMs are insensi-075

tive to the logical connectives, instead they focus076

more on facts within the text. Considering that cur-077

rent LMs are pre-trained with general objectives on078

the fact corpus (e.g., Wikipedia), they are naturally079

weak in capturing the logical structures usually080

existing in logical-specific scenarios. Some stud-081

ies like DAGN (Huang et al., 2021), Logiformer082

(Xu et al., 2022), and AdaLoGN (Li et al., 2022)083

have attempted to model the explicit logical rela-084

tions from various perspectives, such as causal and085

co-occurrence. All of them build text graphs to086

conduct the reasoning, which limits the scalability087

to larger text and more complex scenarios.088

In view of the above challenges, we propose an089

architecture PathReasoner, which considers a new090

paradigm for logical reasoning tasks via reasoning091

path modeling. Based on the predefined logical092

rule forms, we represent each natural sentence as093

an atom and transform each sample into reason-094

ing paths with confidence scores. Under such a095

paradigm, PathReasoner addresses the task from096

two views. From the view of expanding the data097

diversity, we first obtain equivalent atom combina-098

tions through external logical formulas, generating099

new reasoning paths and textualizing them as new100

samples. From the model view, we propose a rea-101

soning path modeling network. It encodes both102

function symbols and variables in atoms and forms103

an atom embedding sequence as the input. In a104

path-attention module, we model high-order rela-105

tions from both in-atom and cross-atom perspec-106

tives. Through the fusion of token, atom, and path107

embedding, the prediction can be derived.108

Our technical contributions are as follows, and 109

additional key values are in Appendix I: 110

(1) We unify the text inputs into atoms and reason- 111

ing paths. Based on it, an architecture PathRea- 112

soner is proposed to improve both the diversity of 113

samples and logic perception capability. 114

(2) In light of the sparsity of training samples, we 115

propose an atom extension strategy. Relying on 116

predefined logical formulas, it generates new atom 117

combinations with equivalent semantics to form 118

new training samples. 119

(3) To better capture logical structures, a path- 120

attention module with high-order relation modeling 121

is proposed to jointly update information within 122

atoms and across atoms. 123

(4) Extensive experiments show superior perfor- 124

mances on two logical reasoning benchmarks. Sig- 125

nificant generalization capabilities are also verified. 126

2 Related Work 127

Recent progress in MRC promotes the emergence 128

of more complex tasks like logical reasoning. Previ- 129

ously, two datasets on logical reasoning have been 130

proposed, which are ReClor (Yu et al., 2019) and 131

LogiQA (Liu et al., 2021a). They have attracted 132

much attention since some LMs fail to show superi- 133

ority. Previous works on the logical reasoning task 134

can be categorized into two folds. 135

Sequence-based. These models are usually ac- 136

companied by data augmentation strategies. LRea- 137

soner (Wang et al., 2022) proposes to extend text 138

with logical formulas to enrich the context infor- 139

mation. MERIt (Jiao et al., 2022) proposes a con- 140

trastive strategy based on the meta-path and lever- 141

ages the extra data to pre-train the model. However, 142

both of them lack the relation modeling of logical 143

units in the sequence. 144

Graph-based. DAGN (Huang et al., 2021) is the 145

first work to divide the text into discourse units 146

and utilize the graph neural networks (Zhou et al., 147

2020) to update the representations. But its chain- 148

type graph structure limits the expression of com- 149

plex relations between logical units. FocalRea- 150

soner (Ouyang et al., 2021) focuses on the fact 151

triplet extracted from the text and builds a super- 152

graph for reasoning. But it ignores the effects of 153

the logical connectives within the text. To better 154

model the logic within text, AdaLoGN (Li et al., 155

2022) designs an adaptive network to update the 156

text graph progressively. Logiformer (Xu et al., 157
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2022) proposes a two-branch graph transformer158

network to address the text from syntax and logic.159

However, it is costly to form and update the text160

graph during the reasoning process. In general, the161

graph-based methods naturally lack expansibility,162

especially when the text becomes larger.163

Considering the above drawbacks, we propose a164

reasoning pattern based on the reasoning paths (in-165

stantiated logical rules) for the first time. It models166

the logical reasoning task from a special perspec-167

tive and combines the advantages of both sequence168

and graph-based methods.169

3 Preliminary170

This work considers unifying the inputs into the171

form of logical rules since it is a more natural way172

to uncover logical structures of the text while main-173

taining the important facts. The distinctive values174

of such definitions over first-order logic and propo-175

sitional logic are in Appendix C. We introduce the176

following two definitions.177

Definition 1: atom. We transform each natural178

sentence into one atom (Hinman, 2018), which179

consists of one function symbol and several vari-180

ables. For example, given the sentence Paula will181

visit the dentist only if Bill goes golfing, we define182

the expression OnlyIf(A,B) as the atom. OnlyIf183

is the function symbol that denotes the explicit con-184

nective phrase in the sentence. And A,B are called185

variables to represent abstract sentence constitutes,186

whose instantiation are Paula will visit the dentist187

and Bill goes golfing respectively. Similarly, we188

can also derive other atoms from the text, such as189

Unless(A,B), Since(A,B), InFact(A).190

According to the reasoning patterns, we define191

four categories of function symbols, shown in Table192

1. The first is causal relations for deterministic193

facts. The second and third ones are conditional194

assumptions, where NA focuses on the uniqueness195

of the condition. The last one is facts with no196

explicit logical relations.197

Definition 2: reasoning path. Based on Definition198

1, we can unify the context, question and options199

of each input into the form of the logical rule (Lin200

et al., 2022; Pan et al., 2022), such as Eq. 1:201

ε, F1(A,B) ∧ F2(C,A) ∧ F3(D) ∧ · · ·︸ ︷︷ ︸
rule body

⇒ Q(ai)︸ ︷︷ ︸
rule head

. (1)202

Rule body functions as the modeling of the context203

part, which is represented as the conjunction of204

atoms. Rule head consists of the concatenation205

of the question sentence and option ai, which is206

Category Representative Connectives
Cause Because, Since, DueTo, TheReasonsWhy...

SA If, When, Once, AsLongAs, ...
NA OnlyIf, Unless, ...
Fact InFact, Actually, InAll, ToConclude ...

