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ABSTRACT

We present a novel approach to Transformer circuit analysis using Sparse Autoen-
coders (SAEs) and Transcoders. SAEs allow fine-grained feature extraction from
model activations, while Transcoders handle non-linear MLP outputs for determin-
istic circuit tracing. Our Hierarchical Tracing method isolates interpretable circuits
at both local and global levels, enabling deeper insights into tasks like subject-verb
agreement and indirect object identification. Additionally, we introduce an auto-
mated workflow leveraging GPT-4o for scalable circuit analysis. This framework
provides a clearer understanding of Transformer model behavior and its underlying
mechanisms.

1 INTRODUCTION

Recent years have seen the rapid progress of mechanistically reverse engineering Transformer lan-
guage models (Vaswani et al., 2017). Conventionally, researchers seek to find out how neural networks
organize information in its hidden activation space (Olah et al., 2020a; Gurnee et al., 2023; Zou et al.,
2023) (i.e. features) and how learnable weight matrices connect and (de)activate them (Olsson et al.,
2022; Wang et al., 2023; Conmy et al., 2023) (i.e. circuits). One fundamental problem of studying
attention heads and MLP neurons as interpretability primitives is their polysemanticity, which under
the assumption of linear representation hypothesis is mostly due to superposition (Elhage et al.,
2022; Larson, 2023; Greenspan & Wynroe, 2023). Thus, there is no guarantee of explaining how
these components impact model behavior out of the interested distribution. Additionally, circuit
analysis based on attention heads is coarse-grained because it lacks effective methods to explain the
intermediate activations.

Probing (Alain & Bengio, 2017) in the activation for a more fine-grained and monosemantic unit has
succeeded in discovering directions indicating a wide range of abstract concepts like truthfulness (Li
et al., 2023) and refusal of AI assistants (Zou et al., 2023; Arditi et al., 2024). However, this supervised
setting may not capture features we did not expect to present.

Sparse Autoencoders (SAEs) (Bricken et al., 2023; Cunningham et al., 2023) provide a promising
alternative for unsupervised feature extraction from superposition. They offer a new perspective on
understanding model internals by interpreting the activation of SAE-derived features. This raises an
important question: How can we effectively leverage SAEs for circuit analysis in Transformer
models? To address this, we introduce several innovations in this area. Compared to previous
work (Cunningham et al., 2023; He et al., 2024; Marks et al., 2024), our main contributions are as
follows:

• We propose a novel framework that utilizes Transcoders, generalized forms of SAEs, to
overcome the non-linearity of MLPs in Transformer models. Transcoders allow for sparse
decomposition of MLP outputs, enabling fine-grained circuit analysis while maintaining
deterministic connections between upstream and downstream features.

• We introduce a fully automated Hierarchical Tracing methodology to streamline the
discovery and interpretation of circuits at both local and global levels, by tracing the flow of
information based on sparse features extracted by SAEs and Transcoders.

• We demonstrate the effectiveness of our approach by applying it to tasks including subject-
verb agreement and indirect object identification, offering more detailed insight into how
each single SAE feature contributes to a desired behavior.
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2 EXTRACT SPARSE FEATURES WITH SAES AND TRANSCODERS

2.1 SPARSE AUTOENCODER FEATURES AS ANALYTIC PRIMITIVES

Sparse Autoencoder (SAE) is a recently emerging method to take features of model activation out
of superposition (Elhage et al., 2022). Existing work has suggested empirical success in the inter-
pretability of SAE features concerning both human evaluation (Bricken et al., 2023) and automatic
evaluation (Bills et al., 2023b).

Concretely, an SAE and its optimization objective can be formalized as follows:

f = ReLU(WEx+ bE)

x̂ = WDf

L = ∥x− x̂∥22 + λ∥f∥1,
(1)

where WE ∈ RdSAE×dmodel is the SAE encoder weight, bE ∈ RdSAE encoder bias, WD ∈ Rdmodel×dSAE

decoder weight, x ∈ Rdmodel input activation. λ is the coefficient of L1 loss for the balance between
sparsity and reconstruction. We refer the reader to Appendix B for implementation details.

We train Sparse Autoencoders on GPT-2 (Radford et al., 2019) to decompose all modules that write
into the residual stream (i.e. Word Embedding, attention output and MLP output), allowing us to
compute cross-layer contribution.

2.2 ADDRESSING MLP NON-LINEARITY WITH TRANSCODERS

The dense and non-linear nature of MLPs in Transformers complicates the sparse attribution of MLP
features. Observing clear, informative mappings between MLP neurons and learned SAE features
is often challenging due to this non-linearity, which disrupts connections between upstream SAE
features and MLP outputs.

To mitigate this issue, we introduce Transcoders (proposed by Dunefsky et al. (2024) as contempo-
rary work)—generalized SAEs that decouple the input and output, enabling predictions of future
activations based on earlier model states. Transcoders take pre-MLP activations and generate a sparse
decomposition of MLP outputs. The optimization objective for a Transcoder is expressed as follows:

f = ReLU(WEx+ bE)

ŷ = WDf

L = ∥y − ŷ∥22 + λ∥f∥1,
(2)

This differs from the SAE formulation (Equation 1) primarily in that the label activation y ∈ Rdmodel

is independent of the input activation x.

By employing Transcoders, the generation of MLP output features (termed Transcoder features)
becomes deterministic. When assessing how an upstream feature fS

i contributes to a downstream
feature fT

j of Transcoder T , the relationship holds as fT
j = fS

i

(
W T

E WS
D

)
ji

. The term
(
W T

E WS
D

)
ji

remains constant across different inputs, establishing edge invariance between upstream and down-
stream features.

This means that if a primary upstream contributor activates under a different input, we can reasonably
expect the corresponding downstream feature to activate as well, unless countered by new resistances
(i.e., upstream features with negative contributions).

In contrast, MLPs lack such invariant connections, as any linkage from upstream to MLP outputs is
ambiguous. Consequently, we can only apply linear approximations to capture these connections
under localized changes.
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3 ISOLATING INTERPRETABLE CIRCUITS WITH HIERARCHICAL TRACING

We have extracted sparse representations of model activations using Sparse Autoencoders (SAEs)
and Transcoders. This section introduces a novel method called Hierarchical Tracing, which isolates
and evaluates a connected computational subgraph of key SAE / Transcoder features related to any
output of interest in a scalable and generalized manner. The goal is to trace interpretable circuits that
provide insights into the role of these features in the model’s predictions or behavior.

