Under review as a conference paper at ICLR 2025

AUTOMATICALLY IDENTIFYING AND INTERPRETING
SPARSE CIRCUITS WITH HIERARCHICAL TRACING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel approach to Transformer circuit analysis using Sparse Autoen-
coders (SAEs) and Transcoders. SAEs allow fine-grained feature extraction from
model activations, while Transcoders handle non-linear MLP outputs for determin-
istic circuit tracing. Our Hierarchical Tracing method isolates interpretable circuits
at both local and global levels, enabling deeper insights into tasks like subject-verb
agreement and indirect object identification. Additionally, we introduce an auto-
mated workflow leveraging GPT-4o0 for scalable circuit analysis. This framework
provides a clearer understanding of Transformer model behavior and its underlying
mechanisms.

1 INTRODUCTION

Recent years have seen the rapid progress of mechanistically reverse engineering Transformer lan-
guage models (Vaswani et al.l2017). Conventionally, researchers seek to find out how neural networks
organize information in its hidden activation space (Olah et al.| [2020a} |Gurnee et al.,2023; Zou et al.
2023) (i.e. features) and how learnable weight matrices connect and (de)activate them (Olsson et al.,
2022; Wang et al.| 2023} |Conmy et al.,|2023) (i.e. circuits). One fundamental problem of studying
attention heads and MLP neurons as interpretability primitives is their polysemanticity, which under
the assumption of linear representation hypothesis is mostly due to superposition (Elhage et al.,
2022; |Larson, 2023} |Greenspan & Wynroel [2023). Thus, there is no guarantee of explaining how
these components impact model behavior out of the interested distribution. Additionally, circuit
analysis based on attention heads is coarse-grained because it lacks effective methods to explain the
intermediate activations.

Probing (Alain & Bengiol 2017) in the activation for a more fine-grained and monosemantic unit has
succeeded in discovering directions indicating a wide range of abstract concepts like truthfulness (L1
et al.||2023)) and refusal of Al assistants (Zou et al.,[2023} |Arditi et al.,[2024). However, this supervised
setting may not capture features we did not expect to present.

Sparse Autoencoders (SAEs) (Bricken et al.,|2023; |(Cunningham et al.,[2023) provide a promising
alternative for unsupervised feature extraction from superposition. They offer a new perspective on
understanding model internals by interpreting the activation of SAE-derived features. This raises an
important question: How can we effectively leverage SAEs for circuit analysis in Transformer
models? To address this, we introduce several innovations in this area. Compared to previous
work (Cunningham et al.,|2023}; |He et al., 2024} |Marks et al., [2024), our main contributions are as
follows:

* We propose a novel framework that utilizes Transcoders, generalized forms of SAEs, to
overcome the non-linearity of MLPs in Transformer models. Transcoders allow for sparse
decomposition of MLP outputs, enabling fine-grained circuit analysis while maintaining
deterministic connections between upstream and downstream features.

* We introduce a fully automated Hierarchical Tracing methodology to streamline the
discovery and interpretation of circuits at both local and global levels, by tracing the flow of
information based on sparse features extracted by SAEs and Transcoders.

* We demonstrate the effectiveness of our approach by applying it to tasks including subject-
verb agreement and indirect object identification, offering more detailed insight into how
each single SAE feature contributes to a desired behavior.

Under review as a conference paper at ICLR 2025

2 EXTRACT SPARSE FEATURES WITH SAES AND TRANSCODERS

2.1 SPARSE AUTOENCODER FEATURES AS ANALYTIC PRIMITIVES

Sparse Autoencoder (SAE) is a recently emerging method to take features of model activation out
of superposition (Elhage et al.,|2022). Existing work has suggested empirical success in the inter-
pretability of SAE features concerning both human evaluation (Bricken et al., [2023)) and automatic
evaluation (Bills et al.| [2023b)).

Concretely, an SAE and its optimization objective can be formalized as follows:

f =ReLUWgz + bg)
T=Wpf (D
L= lz = 2[5+ X flh,

where Wg € R¥aexdmal js the SAE encoder weight, b € R%*® encoder bias, Wp € Rmos X dsae
decoder weight, 2 € R%< input activation. \ is the coefficient of L1 loss for the balance between
sparsity and reconstruction. We refer the reader to Appendix |B|for implementation details.

We train Sparse Autoencoders on GPT-2 (Radford et al.||2019) to decompose all modules that write
into the residual stream (i.e. Word Embedding, attention output and MLP output), allowing us to
compute cross-layer contribution.

2.2 ADDRESSING MLP NON-LINEARITY WITH TRANSCODERS

The dense and non-linear nature of MLPs in Transformers complicates the sparse attribution of MLP
features. Observing clear, informative mappings between MLP neurons and learned SAE features
is often challenging due to this non-linearity, which disrupts connections between upstream SAE
features and MLP outputs.

To mitigate this issue, we introduce Transcoders (proposed by Dunefsky et al.[(2024) as contempo-
rary work)—generalized SAEs that decouple the input and output, enabling predictions of future
activations based on earlier model states. Transcoders take pre-MLP activations and generate a sparse
decomposition of MLP outputs. The optimization objective for a Transcoder is expressed as follows:

J=Wpf 2)
L=y—913+Alfl,

This differs from the SAE formulation (Equation 1)) primarily in that the label activation y € R%moa
is independent of the input activation z.

By employing Transcoders, the generation of MLP output features (termed Transcoder features)

becomes deterministic. When assessing how an upstream feature £ contributes to a downstream

T : : T — £S TS TS
feature f; of Transcoder 7, the relationship holds as f; = f; (WE WD)ji' The term (WE WD)ji
remains constant across different inputs, establishing edge invariance between upstream and down-
stream features.

This means that if a primary upstream contributor activates under a different input, we can reasonably
expect the corresponding downstream feature to activate as well, unless countered by new resistances
(i.e., upstream features with negative contributions).

In contrast, MLPs lack such invariant connections, as any linkage from upstream to MLP outputs is
ambiguous. Consequently, we can only apply linear approximations to capture these connections
under localized changes.

Under review as a conference paper at ICLR 2025

3 ISOLATING INTERPRETABLE CIRCUITS WITH HIERARCHICAL TRACING

We have extracted sparse representations of model activations using Sparse Autoencoders (SAEs)
and Transcoders. This section introduces a novel method called Hierarchical Tracing, which isolates
and evaluates a connected computational subgraph of key SAE / Transcoder features related to any
output of interest in a scalable and generalized manner. The goal is to trace interpretable circuits that
provide insights into the role of these features in the model’s predictions or behavior.

3.1 FORMULATION

Forward Pass as a Computational Graph. The forward pass of a neural network M can be
formalized as a computational graph G = (V, &), representing the flow of computation by organizing
operations and variables into a directed acyclic graph (DAG), as described by (Owhadi| (2022). Each
node v € V corresponds to a model activation a,,, which exists in an activation space A,. Each
directed edge e = v — u € £ C V x V encodes the functional dependence of « on v via a mapping

Ge-

For any non-leaf node u € V, the activation a,, is determined by the activations of its predecessor
nodes v, according to:

Ay, = ®v—>ugv—>u(av), (3)

where ® represents the aggregation of inputs from all incoming edges to node u. This formulation
captures the structured flow of information through the network during the forward pass and sets the
foundation for a deeper analysis of node interactions.

Path-based Gradient Computation. We adopt a path-based approach to gradient computation,
which decomposes the gradient into contributions from individual paths in the computational graph.
Consider a single path P connecting two nodes v € V and u € V. The gradient of activation a,, with
respect to a,, along this path P is given by:

Vo, = vun Ay, - vun,lau

P
= H Ve,

ecP

c e .vvaul’

n

“

where the product of gradients is taken over all edges e along path P. This expression captures the
contribution of a specific path to the total gradient.

The total gradient of a, with respect to a, is then the sum of gradients across all possible paths
between v and u:

Voly = Z Voay
P P

This path-based decomposition enables us to attribute the influence of individual paths within the
graph, providing a more granular view of how specific subgraphs contribute to the output.

3.2 HIERARCHICAL TRACING

Mounting SAEs and Transcoders. The sparse features extracted by SAEs and Transcoders are
initially absent from the computational graph formed by the original model forward pass. To assess
the causal effect of these features, we introduce the concept of mounting them into the computational
graph, which embeds the encoding and decoding processes of SAEs and Transcoders within the graph,
allowing us to trace the flow of information through these components to make features involved.

