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Abstract 

 
Current clustering techniques in unsupervised learning lack interpretability. This is 1 
primarily because clustering represents a combinatorial optimization problem that 2 
becomes exponentially complex in large-dimensional spaces. Consequently, most 3 
clustering algorithms employ intricate mathematical computations, statistical 4 
assumptions, distance approximations, and data transformations in ways that diminish 5 
their interpretability. This study introduces a Linear Integer Programming model to 6 
optimize the balance between interpretability and quality, drawing inspiration from 7 
the graph theory's Minimal Edge Covering problem. An edge cover is a set of graph 8 
edges ensuring each vertex of the graph is incident to at least one edge of the set; the 9 
challenge lies in determining the smallest set possible. By adopting this approach, data 10 
can be grouped into clusters in the form of tree-like structures, enhancing our 11 
comprehension of the clustering process.  If the edges are weighted to represent 12 
dissimilarities or distances, the problem becomes the Minimum Weighted Edge 13 
Covering (MWEC) problem. 14 

1 Introduction  15 

Interpretability is increasingly essential in AI systems, particularly in high-risk areas, as 16 
it ensures outcomes are reliable for strategic and critical decisions. This necessity is 17 
crucial in clustering analysis because of its unsupervised nature. For example, medical 18 
experts are often skeptical of data-driven models due to the lack of their explainability 19 
[1]. Clustering is an unsupervised learning method used across various fields to identify 20 
heterogeneous sub-populations within a sample. The interpretability of clustering 21 
methods can be challenging for several reasons: 22 

1. Lack of Ground Truth: Clustering is unsupervised, meaning there are no 23 
predefined labels or categories to guide the algorithm. This lack of ground truth 24 
makes it hard to validate and interpret the clusters. 25 

2. Complexity of Algorithms: clustering represents a combinatorial optimization 26 
problem that becomes exponentially complex in large-dimensional spaces. 27 
Consequently, most clustering algorithms employ intricate mathematical 28 
computations, distance approximations, and data transformations in ways that 29 
diminish their interpretability. 30 

3. High-Dimensional Feature Space: Clustering often occurs in high-dimensional 31 
spaces, where understanding the relationships between features and clusters can 32 
be challenging. High-dimensional data and dimension reduction techniques can 33 
obscure the meaning of clusters. 34 

4. Distance Metrics: Clustering relies on distance metrics to group similar data 35 
points. The choice of metric can significantly impact the clustering results, and 36 
understanding why certain points are grouped together based on these metrics is 37 
not always straightforward. 38 
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5. Cluster Shape and Size: Real-world data can produce clusters of varying shapes 39 
and sizes, which may not align with human intuition. For example, some 40 
algorithms assume spherical clusters, which may not be suitable for all datasets. 41 

6. Overlapping Clusters: Clusters can overlap or have ambiguous boundaries, 42 
making it difficult to interpret clear separations between them. 43 

7. Algorithm-Specific Parameters: Many clustering methods require setting 44 
parameters (e.g., the number of clusters in k-means). The selection of these 45 
parameters can affect the results, and interpreting why certain parameter choices 46 
work better than others can be non-trivial. 47 

8. Lack of Contextual Information: Clusters are formed based on the data features 48 
alone, without considering external or contextual information that might provide 49 
a clearer understanding of the clusters. 50 

This research aims to address reasons #2, #5 and #6 among the aforementioned factors. 51 