3.1 FORMULATION

Forward Pass as a Computational Graph. The forward pass of a neural network M can be
formalized as a computational graph G = (V, E), representing the flow of computation by organizing
operations and variables into a directed acyclic graph (DAG), as described by Owhadi (2022). Each
node v ∈ V corresponds to a model activation av, which exists in an activation space Av. Each
directed edge e = v → u ∈ E ⊂ V × V encodes the functional dependence of u on v via a mapping
ge.

For any non-leaf node u ∈ V , the activation au is determined by the activations of its predecessor
nodes v, according to:

au = ⊗v→ugv→u(av), (3)

where ⊗ represents the aggregation of inputs from all incoming edges to node u. This formulation
captures the structured flow of information through the network during the forward pass and sets the
foundation for a deeper analysis of node interactions.

Path-based Gradient Computation. We adopt a path-based approach to gradient computation,
which decomposes the gradient into contributions from individual paths in the computational graph.
Consider a single path P connecting two nodes v ∈ V and u ∈ V . The gradient of activation au with
respect to av along this path P is given by:

∇vau

∣∣∣∣∣
P

= ∇un
au · ∇un−1

aun
· · · · · ∇vau1

,

=
∏
e∈P

∇ge,

(4)

where the product of gradients is taken over all edges e along path P . This expression captures the
contribution of a specific path to the total gradient.

The total gradient of au with respect to av is then the sum of gradients across all possible paths
between v and u:

∇vau =
∑
P

∇vau

∣∣∣∣∣
P

.

This path-based decomposition enables us to attribute the influence of individual paths within the
graph, providing a more granular view of how specific subgraphs contribute to the output.

3.2 HIERARCHICAL TRACING

Mounting SAEs and Transcoders. The sparse features extracted by SAEs and Transcoders are
initially absent from the computational graph formed by the original model forward pass. To assess
the causal effect of these features, we introduce the concept of mounting them into the computational
graph, which embeds the encoding and decoding processes of SAEs and Transcoders within the graph,
allowing us to trace the flow of information through these components to make features involved.
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Figure 1: (a) Demonstration of mounting SAEs and Transcoders in a computational graph. We insert
feature nodes to reconstruct the output, and create SAE error nodes to fix the difference between
original outputs and the reconstructions. (b) Our Hierarchical Tracing approach, where we iteratively
trace interested output to direct contributors by computing direct effects defined in Equation 5 of all
previous features, and select critical candidates for further tracing.

For an SAE S , with encoding function gE(x) = ReLU(WEx+ bE) and decoding function gD(x) =
WDx, we mount the SAE at a specific node v (Figure 1(a)), corresponding to where the SAE was
originally trained. This is achieved by:

1. Attaching a feature node f to v via an edge v → f with the functional dependence gE .

2. Attaching a reconstructed node v̂ to f through the edge f → v̂, with the functional depen-
dence gD.

3. Connecting v̂ to the original successors of v in the computational graph.

In practice, to account for the imperfect reconstruction ability of SAEs, we create an SAE error
node as a leaf node (Marks et al., 2024), capturing the difference between av and gD(gE(av)). This
error term ensures that the forward pass remains consistent with the original computation, while the
gradient computation now incorporates the effect of the SAE.

For Transcoders, the process is similar. The Transcoder is mounted at the pre-MLP activation node
v, and the reconstructed node v̂ is connected to the successors of the MLP output node, effectively
replacing the original MLP computation with the Transcoder’s functionality.

To separate the contributions of different features, we can split the feature node f into multiple nodes,
each corresponding to an individual feature extracted by the SAE or Transcoder, allowing for more
fine-grained control and interpretation.

Attributing Nodes to Upstream Candidates. Once SAEs and Transcoders are integrated into the
computational graph, it becomes possible to identify the key upstream nodes that contribute directly
to the target output. Previous approaches, such as circuit analysis using activation patching (Wang
et al., 2023; Conmy et al., 2023) and attribution patching (Kramár et al., 2024; Marks et al., 2024),
have primarily focused on understanding the indirect effect—which captures the aggregate influence
of intermediate nodes across all possible paths. While these methods are effective at discovering
important nodes, they do not guarantee the formation of a coherent and connected subgraph, nor do
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they offer a self-contained, interpretable circuit. Additionally, these indirect effects can vary across
different tasks due to the complexity and nonlinearity of the underlying neural network functions.

To mitigate such issue, our method centers on computing the direct effect of individual nodes by
analyzing the path-based gradients (as defined in Equation 4) (Figure 1(b)). This method provides
a more precise and interpretable view by isolating the direct contributions of upstream nodes. We
define a set of intermediate nodes VI as gradient barriers, which block path-based gradients from
propagating through these nodes, except for those originating directly from them. The direct effect of
a node v on an output node u, considering the intermediate nodes VI , is represented by an attribution
score:

attrv

∣∣∣∣∣
VI

= av
∑

P∩VI=∅

∇vau

∣∣∣∣∣
P

. (5)

Nodes with high direct attribution scores can be identified as critical upstream candidates, providing
a more interpretable and connected subgraph for further analysis. In practice, we treat the outputs of
the attention heads from SAEs and the features generated by Transcoders as the set of intermediate
nodes VI . Given that the direct effect computation in this setting is relatively straightforward (linear
for Transcoders and bilinear-softmax-linear for attention mechanisms), we expect these inter-layer
effects to persist across different inputs, enabling a more generalized and robust interpretation of the
results.

Selecting Critical Candidates for Further Tracing. Once key upstream candidates are identified,
the next step is to prioritize the most critical nodes for detailed tracing. This selection is based on
their direct attribution scores and their contextual importance within the network. To determine which
nodes warrant further analysis, we can employ either of these two strategies:

• Apply thresholds on the attribution scores or use sparsity-promoting techniques to limit the
focus to a small subset of paths and nodes (Section 3.3).

• Conduct a more in-depth inspection of the candidates by utilizing top activations of features
and direct logit attributions (DLAs), selecting those with the strongest contextual relation-
ships. This selection can be performed either automatically using large language models
(LLMs) (Section 4) or manually by human experts (Section 5).