Table 1: Categories of function symbols. ‘SA’ and
‘NA’ are short for Sufficient Assumption and Necessary
Assumption respectively.

also represented as the conjunction of atoms in 207

the implementation. The symbol ε indicates the 208

confidence score of the logical rule. Since each 209

option is bounded with one logical rule, ε is also 210

equal to the confidence of option ai. In actual cases, 211

the function symbols (e.g., F1, F2) and variables 212

(e.g., A,B) are instantiated as the natural language. 213

Therefore, this paper defines the instantiated logical 214

rule as the reasoning path. 215

Implementation We use over 100 pre-defined 216

function symbols, grouped into four categories, 217

and apply hand-crafted rules to match them in the 218

sentence. The function symbols along with the 219

punctuation can be divided into one or two parts, 220

as instantiated variables. This strategy is relatively 221

complete, illustrated in Appendix B. 222

4 Methods 223

To tackle the challenges in the logical reasoning 224

task, we propose the architecture PathReasoner, 225

shown in Figure 2. It includes two main parts: (a) 226

Equivalent Path Extension (EPE) and (b) Reason- 227

ing Path Modeling (RPM). The former module is 228

aimed at expanding the sample diversity to improve 229

the consistency of model prediction. The latter one 230

targets at improving the logic perception capability 231

of the reasoning model. 232

4.1 Equivalent Path Extension 233

After unifying the inputs into the logical rule form, 234

it is natural to exploit the equivalent logic to facili- 235

tate the equivalent extension. 236

4.1.1 External Logical Formulas 237

In the beginning, we introduce external logical for- 238

mulas to achieve the atom extension. Correspond- 239

ing to the function symbols, we employ the follow- 240

ing logical formulas. 241

(A) Equivalence Logic. It defines the bi-directional 242

derivation between atoms as Eq. 2, where □ ∈ 243

{Cause,SA} and ¬ denotes the negation. 244

□(A,B) ⇔ □(¬B,¬A). (2) 245
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Figure 2: The architecture of PathReasoner. Part (a) is Equivalent Path Extension, which aims to improve the
diversity of samples. Part (b) is Reasoning Path Modeling, which is designed to model logical structures.

(B) Single Atom Derivation. Such logical formula246

is targeted at transforming NA atoms to SA, i.e.,247

NA(A,B) ⇒ SA(¬A,¬B). (3)248

(C) Multiple Atom Derivation. Depending on the249

conjunction of atoms, we can generate more diverse250

text. We only present the logical formulas with251

two atom conjunction in Eq. 4 and 5, since more252

complex situations can be derived by repeating the253

extension process.254

⋆(A,B) ∧△(B,C) ⇒ ⋆(A,C), (4)255

256 Fact(A) ∧▽(A,B) ⇒ Fact(B). (5)257

In above equations, ⋆ ∈ {Cause,NA,SA},△ ∈258

{Cause,NA,SA} and ▽ ∈ {Cause,NA,SA}.259

4.1.2 Reasoning Path Engine and Filter260

Taking original reasoning paths and equivalent log-261

ical formulas as inputs, the reasoning path engine262

module aims to generate the candidate samples.263

Firstly, we conduct multi-round atom extension.264

For example in Fig. 2(a), there exist four atoms in265

the original reasoning path. At the first round, the266

atom Unless(C,B) can derive If(¬C,¬B), and267

also a new atom OnlyIf(C,A) can be added into268

the atom base through the conjunction derivation269

of Unless(C,B) and OnlyIf(B,A). We repeat270

the extension process to include all potential atoms.271

Thus, an extended atom base is formed.272

Secondly, our purpose is to mine atom com-273

binations to form new reasoning paths. By enu-274

merating all possible combinations, we select the275

ones which can recover the original path in reverse. 276

For example, the combination of OnlyIf(B,A), 277

OnlyIf(C,B), Fact(¬C) and If(¬C,¬A) is a 278

valid candidate because it can derive the original 279

path with external logical formulas. 280

Thirdly, we replace the variables with the cor- 281

responding text and textualize the reasoning path 282

form into regular sample form (with context, ques- 283

tion and options). 284

To reduce noise (e.g., incorrect syntax) in the 285

newly generated candidates, we introduce the path 286

filter module. Specifically, we leverage the PLM 287

(e.g., RoBERTa (Liu et al., 2019)) to train the orig- 288

inal samples from the downstream datasets. There- 289

fore, a set of weight parameters is obtained, which 290

is defined as the pre-trained filter in this paper. 291

When feeding each sample into the pre-trained 292

filter, we can obtain the confidence score εi of the 293

ith reasoning path related to option ai. The pre- 294

dicted option ak is derived with the maximum con- 295

fidence scores. We keep the samples with both 296

correct predictions and high scores, which means 297

ak = a∗ and εk > ε∗. ak is the predicted option 298

with confidence score εk. a∗ is the ground-truth 299

option and ε∗ is the threshold that controls the ef- 300

fectiveness of the reasoning path filter. 301

4.2 Reasoning Path Modeling 302

From the model view, we propose the reasoning 303

path modeling module. Given the input context, 304

question, and options of one sample, we first unify 305

them into the form of the reasoning path based on 3. 306
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The initial representation of instantiated variable307