 52 
1.1 Literature Review  53 

Present approaches to interpreting or explaining clustering rely extensively on statistical 54 
inference, distributional assumptions, hybris models, or post-modeling agnostic tools. 55 
Such a statistical perspective can make it difficult, if not impossible, to comprehend why 56 
a specific data point is assigned to a particular cluster? Likewise, it would be difficult to 57 
answer counterfactual questions like what if the distance between given data point with 58 
its neighbors change a bit? Another challenge with the statistical approaches is the need 59 
for implementing additional models and extra assumptions, requiring added layer of 60 
explainability to present the results in a manner understandable to humans. Besides, most 61 
explainable clustering techniques are focused on centroid-based algorithms which works 62 
well when clusters are linearly separable, compact, and spherical shape. For example, 63 
Moshkovitz et al. (2020) stated that, measuring cluster quality by the k-means and k-64 
medians objectives, there must exist a tree-induced clustering whose cost is comparable 65 
to that of the best unconstrained clustering [2]. They defined the price of explainability 66 
for a clustering task as the unavoidable loss, in terms of the objective function, if we 67 
force the final partition to be explainable. They proposed a threshold tree approach where 68 
an explainable clustering is given by a partition, induced by the leaves of a decision tree, 69 
that optimizes k-means objective function. To doing so, the constructed centroid-based 70 
clusters must be linearly separable to be explained by a decision tree. Laber and 71 
Murtinho (2021) extended the above framework for k-centers and maximum-spacing 72 
problems [3].   73 

Among the highly esteemed hybrid statistical methods and post-modeling tools, Spotify 74 
Engineering team developed an explainable Clustering method: Recursive Embedding 75 
and Clustering [4]. In this method first the low-dimensional representation of the original 76 
data is constructed using UMAP (Uniform Manifold Approximation and Projection) and 77 
then clusters are created using HDBSCAN (Hierarchical Density-Based Spatial 78 
Clustering of Applications with Noise). Finally, an XGBoost is trained using the raw 79 
data as input and labels (HDBSCAN classified as output) and understand the feature 80 
contribution using SHAP values. Likewise, Shan (2023) studied approximation 81 
algorithms for explainable k-medians and k-means clustering. The goal was to find a 82 
threshold decision tree that partitions data into k clusters and minimizes the k-medians 83 
or k-means objective. The obtained clustering is easy to interpret because every decision 84 
vertex of a threshold tree splits the vertex into two groups with a threshold cut on a single 85 
feature. The price of explainability is defined as the ratio of its cost and the optimal 86 
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unconstrained cost [5]. Prabhakaran et. al. (2022) proposed Explainable K-means 87 
clustering (ExKMC) algorithm for occupancy estimation. ExKMC by default creates a 88 
small tree with k leaves that partitions the data into k clusters, and it also outputs a new 89 
tree with k' leaves where k'≥ k that provides explainable clusters. This method makes a 90 
simple trade-off between the accuracy of prediction and the interpretability of the 91 
clustering decisions [6]. Deshmak et al. (2023) proposed an improved hybrid classical-92 
quantum clustering (qk-means – running k-means on a quantum computer) Model. This 93 
model uses learning strategies such as the Local Interpretable Model-agnostic 94 
Explanations (LIME) method and improved qk-means algorithm to diagnose abnormal 95 
activities based on breast cancer images and Knee Magnetic Resonance Imaging (MRI) 96 
datasets to generate an explanation of the predictions [1]. Turfah and Wen (2024) 97 
introduced a Distinguishability criterion, measuring the overall separability of a given 98 
cluster configuration. This criterion is derived by quantifying the misclassification 99 
probability from a multi-class classification problem. This criterion is naturally 100 
interpreted as the probability of misclassifying a data point under the given cluster 101 
configuration [7]. Similarly, Alvarez-Garcia et al. (2024) used a classification model in 102 
combination with a clustering method to enhance explainability and classify future data 103 
points. The labels generated during the classification phase will subsequently be utilized 104 
for interpretability via Shapley values [8]. Guilbert et al, (2024) proposed a framework 105 
in which an explanation of a cluster is a set of patterns (a set of descriptors). They 106 
proposed a constrained clustering method for declarative clustering with Explainabilty-107 
driven Cluster Selection (ECS) that integrates structural or domain expert knowledge 108 
expressed by means of constraints. The key idea is that a good global explanation of a 109 
clustering should give the characteristics of each cluster taking into account their abilities 110 
to describe its objects (coverage) while distinguishing it from the other clusters 111 
(discrimination). Their method heavily relies on expert knowledge and provided 112 
descriptors [9]. Chen and Güttel (2024) introduced a clustering technique known as 113 
CLASSIX, which provide textual explanation why two data points belong to the same 114 
cluster or why they are in separate clusters. However, this claim is not clearly 115 
substantiated in the main text of the article [10]. 116 