By focusing on the most critical nodes, we reduce complexity while simultaneously enhancing the
interpretability of the resulting model, yielding clearer insights into how key features influence the
final predictions.

3.3 EVALUATING THE GLOBAL NECESSITY OF TRACED RESULTS

After tracing key nodes and subgraphs using Hierarchical Tracing, it is important to evaluate the
significance of the traced results from a broader perspective. Specifically, we assess the necessity of
the traced results by ablation testing. We hypothesize that the removal of key nodes from the traced
subgraph should result in a significant drop in model performance if the traced nodes are truly critical
to the final output.

For instance, in a text input scenario, we first run Hierarchical Tracing with a sparsity-promoting
selector that identifies the top 10 features by its direct effect attribution score from each layer. Next,
for a range of values 1 ≤ k ≤ 40, we mean-ablate the top-k nodes and measure the probability
decrease from the original output. The mean ablation is done by replacing the current activation with
the average value at current node across the task. This experiment is compared against a neuronal
approach (where intermediate nodes are defined as all model activations that write to the residual
stream) and a baseline approach involving the random ablation of activated features. We further
mean-ablate a single feature/neuron that is ordered exactly the k-th to examine if there are deeper
correlations between the effect measured by Hierarchical Tracing and the overall significance.

We evaluate through 500 prompts from the subject-verb agreement task. The results (Figure 2(a))
suggest that ablating the top 20 critical features from the traced subgraph is enough to cause a sub-
stantial performance drop, demonstrating that our method successfully isolates vital nodes. Besides,
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Figure 2: Performance degradation according to the mean percentage probability decrease through
prompts of the subject-verb agreement task, when ablating (a) all the top k features or neurons, or
randomly-selected k activated features; (b) the exactly k-th feature or neuron.

as k increases, Figure 2(b) shows that only ablating the k-th node causes a fainter effect, showing
the effectiveness of Hierarchical Tracing. Furthermore, our approach consistently outperforms the
neuronal approach in identifying key nodes, demonstrating its superior ability to localize critical
components in the computational graph.

4 FULLY AUTOMATED WORKFLOW FOR INTERPRETABLE CIRCUIT TRACING

To streamline the tracing of interpretable circuits in any model forward pass, we propose a fully
automated workflow that combines the hierarchical tracing methodology with GPT-4o, leveraging
LLMs to automate the analysis of intermediate activations, select critical nodes, and generate
comprehensive explanations of the model’s internal mechanisms.

The workflow consists of three main steps:

1. Feature Interpretation: We utilize GPT-4o to interpret individual features extracted by
SAEs and Transcoders (Bills et al., 2023a; Bricken et al., 2023). By providing GPT-4o with
activation contexts, direct logit attributions (nostalgebraist, 2020), and task descriptions, it
generates concise explanations of the conditions under which each feature activates, aiding
in understanding the semantic or syntactic roles of features.

2. Candidate Selection: GPT-4o selects important intermediate nodes that significantly con-
tribute to the model’s inference. It considers the current node to trace, candidate upstream
nodes with brief explanations, and relevant task information. Following structured inter-
action guidelines, GPT-4o iteratively selects nodes to trace further, building a coherent
and connected subgraph of critical nodes. In practice, to prevent an overload of distractor
candidates, we provide GPT-4o with the top 10 features exhibiting the highest attribution
scores, as outlined in Section 3.3, and request further selection.

3. Circuit Interpretation: Finally, GPT-4o synthesizes the traced information to generate a
comprehensive explanation of the model’s internal information flow, detailing the progres-
sion from low-level token patterns to high-level semantic understanding. This provides a
transparent view of the model’s decision-making process.

By integrating LLM-based interpretation at each stage, our automated workflow not only identifies
critical components within the model but also generates human-readable explanations of how these
components contribute to the model’s behavior. This approach significantly reduces the need for
manual analysis, enabling scalable and efficient interpretability for complex neural networks. Our
detailed prompts used for GPT-4o interactions are listed in Appendix D.

We evaluate our LLM-based interpretation using the following criteria:
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Table 1: Ratings for automated interpretation workflow
Criterion SVA (Simple) SVA (RC) IOI In-Bracket Induction
Interpretability 7.9 6.6 5.3 8.2 7.1
Reasonability 7.9 6.7 4.9 8.4 7.2
Generality 7.4 5.5 5.0 8.7 6.8

• Interpretability: Assessing how clearly the LLM articulates the feature-based information
flow in the model forward pass.

• Reasonability: Evaluating whether the explanations provided by the LLM are reasonable
based on the candidate nodes.

• Generality: Evaluating the consistency and coherence of explanation among different
prompts of the same tasks.

To assess these criteria, we run our workflow on prompts from three end-to-end tasks: the simple and
across-relative-clause variants of the subject-verb agreement task and the indirect object identification
task. Additionally, we include two tasks focused on interpreting the formation of a specific feature.

Following this, we enlist experienced human crowdworkers to evaluate each criterion. They manually
inspect the inner thought processes, candidate selections, and circuit interpretations provided by the
LLMs, assigning ratings based on their assessments. The results in Table 1 show that our automatic
approach succeeded in tracing and interpreting information flow in tasks such as subject-verb agree-
ment and intermediate feature formation. Detailed rubrics and interface are listed in Appendix D.2.
However, for more complicated tasks like IOI, it falls short of providing a comprehensive summary of
the entire circuit. Upon examining the interaction histories, we discovered that our automatic feature
interpretation struggles to capture commonalities when the effective context is lengthy, particularly in
the case of induction features. We then move on to dive into the process of circuit tracing.

5 IN-DEPTH TRACING OF LOCAL AND GLOBAL CIRCUITS

Despite the success of our fully automated approach in generating circuit explanations, it is not so
meticulous about the precise information flow. In this section, we turn to manual tracing through local
circuits (from an intermediate feature) and global circuits (from the output logits), investigating how
contribution from different upstream features affect downstream, and how OV and QK circuits (Elhage
et al., 2021; He et al., 2024) collaborates in inter-layer and inter-token information moving.

5.1 HOW TRANSFORMERS IMPLEMENT IN-BRACKET FEATURES

Sparse Autoencoders (SAEs) serve as powerful unsupervised feature extractors in the expansive
hidden activation space of language models. This capability allows us to explore intermediate
activations and local circuit discovery, focusing on subgraphs that activate specific SAE features,
rather than solely on end-to-end circuit behavior.