set V = {V1, V2, ..., VK} and function symbols set308

S = {S1, S2, ..., SM} can be acquired respectively,309

where K and M are the number of variables and310

function symbols in the sample.311

For the variable Vk with token sequence312

{v(k)1 , v
(k)
2 , ..., v

(k)
|Vk|}, we leverage the LM as the313

encoder to obtain the token-level embedding314

{v(k)1 , v(k)2 , ..., v(k)|Vk|}. Thus, its initial representa-315

tion Vk ∈ Rd is calculated by the average pooling.316

We randomly initialize the representations for the317

function symbol Sm:318

Vk =
1

|Vk|

Vk∑
i=1

v
(k)
i , Sm = Init(Sm). (6)319

By aligning the variables and function symbol320

for each atom, we can form the atom embedding se-321

quence A ∈ R(M+K)×d. To take the order feature322

into consideration, we include the position embed-323

ding (Vaswani et al., 2017) to the input sequence:324

Ai = Ai + PosEmbed(Ai), (7)325

where Ai is the embedding of the ith unit in A,326

which can be either a variable or a function symbol.327

In this way, PathReasoner implements the sequen-328

tial representation of logical rules.329

To perform message passing over the reasoning330

paths, we propose a stack of L layer blocks in a331

similar style of Transformer. Specifically, we feed332

the input sequence into both the self-attention and333

the proposed path attention module.334

For the self-attention module of the lth layer,335

we follow the regular method, which projects the336

input sequence into query Q(l) ∈ R(M+K)×d, key337

K(l) ∈ R(M+K)×d and value V(l) ∈ R(M+K)×d338

by the projection matrices. Then, the output of the339

self-attention module can be derived as H(l)
SA.340

For simplicity, we omit the description of multi-341

head attention in the main paper, but the selection342

of head number will be discussed in Appendix E.3.343

For the path attention module, we first obtain344

the interaction matrix M
(l)
seq ∈ R(M+K)×(M+K)345

by self multiplication of the input sequence A. It346

models the interaction between any two units. Be-347

sides, the importance of each unit can be further348

considered from the perspective of in-atom and349

cross-atom.350

In-atom interaction models the information351

aggregation within one atom. Take the atom352

Si(Vj , Vk) with two variables Vj , Vk and one func-353

tion symbol Si as an example (i,j and k are index354

in the input sequence), the attention score can be 355

computed as: 356

s
(l)
in = LeakyReLU(W

(l)
in tanh(V

(l)||S(l)
i )), (8) 357

where S
(l)
i ∈ Rd denotes the embedding of func- 358

tion symbol Si. V(l) ∈ Rd is obtained by aver- 359

aging the variable embedding V
(l)
j and V

(l)
k . For 360

atom with a single variable, the average step can be 361

omitted. || represents the concatenation between 362

feature vectors. W is the trainable projection pa- 363

rameters (the same below). 364

To embed the in-atom attention, we leverage a 365

score matrix M
(l)
in ∈ R(M+K)×(M+K): 366

M
(l)
in (i, j) = M

(l)
in (i, k) =

{
s
(l)
in , Si(Vj , Vk) exists
−∞, otherwise

.

(9) 367

We define M
(l)
in as a symmetric attention matrix, 368

thus there also exist M(l)
in (j, i) = M

(l)
in (i, j) and 369

M
(l)
in (k, i) = M

(l)
in (i, k). 370

Cross-atom interaction models the message pass- 371

ing over different atoms. For the same variable Vp 372

and Vq (p, q are unit index of the input sequence), 373

the attention score is obtained: 374

s(l)crs = LeakyReLU(W(l)
crs((V

(l)
p +V(l)

q )/2)),
(10) 375

where V
(l)
p and V

(l)
q are the embeddings of two 376

instantiated variables. 377

Similar to in-atom attention, we obtain a cross- 378

atom score matrix M
(l)
crs ∈ R(M+K)×(M+K): 379

M(l)
crs(p, q) =

{
s
(l)
crs, if Vp, Vq co-occurs
−∞, otherwise

(11) 380

Since these two attention matrices only model 381

one-order interaction between related units, the 382

long-distance message passing is limited. Also, we 383

extract the atom based on the explicit logical con- 384

nectives, it ignores the implicit interactions within 385

the logical text. Therefore, we introduce a diffusion 386

aggregation strategy (Zhao et al., 2021; Liu et al., 387

2021b) to achieve high-order attention: 388

M
(l)
in−h =

N∑
i=1

αi(M
(l)
in )

i, (12) 389

390

M
(l)
crs−h =

N∑
i=1

βi(M
(l)
crs)

i, (13) 391

where N is the maximum order number, αi and βi 392

are the trade-off coefficients to control the diffusion 393
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procedure. In this way, the one-order attention flow394

can be efficiently diffused to high-order relations.395

We can update the feature of sequence H
(l)
seq ∈396

R(M+K)×d through joint utilization of these three397

attention matrices:398

H(l)
seq = softmax(M(l)

seq +M
(l)
in−h +M

(l)
crs−h)A.

(14)399

Within each atom, we aggregate the instantiated400

variable embedding in the function symbol to ac-401

quire a sequence of atom embedding, which can be402

represented as {H(l)
S1
, ...,H

(l)
SM

}. Next, we define403

the reasoning path H
(l)
p ∈ Rd embedding as:404

H(l)
p = MeanPool(

M

||
i=1

H
(l)
Si
). (15)405

To align the output embedding of the self-406

attention module, we repeat and stack the reasoning407

path embedding for M+K times, obtaining the out-408

put of path-attention module H
(l)
PA ∈ R(M+K)×d.409

Note that the multi-head strategy is also applied in410

the path-attention module.411

We obtain the optimized sequence embedding412

by adding H
(l)
SA and H

(l)
PA. Following the common413

practice in the Transformer architecture, we feed414

the sequence into the feedforward block and obtain415

the final output H(l)
t of lth layer.416

After the respective mean pooling process on417

Hcls, H
(L)
t and H

(L)
p , the three features are con-418

catenated and projected for the final prediction.419

5 Experiments420

This section provides comparison experiments with421

other strong baselines on two logical reasoning422

benchmarks. Extensive ablation studies and gener-423

alization evaluations are also followed.424

5.1 Datasets and Baselines425

The main experiments are conducted on two log-426

ical reasoning datasets ReClor (Yu et al., 2019)427

and LogiQA (Liu et al., 2021a). To verify the428

superiority of PathReasoner, we compare it with429

strong baselines, including RoBERTa-large (Liu430

et al., 2019), DAGN (Huang et al., 2021), Focal-431

Reasoner (Ouyang et al., 2021), LReasoner (Wang432

et al., 2022), AdaLoGN (Li et al., 2022), MERIt433

(Jiao et al., 2022), Logiformer (Xu et al., 2022), as434

well as LLMs like text-davinci-003, GPT-3.5-turbo435

and PaLM 2. All the experiments are conducted436

with a single GPU of Tesla A100. All detailed437

experimental settings are listed in Appendix E.3.438

5.2 Comparison Results 439

The results of comparison experiments are pre- 440

sented in Table 2. Compared with previous SOTA 441

baselines, PathReasoner presents superiority. 442

In ReClor dataset, PathReasoner outperforms 443

all the graph-based methods. Compared with the 444

SOTA method Logiformer, PathReasoner achieves 445

improvements of 2.00% and 0.60% on the valida- 446

tion and test splits respectively. PathReasoner also 447

shows superiority over all sequence-based meth- 448

ods, especially outperforming MERIt by 2.50% on 449

the test split. Importantly, it surpasses human per- 450

formance, i.e., 64.10% vs 63.00%, which greatly 451

pushes the boundary of machine reasoning. In 452

LogiQA dataset, PathReasoner still shows compet- 453

itive performances, improving the SOTA results by 454

2.46% on the test split. PathReasoner demonstrates 455

excellent performance and generalization in logical 456

reasoning, as evidenced by its consistent results 457

across two benchmarks. 458

Compared with representative LLMs, PathRea- 459

soner exhibits great superiority with a wide mar- 460

gin in the ReClor dataset. Also in the LogiQA 461

dataset, it outperforms both text-davinci-003 and 462

GPT-3.5 with obvious advantages and only falls 463

behind PaLM 2 which is over x1000 in size. 464

5.3 Ablation Studies 465

Ablation studies for two main parts EPE and RPM 466

in Table 3. For w/o whole of EPE, we remove 467

the whole part of EPE and only utilize the origin 468

samples for training. The performance witnesses 469

obvious drops of 3.70% and 2.00% on the two 470

datasets respectively. For w/o path filter, we keep 471

all the new paths to generate samples without filter- 472

ing. The results prove the effectiveness of it with 473

1.30% and 1.23% gains on the test respectively. For 474

w/o whole of RPM, we ablate the whole RPM and 475

simply leverage the input sequence to predict the 476

answer through a text encoder and a classifier. In 477

this case, the model degenerates to RoBERTa-large 478

baseline with more samples from EPE part. The 479

results prove that the modeling of path significantly 480

enhances the reasoning process. 481

To deeply verify modules in RPM, we carry out 482

the following ablation studies. For w/o path atten- 483

tion, we remove the path attention module. The 484

performance gains prove that it is key to RPM part. 485

For in-atom att. and cross-atom att., we respec- 486

tively ablate the attention modeling within atoms 487

and across atoms. The former benefits the ReClor 488

dataset a lot, while the latter is more helpful to 489
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Model ReClor LogiQA
Valid Test Test-E Test-H ∆ Valid Test ∆

