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ABSTRACT

Recent advancements in generative models have ignited substantial interest in dy-
namic 3D content creation (i.e., 4D generation). Existing approaches primarily
rely on Score Distillation Sampling (SDS) to infer novel-view videos, typically
leading to issues such as limited diversity, spatial-temporal inconsistency and poor
prompt alignment, due to the inherent randomness of SDS. To tackle these prob-
lems, we propose AR4D, a novel paradigm for SDS-free 4D generation. Specifi-
cally, our paradigm consists of three stages. To begin with, for a monocular video
that is either generated or captured, we first utilize pre-trained expert models to
create a 3D representation of the first frame, which is further fine-tuned to serve
as the canonical space. Subsequently, motivated by the fact that videos happen
naturally in an autoregressive manner, we propose to generate each frame’s 3D
representation based on its previous frame’s representation, as this autoregressive
generation manner can facilitate more accurate geometry and motion estimation.
Meanwhile, to prevent overfitting during this process, we introduce a progressive
view sampling strategy, utilizing priors from pre-trained large-scale 3D recon-
struction models. To avoid appearance drift introduced by autoregressive gener-
ation, we further incorporate a refinement stage based on a global deformation
field and the geometry of each frame’s 3D representation. Extensive experiments
have demonstrated that AR4D can achieve state-of-the-art 4D generation without
SDS, delivering greater diversity, improved spatial-temporal consistency, better
alignment with input prompts and faster generation speed.

1 INTRODUCTION

(a) Autoregressive 4D generation.

(b) Results rendered by Consistent4D. (c) Results rendered by ours.

PSNR: 24.77 FVD: 873 PSNR: 31.00 FVD: 614

Figure 1: Autoregressive 4D generation.

In recent years, generative models have made
significant strides, allowing for the generation
of highly realistic images (Rombach et al.,
2022; Zhang et al., 2023; Mou et al., 2024;
Podell et al., 2023) and videos (Wu et al., 2023;
Blattmann et al., 2023; Villegas et al., 2022;
Zhang et al., 2024a) from simple prompts.
Building on these successes, numerous studies
have sought to extend these capabilities into the
domain of dynamic 3D content creation (i.e.,
4D generation) (Jiang et al., 2024b; Ren et al.,
2023; Zhao et al., 2023; Sun et al., 2024b; Yang
et al., 2024a), which is crucial for areas such
as virtual reality, gaming, and embodied intelli-
gence.

To achieve this goal, given the lack of large-
scale 4D datasets available, existing meth-
ods (Jiang et al., 2024b; Ling et al., 2024; Bah-
mani et al., 2024a; Ren et al., 2023; Zeng et al., 2025; Bahmani et al., 2025; Gao et al., 2024; Miao
et al., 2024; Jiang et al., 2024a; Yuan et al., 2024; Li et al., 2024c; Zhao et al., 2023; Zhu et al.,
2024b) mainly estimate novel-view videos using Score Distillation Sampling (SDS) (Poole et al.,
2022), where knowledge stored in pre-trained multi-modal diffusion models (Liu et al., 2023; 2024a;
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Figure 2: Paradigm of our proposed AR4D. To enable SDS-free 4D generation, we propose a
three-stage approach consisting of Initialization, Generation, and Refinement. Please see Sec. 4
for more details.

Blattmann et al., 2023) are leveraged to guide the generation process. However, while seemingly rea-
sonable results can be obtained, these SDS-based methods often exhibit several issues (Wang et al.,
2024; Liang et al., 2024b; Yi et al., 2023), e.g., limited diversity, spatial-temporal inconsistencies,
poor alignment with input prompts, typically resulting in low-quality 4D objects, as demonstrated
in Fig. 1(b).

To address these issues, in this paper we propose AR4D, a novel paradigm capable of generating
high-quality 4D assets without relying on SDS. Specifically, as shown in Fig. 2, our paradigm is
composed of three distinct stages, which are refered to as the Initialization stage, the Generation
stage, and the Refinement stage respectively. To begin with, during the Initialization stage, as
shown in Fig. 1(a), given a monocular video (either generated or captured), we first utilize pre-
trained 3D generators (e.g., MVDream (Shi et al., 2023)) to create a 3D representation (i.e., 3D
Gaussians (Kerbl et al., 2023)) of the first frame, which is further fine-tuned to serves as the canonical
space for the 4D content to be generated.

Subsequently, during the Generation stage, to derive the corresponding 4D asset based on the ref-
erence video and its first frame’s 3D representation without relying on SDS, an intuitive way is to
directly employ established 4D reconstruction methods , e.g., Deform 3DGS (Yang et al., 2024b),
which learns the deformation of the canonical space through a global deformation field by minimiz-
ing the difference between rendered and ground-truth frames. However, unlike typical 4D recon-
struction techniques (Wu et al., 2024; Yang et al., 2024b; Li et al., 2024b; Pumarola et al., 2021;
Attal et al., 2023) that can utilize multi-view videos or monocular videos with varying viewpoints,
our goal relies on monocular videos typically captured from a fixed viewpoint, which poses a greater
challenge on accurate motion and geometry estimation, as demonstrated in Fig. 4(a). To address this,
motivated by the fact that videos happen naturally in an autoregressive manner, an object’s current
state in 3D space can be assumed to be transformed from its prior state. To this end, as shown in
Fig. 2(b), we propose to generate current frame’s 3D representation based on its previous frame’s
3D representation, where the dynamics between adjacent frames are represented by an frame-wise
local deformation field, rather than a global deformation field for the whole sequence like previous
works (Jiang et al., 2024b; Zeng et al., 2025; Ren et al., 2023). Such an autoregressive generation
manner facilitates more accurate motion modeling by focusing on localized changes, which is able
to better capture subtle, frame-to-frame variations, making the generation process more robust and
precise. Moreover, as each timestamp provides only a single fixed-viewpoint frame for supervi-
sion, the estimated 3D representation may gradually overfit to this frame over the course of training.
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To mitigate this issue, we introduce a progressive view sampling strategy that utilizes priors from
pre-trained large-scale 3D reconstruction models (e.g., LGM (Tang et al., 2024)) to progressively
provide pseudo views as additional supervisions, which we find can guarantee the spatial-temporal
consistency of the underlying geometry to a large extent.