We research In-Bracket features in the attention blocks of early layers, specifically targeting tokens
within brackets (e.g., deactivated [activated] deactivated). These features exhibit heightened acti-
vation levels with deeper bracket nesting, mimicking finite state automata behavior (Bricken et al.,
2023). Our findings reveal an In-Bracket feature L1A.F11421 in the SAE trained on layer 1 attention
block outputs, referred to as L1A.

Open-bracket features promote in-bracket activation. As illustrated in Figure 3(a), we investigate
contributions to the In-Square-Bracket feature within a template such as “0 0 [1 1 1 [2] 3] 4,” focusing
on tokens “1”, “2”, “ 3”, and “ 4”. Our experiments indicate that the activation is primarily driven
by an L0M feature activated by the token “ [”, accounting for 104.1%, 102.6%, and 314.2% of the
In-Square-Bracket feature’s activation for tokens “1”, “2”, and “ 3” respectively. Notably, an average
of 83.8% of these contributions arises from attention head 1 of L1A, labeled L1A.H1.

7
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(b) Contribution to a specific In-Bracket feature from each
token’s bracket features

(c) Attention Score Trends of a Sig-
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Figure 3: (a) Opening Bracket features positively contribute to In-Bracket features, while Closing
Bracket features exert a negative influence. (b) The proximity of “ [”s enhances activation of the
In-Bracket feature. (c) Tokens following “ [”s show strong initial attention to the opening bracket,
which diminishes as the sentence progresses, illustrating the trend seen in Figure 3(b).

Closing-bracket features suppress in-bracket activation. The In-Square-Bracket feature is predom-
inantly inhibited by a “]” feature in L0M, as shown in Figure 3(b), with suppression also mediated
through L1A.H1.

Interpreting QK attention to “ [” and “]”. We analyze the QK circuit of L1A.H1, depicted in
Figure 3(c). This head consistently attends to “ [”s and “]”s, irrespective of the current token. This
behavior is largely influenced by bQ in L1A.H1, which engages with the aforementioned bracket
features.

In summary, In-Bracket features are activated by opening bracket features and inhibited by closing
bracket features, resembling the operational dynamics of finite automata. Despite their straightforward
functionality, the underlying mechanisms are more complex than initially anticipated.

5.2 REVISITING INDIRECT OBJECT IDENTIFICATION CIRCUITS

To explore end-to-end circuits in GPT-2 Small, we investigate the Indirect Object Identifica-
tion (IOI) task (Wang et al., 2023) using Hierarchical Tracing. For example, given the prompt
“When Mary and John went to the store, John gave the bag to”, GPT-2 predicts “ Mary”. We refer to
this prompt as sMary, and a variant sJohn is created by swapping the names, leading to the same answer.
Existing studies often overlook the differences between these templates.

Through the SAE lens, we not only confirm previous findings but also uncover nuanced mechanistic
distinctions in their corresponding circuits.

Feature Circuits Agree with Head-Level Circuits. Using Hierarchical Tracing, we trace the
information flow in the IOI task for both sMary and sJohn. We identify critical attention heads within
the isolated subgraph and attribute their QK scores to earlier features. Notably, the identified feature
circuits show strong correspondence with those derived from attention heads: (1) Name Mover
features agree with Name Mover Heads (L9A.H6, L9A.H9); (2) Association features correlate with
S-Inhibition Heads (L7A.H3, L7A.H6, L8A.H10); (3) Induction features match with Induction

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

When

Mary

and

John

went

John

to

IO

S1

IO+1

S2

END Name Mover
L9A.F15384, L9A.F9767, L9A.F14631, L9A.F22905

Consecutive Entity Association
L8A.F21019, L9R.F7958

Consecutive Entity
L9R.F13333, L9R.F17361

“Mary”
L0M.F95, L7M.F5063

Value

Key

Query

“John”
L0M.F22594

“And”Induction
L6A.F5036, L5A.F24022

Entity Indicator
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“John”
L0M.F22594

Key Value

Query

Query

S1+1 “and”
L0M.F13739, L0A.F6383

Mary

“And”Preceding
L3A.F20610, L4A.F2165, L7M.F8370

Value

Value

“John”Preceding
L2A.F11169, L3A.F3226, L5A.F5308

Value

Key

to the store,

gave a drink

 

 

 

 

 

 

  

 

(a) Overview of sJohn circuit

When Mary and John went to the store, John gave the bag to (Answer: Mary)

When John and Mary went to the store, John gave the bag to (Answer: Mary)

A

John identified as Center Entity
Mary goes after and

Inform Association features 
with John goes before and

Inform Name Mover Head 
to perform induction

Name Mover Head fetches 
Mary 

Mary identified as Center Entity
John goes after and

Inform Association features 
with John goes after and

Inform Name Mover Head 
to fetch Center Entity

Name Mover Head fetches 
Mary 

B C D

(b) Key differences between sJohn and sMary circuits

Figure 4: In the circuit for sJohn, the consecutive entity feature (denoted as A in Figure 4(a)) acts as
the key vector for Name Mover Heads, allowing them to attend to and replicate the answer entity
in the residual stream. This mechanism is ineffective in sMary, as the correct answer is no longer a
consecutive entity (i.e., it follows the token and). See Appendix E for detailed interpretations of these
examples.

Heads (L5A.H5, L6A.H9); and (4) Preceding features correspond to Previous Token Heads (L2A.H2,
L3A.H2, L4A.H1).

Zooming in SAE Circuits Reveals New Insights. Our findings indicate that SAE circuits provide
richer information than their coarser counterparts, signaling a deeper understanding of language
model mechanics. While the attention heads in both sJohn and sMary show consistency, they operate
through distinct SAE features, as illustrated in Figure 4(b).

Focusing on sJohn, we analyze how GPT-2 predicts “ Mary” following the prompt “When John and
Mary went to the store, John gave the bag to”. The information flow, though simplified, is intricate.
We highlight four pivotal feature clusters, as indicated in Figure 4:

A “ Mary” is recognized as a Consecutive Entity due to its position following “ and”.

