
Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications

Shiqi Liu1*, Xilun Zhang1*, Peide Huang1, William Jongwon Han1, Yiqi Lyu1, Mengdi Xu1, Ding
Zhao1

1Carnegie Mellon University
{shiqiliu, xilunz, peideh, wjhan, yiqilyu, mengdixu, dingzhao}@andrew.cmu.edu

Abstract

Sim-to-real transfer remains a significant challenge in
robotics due to the discrepancies between simulated and real-
world dynamics. Traditional methods like Domain Random-
ization often fail to capture fine-grained dynamics, limiting
their effectiveness for precise control tasks. In this work, we
propose a novel approach that dynamically adjusts simulation
environment parameters online using in-context learning. Us-
ing past interaction histories as context, our method adapts
the simulation environment dynamics to real-world dynam-
ics without requiring gradient updates, resulting in faster and
more accurate alignment between simulated and real-world
performance. We validate our approach across two tasks: ob-
ject scooping and table air hockey. In the sim-to-sim eval-
uations, our method significantly outperforms the baselines
on environment parameter estimation by 80% and 42% in
the object scooping and table air hockey setups, respectively.
Furthermore, our method achieves at least 70% success rate
in sim-to-real transfer on object scooping across three differ-
ent objects. By incorporating historical interaction data, our
approach delivers efficient and smooth system identification,
advancing the deployment of robots in dynamic real-world
scenarios.

Project Website — https://sim2real-capture.github.io/

1 Introduction
Learning-based methods like deep Reinforcement Learning
(RL) allow robots to tackle complex tasks in areas such as
object manipulation (Peng et al. 2018; Lin, Corcodel, and
Zhao 2024) and locomotion for quadrupedal robots (Li et al.
2024; Kumar et al. 2021) and humanoids (Chen et al. 2024;
Zhang et al. 2024). However, RL’s high sample complex-
ity and risks of unsafe exploration (Xu et al. 2022a; Wang
et al. 2023b; Yao et al. 2024) make it necessary to train
policies in simulations and then deploy in the real world.
A key challenge is the sim-to-real gap, caused by discrepan-
cies between simulated and real-world dynamics (Hu et al.
2024; Torne et al. 2024; Huang et al. 2022), which can lead
to catastrophic failures during deployment.

*These authors contributed equally.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Traditional sim-to-real approaches aim to develop ro-
bust policies by randomizing environment parameters dur-
ing training, known as Domain Randomization (DR) (Peng
et al. 2018; Mehta et al. 2020). While effective in some
cases (Mehta et al. 2020; Li et al. 2024), DR captures only
average dynamics, limiting precision in fine-grained con-
trol tasks. In contrast, System Identification (SysID) meth-
ods aim to align the simulation and real-world performance
through actively adjusting the simulation environment pa-
rameters, which often requiring iterative SysID model up-
dates to test new parameters (Ramos, Possas, and Fox 2019;
Huang et al. 2023). For instance, in a kitchen environ-
ment, when a robot tries to scoop grilled celery from a pan
(Figure 1), traditional offline SysID methods would involve
learning a new SysID model that predict the center of mass
of the celery at each iteration, making the process time-
consuming and inefficient. Humans, on the other hand, can
quickly adapt online. A more intuitive solution is to develop
a model with online SysID, allowing for more efficient pa-
rameter estimation across different environment dynamics.

In-context learning has gained traction as a method for
adjusting model behavior without gradient updates, widely
used in Natual Language Processing (NLP) (Dong et al.
2022) and recently applied in robotics to improve general-
ization (Laskin et al. 2022; Grigsby, Fan, and Zhu 2024; Xu
et al. 2022b). For example, Xu et al. enhanced the Deci-
sion Transformer (DT) (Chen et al. 2021) by using new task
demonstrations as prompts for online adaptation. Most cur-
rent in-context learning approaches focus on adapting poli-
cies when rewards or expert demonstrations changes, as-
suming fixed environment dynamics (Grigsby, Fan, and Zhu
2024; Fu et al. 2024). While different dynamics could be
framed as diverse tasks in a multi-task RL setting, more than
it’s a counter-intuitive setting, it also becomes impractical
with a high-dimensional continuous environment parameter
space, requiring many tasks to capture the full range of be-
haviors. In this paper, we explore a novel question: “Can
we adapt simulation environment parameters using the in-
context learning paradigm?” Our goal is to eliminate the
optimization loop in SysID, in order to accelerate the pa-
rameter estimation process by incorporating the in-context
learning ability of transformer models.