After obtaining each frame’s 3D representation, it is observed that due to accumulated errors in-
troduced by autoregressive generation, the 3D representations of later frames exhibit noticeable
appearance drift, which affects the quality of the generated results, as demonstrated in Fig. 5(a). To
address this issue, as shown in Fig. 2(c), we further propose a Refinement stage, based on the obser-
vation that the geometric structure of each frame remains relatively stable (Niemeyer et al., 2022).
Therefore, we take the 3D representation of the first frame as the canonical space and construct a
global deformation field. This field is constrained by the geometric structures of different frames,
ensuring that the deformations of the canonical space are kept in check. By doing so, we can sig-
nificantly reduce appearance drift and guarantee spatial-temporal consistency in the generated 4D
assets.

Our main contributions can be summarized as follows:
• We propose AR4D, a novel paradigm for generating high-quality 4D assets from monocular

videos, bypassing the limitations of Score Distillation Sampling (SDS).
• We propose to generate each frame’s 3D representation autoregressively using a local deformation

field. This process is further improved through a progressive view sampling strategy, enabling
precise geometry and motion estimation.

• To mitigate the issue of accumulated errors, we propose a refinement stage based on a global
deformation field and the extracted geometry of each frame’s 3D representation, ensuring the
spatial-temporal consistency of generated 4D contents.

• Extensive experiments have demonstrated that our proposed AR4D can achieve state-of-the-art
performance without SDS, with greater diversity, improved spatial-temporal consistency, better
alignment with input prompts and faster generation speed.

2 RELATED WORKS: 4D GENERATION

Prior-based approaches enable 4D generation by either training a generalized model through large-
scale multi-modal datasets (Deitke et al., 2023) or integrating pre-trained models directly. For ex-
ample, methods such as (Xie et al., 2024; Li et al., 2024a; Liang et al., 2024a; Zhang et al., 2024b)
proposed to generate multi-view videos by training a multi-view video diffusion model, which are
subsequently processed with 4D reconstruction techniques to produce corresponding 4D assets. To
expedite the generation process, L4GM (Ren et al., 2024) introduced the first 4D Large Reconstruc-
tion Model capable of producing animated objects in a single feed-forward pass within just one
second. Recently, inspired by the powers of video generative models, several approaches (He et al.,
2024b; Bahmani et al., 2024b; Yu et al., 2024; Xu et al., 2024; Hou et al., 2024) have endowed them
with camera control capabilities, allowing for generating videos with varying viewpoints. While
photorealistic 4D contents can be achieved, these methods often incur high pre-training costs, and
the pre-trained scenes may not be well-suited to the target scene. Another category of 4D generation
methods adopted a scene-specific optimization approach to produce better 4D contents tailored to
each individual scene. To achieve this, mainstream methods (Jiang et al., 2024b; Ling et al., 2024;
Bahmani et al., 2024a; Ren et al., 2023; Zeng et al., 2025; Bahmani et al., 2025; Gao et al., 2024;
Miao et al., 2024; Jiang et al., 2024a; Yuan et al., 2024; Li et al., 2024c; Zhao et al., 2023; Zhu et al.,
2024b) primarily distilled knowledge from pre-trained multimodal models (i.e., SDS) to guide the
generation process. For instance, Consistent4D (Jiang et al., 2024b) achieved Video-to-4D genera-
tion by combining SDS with dynamic NeRF (Mildenhall et al., 2021), followed by a video enhancer
to produce high-quality 4D objects. Addressing NeRF’s limitations, DreamGaussian4D (Ren et al.,
2023) introduced the 3DGS (Kerbl et al., 2023) representation, enhanced with texture refinement
for fast 4D generation. Recently, STAG4D (Zeng et al., 2025) proposed an innovative approach that
can generate anchor multi-view sequences, followed by 4D Gaussian field fitting using SDS to im-
prove 4D generation quality. While these SDS-based methods can achieve reasonable results, they
are often hindered by issues (Wang et al., 2024; Liang et al., 2024b; Yi et al., 2023) such as limited
diversity, spatial-temporal inconsistency, and poor alignment with input prompts, significantly lim-
iting their practical applications. In contrast, in this paper we propose AR4D, a novel paradigm that
is SDS-free for better 4D generation.
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3 PRELIMINARIES: 3DGS
3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has shown impressive capability in novel
view synthesis, enabling photorealistic novel views to be rendered in real-time. Different from
NeRF (Mildenhall et al., 2021) that encodes scene properties into neural networks, 3DGS (denoted
by G) leverages millions of anisotropic ellipsoids to capture scene geometry and appearance, with
each ellipsoid (i.e., 3D Gaussian) parameterized by position µ ∈ R3, opacity α ∈ R, covariance
Σ ∈ R3×3 (calculated from scale s ∈ R3 and rotation r ∈ R3), and color c ∈ R3. For simplicity, in
this paper we represent the attributes of all ellipsoids collectively as G = {µ, α, s, r, c}.