B The second occurrence of “ John” activates an induction feature, enhancing the logit of
“and,” despite its next token being different.
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C The token “to” signifies that the next token is likely an object or entity, activating an
association feature to retrieve potential entities that have appeared previously.

D The Name Mover Head receives this information, facilitating the copying of the token
“ Mary” to the residual stream.

In sMary, however, the situation diverges significantly. Here, “ Mary” first activates a Center Entity
feature, which GPT-4 explains as “People or Objects that are likely to be the main topic of the article.”
The last token aims to associate a previously mentioned entity but is directed to retrieve the Center
Entity instead, as the Consecutive Entity Association feature has been inhibited by repeated mentions
of “ John.”

6 RELATED WORK

Mechanistic and Representational Interpretability. Mechanistic Interpretability (Olah et al.,
2020b;a) deems model components, e.g., attention heads and MLP neurons, as primitives and explains
how they interact with model input and output. This line of research has succeeded in identifying
attention-based circuits implementing various NLP tasks (Olsson et al., 2022; Wang et al., 2023;
Stefan Heimersheim, 2023). Efforts are also made to interpret polysemantic MLP neurons (Gurnee
et al., 2023) and editing information stored in MLP parameters (Meng et al., 2022; Sharma et al.,
2024).

By placing intermediate activations at the center of analysis, Representational Interpretability ap-
proaches mostly use linear probes to isolate a targeted behavior in a supervised manner (Kim et al.,
2018; Geiger et al., 2023; Zou et al., 2023). However, such methods may fail to capture unanticipated
behaviors.

Sparse Autoencoders stand in between these two approaches. SAEs disentangle features in
the model’s hidden activation (Chen et al., 2017; Subramanian et al., 2018; Zhang et al., 2019;
Panigrahi et al., 2019; Yun et al., 2021; Bricken et al., 2023; Cunningham et al., 2023) into more
interpretable primitives than MLP neurons, in an unsupervised manner. Albeit reconstruction errors,
Rajamanoharan et al. (2024); Wright & Sharkey (2024) have proposed to improve SAE training with
lower loss and more sparsity.

Circuit Discovery with SAE Features. Previous work mechanistically interprets circuits connect-
ing attention heads and MLP neurons (Olsson et al., 2022; Wang et al., 2023; Conmy et al., 2023).
As for SAE circuits, He et al. (2024) makes a linear approximation of MLP layers by fixing the gate
mask of the non-linear activation function; Marks et al. (2024) estimates the indirect effect of each
SAE feature with attribution patching (Kramár et al., 2024), which also makes linear assumption of
non-linear functions. In contrast, we refactor our computation graph to be completely linear w.r.t. OV
and MLP circuits without approximation.

7 CONCLUSION

Our framework employs Sparse Autoencoders (SAEs) to extract fine-grained features from model
activations, providing a clearer understanding of how Transformer layers and neurons process
information. To address the challenges posed by non-linear MLP structures, we introduce Transcoders,
enabling the deterministic tracing of MLP outputs. We further present Hierarchical Tracing, a
methodology that allows for both local and global analysis of circuits, facilitating the discovery of
how different parts of a Transformer contribute to model behavior.

Through various automatic and manual experiments on tasks like subject-verb agreement and IOI, we
have demonstrated the robustness of our approach in isolating critical circuits. The analysis of in-
bracket features and indirect object identification circuits showcases the depth of interpretability made
possible by using SAEs. Additionally, our automated workflow integrated with GPT-4o streamlines
the tracing process, offering scalable and interpretable results.
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A NOTATION SUMMARY

This section summarizes and clarifies the notations used throughout the paper. Each notation is listed
with a brief description for reference.

Table 2: List of Notations and Descriptions
Notation Description
x Input activation in the model.
x̂ Reconstructed input activation.
f Feature vector from SAE or Transcoder.
WE , bE SAE or Transcoder encoder weight matrix and bias.
WD SAE or Transcoder decoder weight matrix.
dmodel Dimension of the model’s hidden activation space.
dSAE Dimension of the SAE feature space.
L Loss function used during training.
λ Coefficient for L1 regularization (sparsity loss).
fS
i Feature i from SAE S.
G = (V, E) Computational graph, with vertices V and edges E .
au, av Activations at nodes u and v in the computational graph.
P A path in the computational graph.
∇vau

∣∣∣
P

Gradient of activation au with respect to av along path P .
⊗ Aggregation operation over inputs in the computational graph.
VI Set of intermediate nodes used as gradient barriers.
LXM, LXA The MLP and attention block of layer X.
LXM.FY@Z, LXA.FY@Z The Y-th feature at token Z from the LXM Transcoder / the LXA SAE.
LXA.HY The Y-th attention head of layer X.

B SPARSE AUTOENCODER TRAINING

Table 3: Statistics of Attention Output SAEs
SAE Var. Explained L0 Loss Reconstruction CE Score Reconstruction CE Loss

L0A 92.25% 29.66 99.24% 3.2327
L1A 82.48% 65.57 97.19% 3.2138
L2A 83.39% 69.85 94.29% 3.2150
L3A 69.23% 53.59 87.00% 3.2173
L4A 74.91% 87.35 89.99% 3.2171
L5A 82.12% 127.18 97.81% 3.2145
L6A 76.63% 100.89 94.31% 3.2158
L7A 78.51% 103.30 91.32% 3.2182
L8A 79.94% 122.46 88.67% 3.2172
L9A 81.62% 107.81 89.55% 3.2187
L10A 83.75% 100.44 87.70% 3.2201
L11A 84.81% 22.69 85.49% 3.2418

We trained Sparse Autoencoders (SAEs) (Section 2.1) on the outputs of all 12 attention layers. For
each MLP layer, we trained a Transcoder (Section 2.2), with the residual stream activation before the
MLP as input and the MLP output as the label. Below are the training settings:

• Dictionary size: Each SAE/Transcoder contains 24,576 features, 32 times the hidden
dimension of GPT-2 Small.