We introduce in-Context AdaPTation modUle for sim-
to-REal system identification, or CAPTURE, to bridge the

System Identification Causal Transformer

Real

Iteration 𝑖

Sim Real

Iteration 𝑖 + 1

Sim Real

Iteration 𝑖 + 2

Sim Real

Iteration 𝑖 + 3

Sim

Estimated center of mass Actual center of mass Scoop positionEnvironment Parameter Action Sim Trajectory Real Trajectory

…

…

…

…

…

…

Figure 1: CAPTURE aims to take the history information to predict the next step environment parameters. SysID causal trans-
former adapts the simulation environment parameters to match the real-world performance on the fly via next-token prediction.
CAPTURE takes three iterations to identify the correct center of mass of celery.

sim-to-real gap. CAPTURE aims to dynamically adjust
the environment parameters online to align simulated and
real-world trajectories using next-token prediction based on
past interaction data, which includes simulated trajectories,
actions, environment parameters, and real-world trajectories
as shown in Figure 1. CAPTURE frames the SysID problem
as an in-context learning formulation, treating interaction
histories as “context.” Unlike existing techniques (Kumar
et al. 2021, 2022; Ren et al. 2023) that rely on short
state-action history, CAPTURE aim to learn the complex
SysID search process itself through rich and multi-episodic
interaction history data. Beyond learning single-step expert
parameter matching behaviors, longer interaction histories
enables the learned SysID causal transformer to capture
a better dynamics representation of the environments. By
incorporating in-context learning, CAPTURE provides
a smoother and more accurate prediction of subsequent
environmental parameters and dynamic behaviors.

In summary, this study makes the following contributions:
1. We propose a novel method that can identify real-world

environment parameters without any network parameter
updates using in-context learning.

2. CAPTURE distills the SysID parameter update pro-
cess using multi-episode history, rather than relying on
a single-step behavior-to-parameter mapping. This ap-
proach allows the SysID causal transformer to learn more
comprehensive dynamics properties through interactions,
which baseline methods struggle to capture.

3. We evaluate CAPTURE in two experiments, object
scooping and table air hockey, where we report substan-
tial performance increases in both sim-to-sim transfer
and sim-to-real transfer.

2 Related Work
Sim-to-real transfer is a pivotal area of robotics research,
focusing on the application of simulation-trained models

to real-world tasks. DR involves injecting variability into
the parameters of the simulation environment regarding dy-
namical or visual attributes (Peng et al. 2018; Mehta et al.
2020), but struggle with over-conservative or average task
behaviours. In the following subsections, prior works on
SysID for domain adaptation and in-context learning will be
discussed in more detail.

2.1 Sim-to-Real SysID for Domain Adaptation

There are two primary approaches on SysID for sim-to-real
transfer: offline and online. Offline SysID typically requires
iterative refinement of the identification module through re-
peated training cycles(Huang et al. 2023; Murooka et al.
2021; Chebotar et al. 2019; Ramos, Possas, and Fox 2019;
Muratore et al. 2022; Lim et al. 2022). In contrast, on-
line SysID focuses on the determination of environment
parameters or latent variables without the need for model
updates. This approach has proven effective in highly dy-
namic systems, employing strategies such as RMA (Ku-
mar et al. 2021), which leverages short-term historical state-
action pairs to infer environment dynamics (Yu et al. 2017;
Evans, Thankaraj, and Pinto 2022; Kumar et al. 2022; Alle-
vato et al. 2020). Memmel et al. describes exploring the ob-
ject dynamics through curiosity-driven exploration first and
then deploying on the task environment.Ren et al. propose a
meta-learning framework, prioritizing task-specific adapta-
tion over simple trajectory alignment. In addition to aligning
environment parameters, Jiang et al. introduced a human-in-
the-loop correction method to mitigate the sim-to-real gap.
More recently, Dai et al. proposed reconstructing real-world
environmental variations in simulation to enhance the gen-
eralizability on real-world policy deployment. Most relevant
to our work, IIDA (Evans, Thankaraj, and Pinto 2022) uses
long-term historical state action pairs to infer latent real-
world dynamic models. In contrast, our method focuses on
distilling the sim-to-real parameter update process to create

d

Task Policy

𝜖!
"!# a! τ!