4 METHODS

For a monocular video V = {v1, v2, . . . , vF } (either generated or captured from a fixed viewpoint)
with F frames, our objective is to generate its corresponding 4D content without relying on SDS,
while enhancing diversity, spatial-temporal consistency, and alignment with the input prompts.

4.1 INITIALIZATION

(a) Reference frame. (b) W/o finetuning. (c) W/. finetuning.

Figure 3: Ablation studies on finetuning the 3D
Gaussians in the Initialization stage reveal that
finetuning can capture finer texture details in the
reference frame, enhancing the quality of subse-
quent generation.

In the first stage, we aim to obtain a 3D repre-
sentation, which is used to serve as the canon-
ical space for its 4D counterpart. Leveraging
recent advances in 3D generation, we first em-
ploy a pre-trained multi-view diffusion model
to generate several novel views of the first
frame, followed by a pre-trained large-scale
3D reconstruction model to recover the corre-
sponding 3D representation (i.e., 3D Gaussians
Ginit

1 = {µinit
1 , αinit

1 , sinit1 , rinit1 , cinit1 }) from
these generated views. However, as shown
in Fig. 3(b), due to the inherent limitations
of these pre-trained models, the generated 3D
Gaussians often fail to accurately capture the fine-grained texture details of the reference frame v1,
presenting additional challenges for the subsequent reconstruction stage.

To mitigate this issue, we propose a simple yet effective method to fine-tune the obtained 3D Gaus-
sians. Specifically, we keep the parameters {αinit

1 , sinit1 , rinit1 } that influence each gaussian’s ge-
ometry unchanged, while only optimizing {µinit

1 , cinit1 } to ensure consistency in rendering with the
reference frame v1 without harming the overall geometry, using the following equation:

µft
1 , cft1 = argmin

µinit
1 ,cinit

1

∥Rref (Ginit
1 )− v1∥2, (1)

where Rref means rendering Ginit
1 at the view of the reference frame, and the fine-tuned G1 is thus

formulated as G1 = {µft
1 , αinit

1 , sinit1 , rinit1 , cft1 }.

As shown in Fig. 3(c), the fine-tuned 3D Gaussians can produce results that are better aligned with
the reference frame, thereby facilitating the subsequent generation process.

4.2 GENERATION

Autoregressive generation. To generate the 3D Gaussians for each frame based on V and G1,
a straightforward way is to directly apply common 4D reconstruction methods (e.g., Deform
3DGS (Yang et al., 2024b)), where G1 serves as the canonical space, and a global deformation
field Fθ is used to estimate the motion of G1 at different timestamps by minimizing the differ-
ence between the rendered videos and V . However, unlike typical 4D reconstruction tasks that can
leverage multi-view videos or monocular videos with varying viewpoints, we only have access to
monocular videos with a fixed viewpoint, which creates additional challenges for accurate geometry
and motion estimation, often resulting in severe artifacts, as demonstrated in Fig. 4(a).
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(a) Results when directly applying 4D reconstruction methods.

(b) Results when only applying autoregressive 4D generation.

(c) Results when applying autoregressive 4D generation with progressive view sampling.

Figure 4: Ablation studies on finetuning the 3D
Gaussians in the Initialization stage reveal that
finetuning can capture finer texture details in the
reference frame, enhancing the quality of subse-
quent generation.

To address this problem, we propose to lever-
age the autoregressive nature of videos, which
indicates that the 3D Gaussians of consecu-
tive frames undergo only minor deformations.
As a result, the 3D Gaussians of the current
frame can be seen as being heavily influenced
by those of its previous frame. Based on this
motivation, we propose to perform the 4D gen-
eration from V and G1 in an autoregressive
manner.

Specifically, as shown in Fig. 2(b), for each
pair of adjacent frames vi and vi+1, we
utilize an independent MLP-based local de-
formation field Fθi to model the deforma-
tions between their corresponding 3D Gaus-
sians Gi = {µi, αi, si, ri, ci} and Gi+1 =
{µi+1, αi+1, si+1, ri+1, ci+1}, which is formulated as follows:

{δµi
, δαi

, δsi} = Fθi(γ(µi)),



µi+1 = µi + δµi

αi+1 = αi + δαi

si+1 = si + δsi
ri+1 = ri

ci+1 = ci

, (2)

where γ is the positional encoding operation that is denoted as follows:

γ(x) = (sin(20x), cos(20x), · · · , sin(2L−1x), cos(2L−1x)), (3)

where L is a hyperparameter that is usually set to 10.

To obtain Gi+1 based on Gi, we minimize the difference between the rendered frame v̂i+1 =
Rref(Gi+1) and the reference frame vi+1, as expressed by:

{θi, µi, αi, si, ri, ci} = argmin
{θi,µi,αi,si,ri,ci}

lref ,

lref = λ∥v̂i+1 − vi+1∥1 + (1− λ)SSIM(v̂i+1, vi+1)
(4)

where Rref means rendering Gi+1 at the view of vi+1, SSIM means the loss function used to measure
the SSIM metric between v̂i+1 and vi+1, λ is a balancing parameter which is set to 0.8.
Progressive view sampling strategy. As demonstrated in Fig. 4(b), during the process of autore-
gressive generation, since each timestamp provides only a single fixed-viewpoint frame for super-
vision, the generated 3D Gaussians tend to overfit to the reference frames, particularly for the later
frames in V , leading to significant artifacts in novel views.

To solve this problem, we propose to leverage the powers of pre-trained large-scale 3D reconstruc-
tion models (Tang et al., 2024) by introducing pseudo novel views as additional supervisions. To
achieve this, the major challenge lies on how to obtain appropriate novel views that not only prevent
overfitting but also reliable enough to ensure accurate and spatial-temporal-consistent generation.