• Optimization: We use the Adam optimizer with a learning rate of 4e-4 and betas (0, 0.9999)
for 1 billion tokens from the OpenWebText (Radford et al., 2019) corpus. Training uses a
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Table 4: Statistics of MLP Transcoders
SAE Var. Explained L0 Loss Reconstruction CE Score Reconstruction CE Loss

L0M 94.16% 19.59 99.65% 3.1924
L1M 82.02% 48.63 86.35% 3.1816
L2M 86.32% 50.90 81.24% 3.1851
L3M 76.55% 56.91 83.43% 3.1867
L4M 73.38% 76.03 80.08% 3.1888
L5M 73.49% 84.11 84.18% 3.1881
L6M 72.79% 90.34 82.85% 3.1912
L7M 73.18% 86.38 81.89% 3.1911
L8M 74.14% 87.29 83.25% 3.1913
L9M 75.89% 90.08 81.89% 3.1930
L10M 79.66% 94.85 81.60% 3.1987
L11M 80.33% 79.12 77.33% 3.2169

batch size of 4,096 on an NVIDIA A100-80GB GPU, running for 20 hours. Loss functions
include reconstruction loss (MSE), sparsity loss (L1 norm of activations, coefficient 8e-5,
1.2e-4 for attention outputs), and ghost gradient loss.

• Input processing: Only the first 256 tokens from each sequence are used, discarding
sequences shorter than this. Activations are shuffled within an activation buffer.

• Normalization: Input activations are normalized to a norm of
√
768 (GPT-2 Small hidden

size). The MSE loss is further normalized by the variance of the output along the hidden
dimension:

LMSE =
(xnormed − x̂normed)

∥x̂normed − ¯̂xnormed∥2
.

• Weights and biases: We untie encoder and decoder weights. The decoder bias (pre-encoder
bias) is removed to simplify circuit analysis. Decoder norms are constrained to be less than
or equal to 1 after each training step.

• Feature pruning: Dictionary features are pruned if they have a norm less than 0.99, a
maximum activation less than 1, or an activation frequency below 1e-6.

• Finetuning: After pruning, we finetuned the decoder and feature activation scaler on the
same dataset, with only reconstruction loss applied, to mitigate feature suppression and
improve overall reconstruction quality.

B.1 FEATURE PRUNING

Some SAE features can be overly sparse and activated by very specific tokens, contributing little to
overall reconstruction. These trivial features are pruned based on the following criteria:

Norm less than 0.99: Useful features tend to have larger norms, as the L1 loss encourages smaller
activations. Features without growing norms are pruned.

Max activation less than 1: Features with low maximum activation contribute minimally to
reconstruction and are often activated in unrelated contexts, making them non-interpretable.

Activation frequency less than 1e-6: Features with ultra-low activation frequencies are too local
and correspond to specific tokens in very specific contexts. These are pruned if their activation
frequency falls below this threshold.

B.2 FINETUNING TO ADDRESS FEATURE SUPPRESSION

Feature suppression, where loss functions push activation values towards zero, can degrade recon-
struction quality. To address this, we finetuned the decoder and feature activation scaler of pruned
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SAEs using only reconstruction (MSE) loss, while keeping encoder weights fixed. This finetuning
helps restore reconstruction quality and correct any issues caused by pruning.

B.3 SPARSE AUTOENCODER EVALUATION METRICS

We evaluate the trained SAEs using three metrics:

L0 Loss: Average number of features activated per token, measuring the sparsity of the SAE.

Explained Variance: Measures the proportion of activation variance accounted for by the SAE:

EV = 1− ∥ŷ − y∥22
σ2(y)

.

Reconstruction CE Score: The cross-entropy score compares the reconstruction CE loss (Lrecons)
with the original and ablated CE losses:

s =
Lrecons − Lablate

Loriginal − Lablate
.

C INTERPRETATION TASK DETAILS

In this section, we list details of the language model tasks we mechanistically researched. Table 5
shows the example prompts, answers and outputs of interest in these tasks.

Table 5: Example data from 3 end-to-end tasks and 2 intermediate feature tasks
Task Example Prompt Answer Interested Output

IOI “When John and Mary went to the store, Mary
gave a bottle of milk to”

“ John” Logit

SVA (Simple) “The girls” “ do” Logit
SVA (RC) “The friends that the architect likes” “ go” Logit
Induction “The cuDNN library team is excited to announce

... .We are proud that the cu”
“D” L5A.F20004

In-bracket “The Yahoo AP story Man brags he killed Chi-
nese California students [October”

“ 17” L1A.F11421

D DETAILS IN AUTOMATED INTERPRETATION WORKFLOW

This section details the interaction between the direct-effect-based tracer and LLM-based selector.
Additionally, we provide information on how crowdworkers rate the interpretability, reasonability,
and generality of each sample.

D.1 TRACER-GPT-4O INTERACTION

For a given forward pass and an interested output, we set the initial target at the interested output, and
then iteratively:

• Run the tracer to compute the direct effect of all interested intermediate nodes based on
Equation 5;

• Collect the top 10 intermediate nodes, run automatic interpretation, and ask GPT-4o to select
one or multiple nodes for subsequent tracing. If multiple nodes are selected, we sum up
these nodes and compute a total direct effect for them.

The prompt for automatic interpretation is:
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GPT-4o Prompt
System: You are an expert in Large Language Models and the field of

Mechanistic Interpretability. You're kind to assist in giving
explanation of how language models work.

↪→
↪→

User: We are analyzing an intermediate activation in a
Transformer-based language model during the forward pass. This
intermediate value may represent neurons in the MLP, the residual
stream, an intermediate layer output, or a specific direction
within these components. The goal is to explain what it signifies
when this value activates (i.e., exceeds 0). You will receive
detailed information about the intermediate value, along with
several contexts where it activates one or more times.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

In the contexts, the token where the intermediate value activates will
be denoted as <x, token>, where "x" represents the activation
intensity (1-5, with 5 being the highest), and "token" is the
actual token. Additionally, you will receive the direct logit
attribution of the intermediate value, indicating which tokens it
promotes or suppresses if directly connected to the unembedding
layer. Also, you may receive a task information, which means the
intermediate value is found when the model is performing a specific
task. It does not require this intermediate value to have strong
relevance to the task, but it may help you understand the context
and what we're concerned about better.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Guidelines for generating the explanation:

- Identify shared patterns across contexts where the intermediate value
activates. These patterns could relate to token positioning,
meaning similarity, syntactic roles, surrounding tokens, repetition,
etc.

↪→
↪→
↪→

- Keep in mind that intermediate values from earlier layers often
capture low-level features like syntax or token-level patterns,
while later layers typically reflect higher-level features like
semantics and context. Examine the direct logit attribution for
commonalities in promoted or suppressed tokens, with promoted
tokens more likely to reveal patterns.