"!# τ!$%&'

SysID Causal Transformer

𝜖!()*+
"!# a!()*+ τ!()*+

"!# τ!()*+$%&'

𝜖!()"!#

…… 𝜖!()
"!# a!() τ!()

"!# τ!()$%&'

Replay𝑠! 𝑎
In-context System Identification

Sim Real

𝜖"#$%&'

𝜖()%*'(

Data Generation

SysID Causal
Transformer

Model Training

Learn to predict
environment
parameters from history

Histories of
{𝜖, 𝑎, 𝜏!"#$%&, 𝜏'($)&'}

Figure 2: System overview: training and inference pipeline. The SysID causal transformer is trained with multi-episodic pa-
rameter update histories. During the in-context SysID, it will take the interaction history as context, and iteratively update the
environment parameters online through a task policy rollout in both simulation and the real world. The SysID causal trans-
former will maintain a fixed-length context window, where in our setting, the length is 4.

more accurate simulation environments, effectively closing
the sim-to-real gap.

2.2 In-context Learning in Robotics
In-context learning has garnered significant attention in
NLP (Dong et al. 2022; Krishnamurthy et al. 2024) and
computer vision (Wang et al. 2023a) due to its remarkable
ability to infer tasks from context. This ability to infer tasks
through contextual information, such as expert demonstra-
tions, allows for adaptation to new tasks without updating
the model’s weights (Min et al. 2022), which has been shown
to be beneficial in robotics settings (Xu et al. 2022b, 2023;
Zhu et al. 2024; Di Palo and Johns 2024; Yu et al. 2024;
Jiang, Ke, and van Hasselt 2023). The potential of in-context
learning for generalizing to unseen tasks has been further ex-
plored in recent studies. Laskin et al. employed transformer
models to distill the RL learning history, showing RL algo-
rithms can be distilled into transformer models and success-
fully in-context adapt to new goal settings (Grigsby, Fan,
and Zhu 2024). Previous work on in-context adaptation has
either focused on RL algorithm distillation or policy gen-
eralization abilities, where CAPTURE focuses on learning
environment parameters through interaction histories.

3 Methodology
Rather than directly adapting the task policy, we prioritize
leveraging historical data—including past environment pa-
rameters, task state trajectories, and task actions—to esti-
mate next-iteration environment parameters. This approach
aims to align simulation dynamics with real-world perfor-
mance. We assume that as the discrepancy between simu-
lation and real-world environment parameters decreases, the
sim-to-real performance gap will naturally narrow. This pro-
cess is guided by the underlying monotonic properties of the
environment parameter adjustments. We start with a descrip-
tion of the problem formulation in Section 3.1. Following
with three key modules in our pipeline: Section 3.2 describes
the task policy training, Section 3.3 describes how we gener-
ate efficient source-to-target adaptation iterations, and Sec-

tion 3.4 defines different components in the SysID causal
transformer structure. The main components of CAPTURE
pipeline is demonstrated in Figure 2, where it consists the
data generation, model training, and inference pipeline.

3.1 Problem Formulation
In this section, we define the task of predicting accurate sim-
ulation environment parameters to align simulated dynam-
ics with real-world environments. We outline how to model
the interaction between dynamics behaviours and environ-
ment parameters as a sequence, forming the training data
for SysID causal transformer models. We begin by introduc-
ing the simulation parameters, followed by the task policy
and data generation notations, and conclude with the SysID
causal transformer notations for domain adaptation.

Environment Parameter Space. We define the task-
related environment parameter space ϵ ∈ E that parameter-
ized quantities such as the center of mass and sliding fric-
tions. We also assume that the environment parameter space
E is finite and bounded, encompassing properties of differ-
ent objects. We modify the environment parameters with
Robosuite (Zhu et al. 2020), which provides API for mod-
ifying the environment parameters through Python code.