To this end, we propose a simple yet effective progressive view sampling strategy. Specifically,
during the generation process of Gi+1, we first render several orthogonal views (including the ref-
erence view) of Gi+1, which are then fed into the large-scale 3D reconstruction model to create a
pseudo 3D Gaussians Ĝi+1. Subsequently, considering that during the early stages of optimizing,
views rendered by Ĝi+1, especially those close to the reference view, are highly reliable, we ini-
tially constrain Gi+1 by randomly sampling novel views within this close view range using Ĝi+1 as
additional supervision. With training in progress, the range of sampled viewpoints is progressively
expanded to prevent overfitting.

As a result, the progressive view sampling strategy is denoted as follows:

Nu = min(Nmax, ⌊u/η⌋+Nstart), (5)
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where Nu represents the maximum azimuth angle that can be sampled at the u-th iteration, Nmax is
the upper limit of Nu, Nstart is the initial azimuth sampling limit when reconstructing Gi+1, and
η is a hyperparameter controlling the rate at which Nu increases. During the sampling process, the
elevation angle and radius are kept the same as the reference view.

Based on this strategy, for a sampled novel view Nsamp ∼ U(−Nu, Nu), Gi+1 is further regularized
with the following equations:

{θi, µi, αi, si, ri, ci} = argmin
{θi,µi,αi,si,ri,ci}

lrgb + ldepth, (6)

where
lrgb = ∥RNsamp(Gi+1)−RNsamp(Ĝi+1)∥1

ldepth = ∥RNsamp

depth (Gi+1)−R
Nsamp

depth (Ĝi+1)∥1,
, (7)

with RNsamp denoting the rendering of images of Gi+1 and Ĝi+1 at view Nsamp, and R
Nsamp

depth

representing the rendering of their corresponding depth maps at view Nsamp.

As demonstrated in Fig. 4(c), the proposed autoregressive generation combined with the progressive
view sampling strategy enables accurate motion and geometry estimation significantly.

4.3 REFINEMENT

As shown in Fig. 5(a), performing 4D generation in an autoregressive manner introduces accumu-
lated errors, resulting in noticeable appearance drift, particularly in the later frames of the monocular
video V .

To address this issue, we propose a refinement stage motivated by the observation that while high-
frequency appearance may drift, the geometry (e.g., depth map) of each frame remains relatively
low-frequency (Niemeyer et al., 2022) and stable throughout training, as demonstrated in Fig. 5.
As a result, in this stage, G1 = {µ1, α1, s1, r1, c1} is treated as the canonical space, and a global
deformation field Fθ, constrained by each frame’s depth map, is used to model the deformations
across frames, resulting in {Gre

k = {µre
k , αre

k , srek , rrek , crek }}Fk=2.

Time

(a) Appearance drift caused by autoregressive
generation.

Time

(b) With the refinement stage, no obvious appear-
ance drift is observed.

Figure 5: Results of the Refinement stage demonstrate its effectiveness in addressing appearance
drift. While appearance may fluctuate, the geometry (evident in the consistent depth map) remains
stable, enabling the generation of spatial-temporal consistent 4D contents.

Specifically, the relationship between G1 and Gre
k is formulated as follows:

{δreµk
, δreαk

, δresk} = Fθ(γ(µ1), k),



µre
k = µ1 + δreµk

αre
k = α1 + δreαk

srek = s1 + δresk
rrek = r1

crek = c1

, (8)

with G1 and Fθ optimized using the following equation:
{θ, µ1, α1, s1, r1, c1} = argmin

{θ,µ1,α1,s1,r1,c1}
lreref + lredepth, (9)

where
lreref = Ek[∥Rref (Gk)−Rref (Gre

k )∥1]

lredepth = Ek[∥R
Nre

samp

depth (Gk)−R
Nre

samp

depth (Gre
k )∥1],

, (10)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

𝑁/𝐴

Input video AR4D (Ours) STAG4D SV4D Consistent4D

T
im

e
T

im
e

T
im

e
T

im
e

(a) Qualitative comparisons on Video-to-4D.
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(b) Qualitative comparisons on Text-to-4D.

Figure 6: Qualitative comparisons of our proposed AR4D with other state-of-the-art methods. Our
method generates more detailed results with improved alignment to input prompts. N/A indicates
that the corresponding method fails to generate novel views for the current frame.

Gk denotes the 3D Gaussians obtained during the reconstruction stage for the k-th frame, Rref

denotes rendering of Gk and Gre
k at view of the reference frame vk, Nre

samp refers to a randomly

sampled viewpoint within the view space, and R
Nre

samp

depth represents the rendering of the depth maps
of Gk and Gre

k from the viewpoint Nre
samp.

As demonstrated in Fig. 5(b), this refinement ensures that each frame’s geometry, obtained in the
Generation stage, remains unchanged while its appearance is directly deformed from the same 3D
Gaussians G1, preventing significant appearance drift and thus improving spatial-temporal consis-
tency.