Se
qu

en
ce

Random 25.00 25.00 25.00 25.00 - 25.00 25.00 -
Human Performance - 63.00 57.10 67.20 -1.10 - 86.00 -
BERT-Large 53.80 49.80 72.00 32.30 -14.30 34.10 31.03 -13.98
XLNet-Large 62.00 56.00 75.70 40.50 -8.10 - - -
RoBERTa-Large 62.60 55.60 75.50 40.00 -8.50 35.02 35.33 -9.68
LReasoner 66.20 62.40 - - -1.70 38.10 40.60 -4.41
MERIt † 69.40 61.60 79.30 47.80 -2.50 39.50 42.40 -2.61

G
ra

ph

DAGN 65.80 58.30 75.91 44.46 -5.80 36.87 39.32 -5.69
FocalReasoner 66.80 58.90 77.05 44.64 -5.20 41.01 40.25 -4.76
AdaLoGN 65.20 60.20 79.32 45.18 -3.90 39.94 40.71 -4.30
Logiformer 68.40 63.50 79.09 51.25 -0.60 42.24 42.55 -2.46

L
L

M text-davinci-003♣ 53.00 - - - - - 41.00 -
GPT-3.5-turbo♣ 58.80 - - - - - 40.25 -
PaLMv2♣ 56.00 - - - - - 48.00 -
PathReasoner 70.40 64.10 80.91 50.89 - 43.16 45.01 -

Table 2: Experimental results on ReClor and LogiQA. The percentage signs (%) of accuracy values are omitted.
The optimal and sub-optimal results are marked in bold and underlined. The column ∆ presents the improvements
of PathReasoner on the test split. † means the utilization of extra data. ♣ denotes results from (Xu et al., 2023a).

Model ReClor LogiQA
Valid Test Valid Test

PathReasoner 70.40 64.10 43.16 45.01
EPE Part

w/o whole 67.00 60.40 41.16 43.01
∆ -3.40 -3.70 -2.00 -2.00

w/o path filter 68.40 62.80 42.70 43.78
∆ -2.00 -1.30 -0.46 -1.23

RPM Part
w/o whole 63.00 56.20 38.40 39.17

∆ -7.40 -7.90 -4.76 -5.84
w/o path attention 67.60 60.80 41.94 43.16

∆ -2.80 -3.30 -1.22 -1.85
w/o in-atom att. 70.00 62.80 42.09 44.85

∆ -0.40 -1.30 -1.07 -0.16
w/o cross-atom att. 67.80 62.40 43.63 42.70

∆ -2.60 -1.70 +0.47 -2.31
w/o diffusion 69.00 61.80 42.70 43.63

∆ -1.40 -2.30 -0.46 -1.38

Table 3: Ablation studies on ReClor and LogiQA.

the LogiQA dataset. It illustrates that in-atom and490

cross-atom attention are complementary to each491

other. For w/o diffusion, we remove the high-order492

diffusion strategy. Experiments show that the diffu-493

sion strategy is also vital to RPM part.494

5.4 In-depth Analysis495

We first analyze the model performances with dif-496

ferent lengths of atoms in Fig. 3a. The bars rep-497

resent the number of samples with different atom498

numbers, while the lines denote the performances499

with different atom numbers. For both ReClor and500

LogiQA datasets, PathReasoner maintains a high501

performance with moderate scale of atoms, which502

accounts for most samples in both datasets. Con-503

fronted with larger sample sizes, the performances504

decline. We argue that the gaps have been greatly505

narrowed with the proposed diffusion strategies,506

(a) Performances with different numbers of atoms.

(b) Performances with different numbers of new samples.
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(c) Training Efficiency Analysis.

Figure 3: In-depth analysis of the model.

compared with previous models. 507

Secondly, we provide an analysis of the impact 508

of the number of new samples. By controlling the 509

maximum scale of new atom combinations, we can 510

generate different numbers of samples. Fig. 3b 511

shows the model performances under various cases, 512

where the horizontal axis denotes the number of 513

new samples (with & w/o path filter) and the verti- 514

cal axis is the model performance on the test. On 515

the two datasets, the path filter plays a positive role 516

in reducing redundancy and noise. Additionally, 517
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Model Dream MuTual MuTual+
Valid Test R@1 R@1

RoBERTa-L 83.18 84.74 87.46 80.47
Logiformer 84.47 83.76 88.04 79.68
PathReasoner 85.05 86.84 88.93 81.49

Table 4: Experiments on model generalization.

the optimal results are obtained at a moderate scale518

of new samples, and larger amounts of samples do519

not always bring gains in performance.520

Thirdly, we discuss the model training efficiency521

in Fig. 3c. We make the comparison with the522

previous SOTA Logiformer on ReClor (left) and523

LogiQA (right). To make a clear illustration, we524

report the loss curve with steps (truncated at 0.1).525

From the results, PathReasoner shows faster conver-526

gence speed on both ReClor and LogiQA datasets.527

Detailedly, PathReasoner achieves 1.66x conver-528

gence speed than Logiformer on the ReClor dataset,529

and it has 1.34x speed on the LogiQA dataset. We530

provide more in-depth experiments in Appendix F.531

5.5 Model Generalization532

PathReasoner is also evaluated on other reasoning533

tasks to verify the generalization capability in Ta-534

ble 4. The experiments are conducted on Dream535

(Sun et al., 2019) and MuTual (Cui et al., 2020),536

which are multi-turn dialogue datasets requiring537

complex reasoning. We utilize RoBERTa-Large538

model and the previous SOTA model Logiformer as539

baselines. Among all comparison metrics, PathRea-540

soner achieves consistent superiority over them.541

Compared with Logiformer, PathReasoner outper-542

forms it with 3.08% in the test split of Dream,543

0.89% of the R@1 metric of MuTual and 1.81%544

of the R@1 metric of MuTual+. It demonstrates545

that PathReasoner can well generalize to different546

reasoning tasks. Also, other generalization exper-547

iments on EPE module and zero-shot settings are548

included in Appendix G,H.549

5.6 Case Study550

We provide the analysis for the interpretability of551

PathReasoner in Figure 4. In the successful case,552

PathReasoner correctly extracts the variables from553

the text and forms the reasoning path. In particular,554

We present the path attention map from RPM part555

to check the logical perception capability. Firstly,556

PathReasoner focuses more on the function sym-557

bols (e.g., If and Fact) and question sentences558

(i.e., variable F ), with higher attention scores in559

the map. It verifies that PathReasoner is equipped560

Figure 4: Two case studies on LogiQA dataset.