Under review as a conference paper at ICLR 2025

L]

Mount Transcoder

Mount SAE at v at vou

W ® A
-] -]

(a) Mount SAEs and Transcoders

1. Trace Output of Interest to 2. Select from Candidates
Direct Contributors for Further Tracing I:l Neuron
e\
MLP N @) O

Attn N O O A O O A A SAE Error
meena () () /N OO0OA OOA O O (") Detached Node

Key Token Query Token Key Token Query Token

(b) Hierarchical Tracing Workflow

Figure 1: (a) Demonstration of mounting SAEs and Transcoders in a computational graph. We insert
feature nodes to reconstruct the output, and create SAE error nodes to fix the difference between
original outputs and the reconstructions. (b) Our Hierarchical Tracing approach, where we iteratively
trace interested output to direct contributors by computing direct effects defined in Equation [5]of all
previous features, and select critical candidates for further tracing.

For an SAE S, with encoding function gz () = ReLU(Wgx + bg) and decoding function gp(x) =
Wpz, we mount the SAE at a specific node v (Figure|l(a)), corresponding to where the SAE was
originally trained. This is achieved by:

1. Attaching a feature node f to v via an edge v — f with the functional dependence g.

2. Attaching a reconstructed node © to f through the edge f — ¢, with the functional depen-
dence gp.

3. Connecting ¥ to the original successors of v in the computational graph.

In practice, to account for the imperfect reconstruction ability of SAEs, we create an SAE error
node as a leaf node (Marks et al.,[2024), capturing the difference between a,, and gp(gg(a,)). This
error term ensures that the forward pass remains consistent with the original computation, while the
gradient computation now incorporates the effect of the SAE.

For Transcoders, the process is similar. The Transcoder is mounted at the pre-MLP activation node
v, and the reconstructed node ¥ is connected to the successors of the MLP output node, effectively
replacing the original MLP computation with the Transcoder’s functionality.

To separate the contributions of different features, we can split the feature node f into multiple nodes,
each corresponding to an individual feature extracted by the SAE or Transcoder, allowing for more
fine-grained control and interpretation.

Attributing Nodes to Upstream Candidates. Once SAEs and Transcoders are integrated into the
computational graph, it becomes possible to identify the key upstream nodes that contribute directly
to the target output. Previous approaches, such as circuit analysis using activation patching (Wang
et al.,|2023; |Conmy et al.,[2023)) and attribution patching (Kramar et al., 2024; Marks et al., |2024),
have primarily focused on understanding the indirect effect—which captures the aggregate influence
of intermediate nodes across all possible paths. While these methods are effective at discovering
important nodes, they do not guarantee the formation of a coherent and connected subgraph, nor do

Under review as a conference paper at ICLR 2025

they offer a self-contained, interpretable circuit. Additionally, these indirect effects can vary across
different tasks due to the complexity and nonlinearity of the underlying neural network functions.

To mitigate such issue, our method centers on computing the direct effect of individual nodes by
analyzing the path-based gradients (as defined in Equation[d) (Figure[I(b)). This method provides
a more precise and interpretable view by isolating the direct contributions of upstream nodes. We
define a set of intermediate nodes V! as gradient barriers, which block path-based gradients from
propagating through these nodes, except for those originating directly from them. The direct effect of
a node v on an output node u, considering the intermediate nodes Viis represented by an attribution
score:

attr, = a, Z Voly| - 5)

VI PVi=g P

Nodes with high direct attribution scores can be identified as critical upstream candidates, providing
a more interpretable and connected subgraph for further analysis. In practice, we treat the outputs of
the attention heads from SAEs and the features generated by Transcoders as the set of intermediate
nodes V. Given that the direct effect computation in this setting is relatively straightforward (linear
for Transcoders and bilinear-softmax-linear for attention mechanisms), we expect these inter-layer
effects to persist across different inputs, enabling a more generalized and robust interpretation of the
results.

Selecting Critical Candidates for Further Tracing. Once key upstream candidates are identified,
the next step is to prioritize the most critical nodes for detailed tracing. This selection is based on
their direct attribution scores and their contextual importance within the network. To determine which
nodes warrant further analysis, we can employ either of these two strategies:

* Apply thresholds on the attribution scores or use sparsity-promoting techniques to limit the
focus to a small subset of paths and nodes (Section [3.3).

» Conduct a more in-depth inspection of the candidates by utilizing top activations of features
and direct logit attributions (DLAs), selecting those with the strongest contextual relation-
ships. This selection can be performed either automatically using large language models
(LLMs) (Section E]) or manually by human experts (Section E])

By focusing on the most critical nodes, we reduce complexity while simultaneously enhancing the
interpretability of the resulting model, yielding clearer insights into how key features influence the
final predictions.

3.3 EVALUATING THE GLOBAL NECESSITY OF TRACED RESULTS

After tracing key nodes and subgraphs using Hierarchical Tracing, it is important to evaluate the
significance of the traced results from a broader perspective. Specifically, we assess the necessity of
the traced results by ablation testing. We hypothesize that the removal of key nodes from the traced
subgraph should result in a significant drop in model performance if the traced nodes are truly critical
to the final output.

For instance, in a text input scenario, we first run Hierarchical Tracing with a sparsity-promoting
selector that identifies the top 10 features by its direct effect attribution score from each layer. Next,
for a range of values 1 < k < 40, we mean-ablate the top-k nodes and measure the probability
decrease from the original output. The mean ablation is done by replacing the current activation with
the average value at current node across the task. This experiment is compared against a neuronal
approach (where intermediate nodes are defined as all model activations that write to the residual
stream) and a baseline approach involving the random ablation of activated features. We further
mean-ablate a single feature/neuron that is ordered exactly the k-th to examine if there are deeper
correlations between the effect measured by Hierarchical Tracing and the overall significance.

We evaluate through 500 prompts from the subject-verb agreement task. The results (Figure 2(a))
suggest that ablating the top 20 critical features from the traced subgraph is enough to cause a sub-
stantial performance drop, demonstrating that our method successfully isolates vital nodes. Besides,

Under review as a conference paper at ICLR 2025

Performance Degradation over # of Features/Neurons Ablated Performance Degradation over K-th Feature/Neuron Ablated
< 80 Ablation 3 12 Ablation

S —— Features < —— Features
Q @ 10

o 60 — Neurons 0 — Neurons
© ©

o — Random o 8

3 40 3

o a}

2 N

% 20 % 4

=3 =}

[S

& O—/\/\/\/M_\/\/\/_A/— &5 ZM

10 20 30 40 10 20 30 40
#Nodes Ablated K

(@) (b)

Figure 2: Performance degradation according to the mean percentage probability decrease through
prompts of the subject-verb agreement task, when ablating (a) all the top k features or neurons, or
randomly-selected & activated features; (b) the exactly k-th feature or neuron.

as k increases, Figure 2(b)|shows that only ablating the k-th node causes a fainter effect, showing
the effectiveness of Hierarchical Tracing. Furthermore, our approach consistently outperforms the
neuronal approach in identifying key nodes, demonstrating its superior ability to localize critical
components in the computational graph.

4 FULLY AUTOMATED WORKFLOW FOR INTERPRETABLE CIRCUIT TRACING

To streamline the tracing of interpretable circuits in any model forward pass, we propose a fully
automated workflow that combines the hierarchical tracing methodology with GPT-40, leveraging
LLMs to automate the analysis of intermediate activations, select critical nodes, and generate
comprehensive explanations of the model’s internal mechanisms.

The workflow consists of three main steps:

1. Feature Interpretation: We utilize GPT-4o to interpret individual features extracted by
SAEs and Transcoders (Bills et al.,|2023a; Bricken et al., 2023). By providing GPT-40 with
activation contexts, direct logit attributions (nostalgebraistl, 2020), and task descriptions, it
generates concise explanations of the conditions under which each feature activates, aiding
in understanding the semantic or syntactic roles of features.

2. Candidate Selection: GPT-40 selects important intermediate nodes that significantly con-
tribute to the model’s inference. It considers the current node to trace, candidate upstream
nodes with brief explanations, and relevant task information. Following structured inter-
action guidelines, GPT-4o0 iteratively selects nodes to trace further, building a coherent
and connected subgraph of critical nodes. In practice, to prevent an overload of distractor
candidates, we provide GPT-40 with the top 10 features exhibiting the highest attribution
scores, as outlined in Section and request further selection.