5 EXPERIMENTS
Datasets and metrics. Following the experimental protocols outlined by STAG4D (Zeng et al.,
2025), we use the provided datasets to conduct experiments. Specifically, our experiments cover
both video-to-4D and text-to-4D generation tasks across approximately 50 diverse scenes (where
previous methods such as Consistent4D contains only 8 scenes). The image-to-4D task is per-
formed in two steps: first, converting the image to video, followed by the video-to-4D trans-
formation. To evaluate the quality of the generated results, we report PSNR, SSIM (Wang
et al., 2004), and LPIPS (Zhang et al., 2018) to assess the alignment between the rendered
videos and the ground truth. Additionally, we report CLIP similarity (Radford et al., 2021)
and FVD scores (Unterthiner et al., 2018) to measure the consistency between the rendered
novel views and the reference views. For the PSNR and SSIM evaluation, we selected three
viewpoints: the reference view, as well as two novel views obtained by rotating the refer-
ence view ±30° along the azimuth, with the elevation fixed. The reported result is the av-
erage across these three views. We believe that including the reference view is important,
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Method Consistent4D SV4D STAG4D Ours
PSNR↑ 24.77 28.23 29.91 31.00
SSIM↑ 0.91 0.92 0.94 0.97
LPIPS↓ 0.11 0.06 0.05 0.02
CLIP-S↑ 0.90 0.89 0.90 0.92

FVD↓ 873 - 737 617
FVD-16↓ 611 592 573 478

Table 2: Quantitative comparisons of our method
with other state-of-the-art methods on Video-to-
4D. The best, second-best, and third-best entries
are marked in red, orange, and yellow.

Method Consistent4D SV4D STAG4D Ours
PSNR↑ 23.38 28.34 30.26 31.06
SSIM↑ 0.88 0.93 0.95 0.98
LPIPS↓ 0.17 0.09 0.06 0.03
CLIP-S↑ 0.89 0.88 0.90 0.92

FVD↓ 1250 - 1065 890
FVD-16↓ 1084 1032 947 681

Table 3: Quantitative comparisons of our method
with other state-of-the-art methods on Text-to-
4D. The best, second-best, and third-best entries
are marked in red, orange, and yellow.

Method LPIPS↓ PSNR↑ CLIP↑ FVD↓
L4GM 0.124 27.85 0.94 734

Consistent4D 0.160 25.68 0.87 1160
STAG4D 0.126 27.99 0.91 1013

DG4D 0.167 25.32 0.87 1224
4DGen 0.136 27.42 0.90 998
SV4D 0.118 27.65 – –
Ours 0.096 29.34 0.95 675

Table 1: Quantitative comparisons on the Consis-
tent4D (Jiang et al., 2024b) benchmark.

as it reflects how well the generated 4D con-
tent preserves fidelity to the input monocular
video, which is essential for ensuring spatial
and temporal consistency. We intentionally did
not include views from the back side of the ob-
ject (i.e., 180° azimuthal rotation) because such
views are typically fully hallucinated based on
the reference frame, and no method—ours or
others—can be perfectly consistent with the
ground truth in those regions. Including them
in PSNR computation would disproportionately
penalize all methods and fail to reflect meaningful performance differences. For the LPIPS evalu-
ation, since it measures perceptual similarity using features extracted from pre-trained networks,
we chose four more diverse viewpoints to better capture appearance similarity across varying view-
points. Specifically, we evaluated LPIPS on views rotated by −15◦, 75◦, 165◦, and 255◦ from the
reference view (azimuth), and reported the average value. This setup reflects a broader perceptual
assessment of the generated results. We computed FVD and CLIP score in the same way. We also
present comparisons on the Consistent4D (Jiang et al., 2024b) benchmark with 8 scenes to further
highlight the superiority of our method. Kindly refer to supplementary materials for more details.
Baselines. On the STAG4D dataset (Zeng et al., 2025) with about 50 diverse scenes, we com-
pare our proposed AR4D with several state-of-the-art methods, including Consistent4D (Jiang et al.,
2024b), SV4D (Xie et al., 2024), and STAG4D (Zeng et al., 2025). Furthermore, on the Consis-
tent4D benchmark (Jiang et al., 2024b) containing 8 scenes, we compare AR4D with a broader set
of methods, including L4GM (Ren et al., 2024), Consistent4D, STAG4D, DG4D (Ren et al., 2023),
4DGen, and SV4D.

5.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

Comparisons on the STAG4D dataset (Zeng et al., 2025). As shown in Fig. 6, given a monocular
video, Consistent4D produces over-saturated outputs with a blurred appearance, limited by the in-
trinsic constraints of SDS. Similarly, although STAG4D can reduce over-saturation to some degree,
the results still exhibit noticeable noise and unrealistic, fabricated patterns. For SV4D, as a general
4D generative model, the domain gap issue leads to highly blurred novel views, restricting it to pro-
cessing short input videos of only 21 frames. In contrast, our proposed AR4D can achieve clearer
results with enhanced alignment to input videos and improved spatial-temporal consistency. We
provide more visualizations in the supplementary materials. As demonstrated in Tab. 2 and Tab. 3,
our proposed method can achieve the highest performance, with an average improvement of 1 dB in
PSNR, demonstrating that AR4D can generate 4D assets closely aligned with the input. Moreover,
we can also achieve the best CLIP similarity and FVD-score, indicating superior spatial-temporal
consistency in the generated 4D objects.
Comparisons on the Consistent4D dataset (Jiang et al., 2024b). As demonstrated in Fig. 7
and Tab. 1, SDS-based approaches generally yield blurry generations due to inherent limitations
of the SDS formulation, leading to lower CLIP similarity and higher FVD scores. While L4GM
delivers superior visual fidelity, it, like SV4D, is hindered by domain gap issues and exhibits limited
generalization to unseen scenes outside the training distribution. In contrast, our method attains the
best overall performance by leveraging strong priors from expert models and its SDS-free design,
thereby enhancing both generalization capability and spatio-temporal consistency.
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Figure 7: Qualitative comparisons on the Consistent4D (Jiang et al., 2024b) benchmark.