with the perception of logic and question types. 561

Secondly, the question is to match the logical struc- 562

ture between context and option. The correspond- 563

ing atoms (e.g., If(D,E) and If(J,K)) are con- 564

sidered together in the module. It illustrates that 565

PathReasoner is good at understanding the question 566

and reasoning over paths. 567

In the failure case, PathReasoner wrongly catego- 568

rizes the variable with different semantics together 569

to A which leads to the mistake. It demonstrates 570

that the variable extraction in PathReasoner is not 571

good at distinguishing the minor difference, which 572

has space for improvement. 573

6 Conclusion 574

To tackle the logical data scarcity and weak model 575

perception of logical structures, we propose a new 576

paradigm to model the logical reasoning task by 577

representing each natural sentence as atom form 578

and transforming logical samples into reasoning 579

paths. Based on such unique modeling, an archi- 580

tecture PathReasoner is proposed to address the 581

challenges. It achieves SOTA performances on 582

two logical reasoning datasets. Also, extensive 583

experiments demonstrate the effectiveness of each 584

module and great generalization capability on other 585

complex reasoning scenarios. In the future, we will 586

propose a unified architecture based on PathRea- 587

soner to tackle the logical reasoning tasks over 588

different modalities (e.g., images, text, graphs). 589
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Limitations590

This paper proposes a novel direction for address-591

ing logical reasoning tasks, which differs from the592

sequence-based methods and graph-based methods.593

The core of the proposed model is to transform594

the input text into the form of logical rules with595

the conjunction of atoms and realize the equivalent596

extension and path reasoning over it. However, the597

extraction process of atoms is still very challenging.598

Although the current algorithm predefines some ba-599

sic logical relations in advance and achieves great600

progress, it also requires the help of more com-601

prehensive external logic bases in the future to im-602

prove the accuracy of atom extraction. In addition,603

the logical text in reality often contains noise (e.g.,604

wrong logic). Although this paper has conducted605

extensive experiments on other reasoning datasets606

and complex settings to verify the generalization607

capability, there still remain unsolved on how to608

promote the models to more complex settings, like609

multi-modality scenarios.610
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A Pilot Experiments771

In this section, we provide the detailed pilot experi-772

ments mentioned in Fig. 1 of the main paper. For773

the model prediction consistency test, we equally774

replace the explicit logical connectives in a part of775

the samples on ReClor. The differences in perfor-776

mances are presented in Table 5.777

Table 5: Pilot experiments on prediction consistency.

Model Origin Replace ∆
BERT-L 38.50 30.00 -8.50
RoBERTa-L 55.00 48.50 -6.50
PathReasoner 62.50 61.00 -1.50

It can be seen that current PLMs fail to maintain778

equal predictions on samples with the same logical779

semantics. It proves the motivation of the proposed780

method. Also, we provide the performances of781

PathReasoner in the same setting as the pilot exper-782

iments. Our model largely improves the prediction783

consistency, and only fails in 1.50% of the cases. It784

illustrates the robustness of PathReasoner in logic.785

In addition, we conducted experiments on the786

model perception of logical connectives. By787

adding, deleting, or modifying the explicit logical788

connectives on some samples, we randomly break789

the original semantics of the context. We report790

the ratio of samples that fail to follow the logical791

changes. It tests the sensitivity of the model for792

capturing the logical relations. Results are shown793

in Table 6.794

Table 6: Pilot experiments on model perception of ex-
plicit logical connectives.

Model Ratio
BERT-L 29.30%
RoBERTa-L 21.63%
PathReasoner 71.95%

From the results, current PLMs are not al-795

ways sensitive to the changes of logical connec-796

tives. BERT and RoBERTa can merely distinguish797

29.30% and 21.63% of changes respectively. There-798

fore, it is worth considering enhancing the logic799

modeling for the language models, which supports800

our motivations. Also, we report the performance801

of PathReasoner on the last row of the table. Our802

model shows great superiority on enhancing the803

model perception of explicit logical connectives,804

being sensitive to 71.95% of the cases. It well805

verifies and supports our motivations.806

B Key Questions for Extraction Process 807

The whole extraction process leads to several key 808

questions: 809

(1) Scenario coverage. Our predefined rules are 810

relatively complete, and have covered extensive 811

cases in syntax (guided by experts). We include 812

over 100 instantiated function symbols (curated 813

from NLTK) and it can cover most logical scenarios 814

(details in Appendix D). Therefore, it can ensure 815

the wide coverage of logical scenarios. Beyond 816

that, we also include the Fact category of function 817

symbols. It can be adapted to facts that do not have 818

obvious logic. To sum up, our heuristic rules can 819

extend to any kind of text in theory. 820

For an example out of the logical domain, the 821

input is factual paragraph X, which consists of sen- 822

tences A, B, C, and D. Our method adapts to such a 823

scenario, and it can output Fact(A) ∧ Fact(B) ∧ 824

Fact(C) ∧ Fact(D). 825

(2) Extraction accuracy. Based on the above de- 826

scriptions, our method can cover any kind of text 827

in theory. We randomly select 30 paragraphs, re- 828

sulting in 148 pieces of sentences. We manually 829

label the extraction accuracy of each sentence. To 830

make a comparison, we also prompt GPT-4 (instruc- 831

tion+predefined function symbols + atom form+4- 832

shot examples) to finish this process. The results 833

are listed in Table 7. 834

Table 7: Experiments on the extraction accuracy.