3. Circuit Interpretation: Finally, GPT-40 synthesizes the traced information to generate a
comprehensive explanation of the model’s internal information flow, detailing the progres-
sion from low-level token patterns to high-level semantic understanding. This provides a
transparent view of the model’s decision-making process.

By integrating LLM-based interpretation at each stage, our automated workflow not only identifies
critical components within the model but also generates human-readable explanations of how these
components contribute to the model’s behavior. This approach significantly reduces the need for
manual analysis, enabling scalable and efficient interpretability for complex neural networks. Our
detailed prompts used for GPT-4o interactions are listed in Appendix [D}

We evaluate our LLM-based interpretation using the following criteria:

Under review as a conference paper at ICLR 2025

Table 1: Ratings for automated interpretation workflow

Criterion SVA (Simple) SVA (RC) 1I0I In-Bracket Induction
Interpretability 7.9 6.6 53 8.2 7.1
Reasonability 7.9 6.7 4.9 8.4 7.2
Generality 7.4 5.5 5.0 8.7 6.8

* Interpretability: Assessing how clearly the LLM articulates the feature-based information
flow in the model forward pass.

* Reasonability: Evaluating whether the explanations provided by the LLM are reasonable
based on the candidate nodes.

* Generality: Evaluating the consistency and coherence of explanation among different
prompts of the same tasks.

To assess these criteria, we run our workflow on prompts from three end-to-end tasks: the simple and
across-relative-clause variants of the subject-verb agreement task and the indirect object identification
task. Additionally, we include two tasks focused on interpreting the formation of a specific feature.

Following this, we enlist experienced human crowdworkers to evaluate each criterion. They manually
inspect the inner thought processes, candidate selections, and circuit interpretations provided by the
LLMs, assigning ratings based on their assessments. The results in Table[T|show that our automatic
approach succeeded in tracing and interpreting information flow in tasks such as subject-verb agree-
ment and intermediate feature formation. Detailed rubrics and interface are listed in Appendix
However, for more complicated tasks like IO, it falls short of providing a comprehensive summary of
the entire circuit. Upon examining the interaction histories, we discovered that our automatic feature
interpretation struggles to capture commonalities when the effective context is lengthy, particularly in
the case of induction features. We then move on to dive into the process of circuit tracing.

5 IN-DEPTH TRACING OF LOCAL AND GLOBAL CIRCUITS

Despite the success of our fully automated approach in generating circuit explanations, it is not so
meticulous about the precise information flow. In this section, we turn to manual tracing through local
circuits (from an intermediate feature) and global circuits (from the output logits), investigating how
contribution from different upstream features affect downstream, and how OV and QK circuits (Elhage
et al.| 20215 He et al.} 2024)) collaborates in inter-layer and inter-token information moving.

5.1 How TRANSFORMERS IMPLEMENT IN-BRACKET FEATURES

Sparse Autoencoders (SAEs) serve as powerful unsupervised feature extractors in the expansive
hidden activation space of language models. This capability allows us to explore intermediate
activations and local circuit discovery, focusing on subgraphs that activate specific SAE features,
rather than solely on end-to-end circuit behavior.

We research In-Bracket features in the attention blocks of early layers, specifically targeting tokens
within brackets (e.g., deactivated [activated] deactivated). These features exhibit heightened acti-
vation levels with deeper bracket nesting, mimicking finite state automata behavior (Bricken et al.|
2023)). Our findings reveal an In-Bracket feature L1A.F11421 in the SAE trained on layer 1 attention
block outputs, referred to as L1A.

Open-bracket features promote in-bracket activation. As illustrated in Figure 3(a)l we investigate
contributions to the In-Square-Bracket feature within a template such as “0 0 [1 1 1 [2] 3] 4,” focusing
on tokens “17, “2”, “ 3”, and “ 4”. Our experiments indicate that the activation is primarily driven
by an LOM feature activated by the token * [, accounting for 104.1%, 102.6%, and 314.2% of the
In-Square-Bracket feature’s activation for tokens “17, “2”, and “ 3" respectively. Notably, an average
of 83.8% of these contributions arises from attention head 1 of L1A, labeled L1A.HI1.

Under review as a conference paper at ICLR 2025

ison Roadlofﬁcial site] manifested

Manager?JfPart 2] @ Qandrea saez

Activate -- originalliRec], which was remade in
o Post [WWW.facebook.com] with a
In-Bracket Credlin [i§ chief of staff]. He has
L1AF11421 at [@mail protected] You can follow

Suppress - wp [Robert] Mueller are currently
] and deaf people need them [jobs]
LOM.F15786, LOM.F20934 him to [offensive] coordinator and

(a) Formation of In-Bracket Features

Attention Score for L1A.H1

Attending to "[" Score

Direct Contribution to Activation of L1A.F11421

0
. loMF7327@2T" - Activation ? Attending to 1" [l
S LomFr3zz@s T . 51
& g1
9 LOM.F15786@8 "]" el
[
£ Lom F15786@10 "1 0 s
< 3
7 LoM.F20934@8 ") © 3
]
LOM.F20934@10 "]" i
o o [1 111021 31 4 00[111[2]3]4
Position Key Position
(b) Contribution to a specific In-Bracket feature from each (c) Attention Score Trends of a Sig-
token’s bracket features nificant Bracket Head

Figure 3: (a) Opening Bracket features positively contribute to In-Bracket features, while Closing
Bracket features exert a negative influence. (b) The proximity of “ [”’s enhances activation of the
In-Bracket feature. (c) Tokens following “ [’s show strong initial attention to the opening bracket,
which diminishes as the sentence progresses, illustrating the trend seen in Figure [3(b)]

Closing-bracket features suppress in-bracket activation. The In-Square-Bracket feature is predom-
inantly inhibited by a “]” feature in LOM, as shown in Figure [3(b)} with suppression also mediated
through L1A.HI.

Interpreting QK attention to ““ [and “]”. We analyze the QK circuit of L1A.HI, depicted in
Figure This head consistently attends to *“ [’s and *]”’s, irrespective of the current token. This
behavior is largely influenced by bg in L1A.H1, which engages with the aforementioned bracket
features.

In summary, In-Bracket features are activated by opening bracket features and inhibited by closing
bracket features, resembling the operational dynamics of finite automata. Despite their straightforward
functionality, the underlying mechanisms are more complex than initially anticipated.

5.2 REVISITING INDIRECT OBJECT IDENTIFICATION CIRCUITS

To explore end-to-end circuits in GPT-2 Small, we investigate the Indirect Object Identifica-
tion (IOI) task (Wang et al.l [2023) using Hierarchical Tracing. For example, given the prompt
“When Mary and John went to the store, John gave the bag to”, GPT-2 predicts “ Mary”. We refer to
this prompt as Smary, and a variant syop, is created by swapping the names, leading to the same answer.
Existing studies often overlook the differences between these templates.

Through the SAE lens, we not only confirm previous findings but also uncover nuanced mechanistic
distinctions in their corresponding circuits.

Feature Circuits Agree with Head-Level Circuits. Using Hierarchical Tracing, we trace the
information flow in the IOI task for both sy,ry and syon. We identify critical attention heads within
the isolated subgraph and attribute their QK scores to earlier features. Notably, the identified feature
circuits show strong correspondence with those derived from attention heads: (1) Name Mover
features agree with Name Mover Heads (LOA.H6, L9A.H9); (2) Association features correlate with
S-Inhibition Heads (L7A.H3, L7A.H6, L8A.H10); (3) Induction features match with Induction

Under review as a conference paper at ICLR 2025

When John and Mary went to the store, John gave a bottle of milk to

When caught up with John|Rimself, Luke|
Peppers guitarist John[Ffusciante t

Catholicism while John[E. Kennedy

She andjafewother women had £

Once again, racists and hat8f§ have

” » " most pundits and prognosti
LOM.F13739, LOA F6383 L2A.F11169, L3A.F3226, L5A.F5308 Both jrep and[rejit are still in devel

“John”
LOM.F22594

Value The Federation and|GIISA have de

K
v And IPv4 and[IPV6 are two genera

m W “Mary” “And” Preceding » Consecutive Entity Key
LOM.F95, L7M.F5063 L3AF20610, L4A.F2165, L7M.F8370 L9R.F13333, LOR.F17361

1
adds the ability to raise and call .. can[faise and handle|
ing to The Mike & Billy Showcom/mik@andbillyshoy

for their ACT and SAT Prep l 2 know thatJA€T and SAT|

to the store,

“ohn” e “And” Induction lactivist and teacher Deb Nelson _[said Nelson,
LOM.F22594 L6A.F5036, L5A.F24022 ahar Mosleh and Maryam Iranf... [and Maryam |