Several research studies focus on explainable-by-design clustering, where the structure 117 
of the clusters inherently provides interpretability and explainability. For instance, 118 
Davidson et. al. (2022) proposed an clustering approach that not only finds clusters but 119 
also exemplars to explain each cluster. They say that an instance x explains another 120 
instance y (or instance x serves as an exemplar for instance y) if y falls within the ball 121 
of radius 𝜀 centered at x. Exemplars are a natural mechanism for explanation of concepts 122 
by enumerating the different variations of the concept. Their setting was naturally a bi-123 
objective clustering problem with respect to cluster quality and explanation quality [11]. 124 

1.2 Contribution 125 

the intuition behind the proposed model is relatively straightforward since 126 
interpretability is inherently present within the cluster structure, eliminating the need for 127 
extra models, assumptions, and tools. Inspired by Davidson et. al. (2022), when provided 128 
with a desired number of clusters, the proposed model organizes data points into clusters 129 
with tree (skeleton)-like structures. The structure of each cluster represents Minimum 130 
Spanning Tree (MST) of the cluster where each parent vertex acts as an exemplar for its 131 
children. The idea is that a child vertex differs only slightly from its exemplar in the 132 
feature space. The tree-like structure guarantees a unique parent and thereby a unique 133 
exemplar chain for each vertex as illustrated in Figure 1. The exemplar chain is a series 134 

https://arxiv.org/search/cs?searchtype=author&query=Guilbert,+M
https://arxiv.org/search/cs?searchtype=author&query=Davidson,+I
https://arxiv.org/search/cs?searchtype=author&query=Davidson,+I
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of distinct ancestors that result in a particular vertex being part of the cluster. The 135 
proposed model does not constrain the length of exemplar chains, allowing the clusters 136 
to take more irregular, non-convex envelops, as illustrated in Figure 1. Here are other 137 
advantages of our model: 138 

• It can justify potential overlapping clusters with ambiguous boundaries or non-139 
convex forms. 140 

• Lack of sensitivity to the outliers. 141 
• The leaves to parents (LP) ratio helps us understand the connectivity among 142 

points in a cluster and thereby cluster's geometric shape. A high LP ratio 143 
signifies a hub-like cluster with one parent explaining all points, while a low LP 144 
ratio indicates a long exemplar chain. The direction of exemplar chain within 145 
the feature space shows which features and to what extent explain the vertices 146 
along the chain, as shown in Figure 2. Determining this direction is beyond the 147 
scope of this research and is suggested for future investigation. 148 

 

 

Clusters with various geometric shapes Exemplar chain of a given point 

Figure 1: Clusters with tree-like structure 

 
Figure 2: A cluster in the form of a long-directed exemplar chain in feature space 

The proposed model is inspired by Minimal Weighted Edge Covering problem in graph 149 
theory. An edge cover is a set of graph edges ensuring each vertex of the graph is incident 150 
to at least one edge of the set. A minimum edge covering is an edge covering of smallest 151 
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possible size. If the edges are weighted (e.g., dissimilarities/distances), the problem 152 
becomes the Minimum Weighted Edge Covering (MWEC) problem.  153 

MWEC differs from the Minimum Spanning Tree (MST) problem. MST problem aims 154 
to find a subset of edges in a connected, edge-weighted undirected graph that links all 155 
vertices without cycles and with minimal total edge weight. While MST problem 156 
connects all the points in one giant tree-like structure, MWEC problem can produce 157 
multiple such clusters each of which represents an MST. Alternatively, MWEC can be 158 
constructed by cutting longer edges in the MST to split the points into separate clusters. 159 
When the number of clusters (K) equals one, the proposed model reduces to MST 160 
problem.  161 

The proposed model provides an exact solution via Linear Binary Programming (LBP) 162 
which is more tractable compared to the exact solution generated by conventional 163 
Quadratic Binary Programming [12]. 164 