Ours GPT-4 LLaMA-2-Chat
Atom Acc 95.27 91.22 8.11

C Distinction of Our Logical Forms 835

As some examples presented, our predefined log- 836

ical forms are similar to first-order logic (FOL) 837

and propositional logic. But our forms are more 838

suitable for the scenarios in the following aspects. 839

(1) Customized function symbols. We define 840

four types of function symbols and they are ef- 841

fective in equivalent transformation. The general 842

FOL and propositional logic can not satisfy our 843

customized requirements. 844

(2) Perception of sentence-level logic. In logical 845

reasoning scenarios, rich logic exists more at the 846

sentence level, thus we transform each sentence 847

into an atom. However, FOL and propositional 848

logic are conditioned at the entity level or span 849
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level, which is more fine-grained. They are not850

necessarily effective in capturing logic.851

D Statistics of Function Symbols852

In this section, we present the statistics of the log-853

ical connectives in two logical reasoning datasets854

ReClor and LogiQA. It will provide intuitive proof855

of the necessity and rationality of the function sym-856

bol categories.857

Figure 5a presents the statistics of function sym-858

bols (i.e., Cause, SA, NA, Fact) in the context of859

two benchmarks. The outer cycle represents the860

train split, the middle one is the validation split and861

the inner one is the test split. In the ReClor dataset,862

nearly 40% of atoms are non-fact, which contain863

explicit logical connectives (i.e., Cause, SA, NA).864

Among them, Cause relations are the majority. In865

the LogiQA dataset, the ratio of the logical func-866

tion symbols drops a lot, but it still accounts for867

about 20%.868

Figure 5b shows the statistics of logical samples.869

We categorize the samples with any one of the three870

logical function symbols into has logic. Similar,871

we include samples with Cause, SA and NA to has872

Cause, has SA and has NA respectively. In ReClor,873

nearly 70% of the samples have explicit logical874

connectives. Also, over 60% of samples contain875

Cause atoms. In LogiQA, samples with logical876

connectives account for 50%. The ratio of samples877

containing Cause atoms drops to about 35% while878

the ratio of samples with NA atoms increases.879

The above analysis illustrates that the two bench-880

mark datasets are abundant in logical connectives.881

Thus, the modeling of logical atoms is of great882

necessity.883

E Experimental Settings884

E.1 Benchmarks and other Datasets885

ReClor and LogiQA are two representative datasets886

for the logical reasoning task. The details are pre-887

sented as follows.888

ReClor (Yu et al., 2019) includes 6,138 samples889

total with 4,638 training samples, 500 validation890

samples, and 1,000 samples for test. All of them are891

collected from some standardized graduate admis-892

sion examinations. To discriminate the difficulty893

of the questions, the test split is divided into Test-E894

and Test-H, where the former represents the easy895

version of the test samples and the latter denotes896

the harder parts.897

(a) Statistics of function symbols in train (outer cycle), valida-
tion (middle cycle) and test (inner cycle) splits.

(b) Statistics of logical samples.

Figure 5: Statistics of logical reasoning benchmarks.

LogiQA (Liu et al., 2021a) includes 8,678 samples 898

sourced from National Civil Servants Examinations 899

of China. It is further split into the training set, 900

development set, and test set, with 7,376, 651, and 901

651 samples respectively. 902

Also, to verify the model generalization capa- 903

bility, we employ two dialogue datasets involving 904

complex reasoning, which are Dream and MuTual. 905

Also, we exploit the zero-shot logical reasoning 906

capability of the proposed model on the recently 907

proposed ZsLR benchmark. The details are pre- 908

sented below. 909

Dream (Sun et al., 2019) contains 6,444 multi- 910

ple choice questions, sourced from English-as-a- 911

foreign-language examinations. The samples are 912

split into train, development and test sets with 913

3,869, 1,288 and 1,287 samples respectively. We 914

report the exact match metric on both validation 915

and test splits. 916

MuTual (Cui et al., 2020) consists of 8,860 ques- 917

tions, divided into 7,088 training samples, 886 val- 918

idation samples, 886 test samples. It is modified 919

from Chinese high school English listening com- 920

prehension test data. Also, MuTualplus dataset is 921

proposed to test whether the model is capable of 922

selecting a safe response when necessary. Since 923

the test split of MuTual is not made public, we only 924

report the R@1 metric (recall at position one) on 925

the validation set. 926

ZsLR (Xu et al., 2023b) includes 6 zero-shot splits 927

modified from ReClor dataset. Since the dataset 928

contains 17 reasoning types in total, some types of 929

samples are classified as seen types during training. 930

For the test, it defines two metrics, one is Test-All 931
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which tests on all the types of samples, and another932

is Test-Unseen which only tests on the unseen parts933

of types.934

Table 8: Categorization of recent works on logical rea-
soning task. ‘DA’ denotes the data augmentation strat-
egy. ‘†’ denotes the utilization of extra data.

Model Sequence Graph Path/Rule DA
ReClor ✓
DAGN ✓
FocalReasoner ✓
LReasoner ✓ ✓
AdaLoGN ✓
MERIt † ✓ ✓
Logiformer ✓
PathReasoner ✓ ✓