Meet Mary.« ¢IFormer public school te

K
4 v
> Entity Indicator Quen Consecutive Entity Association Query—p Name Mover
LOA.F23630, LOM.F393 L8AF21019, L9R F7958 L9A.F15384, L9A.F9767, LOAF14631, L9A.F22905

gave a drink

news conferencelat the Justic terms: core, mid-core, and __games are not like core, lots of games are notllike mid-core, and
called[on Attorney General Jeff Se: Katherine Heigl and Rosario Dawson . scorned lover (Heigl) .. new interesti{Dawson)
debut season|With Scarlets| Buber & Leo Tolstoy: .. Martin Buber (1878-1965) and the reclusive Russian/fiovelist Leo

(a) Overview of sjon, circuit

When Mary and John went to the store, John gave the bag to (Answer: Mary)

Mary identified as Center Entity |_| Inform Association features L Inform Name Mover Head Lyl Name Mover Head fetches
with John goes after and to fetch Center Entity Mary

Inform Association features L Inform Name Mover Head Lyl Name Mover Head fetches
Mary goes after and with John goes before and to perform induction Mary

When John and Mary went to the store, John gave the bag to (Answer: Mary)
(b) Key differences between sjonn and Smary circuits

Figure 4: In the circuit for sy, the consecutive entity feature (denoted as A in Figure fi(a)) acts as
the key vector for Name Mover Heads, allowing them to attend to and replicate the answer entity
in the residual stream. This mechanism is ineffective in Syary, as the correct answer is no longer a
consecutive entity (i.e., it follows the token and). See Appendix [E] for detailed interpretations of these
examples.

Heads (L5A.H5, L6A.H9); and (4) Preceding features correspond to Previous Token Heads (L2A.H2,
L3A.H2, L4A HI1).

Zooming in SAE Circuits Reveals New Insights. Our findings indicate that SAE circuits provide
richer information than their coarser counterparts, signaling a deeper understanding of language
model mechanics. While the attention heads in both sjop, and smay show consistency, they operate
through distinct SAE features, as illustrated in Figure 4(b)]

Focusing on sjohn, we analyze how GPT-2 predicts *“ Mary” following the prompt “When John and
Mary went to the store, John gave the bag to”. The information flow, though simplified, is intricate.
We highlight four pivotal feature clusters, as indicated in Figure i}

A “Mary” is recognized as a Consecutive Entity due to its position following ““ and”.

B The second occurrence of “John activates an induction feature, enhancing the logit of
“and,” despite its next token being different.

Under review as a conference paper at ICLR 2025

C The token “to” signifies that the next token is likely an object or entity, activating an
association feature to retrieve potential entities that have appeared previously.

D The Name Mover Head receives this information, facilitating the copying of the token
“ Mary” to the residual stream.

In Spary, however, the situation diverges significantly. Here, “ Mary” first activates a Center Entity
feature, which GPT-4 explains as “People or Objects that are likely to be the main topic of the article.”
The last token aims to associate a previously mentioned entity but is directed to retrieve the Center
Entity instead, as the Consecutive Entity Association feature has been inhibited by repeated mentions
of “ John.”

6 RELATED WORK

Mechanistic and Representational Interpretability. Mechanistic Interpretability (Olah et al.|
2020bja) deems model components, e.g., attention heads and MLP neurons, as primitives and explains
how they interact with model input and output. This line of research has succeeded in identifying
attention-based circuits implementing various NLP tasks (Olsson et al.l [2022; |Wang et al.| 2023}
Stefan Heimersheim, [2023). Efforts are also made to interpret polysemantic MLP neurons (Gurnee
et al., 2023)) and editing information stored in MLP parameters (Meng et al.,|2022; |Sharma et al.|
2024).

By placing intermediate activations at the center of analysis, Representational Interpretability ap-
proaches mostly use linear probes to isolate a targeted behavior in a supervised manner (Kim et al.,
2018} |Geiger et al.| [2023] [Zou et al., 2023). However, such methods may fail to capture unanticipated
behaviors.

Sparse Autoencoders stand in between these two approaches. SAEs disentangle features in
the model’s hidden activation (Chen et al., [2017; Subramanian et al.| 2018} [Zhang et al., [2019;
Panigrahi et al.| 2019; [Yun et al., 2021} Bricken et al.| 2023} [Cunningham et al., 2023)) into more
interpretable primitives than MLP neurons, in an unsupervised manner. Albeit reconstruction errors,
Rajamanoharan et al.|(2024); [Wright & Sharkey| (2024)) have proposed to improve SAE training with
lower loss and more sparsity.

Circuit Discovery with SAE Features. Previous work mechanistically interprets circuits connect-
ing attention heads and MLP neurons (Olsson et al.,[2022}; [Wang et al., 2023} |Conmy et al., 2023).
As for SAE circuits, He et al.|(2024) makes a linear approximation of MLP layers by fixing the gate
mask of the non-linear activation function; Marks et al.| (2024) estimates the indirect effect of each
SAE feature with attribution patching (Kramar et al.,|2024), which also makes linear assumption of
non-linear functions. In contrast, we refactor our computation graph to be completely linear w.r.t. OV
and MLP circuits without approximation.

7 CONCLUSION

Our framework employs Sparse Autoencoders (SAEs) to extract fine-grained features from model
activations, providing a clearer understanding of how Transformer layers and neurons process
information. To address the challenges posed by non-linear MLP structures, we introduce Transcoders,
enabling the deterministic tracing of MLP outputs. We further present Hierarchical Tracing, a
methodology that allows for both local and global analysis of circuits, facilitating the discovery of
how different parts of a Transformer contribute to model behavior.

Through various automatic and manual experiments on tasks like subject-verb agreement and IOI, we
have demonstrated the robustness of our approach in isolating critical circuits. The analysis of in-
bracket features and indirect object identification circuits showcases the depth of interpretability made
possible by using SAEs. Additionally, our automated workflow integrated with GPT-4o0 streamlines
the tracing process, offering scalable and interpretable results.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Workshop Track Proceedings. OpenReview.net, 2017. URL https://openreview!
net/forum?id=HJ4-rAvVtl.

Andy Arditi, Oscar Obeso, Aaquiblll, wesg, and Neel Nanda. Re-
fusal in Ilms is mediated by a single direction. LessWrong, 2024.
URL https://www.lesswrong.com/posts/KicP8fBdHNJZBXxRB/

an-ov-coherent-toy-model-of-attention-head-superposition.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language mod-
els. https://openaipublic.blob.core.windows.net/neuron—-explainer/
paper/index.html, 2023a.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language mod-
els. |https://openaipublic.blob.core.windows.net/neuron-explainer/
paper/index.html), 2023b.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Yunchuan Chen, Ge Li, and Zhi Jin. Learning sparse overcomplete word vectors without intermediate
dense representations. In Gang Li, Yong Ge, Zili Zhang, Zhi Jin, and Michael Blumenstein (eds.),
Knowledge Science, Engineering and Management - 10th International Conference, KSEM 2017,
Melbourne, VIC, Australia, August 19-20, 2017, Proceedings, volume 10412 of Lecture Notes
in Computer Science, pp. 3—15. Springer, 2017. doi: 10.1007/978-3-319-63558-3_1. URL
https://doi.org/10.1007/978-3-319-63558-3_1.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. CoRR,
abs/2304.14997, 2023. doi: 10.48550/ARXIV.2304.14997. URL https://doi.org/10}
48550/arXiv.2304.14997.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. CoRR, abs/2309.08600, 2023. doi: 10.
48550/ARX1V.2309.08600. URL https://doi.org/10.48550/arXiv.2309.08600.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable 1lm feature
circuits, 2024. URL https://arxiv.org/abs/2406.11944.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy_model/index.html.

11

https://openreview.net/forum?id=HJ4-rAVtl
https://openreview.net/forum?id=HJ4-rAVtl
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://doi.org/10.1007/978-3-319-63558-3_1
https://doi.org/10.48550/arXiv.2304.14997
https://doi.org/10.48550/arXiv.2304.14997
https://doi.org/10.48550/arXiv.2309.08600
https://arxiv.org/abs/2406.11944

Under review as a conference paper at ICLR 2025

Atticus Geiger, Christopher Potts, and Thomas Icard. Causal abstraction for faithful model
interpretation. CoRR, abs/2301.04709, 2023. doi: 10.48550/ARXIV.2301.04709. URL
https://doi.org/10.48550/arXiv.2301.047009.