↪→
↪→
↪→
↪→
↪→

- Intermediate values from attention layers often capture token
relationships (e.g., connections with previous tokens or repeated
patterns). Inspect whether similar patterns have appeared earlier,
especially when prior tokens don’t trigger activation. Conversely,
intermediate values from MLP layers may focus on individual token
features, though this is not a strict rule.

↪→
↪→
↪→
↪→
↪→

- Pay special attention to the highest activations (5). Low activations
can be harder to interpret, as they may represent weaker features or
more context-specific behaviors.

↪→
↪→

Let’s begin with the detailed information on the intermediate value,
the activation contexts, and the direct logit attribution.↪→

[DETAILED INFORMATION]
The intermediate value to explain is {node_type} from {position} of

Layer {layer} in a GPT-2 model, which has {total_layer} layers.↪→

[TASK DESCRIPTION]
{task_info}

[CONTEXTS]
Here are the contexts where the intermediate value activates ( denotes

a new line token). Contexts are clipped around the maximum
activation point:

↪→
↪→
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{contexts}

[DIRECT LOGIT ATTRIBUTION]
The direct logit attribution of the intermediate value is below,

showing the tokens it promotes or suppresses:↪→

Promoted tokens:
{promoted_tokens}

Suppressed tokens:
{suppressed_tokens}

Please respond in the following format:

[THOUGHTS]
Your reasoning process.

[EXPLANATION]
Your concise explanation (maximum 30 words) of the conditions under

which the intermediate value activates, focusing on shared patterns
across contexts.

↪→
↪→

And the prompt for asking GPT-4o to select from candidates is:

GPT-4o Prompt
System: You are an expert in Large Language Models and the field of

Mechanistic Interpretability. You're kind to assist in giving
explanation of how language models work.

↪→
↪→

User: We are investigating how information flows through a
Transformer-based language model during token generation. Our
process involves tracing output logits back through intermediate
nodes to understand which nodes contribute most to the model's
inference.

↪→
↪→
↪→
↪→

In each step, **you** will:
1. Select important intermediate nodes that you believe contribute to

the model's inference.↪→
2. **We** will trace those nodes back upstream to identify vital

upstream nodes.↪→

When multiple nodes are selected in one round, we will trace back based
on the sum of their influence. Only do so if these nodes appear to
have very similar effect. Once you believe enough nodes have been
traced to fully understand the information flow, provide an overall
explanation of how the model generates the next token.

↪→
↪→
↪→
↪→

### Interaction Flow:
- We will provide the task description, input prompt, and the next

token.↪→
- In each round, we will trace the current node and provide a list of

candidate upstream nodes. Each candidate will be accompanied by an
explanation in the format: `[ID]: [EXPLANATION]`.

↪→
↪→
- You can select one or more candidate nodes (separated by commas) that

you think should be traced next by outputting their [ID].↪→
- You can select candidate nodes from previous rounds to trace back if

you believe they are more important or the current tracing branch
is ending.

↪→
↪→
- If you believe the current tracings are sufficient to explain the

information flow, you can provide an overall explanation by
outputting `[EXPLANATION]`.

↪→
↪→

### Node Naming Convention:

19
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The node IDs follow this format: `L{{layer}}{{type_letter}}.{{suffix}}`,
where:↪→

- `{{layer}}` represents the model layer number (0-11 in GPT-2). Later
layers capture high-level features (like semantics), while earlier
layers capture low-level features (like syntax).

↪→
↪→
- `{{type_letter}}` represents the node type:

- `A`: Attention block.
- `M`: MLP block.
- `R`: Residual stream.

- `{{suffix}}` describes the specific feature, neuron:
- Example: `F2341@5` refers to feature 2341 at token 5.

### Additional Node Selecting Guidelines:
- **MLP (M)**: Nodes from MLP blocks capture deeper token-level

features, often integrating information about syntax and specific
token patterns. These nodes are essential when the model is
consolidating information for final token decisions.

↪→
↪→
↪→
- When selecting MLP features, consider if the pattern contributes to

more complex interactions, such as understanding word roles or
generating grammatical forms.

↪→
↪→

- **Attention (A)**: Attention block nodes capture inter-token
relationships. Attention nodes often identify key tokens that the
model focuses on, which can be crucial for understanding
dependencies.

↪→
↪→
↪→
- When tracing attention nodes, the upstream candidate nodes may

either contain↪→
- information that is moving to current node (through OV circuit),

or↪→
- information that determines the attention score (through QK

circuit), i.e., query and key that determine these two tokens'
being attended to each other.

↪→
↪→
It's worthy to respectively trace back the former and the latter to

gain a comprehensive understanding of how information flows and
how the information could flow.

↪→
↪→

- **Residual Stream (R)**: Residual stream nodes provide a cumulative
representation of all previous layers’ computations. These nodes
often contain both low-level and high-level information.

↪→
↪→
- Trace back residual stream nodes if you want to capture broad

information about the model's processing across layers.↪→
- **Early Layers**: Early layers (e.g., L0-L3) often capture low-level

patterns such as token identities or syntactic rules. When you
trace to early layers, consider returning to later layer nodes
(maybe from previous rounds) to gain a more comprehensive
understanding of the information flow, e.g. going back to a high
layer attention node and change from OV to QK circuit.

↪→
↪→
↪→
↪→
↪→

**Important Considerations**:
- Prioritize nodes in higher layers if you are tracing broad semantic

patterns, as they integrate more abstract features.↪→
- Trace MLP nodes when you suspect that the model is resolving

token-level choices, like grammar or token disambiguation.↪→

### Explanation Guidelines:
When providing an explanation, ensure you construct a clear

**information flow trajectory** that highlights critical nodes and
how they contribute to the model's decision-making. Here's what to
include:

↪→
↪→
↪→
- **Overall Information Flow**: Provide a high-level summary of how

information flows from the earlier layers to the final decision,
emphasizing how the traced nodes combine to produce the next token.
Highlight the progression from low-level to high-level features
(e.g., syntax, semantics).

↪→
↪→
↪→
↪→
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- **Critical Nodes**: Identify the most significant nodes that
influence the token generation. Explain why these nodes are crucial
in shaping the output and how their roles evolve as the model
processes deeper layers.