SysID Causal Transformer and Interaction Histories.
During the SysID causal transformer and data collection set-
ting, we use previous SysID iterations as context, including
simulated state trajectories τsim = {ssim0 , ssim1 , . . . , ssimT },
real state trajectories τ real = {sreal0 , sreal1 , . . . , srealT }, roll-
out action a ∼ π(a|s0, ϵ), and the past environment pa-
rameters ϵ. A robust SysID process explores complex pa-
rameter behaviours. We aim to capture this behavior using
a causal transformer that infers parameters from past inter-
actions. Following (Laskin et al. 2022), we treat these se-
quential interactions as history, where current environment
parameters depend on previous SysID iterations. Formally,
we define the history as:

hi :=
(
ϵsimi−k , ai−k, τ

sim
i−k , τ

real
i−k , . . . , ϵsimi−1 , ai−1, τ

sim
i−1 , τ

real
i−1

)
(1)

where hi is the history containing the past k iterations at i-
th iteration. Our goal is to learn a causal transformer such
that it can replicate the SysID process given history. We de-
fine the SysID causal transformer, Pθ, with the objective of
modeling the distribution of simulation parameters condi-
tioned on the history. This encourages the simulated trajec-
tories τsim eventually behave close to real-world trajecto-
ries, τ real, bridge the sim-to-real gap.

Given an ideal search strategy that successfully adapts to
the target environment parameters, our goal is to learn the
underlying search capabilities from this process by predict-
ing the next iteration in the history. The optimization objec-
tive can be formalized as:

θ∗ = argmin
θ

[
L
(
Pθ(hi), ϵ

sim
i

)]
(2)

where Pθ(hi) represents the predicted next environment
parameters from the model, L(·) is the Mean-Square-Error
(MSE) loss function that measures the discrepancy between
the predicted and the ground-truth next-iteration environ-
ment parameters.

3.2 Environment-Conditioned RL Training
The environment-conditioned RL task policy π(a | s0, ϵ) is
trained to adapt to varying environment parameters ϵ ∈ E .
For each episode, ϵ is sampled uniformly from the param-
eter space E . Within the episode, the agent selects an ac-
tion a from π(a | s0, ϵ), considering the initial state s0 and
environment parameter ϵ. This action is executed, produc-
ing a state trajectories {s1, s2, . . . , sT } and a reward r. Each
episode {a, r, s0, ϵ}, is stored in the replay buffer. After cer-
tain episodes, the policy is updated using Soft Actor-Critic
(SAC) (Haarnoja et al. 2018), refining actions for smoother
domain adaptation with predicted parameters.

3.3 Source-to-Target SysID Iteration Generation
In the data generation process, we develop source-to-target
adaptation transitions that mimic sim-to-real adaptation.
Each iteration includes four elements: the current simula-
tion parameter ϵi, the policy action ai, the simulated tra-
jectories τsourcei , and the collected target environment tra-
jectories τ targeti under the same action ai. The trajectories
and actions are obtained through simulation rollouts using
an environment-conditioned task policy.

In simulation, both source and target values are known,
allowing for direct single-step mapping from source to
target. However, this approach often performs poorly in
real-world deployment when the target’s dynamics repre-
sentation (state trajectories) lacks sufficient detail. Rather
than learning a single-step mapping, we focus on learning a
search algorithm that finds the target environment parameter
with dynamic representations. The duration of the parameter
iteration history L indicates the number of iterations that
we pre-defined to generate a complete transition sequence
from ϵsource to ϵtarget. We pick a transition number L = 7
during data generation.

In the sim-to-real SysID setting, a search algorithm must
balance exploration and precision, as it lacks the ground-
truth target value and relies only on performance labels

0 1 2 3 4 5 6
Adaptation Iterations

0.0

0.2

0.4

0.6

0.8

1.0

En
vi

ro
nm

en
t P

ar
am

et
er

 V
al

ue
s

Environment Parameter Transition History

Lower bound
Upper bound
ε
εtarget

Figure 3: A environment parameter transition history from
ϵsource to ϵtarget, with gradually shrank upper and lower
bounds of the search space.