Lauren Greenspan and Keith Wynroe. An ov-coherent toy model of attention head superposition. Less-
Wrong, 2023. URL https://www.lesswrong.com/posts/KicP8fBdHNJZBXxRB/
an—-ov-coherent-toy-model-of-attention—-head-superposition.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
Finding neurons in a haystack: Case studies with sparse probing. CoRR, abs/2305.01610, 2023.
doi: 10.48550/ARXIV.2305.01610. URL https://doi.org/10.48550/arXiv.2305,
01610.

Zhengfu He, Xuyang Ge, Qiong Tang, Tianxiang Sun, Qinyuan Cheng, and Xipeng Qiu. Dictionary
learning improves patch-free circuit discovery in mechanistic interpretability: A case study on
othello-gpt. CoRR, abs/2402.12201, 2024. doi: 10.48550/ARXIV.2402.12201. URL https:
//doi.org/10.48550/arXiv.2402.12201.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda B. Viégas,
and Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV). In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmdissan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 2673—
2682. PMLR, 2018. URL http://proceedings.mlr.press/v80/kiml8d.html.

Janos Kramdr, Tom Lieberum, Rohin Shah, and Neel Nanda. Atp*: An efficient and scalable method
for localizing LLM behaviour to components. CoRR, abs/2403.00745, 2024. doi: 10.48550/
ARXIV.2403.00745. URL https://doi.org/10.48550/arXiv.2403.00745.

Derek Larson. Expanding the scope of superposition. LessWrong, 2023.
URL https://www.lesswrong.com/posts/wHHdIJdhKBgqoKAMC5d/
expanding-the-scope-of-superposition.

Kenneth Li, Oam Patel, Fernanda B. Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
time intervention: Eliciting truthful answers from a language model. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
81b8390039b7302c909cb769f8bocd93-Abstract-Conference.html.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
CoRR, abs/2403.19647, 2024. doi: 10.48550/ARX1V.2403.19647. URL https://doi.org/
10.48550/arXiv.2403.19647.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associ-
ations in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/6£1d43d5a82a37e89b0665b33bf3al82-Abstract-Conference.htmll

nostalgebraist. interpreting gpt: the logit lens. LessWrong, 2020.
URL https://www.lesswrong.com/posts/AcKRB8wDpdaNo6voru/
interpreting-gpt-the-logit-1lens.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
An overview of early vision in inceptionvl. Distill, 2020a. doi: 10.23915/distill.00024.002.
https://distill.pub/2020/circuits/early-vision.

12

https://doi.org/10.48550/arXiv.2301.04709
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://doi.org/10.48550/arXiv.2305.01610
https://doi.org/10.48550/arXiv.2305.01610
https://doi.org/10.48550/arXiv.2402.12201
https://doi.org/10.48550/arXiv.2402.12201
http://proceedings.mlr.press/v80/kim18d.html
https://doi.org/10.48550/arXiv.2403.00745
https://www.lesswrong.com/posts/wHHdJdhKBqoKAMC5d/expanding-the-scope-of-superposition
https://www.lesswrong.com/posts/wHHdJdhKBqoKAMC5d/expanding-the-scope-of-superposition
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2403.19647
https://doi.org/10.48550/arXiv.2403.19647
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

Under review as a conference paper at ICLR 2025

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020b. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Houman Owhadi. Computational graph completion, 2022. URL https://arxiv.org/abs/
2110.10323.

Abhishek Panigrahi, Harsha Vardhan Simhadri, and Chiranjib Bhattacharyya. Word2sense: Sparse
interpretable word embeddings. In Anna Korhonen, David R. Traum, and Lluis Marquez (eds.),
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 5692-5705. Association for
Computational Linguistics, 2019. doi: 10.18653/V1/P19-1570. URL https://doi.org/10,
18653/v1/p19-1570.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. URL https://api.semanticscholar)
org/CorpusID:160025533.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Jdnos
Kramar, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders. arXiv preprint arXiv:2404.16014, 2024.

Arnab Sen Sharma, David Atkinson, and David Bau. Locating and editing factual associations in
mamba. arXiv preprint arXiv:2404.03646, 2024.

Jett Janiak Stefan Heimersheim. A circuit for python docstrings in a 4-layer attention-only transformer.
2023. URL https://www.alignmentforum.org/posts/ubKXXmKFbXfWzoAXn/
a-circuit-for-python-docstrings—-in-a-4-layer—-attention-only.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick, and Eduard H. Hovy.
SPINE: sparse interpretable neural embeddings. In Sheila A. Mcllraith and Kilian Q. Weinberger
(eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 4921-4928. AAAI Press, 2018. doi: 10.1609/AAAL.V3211.11935. URL
https://doi.org/10.1609/aaai.v3211.11935.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998-6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053clc4a845aa—Abstract.html.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=NpsVSN6odul.

Benjamin Wright and Lee Sharkey. Addressing feature suppression in saes. Less-

Wrong, 2024. URL https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/
addressing-feature-suppression—-in-saes.

13

https://arxiv.org/abs/2110.10323
https://arxiv.org/abs/2110.10323
https://doi.org/10.18653/v1/p19-1570
https://doi.org/10.18653/v1/p19-1570
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://doi.org/10.1609/aaai.v32i1.11935
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/pdf?id=NpsVSN6o4ul
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes

Under review as a conference paper at ICLR 2025

Zeyu Yun, Yubei Chen, Bruno A. Olshausen, and Yann LeCun. Transformer visualization via
dictionary learning: contextualized embedding as a linear superposition of transformer factors.
In Eneko Agirre, Marianna Apidianaki, and Ivan Vulic (eds.), Proceedings of Deep Learning
Inside Out: The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, DeeLIO@NAACL-HLT 2021, Online, June 10 2021, pp. 1-10. Association for
Computational Linguistics, 2021. doi: 10.18653/V1/2021.DEELIO-1.1. URL https://doi,
org/10.18653/v1/2021.deelio-1.1.

Juexiao Zhang, Yubei Chen, Brian Cheung, and Bruno A. Olshausen. Word embedding visualization
via dictionary learning. CoRR, abs/1910.03833,2019. URL http://arxiv.org/abs/1910}
03833.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to Al
transparency. CoRR, abs/2310.01405, 2023. doi: 10.48550/ARX1V.2310.01405. URL https:
//doi.org/10.48550/arXiv.2310.01405.

14

https://doi.org/10.18653/v1/2021.deelio-1.1
https://doi.org/10.18653/v1/2021.deelio-1.1
http://arxiv.org/abs/1910.03833
http://arxiv.org/abs/1910.03833
https://doi.org/10.48550/arXiv.2310.01405
https://doi.org/10.48550/arXiv.2310.01405

Under review as a conference paper at ICLR 2025

A NOTATION SUMMARY

This section summarizes and clarifies the notations used throughout the paper. Each notation is listed
with a brief description for reference.

Table 2: List of Notations and Descriptions

Notation Description

T Input activation in the model.

T Reconstructed input activation.

f Feature vector from SAE or Transcoder.

Wg, bg SAE or Transcoder encoder weight matrix and bias.

Wb SAE or Transcoder decoder weight matrix.

Amodel Dimension of the model’s hidden activation space.

dsAE Dimension of the SAE feature space.

L Loss function used during training.

A Coefficient for L1 regularization (sparsity loss).

e Feature i from SAE S.

G=,¢&) Computational graph, with vertices } and edges £.

oy gy Activations at nodes v and v in the computational graph.

P A path in the computational graph.

Vo, , Gradient of activation a,, with respect to a,, along path P.

® Aggregation operation over inputs in the computational graph.
" Set of intermediate nodes used as gradient barriers.

LXM, LXA The MLP and attention block of layer X.

LXM.FY@Z, LXAFY@Z The Y-th feature at token Z from the LXM Transcoder / the LXA SAE.
LXAHY The Y-th attention head of layer X.