E.2 Baselines935

In this paper, we compare PathReasoner with all the936

previous methods of the logical reasoning task, in-937

cluding the SOTA model Logiformer. There meth-938

ods can be categorized into sequence-based and939

graph-based, shown in Table 8.940

(1) Random. The results are obtained from the941

random predictions.942

(2) RoBERTa-Large (Liu et al., 2019). The trained943

language model RoBERTa is employed as the text944

encoder to obtain the predictions. It is also the same945

with the baselines of BERT-Large (Kenton and946

Toutanova, 2019) and XLNet-Large (Yang et al.,947

2019).948

(3) Human Performance (Yu et al., 2019; Liu949

et al., 2021a). The performances are averaged from950

the scores of some graduate students on the test951

split.952

(4) DAGN (Huang et al., 2021). It is the first953

graph-based work to tackle the logical reasoning954

task. It splits the text into nodes and leverages the955

graph neural networks to reason over the chain-type956

graph.957

(5) FocalReasoner (Ouyang et al., 2021). It fo-958

cuses on the facts within the context and it extracts959

all the fact units to form a supergraph for reasoning.960

(6) LReasoner (Wang et al., 2022). It proposes to961

leverage the defined rules (e.g., De Morgan’s Laws)962

to extend the context. In addition, it employs data963

augmentation strategies (e.g., contrastive learning)964

to improve the diversity of the samples.965

(7) MERIt (Jiao et al., 2022). It proposes a meta-966

path guided strategy to conduct the pretraining on967

the external corpus. The pre-trained module is fur-968

ther verified based on some off-the-shelf SOTA969

methods. For a fair comparison, we directly de- 970

rive the results of MERIt with the RoBERa-Large 971

backbones from the original paper. 972

(8) AdaLoGN (Li et al., 2022). It first builds a 973

text graph based on the off-the-shelf method and 974

models it in an adaptive neuro-symbolic system. 975

(9) Logiformer (Xu et al., 2022). It models the con- 976

text from the perspective of both logic and syntax, 977

building a causal graph and a co-occurrence graph. 978

Specifically, it reasons on the graph transformer 979

networks with biased attention. 980

Additionally, we include the following represen- 981

tative large language models to make the compar- 982

isons. 983

(10) text-davinci-003. It was created by OpenAI, 984

of which the training data was collected up to Sep. 985

2021. The size of text-davinci-003 is 175B. 986

(11) GPT-3.5-turbo. It is also from OpenAI and 987

the training corpus is collected up to June. 2021. 988

GPT-3.5-turbo is of the same size as text-davinci- 989

003. 990

(12) PaLM 2. It was created by Google. It has 991

a larger size than the above two LLMs, which is 992

540B. 993

The results of the three LLMs on the logical 994

reasoning benchmarks are collected from (Xu et al., 995

2023a). 996

E.3 Implementation Details 997

In the implementation, to make a fair comparison, 998

we employ the RoBERTa-large (Liu et al., 2019) 999

model with the hidden size of 1024 as the encoder 1000

of text. We utilize the Adam (Kingma and Ba, 1001

2014) for the optimization. Also, we set differ- 1002

ent hyper-parameters for the two logical reasoning 1003

datasets respectively. We tune some of the hyper- 1004

parameters for the optimal within a scope. Table 9 1005

presents the detailed information. 1006

The listed hyper-parameters belong to three 1007

parts: general settings, equivalent path extension 1008

module, and reasoning path modeling module. 1009

Considering the calculation cost, we do not utilize 1010

the grid search strategy, instead, we sequentially 1011

search the hyper-parameters for the optimal. For 1012

the reasoning path modeling module, we select the 1013

maximum diffusion order N to be 2. Therefore, 1014

there only exist four diffusion trade-off co-efficient 1015

α1, α2, β1, β2, which satisfy α1 + α2 = 1 and 1016

β1 + β2 = 1. So we only list the tuning details 1017

of in-atom diffusion trade-off α1 and cross-atom 1018

diffusion trade-off β1. 1019
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Table 9: The details of tuned hyper-parameters on the two logical reasoning benchmarks.

Name of Parameter ReClor LogiQA
Search Scope Best Search Scope Best

General Settings
number of epoch {10,12,15,20} 20 {10,12,15,20} 20
max sequence length {384,512} 384 {384,512} 512
learning rate {4e-6, 5e-6, 6e-6} 5e-6 {4e-6, 5e-6, 6e-6} 5e-6

Equivalent Path Extension
path filter threshold ε∗ {0.5,0.8,0.9} 0.9 {0.5,0.8,0.9} 0.9

Reasoning Path Modeling
number of layer {3,4,5,6} 3 {3,4,5,6} 3
number of head {4,8} 4 {4,8} 4
max diffusion order N {1,2,3} 2 {1,2,3} 2
in-atom diffusion α1 {0,0.1,0.2,0.3,0.4} 0.2 {0,0.1,0.2,0.3,0.4} 0.1
cross-atom diffusion β1 {0,0.1,0.2,0.3,0.4} 0 {0,0.1,0.2,0.3,0.4} 0.1
leaky rate {0.01,0,02,0.03,0.04} 0.02 {0.01,0,02,0.03,0.04} 0.02

F In depth Analysis1020

In this section, we provide more experiments to1021

analyze the model performances.1022

F.1 Model Performance on Multiple Logics1023

In the category of function symbols, we take Cause,1024

SA, NA and Fact into consideration. Among them,1025

the first three represent the logical relations (non-1026

fact) while the last one represents the factual ex-1027

pression. Therefore, we give an analysis of how1028

our model performs on these factual or logical sam-1029

ples. We test the model performance on three types1030

of samples: (1) Fact, where all atoms are factual;1031

(2) Simple Logic, where there only exists one cat-1032

egory of logical function symbols in each sample;1033

(3) Complex Logic, where multiple categories of1034

logical function symbols are included in one sam-1035

ple. Table 10 presents the results of PathReasoner1036

on the above settings, compared with RoBERTa-1037

Large model and Logiformer. Since ReClor does1038

not make the test split public, we only report the1039

results on the validation split.1040

Table 10: Experiments on multiple logics on ReClor.

Model Factual Simple Complex
RoBERTa-L 67.65 65.56 56.79
Logiformer 67.65 71.48 63.58
PathReasoner 72.06 73.33 64.81

For factual types of samples, PathReasoner1041

achieves 4.41% gains over the baselines. We argue1042

that previous method like Logiformer focuses too1043

much on the capture of logical relations but fails to1044

better generalize to the fact-only samples. PathRea-1045

soner leverages the atom form to represent both the1046

logical content and the factual content, thus it can1047

also improve the performances on factual samples.1048

For simple logic samples and complex logic sam-1049

ples, PathReasoner also shows the superiority of 1050

1.85% and 1.23% over Logiformer respectively. It 1051

demonstrates the competitiveness of PathReasoner 1052

in logical perception and reasoning. Meanwhile, 1053

we witness that PathReasoner does excellent in 1054

capturing simple logic and maintaining factual rea- 1055

soning, but there still exists space for improvement 1056

on the complex logic. 1057
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(b) Test split.

Figure 6: Analysis of high-order diffusion strategy.

F.2 Model Performance on Different 1058

Reasoning Types 1059

In the ReClor dataset, the samples are divided into 1060

17 reasoning types. Table 11 gives in-depth model 1061

performances on different reasoning types. Lim- 1062

ited by space, we only present 11 types in the table. 1063

From the results, PathReasoner performs better in 1064

most cases. Specially, for IF, MF and MS, PathRea- 1065

soner achieves obvious superiority. Considering 1066

that these reasoning types require the perception of 1067

logical structures, the gains in performance prove 1068

the effectiveness of PathReasoner. 1069
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Table 11: The details of ReClor Test Split on different reasoning types. NA: Necessary Assumption, S:Strengthen,
W:Weaken, E:Evaluation, I:Implication, ER:Explain or Resolve, T:Technique, IF:Identify a Flaw, MF:Match
Flaws, MS:Match the Structure, O:Others.

Model NA S W E I ER T IF MF MS O
PathReasoner 74.56 62.77 59.29 76.92 52.17 67.86 83.33 67.52 58.06 83.33 67.12
Logiformer 74.56 64.89 55.75 76.92 45.65 61.90 66.67 58.12 45.16 66.67 60.27

∆ - -2.12 +3.54 - +6.52 +5.96 +6.66 +9.40 +12.90 +6.66 +6.85
RoBERTa-L 71.05 61.70 47.79 69.23 39.13 58.33 52.78 61.54 45.16 56.67 52.05

∆ +3.51 +1.07 +11.50 +7.69 +13.04 +9.53 +30.55 +5.98 +12.90 +16.66 +15.07

Table 12: Experimental results on 6 zero-shot logical reasoning splits. T-A and T-U denote the abbreviations of the
metrics Test-All and Test-Unseen respectively.