2 Proposed Mathematical Model  165 

The minimal edge covering problem involves grouping edges rather than clustering 166 
vertices. To construct the model, the symmetric weight/distance matrix of data points 167 

can be reorganized into an 1D array of size  𝐿 =
𝑁(𝑁−1)

2
 where 𝑁 is the number of data 168 

points and index 𝑙 = 𝑖 (𝑁 −
𝑖+1

2
) − 𝑁 + 𝑗 is equivalent to entity (𝑖, 𝑗) in the weight 169 

matrix, as shown in Figure 2. 170 

 𝑗 =1 𝑗 =2 𝑗 =3 𝑗 =4 

𝑖 =1     

𝑖 =2 𝑙 = 1    

𝑖 =3 𝑙 = 2 𝑙 = 4   

𝑖 =4 𝑙 = 3 𝑙 = 5 𝑙 = 6  

Figure 2: Mapping symmetric weight matrix into 1D array 171 

Each edge 𝑙 is labeled by weight 𝑑𝑙, origin vertex 𝑂(𝑙) = 𝑖 and destination vertex 𝐷(𝑙) =172 
𝑗. Having the above notations, the proposed LBP model can be formulated as follows: 173 

min 𝑍 = ∑ 𝑥𝑙𝑑𝑙
𝐿
𝑙=1 ,         (1) 174 

s.t: 175 

∑ 𝑥𝑙𝑂(𝑙)=𝑖 + ∑ 𝑥𝑙𝐷(𝑙)=𝑖 ≥ 1   ∀𝑖       (2) 176 

∑ 𝑥𝑙𝐷(𝑙)=𝑖 ≤ 1   ∀𝑖,         (3) 177 

∑ 𝑥𝑙
𝐿
𝑙=1 = 𝐾 (⌊

𝑁

𝐾
⌋ − 1) + 𝑀𝑂𝐷(𝑁, 𝐾),       (4) 178 

𝑥𝑙 ∈ {0,1},          (5) 179 

Where binary variable 𝑥𝑙 = 1 means edge 𝑙 belongs to MWEC; otherwise, 𝑥𝑙 = 0. 180 
Objective (1) calculates the total cost of constructing MWEC in terms of weighted edges. 181 
Constraints set (2) ensure that all data points are covered. Constraint set (3) ensures that 182 
each data point has a unique parent and avoids cycles in the MWEC. Equity (4) is 183 
sparsity constraint to control the number of clusters formed. It can be demonstrated 184 
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without much difficulty that the number of edges in MWEC given 𝐾 clusters is 185 

𝐾 (⌊
𝑁

𝐾
⌋ − 1) + 𝑀𝑂𝐷(𝑁, 𝐾). Constraint (5) addresses the binary variables integrality.  186 

Objective function (1) isn't a standard clustering objective aimed at minimizing within-187 
cluster distances or maximizing inter-cluster discrimination which are more suitable for 188 
linearly separable centroid-based clusters. Instead, it is to construct MWEC where the 189 
number of edge groups (clusters) is already known. Therefore, the proposed model is 190 
not suitable to determine the optimal number of clusters.   191 

Model (1-5) is NP-hard with approximate complexity 𝑂(2𝑀) where 𝑀 =
𝑁(𝑁−1)

2
 is the 192 

number of binary variables. The number of constraints, i.e., 2𝑁 + 1, will affect the 193 
complexity depending on the algorithm used. The model can be solved using the 194 
classical exact algorithms such as Branch-and-Bound, Branch and Cut or cutting planes. 195 

3 Experimental Results  196 

The performance of the proposed model is compared to the k-means and spectral 197 
clustering methods from scikit-learn package via two publicly available datasets: 1- 198 
Client Credit Card Activity with five numerical features (Figure 3), and 2- Customer 199 
Segmentation based on demographic information given seven features with mixed 200 
datatypes (binary, categorical and numerical), as shown in Figure 4. While distance 𝑑𝑙 201 
in the first dataset is calculated using Euclidean metric, it is calculated using GOWER 202 
[13] metric in the second dataset. GOWER uses "Manhattan" distance for continuous 203 
variables and "dice" distance for measuring similarity between non-continuous 204 
variables. Spectral clustering is preferred because it effectively handles clusters with 205 
potentially non-convex structures. Since k-means does not support GOWER metric, only 206 
spectral clusters will be provided for dataset with mixed datatypes. The quality of 207 
constructed clusters is measured in terms of Silhouette metric. The silhouette value is a 208 
measure of how similar a point is to its own cluster (cohesion) compared to other clusters 209 
(separation). The proposed mathematical model is solved using CBC (COIN Branch and 210 
Cut) algorithm – an open-source mixed-integer programming solver embedded in PULP 211 
python package [14]. 212 