B SPARSE AUTOENCODER TRAINING

Table 3: Statistics of Attention Output SAEs
SAE Var. Explained LOLoss Reconstruction CE Score Reconstruction CE Loss

LOA 92.25% 29.66 99.24% 3.2327
L1A 82.48% 65.57 97.19% 3.2138
L2A 83.39% 69.85 94.29% 3.2150
L3A 69.23% 53.59 87.00% 3.2173
L4A 7491% 87.35 89.99% 32171
L5A 82.12% 127.18 97.81% 3.2145
L6A 76.63% 100.89 94.31% 3.2158
L7A 78.51% 103.30 91.32% 3.2182
L8A 79.94% 122.46 88.67% 3.2172
L9A 81.62% 107.81 89.55% 3.2187
L10A 83.75% 100.44 87.70% 3.2201
L11A 84.81% 22.69 85.49% 3.2418

We trained Sparse Autoencoders (SAEs) (Section on the outputs of all 12 attention layers. For
each MLP layer, we trained a Transcoder (Section @]), with the residual stream activation before the
MLP as input and the MLP output as the label. Below are the training settings:

* Dictionary size: Each SAE/Transcoder contains 24,576 features, 32 times the hidden
dimension of GPT-2 Small.

* Optimization: We use the Adam optimizer with a learning rate of 4e-4 and betas (0, 0.9999)
for 1 billion tokens from the OpenWebText (Radford et al., | 2019) corpus. Training uses a

15

Under review as a conference paper at ICLR 2025

Table 4: Statistics of MLP Transcoders
SAE Var. Explained LOLoss Reconstruction CE Score Reconstruction CE Loss

LOM 94.16% 19.59 99.65% 3.1924
LIM 82.02% 48.63 86.35% 3.1816
L2M 86.32% 50.90 81.24% 3.1851
L3M 76.55% 56.91 83.43% 3.1867
L4M 73.38% 76.03 80.08% 3.1888
L5M 73.49% 84.11 84.18% 3.1881
LeM 72.79% 90.34 82.85% 3.1912
LM 73.18% 86.38 81.89% 3.1911
L8M 74.14% 87.29 83.25% 3.1913
LM 75.89% 90.08 81.89% 3.1930
L1IOM 79.66% 94.85 81.60% 3.1987
L1IM 80.33% 79.12 77.33% 3.2169

batch size of 4,096 on an NVIDIA A100-80GB GPU, running for 20 hours. Loss functions
include reconstruction loss (MSE), sparsity loss (L1 norm of activations, coefficient 8e-5,
1.2e-4 for attention outputs), and ghost gradient loss.

* Input processing: Only the first 256 tokens from each sequence are used, discarding
sequences shorter than this. Activations are shuffled within an activation buffer.

* Normalization: Input activations are normalized to a norm of +/768 (GPT-2 Small hidden
size). The MSE loss is further normalized by the variance of the output along the hidden
dimension:

(1' normed — fnormed)

EMSE = Tz = .
||xnormed - l'normed”Z

Weights and biases: We untie encoder and decoder weights. The decoder bias (pre-encoder
bias) is removed to simplify circuit analysis. Decoder norms are constrained to be less than
or equal to 1 after each training step.

Feature pruning: Dictionary features are pruned if they have a norm less than 0.99, a
maximum activation less than 1, or an activation frequency below le-6.

Finetuning: After pruning, we finetuned the decoder and feature activation scaler on the
same dataset, with only reconstruction loss applied, to mitigate feature suppression and
improve overall reconstruction quality.

B.1 FEATURE PRUNING

Some SAE features can be overly sparse and activated by very specific tokens, contributing little to
overall reconstruction. These trivial features are pruned based on the following criteria:

Norm less than 0.99: Useful features tend to have larger norms, as the L1 loss encourages smaller
activations. Features without growing norms are pruned.

Max activation less than 1: Features with low maximum activation contribute minimally to
reconstruction and are often activated in unrelated contexts, making them non-interpretable.

Activation frequency less than le-6: Features with ultra-low activation frequencies are too local
and correspond to specific tokens in very specific contexts. These are pruned if their activation
frequency falls below this threshold.

B.2 FINETUNING TO ADDRESS FEATURE SUPPRESSION

Feature suppression, where loss functions push activation values towards zero, can degrade recon-
struction quality. To address this, we finetuned the decoder and feature activation scaler of pruned

16

Under review as a conference paper at ICLR 2025

SAEs using only reconstruction (MSE) loss, while keeping encoder weights fixed. This finetuning
helps restore reconstruction quality and correct any issues caused by pruning.

B.3 SPARSE AUTOENCODER EVALUATION METRICS

We evaluate the trained SAEs using three metrics:
L0 Loss: Average number of features activated per token, measuring the sparsity of the SAE.

Explained Variance: Measures the proportion of activation variance accounted for by the SAE:

19— yl3

EV =1-
a2(y)

Reconstruction CE Score: The cross-entropy score compares the reconstruction CE 10ss (Lyecons)
with the original and ablated CE losses:

s = Erecons - Eablate
Eoriginal - ACablate

C INTERPRETATION TASK DETAILS

In this section, we list details of the language model tasks we mechanistically researched. Table[3]
shows the example prompts, answers and outputs of interest in these tasks.

Table 5: Example data from 3 end-to-end tasks and 2 intermediate feature tasks

Task Example Prompt Answer Interested Output
101 “When John and Mary went to the store, Mary ““John” Logit
gave a bottle of milk to”
SVA (Simple) “The girls” “do” Logit
SVA (RC) “The friends that the architect likes” “go” Logit
Induction “The cuDNN library team is excited to announce “D” L5A.F20004
... .We are proud that the cu”
In-bracket “The Yahoo AP story Man brags he killed Chi- “ 17~ L1AF11421

nese California students [October”

D DETAILS IN AUTOMATED INTERPRETATION WORKFLOW

This section details the interaction between the direct-effect-based tracer and LLM-based selector.
Additionally, we provide information on how crowdworkers rate the interpretability, reasonability,
and generality of each sample.

D.1 TRACER-GPT-40 INTERACTION

For a given forward pass and an interested output, we set the initial target at the interested output, and
then iteratively:

* Run the tracer to compute the direct effect of all interested intermediate nodes based on
Equation 3}

* Collect the top 10 intermediate nodes, run automatic interpretation, and ask GPT-4o to select
one or multiple nodes for subsequent tracing. If multiple nodes are selected, we sum up
these nodes and compute a total direct effect for them.

The prompt for automatic interpretation is:

17

Under review as a conference paper at ICLR 2025

GPT-40 Prompt
System: You are an expert in Large Language Models and the field of
— Mechanistic Interpretability. You're kind to assist in giving
— explanation of how language models work.

User: We are analyzing an intermediate activation in a

— Transformer-based language model during the forward pass. This

— intermediate value may represent neurons in the MLP, the residual
< stream, an intermediate layer output, or a specific direction

— within these components. The goal is to explain what it signifies
<« when this value activates (i.e., exceeds 0). You will receive

— detailed information about the intermediate value, along with

< several contexts where it activates one or more times.

In the contexts, the token where the intermediate value activates will
— be denoted as <x, token>, where "x" represents the activation

— intensity (1-5, with 5 being the highest), and "token" is the

— actual token. Additionally, you will receive the direct logit

— attribution of the intermediate value, indicating which tokens it
— promotes or suppresses if directly connected to the unembedding

— layer. Also, you may receive a task information, which means the
— intermediate value is found when the model is performing a specific
— task. It does not require this intermediate value to have strong
— relevance to the task, but it may help you understand the context
— and what we're concerned about better.

Guidelines for generating the explanation:

— Identify shared patterns across contexts where the intermediate value
— activates. These patterns could relate to token positioning,

— meaning similarity, syntactic roles, surrounding tokens, repetition,
— etc.

— Keep in mind that intermediate values from earlier layers often
capture low-level features like syntax or token-level patterns,
while later layers typically reflect higher-level features like
semantics and context. Examine the direct logit attribution for
commonalities in promoted or suppressed tokens, with promoted
tokens more likely to reveal patterns.

A

- Intermediate values from attention layers often capture token
relationships (e.g., connections with previous tokens or repeated
patterns). Inspect whether similar patterns have appeared earlier,
especially when prior tokens don’t trigger activation. Conversely,
intermediate values from MLP layers may focus on individual token
features, though this is not a strict rule.

Feedd

- Pay special attention to the highest activations (5). Low activations
— can be harder to interpret, as they may represent weaker features or
— more context-specific behaviors.

Let’s begin with the detailed information on the intermediate wvalue,
— the activation contexts, and the direct logit attribution.

[DETAILED INFORMATION]
The intermediate value to explain is {node_type} from {position} of
— Layer {layer} in a GPT-2 model, which has {total_layer} layers.