Generation efficiency and computation cost. Thanks to the SDS-free nature of our method, the
optimization for each frame’s 3D Gaussian scene takes approximately 30–40 seconds on a single
A100 GPU, resulting in a total generation time of about 15–20 minutes for a typical 30-frame video,
with a peak GPU memory consumption of 30–40 GB VRAM. This is significantly faster than prior
state-of-the-art 4D generation methods under similar hardware conditions. For instance, Consis-
tent4D (Jiang et al., 2024b) requires approximately 1.5–2 hours per video, STAG4D (Zeng et al.,
2025) around 1 hour, and 4DGen also about 1 hour. These comparisons highlight the computational
efficiency and practicality of our method.

5.2 ABLATION STUDIES

Init-ft ✓ ✗ ✓ ✓ ✓ ✓
AR ✓ ✓ ✓ ✓ ✗ ✓
PVS ✓ ✓ ✓ ✗ ✓ ✗

Refine ✓ ✓ ✗ ✓ ✓ ✗
PSNR↑ 31.00 30.43 30.24 30.86 30.53 30.74
SSIM↑ 0.97 0.95 0.95 0.96 0.94 0.95
LPIPS↓ 0.02 0.04 0.08 0.04 0.10 0.10
FVD↓ 617 681 712 1532 1026 1637

Table 4: Ablation studies on the Video-to-4D dataset,
where Init-ft means finetuning the 3D Gaussians ob-
tained in the Initialization stage, AR and PVS means
autoregressive generation and progressive view sam-
pling strategy, Refine means whether incorporating the
Refinement stage.

(a) Input monocular video.

(b) Results rendered without autoregressive generation.

(c) Results rendered with autoregressive generation.

Figure 8: Ablation study on the effect of
autoregressive generation: results show
that incorporating autoregressive mod-
eling significantly enhances both mo-
tion continuity and geometric consis-
tency, resulting in more realistic results.

To showcase the effectiveness of our design choices, we conduct both quantitative and qualitative
ablation studies on the task of video-to-4D. As shown in Tab. 4 and Fig. 3, when omitting finetuning
the 3D Gaussians obtained in the Initialization stage, a performance drop is observed due to the
inherent limitations of adopted pre-trained 3D generators. Similarly, when removing the refinement
stage, both alignment with input videos and spatial-temporal consistency are negatively influenced,
owning to the appearance drift mentioned in Sec. 4.3 and Fig. 5. As demonstrated in Fig. 4, if
we remove the progressive view sampling strategy, the generated 4D assets overfit to input videos,
resulting in relatively high reconstruction metrics (e.g., PSNR) but significantly lower FVD scores.
Additionally, as demonstrated in Fig. 8, if we remove the autoregressive generation, the performance
also drops due to the lack of precise motion and geometry estimation. More visualizations are
provided in the supplementary materials.

6 CONCLUSION

In this paper, we introduce AR4D, a novel approach for SDS-free 4D generation from monocular
videos. AR4D operates in three stages: 1) Initialization: Pre-trained 3D generators are employed
to extract 3D Gaussians from the video’s first frame, which are then fine-tuned to establish the
canonical space for its 4D counterpart. 2) Generation: For more accurate motion and geometry es-
timation, 3D Gaussians are generated for each frame in an autoregressive manner, complemented by
a progressive view sampling strategy to mitigate overfitting. 3) Refinement: To counteract appear-
ance drift introduced by autoregressive generation, a global deformation field works in conjunction
with per-frame geometry to achieve detailed refinement. Experiments have demonstrated that our
method can achieve state-of-the-art 4D generation, with greater diversity, improved spatial-temporal
consistency, and better alignment with input prompts.
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In Sec. A, we provide a detailed overview of experimental details. Sec. B provides an expanded
discussion of related works, focusing on 3D generation and 4D reconstruction. The pseudo 3D
Gaussians generated between adjacent frames are presented in Sec. C. We also present additional
visualizations, including ablation studies, comparisons with state-of-the-art methods, 4D assets gen-
erated by our method, as detailed in Sec. D, Sec. E and Sec. F respectively. The limitations of our
approach and potential directions for future work are discussed in Sec. G.

A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS

For 4D object generation, in the Initialization stage, we first use MVDream (Shi et al., 2023) to
generate four orthogonal views of the first frame from the input video. These views are then fed
into LGM (Tang et al., 2024) to obtain the corresponding 3D Gaussian representations. Due to the
inherent limitations of MVDream, the generated novel views may not always meet quality expec-
tations; in such cases, multiple attempts are encouraged to achieve the most satisfactory results for
subsequent stages. After obtaining the 3D representation for the first frame, we fine-tune these 3D
Gaussians to better align with the first frame itself. This fine-tuning is performed with a learning
rate of 1 × 10−5 over 1000 iterations. During the Generation stage, the input video is assumed to
be bind with a camera pose of azimuth angle equals to 0◦, elevation angle equals to 0◦, and radius
equals to 1.5. To achieve progressive view sampling, we first render four orthogonal views of the 3D
representation that is currently being optimized, with azimuth angle equals to {0◦, 90◦, 180◦, 270◦}
respectively, and elevation angle equals to 0◦, radius equals to 1.5. These views are then input into
LGM to generate additional pseudo-labels, on the purpose of prevent overfitting. During the Refine-
ment stage, the MLP-based global deformation field may occasionally converge to a local optimum,
causing training collapse. In such cases, we recommend re-initializing the network or using an im-
proved architecture, such as the one proposed by (Zhu et al., 2024a). All results are rendered at a
resolution of 512 × 512, which is the maximum resolution supported by LGM for processing.