Algorithm 1: Source-to-Target SysID Iteration Generation

1: Initialize data buffer D
2: Choose parameter transition iteration length L
3: Choose symmetric beta distribution parameter α
4: for n = 1 to N do ▷ This loop can be run in parallel
5: Sample ϵsource, ϵtarget from space E
6: Let l be the dynamic lower bound of space E
7: Let u be the dynamic upper bound of space E
8: Set ϵ0 = ϵsource

9: for i = 0 to L do
10: Sample action ai ∼ π(ai | s0, ϵi)
11: τ source

i ← rollout in sim(ϵi) with ai
12: τ target

i ← rollout in sim(ϵtarget) with ai
13: for j = 1 to dim(E) do
14: if ϵi[j] < ϵtarget[j] then
15: Update lower bound: l[j] = ϵi[j]
16: else
17: Update upper bound: u[j] = ϵi[j]

18: Sample r from B(α, α)
19: Set ϵi+1[j] = r (u[j]− l[j]) + l[j]

20: Store trajectory h[i] = {ϵi, ai, τ source
i , τ target

i }
21: Update data buffer: D ← D ∪ h

(higher or lower). Linear interpolation is suboptimal here
because it limits exploration during adaptation. To overcome
this, we propose emulating a randomized binary search pro-
cess (Martı́nez and Roura 1998), which optimally navigates
a constrained space by dynamically adjusting the upper and
lower search bounds at each iteration. To further promote
exploration, we use a beta distribution when selecting the
environment parameters for the next iteration. An ablation
study is discussed in Section 4.2 on how different search
algorithms impact parameter estimation. The transition iter-
ation generation process is illustrated in Figure 3, and the
formal pseudocode is described in Algorithm 1.

3.4 SysID Causal Transformer
Given the collected SysID parameter transition histories, D,
our goal is to distill the binary search process through pa-
rameter transition sequences with length L, where each it-
eration represents an adaptation iteration. The model pre-

Algorithm 2: SysID Causal Transformer Training and Eval-
uation

1: Environment-conditioned task policy π
2: Collected SysID transition history buffer D
3: Initialize SysID causal transformer Pθ

4: Initialize SysID causal transformer window size k
5: // SysID causal transformer training
6: while Pθ not converged do
7: Sample multi-episodic k subsequence from D:

hi =
(
ϵsimi−k , ai−k, τ

sim
i−k , τ

real
i−k , . . . , ϵi, ai, τ

sim
i , τ reali

)
8: Calculate shifted input loss ||Pθ(hi−1)− ϵi||2
9: Backpropagate to update Pθ

10: // In-context SysID with env-conditioned policy
11: for i = 0, . . . ,MaxIters do
12: τsimi ← rollout ai ∼ π(ai | s0, ϵi) in sim(ϵi)
13: τ reali ← rollout ai in unknown real environment
14: Predict ϵi+1 = Pθ({ϵx, ax, τsimx , τ realx }i−k

x=i)

dicts the next environment parameter ϵ̂i+1 at iteration i us-
ing a next-token prediction framework with a shifted input
setup (Radford et al. 2019). We sample a multi-episode win-
dow of size k from D, where k is a subsequence of the full
L iterations. The SysID causal transformer processes this
history to predict the next parameter. Each iteration block
contains 2 + 2T tokens: one action, one parameter, and T
state trajectory tokens for both simulated and real rollouts.

During rollout, the model attends to preceding tokens to
predict ϵi+1 using relative timestep embedding (Al-Rfou
et al. 2019) to focus on subsequence order. Starting with
initial tokens {ϵ0, a0, τsim0 , τ real0 }, we update actions with
an environment-conditioned policy π in the new simulation
ϵi+1 and initial state, obtaining updated trajectories τsimi+1 and
τ reali+1 . The process is detailed in Algorithm 2.

4 Experiments
We conducted two sets of experiments to evaluate the perfor-
mance of CAPTURE: object scooping and table air hockey.
In both tasks, we demonstrated that CAPTURE significantly
outperforms the baselines in both sim-to-sim and sim-to-real
transfer scenarios. The experiment setups will be explained
in Section 4.1, followed by descriptions of our baseline and
ablation methods in Section 4.2. The sim-to-sim evaluation
results compared with baselines and ablations results are de-
tailed in Section 4.3, and the sim-to-real experiment results
compared with baselines are described in Section 4.4.

4.1 Experimental Setups
We evaluate our algorithm using two tasks: object scooping
and table air hockey. For object scooping, inspired by (Mem-
mel et al. 2024; Shi et al. 2023), the goal is to identify the
object’s center of mass in kitchen scenarios, which often in-
volve complex items like celery, carrots, and eggplants with
varying centers of mass. We aim to determine the balance
point for successful scooping through online interactions us-
ing CAPTURE.