[TASK DESCRIPTION]
{task_info}

[CONTEXTS]
Here are the contexts where the intermediate value activates (denotes
— a new line token). Contexts are clipped around the maximum

— activation point:

18

Under review as a conference paper at ICLR 2025

{contexts}

[DIRECT LOGIT ATTRIBUTION]
The direct logit attribution of the intermediate value is below,

— showing the tokens it promotes or suppresses:

Promoted tokens:
{promoted_tokens}

Suppressed tokens:
{suppressed_tokens}

Please respond in the following format:

[THOUGHTS]
Your reasoning process.

[EXPLANATION]

Your concise explanation (maximum 30 words) of the conditions under

— which the intermediate value activates, focusing on shared patterns
— across contexts.

And the prompt for asking GPT-4o0 to select from candidates is:

GPT—-40 Prompt

System: You are an expert in Large Language Models and the field of
< Mechanistic Interpretability. You're kind to assist in giving
— explanation of how language models work.

User: We are investigating how information flows through a
Transformer-based language model during token generation. Our
process involves tracing output logits back through intermediate
nodes to understand which nodes contribute most to the model's
inference.

reid

In each step, **xyouxx will:

1. Select important intermediate nodes that you believe contribute to
— the model's inference.

2. *+Wexx will trace those nodes back upstream to identify vital

— upstream nodes.

When multiple nodes are selected in one round, we will trace back based
on the sum of their influence. Only do so if these nodes appear to
have very similar effect. Once you believe enough nodes have been
traced to fully understand the information flow, provide an overall
explanation of how the model generates the next token.

el

Interaction Flow:

- We will provide the task description, input prompt, and the next

— token.

- In each round, we will trace the current node and provide a list of
— candidate upstream nodes. Each candidate will be accompanied by an
— explanation in the format: " [ID]: [EXPLANATION]".

— You can select one or more candidate nodes (separated by commas) that
— you think should be traced next by outputting their [ID].

- You can select candidate nodes from previous rounds to trace back if
— you believe they are more important or the current tracing branch
— 1s ending.

- If you believe the current tracings are sufficient to explain the

— information flow, you can provide an overall explanation by

< outputting "~ [EXPLANATION] .

Node Naming Convention:

19

Under review as a conference paper at ICLR 2025

The node IDs follow this format: "L{{layer}}{{type_letter}}.{{suffix}}",
— where:

- “{{layer}}” represents the model layer number (0-11 in GPT-2). Later
— layers capture high-level features (like semantics), while earlier
— layers capture low-level features (like syntax).

- “{{type_letter}} represents the node type:

- "AT: Attention block.

- "M": MLP block.

- "R7: Residual stream.

- “{{suffix}}" describes the specific feature, neuron:

- Example: "F2341@5° refers to feature 2341 at token 5.

Additional Node Selecting Guidelines:
- **MLP (M) xx: Nodes from MLP blocks capture deeper token-level
— features, often integrating information about syntax and specific
— token patterns. These nodes are essential when the model is
— consolidating information for final token decisions.
— When selecting MLP features, consider if the pattern contributes to
— more complex interactions, such as understanding word roles or
— generating grammatical forms.
- **Attention (A)xx: Attention block nodes capture inter-token
— relationships. Attention nodes often identify key tokens that the
— model focuses on, which can be crucial for understanding
— dependencies.
- When tracing attention nodes, the upstream candidate nodes may
— either contain
— information that is moving to current node (through OV circuit),
— or
— information that determines the attention score (through QK
— circuit), i.e., query and key that determine these two tokens'
— being attended to each other.
It's worthy to respectively trace back the former and the latter to
— gain a comprehensive understanding of how information flows and
— how the information could flow.
— x*Residual Stream (R)=**: Residual stream nodes provide a cumulative
— representation of all previous layers’ computations. These nodes
— often contain both low-level and high-level information.
- Trace back residual stream nodes if you want to capture broad
— information about the model's processing across layers.
- *x*Early Layersx*x: Early layers (e.g., LO-L3) often capture low-level
patterns such as token identities or syntactic rules. When you
trace to early layers, consider returning to later layer nodes
(maybe from previous rounds) to gain a more comprehensive
understanding of the information flow, e.g. going back to a high
layer attention node and change from OV to QK circuit.

R A

*xImportant Considerations#x:

— Prioritize nodes in higher layers if you are tracing broad semantic
— patterns, as they integrate more abstract features.

— Trace MLP nodes when you suspect that the model is resolving

— token-level choices, like grammar or token disambiguation.

Explanation Guidelines:

When providing an explanation, ensure you construct a clear

— xxinformation flow trajectoryxx that highlights critical nodes and
— how they contribute to the model's decision-making. Here's what to
— include:

- x*x0Overall Information Flowxx: Provide a high-level summary of how
information flows from the earlier layers to the final decision,
emphasizing how the traced nodes combine to produce the next token.
Highlight the progression from low-level to high-level features
(e.g., syntax, semantics).

Fore

20

Under review as a conference paper at ICLR 2025

— x*%Critical Nodesxx: Identify the most significant nodes that
influence the token generation. Explain why these nodes are crucial
in shaping the output and how their roles evolve as the model
processes deeper layers.

x*xInter-node Dependenciesx**: Describe how the selected nodes interact
with each other. Highlight any relationships between tokens captured
by attention nodes or features consolidated in MLP blocks. Focus on
dependencies such as subject-verb agreement or other
syntactic/semantic patterns.

**Node Influencexx: Assess the strength of each node's influence on
the overall output. For instance, explain whether a residual stream
node has cumulative significance or whether an attention node
reveals a key relationship that drives the next token choice.

xConclusionx: Based on the traced nodes, conclude how the model
arrived at its final decision. Summarize the critical steps and
transformations that occurred throughout the layers, noting whether
additional tracing is needed or if the information flow is fully
understood.

A S A S A A A A

Response Format:
Your responses should follow this format:

[THOUGHTS]
Your brief thought process.

[NODE] / [EXPLANATION]

The selected node ID(s), separated by commas (e.g., “L5A.F123@3,

— L7M.N234@6°). Do not append any text including trailing ~.° after
— the last selected node. / Your explanation of why these nodes are
— significant in understanding the mechanism.

You should respond with either [NODE] or [EXPLANATION] in each round,
— but not both.

Task Description:
{task_info}

Input prompt: "{input_prompt}"
Next token: "{next_token}"

Round 1: (Max {max_rounds} Rounds)

Current Node to Trace:
{target}

Candidate upstream nodes:
{candidates}

Please select the most relevant node(s) to trace and provide their
— ID(s). If you believe the current tracings are sufficient to

— understand the mechanism, provide an overall explanation of the
— information flow.

D.2 HUMAN EVALUATION

We ask human experts to give ratings (1-10) of each result regarding interpretability, reasonability,
and generality, based on the task, the explanation given by LLM, and the detailed conversation. Our
ratings are based on the rubrics below:

Interpretability Rubric:

21

Under review as a conference paper at ICLR 2025

* 9-10: Explanations are exceptionally clear and detailed, providing a thorough understanding
of the feature-based information flow, and perfectly explaining information from different
sub-circuits.

» 7-8: Explanations are mostly clear, with minor ambiguities that do not significantly hinder
understanding.

* 5-6: Explanations are somewhat clear but lack detail, making it difficult to fully grasp the
information flow.

* 3-4: Explanations are unclear, with significant gaps in information that obscure understand-
ing.

 1-2: Explanations are incomprehensible or irrelevant, providing no useful insight into the
information flow.

Reasonability Rubric:

* 9-10: All explanations are highly reasonable and well-supported by the candidate nodes,
demonstrating strong logical coherence.

 7-8: Most explanations are reasonable, with few unsupported claims or logical inconsisten-
cies.

* 5-6: Some explanations are reasonable, but several claims lack sufficient support or show
inconsistencies.

» 3-4: Explanations are largely unreasonable, with many unsupported claims and significant
logical gaps.

 1-2: Explanations are completely unreasonable and full of speculations.

Generality Rubric:

* 9-10: Explanations are highly consistent and coherent across different prompts and tasks,
demonstrating a robust understanding of the model’s behavior.

» 7-8: Explanations are mostly consistent, with minor variations that do not significantly
affect overall coherence.

* 5-6: Explanations show some consistency, but notable discrepancies exist between different
prompts and tasks.

* 3-4: Explanations are largely inconsistent, with many contradictions between different
prompts and tasks.