Model v1 v2 v3 v4 v5 v6
T-A T-U T-A T-U T-A T-U T-A T-U T-A T-U T-A T-U

BERT-Large 38.00 34.36 42.00 33.39 37.50 31.61 38.00 33.26 29.60 28.02 28.80 32.24
RoBERTa-Large 47.70 39.47 50.60 39.90 46.10 40.58 50.40 42.45 53.00 43.66 49.90 50.92
DAGN 49.20 41.37 52.70 43.56 49.60 39.73 52.50 44.51 52.40 42.63 48.50 49.15
LReasoner 46.90 40.60 50.20 43.49 48.40 42.76 49.20 44.12 51.90 42.02 46.30 44.93
Logiformer 43.50 39.31 54.80 46.30 48.80 42.24 52.10 44.85 52.10 40.88 51.50 51.44
TaCo 52.20 47.51 55.80 48.79 52.20 44.26 54.70 49.89 56.00 46.67 54.70 55.17
PathReasoner 52.70 45.87 55.10 44.01 52.20 45.43 56.60 49.20 57.20 47.43 54.90 54.28

F.3 High-order Diffusion Strategy Analysis1070

In the implementation, we set the maximum order1071

of diffusion to 2, that is N = 2. Therefore, we1072

employ two trade-off coefficients αi and βi to con-1073

trol the diffusion procedure. We search αi and βi1074

from the set of {0, 0.1, 0.2, 0.3, 0.4} and report1075

the results on the test split of ReClor in Figure 6.1076

From the results, PathReasoner achieves the opti-1077

mal simultaneously on both the validation and test1078

splits.1079

G Generalization of Equivalent Path1080

Extension Module1081

Beyond the main experiments on logical reason-1082

ing benchmarks, generalization experiments (Ta-1083

ble 4) and zero-shot settings (Table 6), we add a1084

simple experiment with our proposed equivalent1085

path extension (EPE). The aim is to achieve a plug-1086

in-and-play function to augment the training of1087

LLMs. In detail, we randomly sample from the1088

Flan collection (Wei et al.), leading to 80K orig-1089

inal instruction-following samples. Then, we ap-1090

ply EPE to generate equivalent instruction sam-1091

ples. These augmented samples are leveraged to1092

tune LLaMA-2-Chat (7B). The test experiments on1093

MMLU (57 tasks) and BigBenchHard (21 tasks)1094

are presented in Table 13.1095

With the EPE augmentation process, the tuned1096

LLaMA-2-Chat can witness significant perfor-1097

mance improvements, compared with two base-1098

lines: one is LLaMA-2-Chat, and another is1099

Table 13: Experiments on the generalization capability
of equivalent path extension module.

Model MMLU BBH
LLaMA-2-Chat 45.78 35.01
LLaMA-2-Chat + Flan 46.94 36.99
LLaMA-2-Chat + EPE + Flan 48.75 38.96

LLaMA-2-Chat tuned on sampled Flan collection. 1100

Such findings largely expand the application scope 1101

of PathReasoner, especially in empowering the 1102

training of off-the-shelf LLMs. 1103

H Model Generalization on Zero-shot 1104

Logical Reasoning Settings 1105

Previous work (Xu et al., 2023b) argued that the 1106

ideal full-data setting is not sufficient to test the 1107

logical reasoning performances and has proposed a 1108

new benchmark for generalized zero-shot logical 1109

reasoning (named ZsLR). To verify the model gen- 1110

eralization on the zero-shot settings, we conduct 1111

experiments on ZsLR and compare with several 1112

SOTA baselines. The results are shown in Table 1113

12. 1114

From the results of 6 splits, PathReasoner is com- 1115

petitive on the majority of the cases compared with 1116

TaCo and Logiformer. For split v1, v3, v4, v5 and 1117

v6, PathReasoner outperforms all the strong base- 1118

lines on the metric of Test-All, which verifies the 1119

great generalization ability on both seen and unseen 1120

types of samples. Compared with the full-data set- 1121

ting SOTA model Logiformer, PathReasoner shows 1122

obvious superiority on all the splits and all the test 1123
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metrics. The great advantages uncover the huge po-1124

tential of modeling reasoning paths for the logical1125

text, which improves the extensibility and gener-1126

alization of the model. Also, it is worth noticing1127

that there still exists space for improvement on the1128

unseen types of samples, especially on the split of1129

v2, v4, and v6.1130

I Restatement of Our Key Novelty1131

We will clarify the obvious differences of our1132

method compared with previous works (especially,1133

the graph-based method). It can be divided into1134

three points.1135

Extraction strategy. Transforming the natural1136

language into units is a common method in the1137

reasoning field. However, we largely differ in the1138

definition of relationships. Previous works only1139

limit to a subset of relation words. For example,1140

Logiformer only attends to causal relations as the1141

connectives. It is sufficient for evaluations (see1142

Appendix D), which overfit the logical reasoning1143

benchmarks. However, our definition of function1144

symbols is different from previous works, and our1145

coverage is broad enough (over 100 relation words).1146

Therefore, our method can be extended to other1147

scenarios, which have been verified with general-1148

ization experiments and zero-shot settings.1149

Flexible extension strategy. Benefiting from the1150

distinctive definition of function symbols, we can1151

formulate the context into the conjunction of atoms1152

(i.e., reasoning paths). Therefore, we can easily1153

conduct the equivalent path extension to derive1154

new combinations of atoms. This advantage is1155

distinctive from other works. It is also one of our1156

main contributions.1157

In some graph-based methods, the text graph is1158

updated to capture new relations along with the1159

message-passing process. The whole process is ex-1160

tremely time-consuming, which is the main short-1161

coming. Our method actually decouples the dy-1162

namic extension process with the formulation of1163

atoms and paths. It augments data diversity and1164

improves training efficiency.1165

Incoporated advantages in the path attention1166

module. In fact, the path attention module com-1167

bines the advantages of sequence-based and graph-1168

based methods. Previous sequence-based meth-1169

ods ignore logical structures but can handle long-1170

distance dependency with Transformer structure.1171

Graph-based methods usually rely on GNN-style1172

modules to update the features, but lack the exten- 1173

sibility to larger context and fine-grained modeling 1174

within each unit (Logiformer attempts to solve it 1175

through attention bias, but still limits to a coarse 1176

level). In our path attention module, the advan- 1177

tages of sequence- and graph-based methods are 1178

inherited. It further achieves differentiable and in- 1179

terpretable reasoning (see Case Study). 1180

To sum up, the distinctions between PathRea- 1181

soner and other methods are significant. Also, 1182

we would like to emphasize that the distinction 1183

of PathReasoner does not only benefit the logical 1184

reasoning benchmarks, which previous works are 1185

limited to. PathReasoner indeed shows strong gen- 1186

eralization capability and plug-in-and-play prop- 1187

erty (see Appendix G for details). 1188
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