Table 3 shows the Silhouette values for the MWEC model compared to K-means and 213 
Spectral clusters for 21 random samples from two datasets. The table evidences that the 214 
clustering quality of our model is highly competitive against the other two unexplainable 215 
methods; especially given the samples with mixed datatypes (six bottom samples). 216 
Figure 3 shows three clusters with tree-like structure generated by MWEC model in a 217 
feature space reduced by PCA method for the sack of visualization. As is evident in this 218 
figure, there are two potential overlapping clusters. In this scenario, the MSP of each 219 
cluster can be used to explain the ambiguous boundaries between the two clusters. 220 

 221 

Table 1: Sample data - Client Credit Card Activity (Non-mixed Data types) – Euclidian Distance 222 
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 223 

Table 2. Sample Data - Customer Segmentation based on Demo. Info. (Mixed Datatype) – Gower 224 
Distance 225 

      N L K 
Mixed 
Datatype 

K-means 
Silhouette 

Spectral 
Silhouette 

MWEC 
Silhouette MWEC - ∑ 𝑑𝑙

𝐿
𝑙=1  

MWEC-CPU 
(min.) 

66 2145 2 FALSE 0.400 0.402 0.527 64 0.079 

66 2145 3 FALSE 0.530 0.334 0.469 63 0.077 

66 2145 4 FALSE 0.412 0.341 0.361 62 0.072 

132 8646 2 FALSE 0.425 0.425 0.502 130 0.553 

132 8646 3 FALSE 0.508 0.473 0.469 129 0.561 

132 8646 4 FALSE 0.412 0.379 0.356 128 0.604 

198 19503 2 FALSE 0.432 0.176 0.492 196 1.866 

198 19503 3 FALSE 0.520 0.524 0.477 195 1.841 

198 19503 4 FALSE 0.403 0.403 0.341 194 2.029 

264 34716 2 FALSE 0.434 0.494 0.494 262 4.812 

264 34716 3 FALSE 0.521 0.521 0.457 261 4.791 

264 34716 4 FALSE 0.410 0.406 0.328 260 4.808 

264 34716 5 FALSE 0.331 0.322 0.296 259 4.901 

330 54285 2 FALSE 0.429 0.485 0.485 328 9.299 

330 54285 3 FALSE 0.522 0.522 0.456 327 9.38 

200 19900 2 TRUE NA -0.007 0.212 198 1.955 

200 19900 3 TRUE NA -0.027 0.229 197 1.931 

200 19900 4 TRUE NA -0.049 0.141 196 1.932 

400 79800 2 TRUE NA -0.072 0.185 398 15.052 

400 79800 3 TRUE NA -0.200 0.202 397 14.939 

400 79800 4 TRUE NA -0.037 0.153 396 15.585 

  

Figure 3: Clusters created by MWEC model with tree-like structure/connectivity 
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4 Conclusions 226 

This research indicates that the connectivity between points within a cluster, represented 227 
by the minimal spanning tree (MSP), is fundamentally explainable without need to the 228 
extra post-clustering models or tools. This concept is backed by MSP's parent-child 229 
relationship, where each parent vertex serves as an exemplar for its children, implying 230 
that a child vertex varies only slightly from its parent (exemplar) in the feature space. 231 
This idea has several advantages: It can justify potential overlapping clusters with 232 
ambiguous boundaries, lack of sensitivity to the outliers, and leaves-to-parents ratio of 233 
MSP helps us understand the connectivity among points in a cluster and thereby cluster's 234 
geometric shape. The experimental results indicate that the clustering quality of the 235 
proposed approach is highly competitive against conventional unexplainable clustering 236 
methods, especially given the samples with mixed datatypes.    237 