Environment Notion Description Range

Object Scooping Xcom Object Center of Mass [-1.0, 1.0]

Table Air Hockey

µleft Table Sliding Friction [0.03, 0.07]
µright Table Sliding Friction [0.03, 0.07]
ζmallet Mallet Damping [-15, -3]
ζleft Wall Damping [-40, -3]
ζright Wall Damping [-40, -3]

Table 1: Tunable Environment Parameters in Simulation

In table air hockey, we test the scalability of CAP-
TURE with a higher-dimensional parameter and action
space (Huang et al. 2023; Chuck et al. 2024). This task re-
quires precise control and adaptability to match simulated
and real-world dynamics. Tunable environment parameters
are listed in Table 1, with setups shown in Figure 4.

Object Scooping. In this task, our objective is to identify
the optimal scooping points during food transfer from one
toasting pan to another using a spatula. In this setting, CAP-
TURE needs to identify the center of mass noted as Xcom,
and then scoop at the corresponding placement such that the
object can be balanced on the spatula. The range of Xcom is
defined based on the relative position of the objects, where
−1.0 means the center of mass located at the most left of the
object, and vice versa. To handle pose estimation uncertain-
ties, a classifier labels the object as tilted left (-1), right (1),
or balanced (0) and uses them as state trajectories.

Table Air-Hockey. The setup involves a robot-controlled
mallet hitting a puck on an air-hockey table. The table is
divided into left and right sections with different friction
levels, causing varied puck behavior. We expect CAPTURE
to learn surface friction and damping differences from both
sides via incorporating context information. The five param-
eters considered are left-surface friction µleft, right-surface
friction µright, left-wall damping ζleft, right-wall damping
ζright, and puck damping ζpuck. Lower absolute damping
values make objects more responsive, and trajectory evalua-
tion is based on the sum of point-wise L2 distances.

4.2 Baselines and Ablations
To discover how different module of CAPTURE affects the
performances, the baselines aim to demonstrate the effec-
tiveness of context history during rollout. The ablations are
meant to demonstrate how different data generation methods
affect the performance. We have compared CAPTURE with
two ablations in sim-to-sim evaluation and three baselines
methods in both sim-to-sim and sim-to-real evaluation.

Baselines. CAPTURE distills the sim-to-real adaptation
process to learn an efficient transition from source to target.
We compare with the following baselines for online adap-
tation tasks: Expert Distillation (ED) (Laskin et al. 2022),
TuneNet (Allevato et al. 2020), and DR (Peng et al. 2018).
ED is similar to CAPTURE but with expert SysID train-
ing data consists of one-iteration source-to-target parame-
ter adaptation, rather than learning histories. To make a fair
comparison, we have also implemented the TuneNet (All-
evato et al. 2020) algorithm with a transformer backbone,

(a) Simulated Object Scooping (b) Real-world Object Scooping (c) Simulated Table Air Hockey (d) Real-world Table Air Hockey

Figure 4: Experiment setups for both object scooping and table air hockey.

where the model follows the ED setting but with residual
parameter updates.

Ablations on Different Data Generation Approaches.
We modify the data generation module to demonstrate the
effectiveness of our distilled searching algorithm over oth-
ers, including linear interpolation (linterp) and the standard
binary search method without randomness (binary), while
selecting the next iteration parameters. Linear interpolation
randomly selects L points between source and target envi-
ronment parameters and orderly constructs the SysID tran-
sition. The standard binary search method (Sikorski 1982)
follows a similar setting as ours. However, it does not con-
sider the random beta distribution, it only selects the middle
point between the upper and lower bound.

4.3 Sim-to-Sim SysID Evaluation
In the sim-to-sim transfer, we evaluate whether CAPTURE
can align trajectories by adjusting the environment param-
eters in-context without updating the model’s parameters.
We simulated 100 pairs of random environment parame-
ters to mimic unknown real dynamics and test the perfor-
mance across three seeds. For each pair, one simulation en-
vironment is designated as the “real” (target) environment,
where only the dynamics performance is provided to the
model, not the parameters. To improve parameter estima-
tion independent of actions, we roll out the model with an
environment-conditioned policy for online evaluation, as de-
scribed in Section 3.2. In the results, baseline methods are
shown with solid lines, while dashed lines indicate different
ablation settings for data collection.