↪→
↪→
↪→
- **Inter-node Dependencies**: Describe how the selected nodes interact

with each other. Highlight any relationships between tokens captured
by attention nodes or features consolidated in MLP blocks. Focus on
dependencies such as subject-verb agreement or other
syntactic/semantic patterns.

↪→
↪→
↪→
↪→
- **Node Influence**: Assess the strength of each node's influence on

the overall output. For instance, explain whether a residual stream
node has cumulative significance or whether an attention node
reveals a key relationship that drives the next token choice.

↪→
↪→
↪→
- **Conclusion**: Based on the traced nodes, conclude how the model

arrived at its final decision. Summarize the critical steps and
transformations that occurred throughout the layers, noting whether
additional tracing is needed or if the information flow is fully
understood.

↪→
↪→
↪→
↪→

### Response Format:
Your responses should follow this format:

[THOUGHTS]
Your brief thought process.

[NODE] / [EXPLANATION]
The selected node ID(s), separated by commas (e.g., `L5A.F123@3,

L7M.N234@6`). Do not append any text including trailing `.` after
the last selected node. / Your explanation of why these nodes are
significant in understanding the mechanism.

↪→
↪→
↪→

You should respond with either [NODE] or [EXPLANATION] in each round,
but not both.↪→

### Task Description:
{task_info}

Input prompt: "{input_prompt}"
Next token: "{next_token}"

### Round 1: (Max {max_rounds} Rounds)

Current Node to Trace:
{target}

Candidate upstream nodes:
{candidates}

Please select the most relevant node(s) to trace and provide their
ID(s). If you believe the current tracings are sufficient to
understand the mechanism, provide an overall explanation of the
information flow.

↪→
↪→
↪→

D.2 HUMAN EVALUATION

We ask human experts to give ratings (1-10) of each result regarding interpretability, reasonability,
and generality, based on the task, the explanation given by LLM, and the detailed conversation. Our
ratings are based on the rubrics below:

Interpretability Rubric:
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• 9-10: Explanations are exceptionally clear and detailed, providing a thorough understanding
of the feature-based information flow, and perfectly explaining information from different
sub-circuits.

• 7-8: Explanations are mostly clear, with minor ambiguities that do not significantly hinder
understanding.

• 5-6: Explanations are somewhat clear but lack detail, making it difficult to fully grasp the
information flow.

• 3-4: Explanations are unclear, with significant gaps in information that obscure understand-
ing.

• 1-2: Explanations are incomprehensible or irrelevant, providing no useful insight into the
information flow.

Reasonability Rubric:

• 9-10: All explanations are highly reasonable and well-supported by the candidate nodes,
demonstrating strong logical coherence.

• 7-8: Most explanations are reasonable, with few unsupported claims or logical inconsisten-
cies.

• 5-6: Some explanations are reasonable, but several claims lack sufficient support or show
inconsistencies.

• 3-4: Explanations are largely unreasonable, with many unsupported claims and significant
logical gaps.

• 1-2: Explanations are completely unreasonable and full of speculations.

Generality Rubric:

• 9-10: Explanations are highly consistent and coherent across different prompts and tasks,
demonstrating a robust understanding of the model’s behavior.

• 7-8: Explanations are mostly consistent, with minor variations that do not significantly
affect overall coherence.

• 5-6: Explanations show some consistency, but notable discrepancies exist between different
prompts and tasks.

• 3-4: Explanations are largely inconsistent, with many contradictions between different
prompts and tasks.

• 1-2: Explanations are completely inconsistent and incoherent, lacking any meaningful
connection across prompts and tasks.

Figure 5 shows the interface to obtain the ratings in Table. 1.

E ADDITIONAL EXPLANATION OF THE IOI CIRCUIT

This section provides a detailed explanation of the feature circuits identified in the sMary and sJohn
examples by elaborating on the functionality of key features in both cases.

Key features in the sJohn circuit (Figure 4(a)):

•“John”, “and”, and “Mary” Features: These features simply indicate that the current token
corresponds to “John”, “and”, or “Mary”, respectively.

• Entity Indicator Features: Activated on prepositions or transitive verbs, these features
suggest that the next token is likely an entity.

•“John” Preceding Features: These features gather information from the previous token and
indicate that the token preceding the current one is “John.”

•“And” Preceding Features: Similar to the “John” preceding features, these collect information
from the previous token and imply that “and” is the token directly preceding the current one.
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Figure 5: The Interface for Annotating Circuit Interpretation

• Consecutive Entity Features: These features combine the “Mary” features with “And”
Preceding features, suggesting that the current token follows an [A] and [B] pattern, where
both [A] and [B] are entities.

•“And” Induction Features: These features attend to the token “and” by matching sequences
S1 and S2, implying that “and” follows “John” in the sentence structure.

• Consecutive Entity Association Features: Utilizing structural information from the “And”
Induction features, these features identify the entity following “and” by attending to the
Consecutive Entity features in the Name Mover heads.

• Name Mover Features: These features complete the final step by transferring the information
associated with “Mary” from the targeted Consecutive Entity token.

Key features in the sMary circuit (Figure 6):
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Figure 6: Overview of the sMary circuit.

•“John”, “and”, “Mary”, Entity Indicator, and “John” Preceding Features: These features
behave similarly to their roles in the sJohn circuit, marking tokens and their relationships.

• Centered Entity Features: These features are activated on the first appearance of a significant
name or object, flagging it for potential future reference.

•“And”-Connected Entities Preceding Features: These features collect information from
several previous tokens (primarily “and”), indicating an [A] and [B] entity pattern before
the current token.

•“And”-Connected Entities Induction Features: These gather information from the “And”-
Connected Entities Preceding features by again matching sequences S1 and S2.

• Centered Entity Association Features: Leveraging the structural information from the “And”-
Connected Entities Induction features, these features identify the entity preceding “and” by
attending to the Centered Entity features in the Name Mover heads. Unlike Consecutive
Entity features, Centered Entity features do not account for the “and” token that follows.
However, this behavior is still reasonable, as a previous Centered Entity could also serve as
a valid answer if present before the indirect object.

• Name Mover Features: As in the sJohn circuit, these features perform the final step of
transferring the information about “Mary” from the targeted Consecutive Entity token.
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