B MORE RELATED WORKS

B.1 3D GENERATION

The rapid advancements in image generation (Rombach et al., 2022; Zhang et al., 2023; Mou et al.,
2024; Podell et al., 2023) and video generation (Wu et al., 2023; Blattmann et al., 2023; Villegas
et al., 2022; Zhang et al., 2024a) have sparked significant interest in the field of 3D generation.
To address the challenge of limited 3D datasets, Dreamfusion (Poole et al., 2022) proposed the
concept of SDS, which has inspired numerous follow-up works (Lin et al., 2023; Chen et al., 2023;
Qian et al., 2023; Liu et al., 2024b; Hu et al., 2024). To overcome the inherent limitations of
SDS, various improvements have been proposed. For instance, ProlificDreamer (Wang et al., 2024)
proposed VSD for synthesizing objects with higher diversity. DreamTime (Huang et al., 2023)
proposed a timestep annealing strategy to overcome the over-saturation problem of SDS. Moreover,
LucidDreamer (Liang et al., 2024b) introduced interval score sampling for high-fidelity generation.
DreamGaussian (Tang et al., 2023) introduced the 3D Gaussian Splatting (3DGS) representation,
enabling significantly faster 3D generation, where realistic 3D objects can be synthesized within
minutes. Recently, with the development of large-scale 3D datasets (Deitke et al., 2023), several
methods (Liu et al., 2023; 2024a; Shi et al., 2023; Tang et al., 2024; Hong et al., 2023) have explored
building generalized frameworks for 3D generation, where diverse 3D contents can be generated in a
feed-forward process without per-scene optimization. In this paper, we aim to extend the capabilities
of existing 3D generation models to the task of 4D generation, without relying on SDS.

B.2 4D RECONSTRUCTION

4D reconstruction (i.e., dynamic 3D reconstruction) has long been a challenging problem in com-
puter vision and graphics, attracting growing attention in recent years. Early approaches (Pumarola
et al., 2021; Attal et al., 2023; Fridovich-Keil et al., 2023; Wang et al., 2023) extended the static
NeRF (Mildenhall et al., 2021) framework to dynamic scenes, achieving photorealistic results but
suffering from extremely slow training and rendering speeds. Recently, inspired by the powerful

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

V
ie

w
 2

3D Gaussians of

Frame 1

3D Gaussians of

Frame 2

Intermediate Pseudo 3D Gaussians

Generated by LGM

V
ie

w
 1

Training Iterations

Figure 9: Pseudo 3D Gaussians generated by LGM.

abilities of 3DGS (Kerbl et al., 2023), researchers have begun to explore its integration into 4D
reconstruction to improve efficiency. To achieve this goal, similar to (Pumarola et al., 2021), main-
stream methods (Wu et al., 2024; Yang et al., 2024b; Pumarola et al., 2021; Attal et al., 2023)
typically leverage a canonical space paired with a global deformation field to model motions across
frames. More recently, several methods (Sun et al., 2024a; Luiten et al., 2024; He et al., 2024a) pro-
posed to realize efficient 4D reconstruction on a per-frame training manner from multi-view videos,
either by introducing Neural Transformation Cache or additional priors such as optical flows. In
contrast, our approach targets 4D generation from monocular videos with a fixed viewpoint, a sig-
nificantly more challenging task that demands precise estimation of motion, geometry, and appear-
ance.

C PSEUDO 3D GAUSSIANS GENERATED BETWEEN ADJACENT FRAMES.

As shown in Fig. 9, we provide pseudo 3D Gaussians between adjacent frames during the autore-
gressive generation process, where LGM ensures reasonable orthogonal results for supervision.

D MORE VISUALIZATIONS OF ABLATION STUDIES

To demonstrate the effectiveness of our design choices, we provide additional visualizations of the
generated multi-view videos from the ablation studies conducted in Sec. 5.3. As shown in Fig. 10(a),
directly applying typical 4D reconstruction methods results in noticeable artifacts due to the use of
monocular videos with a fixed viewpoint for supervision, rather than multi-view videos or monocular
videos with varying viewpoints. When relying solely on autoregressive generation, severe artifacts
tend to appear, especially in later frames, due to the overfitting problem, as shown in Fig. 10(b).
Similarly, as shown in Fig. 11(b), removing autoregressive generation (i.e., using only the pro-
gressive view sampling strategy) makes accurate motion estimation difficult, particularly in frames
with significant motion changes. By combining autoregressive generation with the progressive view
sampling strategy, we can achieve optimal performance, significantly enhancing spatiotemporal con-
sistency, as demonstrated in Fig. 10(c) and Fig. 11(c). We further conduct additional visualizations
of ablation studies on the Refinement stage. As shown in Fig. 12, removing the refinement stage
results in noticeable appearance drift. In contrast, including this refinement significantly improves
the spatial-temporal consistency of the 4D objects generated.

E MORE VISUALIZATIONS OF COMPARISONS WITH STATE-OF-THE-ART
METHODS

In this section, we present additional detailed visual comparisons between our proposed method
and other state-of-the-art approaches. As demonstrated in Fig. 13, Fig. 14 and Fig. 15, Consis-
tent4D (Jiang et al., 2024b) tends to produce over-saturated outputs due to the limitations of SDS,
while SV4D (Xie et al., 2024) results in overly blurred outputs due to domain gap issues. By inte-
grating the ideas of Consistent4D and SV4D, where anchor multi-view sequences are first generated
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through a multi-view diffusion model followed by SDS-based refinement, STAG4D (Zeng et al.,
2025) achieves improved results. However, it still exhibits noticeable noise and unrealistic patterns.
Moreover, due to limitations in the training datasets, both SV4D and STAG4D struggle to gener-
ate 4D objects from longer input videos, hindering their practical applications. In comparison, our
proposed AR4D achieves clearer renderings, enhanced spatial-temporal consistency, and improved
alignment with input prompts.