Object Scooping Sim-to-Sim Evaluation. In the sim-
to-sim transfer, we evaluated the normalized context differ-
ences, which are one-dimensional in this setting, as shown in
Figure 5. Since we use an angle classifier for smoother real-
world deployment, reporting trajectory differences would be
meaningless, as the trajectory here is represented by a label.
Instead, we measure the task’s success rate, defined as lift
the object with label (0). Figure 5 shows that CAPTURE
achieves a success rate 50% higher than other SysID meth-
ods and 70% higher than the DR approach. This is expected,
as the baselines lack historical interaction data, making iden-
tification only dependent on current scooping points. In con-
trast, CAPTURE uses a rich previous interaction history, al-
lowing it to gradually narrow down the center of mass search

0 5 10 15 20 25 30

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Average Success Rate

0 5 10 15 20 25 30

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Center of Mass

Expert Distillation
TuneNet

Domain Randomization
Capture (Ours)

Capture + linterp
Capture + binary

Figure 5: Object scooping sim-to-sim transfer parameter es-
timation and success rate performance. CAPTURE identi-
fies objects’ center of mass after around 4 iterations.

space.
Table Air Hockey Sim-to-Sim Evaluation. In Fig-

ure 6, CAPTURE offers better parameter estimation with
smoother and more accurate adaptation curves. In scenar-
ios where environment parameters require rollout histories,
baselines struggle due to their inability to account for histor-
ical interactions. For instance, while the ED method might
successfully detect the left wall after hitting it, it tends to
forget earlier right wall interactions. This short-term mem-
ory leads to faster adaptation in simple environments but
falls short in more complex ones. In dynamic settings, where
SysID needs to identify parameters on both sides for sus-
tained task performance, maintaining a history of parameter
updates becomes critical, as it informs subsequent iterations.

In Table 2, we show that with lower context differences
between the source and target, the point-wise L2 trajectory
distance also becomes smaller accordingly. CAPTURE are
able to improve trajectory differences by about 40% com-
pared to identification baselines, and 50% compared to DR.
Given the parameter estimation error shown in Figure 6, the
significant trajectory difference is expected from baseline
methods.

Ablation results. In object scooping experiments, we ob-
serve that the linear interpolation approach converges more
slowly in terms of adaptation iterations, as shown in Fig-
ure 5. Due to limited exploration, it hinders performance.
Figure 6 shows that CAPTURE + linear interpolation fol-

0 5 10 15 20 25 30

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_friction

0 5 10 15 20 25 30

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_friction

0 5 10 15 20 25 30

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Mallet_damping

0 5 10 15 20 25 30

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_damping

0 5 10 15 20 25 30

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_damping

Expert Distillation TuneNet Capture (Ours) Capture + linterp Capture + binary

Figure 6: Table air hockey sim-to-sim transfer parameter estimation performances. The red lines represent our proposed method
CAPTURE, which outperforms the baseline methods in all five parameters. Our approach reaches around 0.2 differences after
7 adaptation iterations, where the baselines converge at 0.35 for most parameters.

Method Adaptation iterations
5 iterations 10 iterations 15 iterations 20 iterations 30 iterations

ED 0.25±0.01 0.26±0.03 0.27±0.02 0.27±0.01 0.26±0.01
DR 0.34±0.03 0.31±0.02 0.34±0.04 0.31±0.03 0.33±0.00

TuneNet 0.29±0.02 0.27±0.01 0.27±0.01 0.26±0.01 0.25±0.02
CAPTURE + linterp 0.22±0.02 0.23±0.01 0.26±0.03 0.24±0.02 0.22±0.01
CAPTURE + binary 0.20±0.01 0.17±0.01 0.16±0.02 0.17±0.01 0.18±0.01

CAPTURE 0.20±0.01 0.16±0.01 0.14±0.01 0.14±0.01 0.15±0.01

Table 2: Sim-to-Sim Table Air Hockey Trajectory Differences in Meters over 3 Seeds.

lows a near-linear sim-to-real transition until iteration 7,
closely matching the dataset’s transition history. However, it
struggles to establish a robust search process due to overfit-
ting to linear interpolated transition histories. Except for left
damping parameter, no significant performance differences
are seen between randomized binary search (ours) and stan-
dard binary search. With added randomized, it did not hin-
der the estimation performance, whereas it learned a more
robust adaptation process. Figure 6 also illustrates that CAP-
TURE can smooth the adaptation process using history, re-
gardless of SysID accuracy.