References 238 

[1] Deshmukh, S., Behera, B.K., Mulay, P., Ahmed, E.A., Al-Kuwari, S., Tiwari, P., Farouk, A 239 
(2023) Explainable quantum clustering method to model medical data, Knowledge-Based 240 
Systems, 267:  110413. 241 

[2] Moshkovitz, M., Dasgupta, S., Rashtchian, C., Frost, N (2020) Explainable k-means and k-242 
medians clustering, in Proceedings of the 37th International Conference on Machine 243 
Learning, H. D. III and A. Singh, eds., vol. 119 of Proceedings of Machine Learning 244 
Research, PMLR, 13–18: 7055–7065.  245 

[3] Laber, E. and Murtinho, L. (2021) On the price of explainability for some clustering 246 
problems. International Conference on Machine Learning. 5915-5925 PMLR. 247 

[4] Pereira, G. Recursive Embedding and Clustering, Spotify R&D and Engineering, December 248 
2023.  249 

[5] Shan, L. Approximation Algorithms for Explainable Clustering, PhD Dissertation, 250 
Northwestern University, Evanston, Illinois, September 2023.    251 

[6] Prabhakaran, K., Dridi, J., Amayri, M., Bouguila, N. (2022) Explainable K-Means Clustering 252 
for Occupancy Estimation, Procedia Computer Science, 203: 326-333. 253 

[7] Turfah, A., Wen, X. (2024) Interpretable Clustering with the Distinguishability Criterion, 254 
https://arxiv.org/abs/2404.15967v2.   255 

[8] Alvarez-Garcia, M., Ibar-Alonso, R., Arenas-Parra, M. (2024) A comprehensive framework 256 
for explainable cluster analysis, Information Sciences, 663. 257 

[9] Guilbert, M.,  Vrain, C.,   Dao, TBH (2024) Towards Explainable Clustering: A Constrained 258 
Declarative based Approach, https://arxiv.org/abs/2403.18101. 259 

[10] Chen, X., Güttel, S (2024) Fast and explainable clustering based on sorting, Pattern 260 
Recognition, Volume 150, https://doi.org/10.1016/j.patcog.2024.110298  261 

[11] Davidson, I., Livanos, M., Gourru, A., Walker, P., Velcin, J., Ravi, S.S. (2022) Explainable 262 
Clustering via Exemplars: Complexity and Efficient Approximation Algorithms, 263 
https://arxiv.org/abs/2209.09670. 264 

[12] Bonizzoni, P., Vedova, G.D.,  Dondi, R.,  Jiang, T (2008) On the approximation of 265 
correlation clustering and consensus clustering, J. Comput. Syst. Sci., 74(5): 671-696.  266 

[13] Gower, Jhon C. (1971) A general coefficient of similarity and some of its 267 
properties, Biometrics. 27(4): 857–871. 268 

[14] The Computational Infrastructure for Operations Research (COIN) project, Stanford 269 
University, link: https://github.com/coin-or/Cbc. 270 

https://arxiv.org/abs/2404.15967v2
https://arxiv.org/search/cs?searchtype=author&query=Guilbert,+M
https://arxiv.org/search/cs?searchtype=author&query=Vrain,+C
https://arxiv.org/search/cs?searchtype=author&query=Dao,+T
https://arxiv.org/abs/2403.18101
https://doi.org/10.1016/j.patcog.2024.110298
https://arxiv.org/search/cs?searchtype=author&query=Davidson,+I
https://arxiv.org/search/cs?searchtype=author&query=Livanos,+M
https://arxiv.org/search/cs?searchtype=author&query=Gourru,+A
https://arxiv.org/search/cs?searchtype=author&query=Walker,+P
https://arxiv.org/search/cs?searchtype=author&query=Velcin,+J
https://arxiv.org/search/cs?searchtype=author&query=Ravi,+S+S
https://arxiv.org/abs/2209.09670
https://github.com/coin-or/Cbc


9 
 

 