F MORE VISUALIZATIONS OF 4D ASSETS GENERATED BY AR4D

In this section, we provide more results of the 4D assets generated by our proposed AR4D. As
demonstrated in Fig. 16, Fig. 17, Fig. 18, Fig. 19, Fig. 20, and Fig. 21, the rendered novel-view
videos exhibit superior spatial-temporal consistency.

G LIMITATIONS AND FUTURE WORKS

Although our method adopts an autoregressive generation paradigm with the potential to support
real-time streaming applications, it currently falls short of real-time performance. Specifically, the
optimization for each frame takes approximately 30–40 seconds on a single A100 GPU, primarily
due to the computational overhead introduced by the pre-trained expert models used in our pipeline.
We acknowledge this as a practical limitation, and in future work, we aim to improve the efficiency
of the underlying models and optimization strategies to move closer toward real-time deployment.
Additionally, while our method is SDS-free and achieves strong performance on complex scenes, it
remains constrained by the limitations of the pre-trained large-scale 3D reconstruction models. We
plan to address this by developing stronger reconstruction priors, such as incorporating optical flow
or dynamic scene understanding modules. Regarding potential societal impact, our work is primarily
intended for applications such as virtual reality, digital humans, and immersive content creation.
Nevertheless, as with many generative technologies, we acknowledge the potential risks of misuse
in the creation of synthetic content or deepfakes. To mitigate this, we encourage responsible usage
and the incorporation of content authentication and detection systems in downstream applications.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were employed solely for grammar correction and minor improve-
ments in readability. They were not involved in any other aspects of the research process.

ETHICS STATEMENT

This work does not involve human participants, animal studies, or the use of personally identifiable
or sensitive data. The research does not pose foreseeable risks related to harm, bias, discrimina-
tion, misuse, or ethical concerns regarding privacy, security, or compliance. The authors declare no
conflicts of interest or external sponsorship that could have influenced the reported results.

REPRODUCIBILITY STATEMENT

We have made every effort to support reproducibility. Detailed descriptions of experimental settings,
hyperparameters, and implementation choices are provided in the main text and appendix. The com-
plete source code will be released upon publication to enable independent verification and facilitate
further research.
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(a) Multi-view videos rendered by directly using typical 4D reconstruction methods.

(b) Multi-view videos rendered by autoregressive 4D generation alone.

(c) Multi-view videos rendered by autoregressive 4D generation with the progressive view sampling strategy.

Figure 10: Additional visualizations from the ablation studies on integrating autoregressive 4D gen-
eration and progressive view sampling strategy.
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(a) Input monocular video.

(b) Rendered multi-view videos without autoregressive generation: precise motion estimation is challeng-
ing, especially for frames with substantial motion changes.

(c) Rendered multi-view videos with autoregressive generation: incorporating autoregressive generation
enhances motion and geometry estimation, leading to more accurate and consistent results.

Figure 11: More visualizations of ablation studies on whether incorporating autoregressive genera-
tion.
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(a) Results obtained without the refinement stage, obvious appearance drift can be observed.

(b) With the refinement stage, appearance drift can be addressed, leading to results with better spatial-temporal
consistency.

Figure 12: More visualizations of ablation studies on whether incorporating the refinement stage.
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(a) Comparison of novel-view videos rendered by our method and other state-of-the-art methods at novel view
1.

(b) Comparison of novel-view videos rendered by our method and other state-of-the-art methods at novel view
2.

Figure 13: More visualizations of comparison of novel-view videos rendered by our method and
other state-of-the-art methods at different novel views on the task of Video-to-4D. N/A indicates
that the corresponding method fails to generate novel views for the current frame.
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(a) Comparison of novel-view videos rendered by our method and other state-of-the-art methods at novel view
1.

(b) Comparison of novel-view videos rendered by our method and other state-of-the-art methods at novel view
2.

Figure 14: More visualizations of comparison of novel-view videos rendered by our method and
other state-of-the-art methods at different novel views on the task of Video-to-4D. N/A indicates
that the corresponding method fails to generate novel views for the current frame.
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(a) Comparison of novel-view videos rendered by our method and other state-of-the-art methods at novel view
1.

(b) Comparison of novel-view videos rendered by our method and other state-of-the-art methods at novel view
2.

Figure 15: More visualizations of comparison of novel-view videos rendered by our method and
other state-of-the-art methods at different novel views on the task of Text-to-4D. N/A indicates that
the corresponding method fails to generate novel views for the current frame.
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Figure 16: Additional results of multi-view videos rendered by AR4D, with the azimuth angles of
0◦,−45◦, 45◦, 180◦ respectively.

Figure 17: Additional results of multi-view videos rendered by AR4D, with the azimuth angles of
0◦,−45◦, 45◦, 180◦ respectively.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 18: Additional results of multi-view videos rendered by AR4D, with the azimuth angles of
0◦,−45◦, 45◦, 180◦ respectively.

Figure 19: Additional results of multi-view videos rendered by AR4D, with the azimuth angles of
0◦,−45◦, 45◦, 180◦ respectively.
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Figure 20: Additional results of multi-view videos rendered by AR4D, with the azimuth angles of
0◦,−45◦, 45◦, 180◦ respectively.

Figure 21: Additional results of multi-view videos rendered by AR4D, with the azimuth angles of
0◦,−45◦, 45◦, 180◦ respectively.
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