» 1-2: Explanations are completely inconsistent and incoherent, lacking any meaningful
connection across prompts and tasks.

Figure [5]shows the interface to obtain the ratings in Table. [T]

E ADDITIONAL EXPLANATION OF THE IOl CIRCUIT

This section provides a detailed explanation of the feature circuits identified in the Syary and Sjonn
examples by elaborating on the functionality of key features in both cases.

Key features in the sjon, circuit (Figure fi(a)):

* “John”, “and”, and “Mary” Features: These features simply indicate that the current token
corresponds to “John”, “and”, or “Mary”, respectively.

 Entity Indicator Features: Activated on prepositions or transitive verbs, these features
suggest that the next token is likely an entity.

* “John” Preceding Features: These features gather information from the previous token and
indicate that the token preceding the current one is “John.”

* “And” Preceding Features: Similar to the “John” preceding features, these collect information
from the previous token and imply that “and” is the token directly preceding the current one.

22

Under review as a conference paper at ICLR 2025

Annotating Sample 1

Task Info

Task Name: Subject-Verb Agreement (Simple)

Task Description: We are investigating how language models decide to use third-person singular verbs in English sentences.
Interested Output: the logit of the next token (output)

Result for Sample 1

Input Prompt: The girls
Answer: do
Explanation:

In this information flow tracing through a Transformer-based language model, we've explored how the model generates the token "do" following "The girls."
Initially, nodes suchas L10MF3813@1 and L9M.F3530@1 are activated to recognize the plural noun "girls," signifying a group entity. These nodes

function by capturing the semantics of plurality and actions typical to group nouns.

Further downstream, the focus shifts to identifying contexts that specifically require plural verb forms. LeM.F20406@1 ~ contributes by linking plural

nouns to auxiliary verb preferences, marking the necessity for plural verbs when encountering subjects like "girls."

As we traced back through L6M, L4M nodes, and further, nodes suchas L2M.F18923@1 ,and L3M.F12943@1 also played a pivotal role. These nodes

solidify the understanding of "girls" as a collective identity, emphasizing their role within sentence structures requiring plural verb forms. This consolidation
of group entity recognition supports the decision behind the models output of "do” rather than a singular verb form like "does."

By integrating patterns from the earlier layers, where basic syntactic and semantic roles are identified, and leveraging the deeper, more abstract features
from higher layers, the model accurately resolves the need for coherence in the verb choice following "The girls." Through this analysis, it is evident how the

model uses a layered approach to move from recognizing entities to making more complex grammatical decisions, illustrating the robust handling of plural
subject-verb agreement.

Detailed Chat History

@ Hide Guidelines

System: You are an expert in Large Language Models and the field of Mechanistic Interpretability. You're kind to assist in giving explanation of how language models
work.
User: Round 1: (Max 20 Rounds)

Current Node to Trace: output: the logit of the next token

Candidate upstream nodes:

1. LNMF8742@1 : The intermediate value activates when identifying o categorizing entities or subjects within descriptive or narrative contexts.
Currently activated at token 1: " girls"

2. L10MF3813@1 : Activates for plural noun subjects representing entities engaged in significant actions or roles, especially in descriptive or narrative
contexts. Currently activated at token 1: " girls"

3. L10MF2495@1 : Activates when tokens represent primary actors or subjects, especially those implying actions, agency, or defining roles within a
sentence. Currently activated at token 1: * girls"

4. L1IMF3535@1 : Activates in contexts with structured date-time formats emphasizing their textual coh role,
supported by function and punctuation token promotion. Currently activated at token 1: " girls"

5

L10M.F20221@1 : Activates when tokens signify pivotal or ongoing events requiring emphasis within thematic structures, often marked by contrast,

listing, or detail-focused segments. Currently activated at token 1: " girls"

Figure 5: The Interface for Annotating Circuit Interpretation

* Consecutive Entity Features: These features combine the “Mary” features with “And”

Preceding features, suggesting that the current token follows an [A] and [B] pattern, where
both [A] and [B] are entities.

* “And” Induction Features: These features attend to the token “and” by matching sequences
S1 and S$2, implying that “and” follows “John” in the sentence structure.

» Consecutive Entity Association Features: Utilizing structural information from the “And”
Induction features, these features identify the entity following “and” by attending to the
Consecutive Entity features in the Name Mover heads.

* Name Mover Features: These features complete the final step by transferring the information
associated with “Mary” from the targeted Consecutive Entity token.

Key features in the Syary circuit (Figure |§|):

23

Under review as a conference paper at ICLR 2025

When Mary and John went to the store, John gave a bottle of milk to

When

. " The idea that Kevin Garnett is somehow n
m m_p Mary a Prius.. </Anyhow JB&fi-G originally starter Centered Entity
- B . . L9R.F6577, L9R.F10768
LOM.FSS5, L7M F5063 Right now, WWE claims to be on The Road

LOM.F13739, LOA.F6383

caught up with John[himself, Luke 2-Obama and Clinton|Both did well, once
= m Peppers guitarist John|Ffusciante t ? Charlie Munger and Warren Buffett[Both
- LOM.F22594 Catholicism while Johnl Kennedy nes-Drew and Jordan Todman[@aeh ran foi
Valte———— === == s oo mem oo [T
" ”) wa ") tations: CUDA and OpenCL. .., BitCracker Open€l versio
John” Preceding And” Connected Entities Preceding Fabregas (L) and Gerard Pique are . IGarard P went
L3A.F3226, L2A.F3950 L3AF3334 -
ampard and Steven Gerrard _ d andGerrard,
to the store, Ke I —

m “John” PRI “And” Connected Entities Induction
LOM.F22594 L5A.F12458

gave a drink K I

A4

Entity Indicator Centered Entity Association Name Mover
—b Query———P Query—p|
LOA.F23630, LOM.F393 uer L7AF1932, L8A.F15499, LIR.F16905 ver L9AF15384, LOA.F9767, LIAF14631, L9A.F22905

news conferencelat the Justice «12/Dolan’s Knicks have made Lundaqvist is a fanfof the Knicks| [activist and teacher Deb Nelson _7said Nelson,
called|on Attorney General Jeff Se: Party TD Colm Keaveney has . ien helliéard that Mr Keaveney| [Sahar Mosleh and Maryam Irant__ [and Maryam |
debut season|With Scarlets| a and Leopold Ross get a gold star__has befriend8d the band |Meet Mary. “Former public school/teacher Mar»

Figure 6: Overview of the Sy circuit.

“John”, “and”, “Mary”, Entity Indicator, and “John” Preceding Features: These features
behave similarly to their roles in the sjop, circuit, marking tokens and their relationships.

Centered Entity Features: These features are activated on the first appearance of a significant

name or object, flagging it for potential future reference.

“And”-Connected Entities Preceding Features: These features collect information from
several previous tokens (primarily “and”), indicating an [A] and [B] entity pattern before

the current token.

“And”-Connected Entities Induction Features: These gather information from the “And”-

Connected Entities Preceding features by again matching sequences S/ and S2.

Centered Entity Association Features: Leveraging the structural information from the “And”-
Connected Entities Induction features, these features identify the entity preceding “and” by
attending to the Centered Entity features in the Name Mover heads. Unlike Consecutive
Entity features, Centered Entity features do not account for the “and” token that follows.
However, this behavior is still reasonable, as a previous Centered Entity could also serve as

a valid answer if present before the indirect object.

Name Mover Features: As in the sjop, circuit, these features perform the final step of
transferring the information about “Mary” from the targeted Consecutive Entity token.

24

	Introduction
	Extract Sparse Features with SAEs and Transcoders
	Sparse Autoencoder Features as Analytic Primitives
	Addressing MLP Non-linearity with Transcoders

	Isolating Interpretable Circuits with Hierarchical Tracing
	Formulation
	Hierarchical Tracing
	Evaluating the Global Necessity of Traced Results

	Fully Automated Workflow for Interpretable Circuit Tracing
	In-depth Tracing of Local and Global Circuits
	How Transformers Implement In-Bracket Features
	Revisiting Indirect Object Identification Circuits

	Related Work
	Conclusion
	Notation Summary
	Sparse Autoencoder Training
	Feature Pruning
	Finetuning to Address Feature Suppression
	Sparse Autoencoder Evaluation Metrics

	Interpretation Task Details
	Details in Automated Interpretation Workflow
	Tracer-GPT-4o Interaction
	Human evaluation

	Additional Explanation of the IOI Circuit