4.4 Sim-to-Real SysID Evaluation
We evaluate the task performance during sim-to-real SysID
in real-world setups of object scooping and table air hockey.
Our method has shown significant performance improve-
ment on trajectory alignment and success rate compared to
baseline methods. We evaluated all of our baselines in the
sim-to-real transfer.

Object Scooping Sim-to-Real Evaluation. In this ex-
periment, we verify that CAPTURE can accurately identify
the center of mass across various objects during scooping.
To verify the effectiveness of our algorithm, we selected
three different objects (i.e.,celery, carrot, and eggplant) with
asymmetrical properties to ensure the difficulty of identify-
ing the center of mass. We evaluated each object ten times
starting at the absolute center point. Similarly to the sim-to-
sim transfer setting, we use task success rate to reflect the
task performance instead of trajectory matching. To obtain
the real-world object 3D pose, we utilize a point cloud to

localize the object and provide the tilting direction labels.
Inspecting Table 3, we find that DR excels when scoop-

ing objects with centralized centers of mass, such as the egg-
plant, achieving a success rate of 90% or higher from just 1
iteration. However, for objects with more complex mass dis-
tributions (i.e.,celery and carrot), DR’s performance drops
significantly. CAPTURE is able to adapt to different ob-
jects and achieve at least 70% at 7th iterations. After suc-
cessfully lifting the object, one-step adaptation methods ran-
domly sample other parameter values due to the absence of
history and lack of target-to-target parameter transition dur-
ing training, while CAPTURE consistently lifts the object in
subsequent iterations. This performance demonstrates CAP-
TURE ’s ability to generalize to unseen scenarios (target-to-
target adaptation) by leveraging context history. Its ability
to maintain high success rates, especially with objects that
have complex mass properties, underscores its effectiveness
in real-world scooping tasks.

Air Hockey Sim-to-Real Evaluation. We set up the real-
world table air hockey as shown in Figure 4. To create vary-
ing friction across the two surfaces, we installed separate
fans under each side of the table, with adjustable fan volt-
ages controlling the sliding friction. We evaluated the sim-
to-real transfer performance over 15 trials using 3 different
seeds, with each trial having randomized fan voltages on
both sides. The results from the sim-to-real air hockey exper-
iment, presented in Table 4, show the performance of differ-
ent methods in trajectory matching over multiple adaptation
iterations. For one-iteration adaptation, ED performs best
with a trajectory difference of 0.40, as it tries to adapts to the

Scooping Objects Method Adaptation iterations
1 iter 3 iters 5 iters 7 iters 9 iters

Eggplant

ED 0.8 0.5 0.3 0.2 0.1
DR 0.9 0.9 1.0 0.9 0.9

TuneNet 0.9 0.9 0.7 0.6 0.4
CAPTURE 0.3 0.6 0.9 0.9 0.9

Celery

ED 0.0 0.1 0.3 0.1 0.2
DR 0.0 0.2 0.0 0.1 0.0

TuneNet 0.0 0.1 0.3 0.1 0.1
CAPTURE 0.0 0.4 0.6 0.7 0.7

Carrot

ED 0.0 0.8 0.5 0.5 0.6
DR 0.0 0.1 0.0 0.1 0.0

TuneNet 0.0 0.9 0.8 0.5 0.4
CAPTURE 0.3 0.7 0.9 0.9 0.9

Table 3: Sim-to-Real Object Scooping Success Rate.

Method Adaptation iterations
1 iteration 3 iterations 5 iterations 7 iterations 9 iterations

ED 0.40 ± 0.19 0.34 ± 0.14 0.51 ± 0.44 0.34 ± 0.15 0.34 ± 0.14
DR 0.41 ± 0.27 0.40 ± 0.1 0.37 ± 0.33 0.42 ± 0.42 0.43 ± 0.40

TuneNet 0.47 ± 0.22 0.40 ± 0.11 0.32 ± 0.21 0.38 ± 0.16 0.34 ± 0.15
CAPTURE 0.47 ± 0.18 0.35 ± 0.14 0.35 ± 0.12 0.29 ± 0.10 0.27 ± 0.10

Table 4: Sim-to-Real Table Air Hockey Trajectory Differences in Meters over 15 Runs.

target parameter within one iteration. However, as iterations
increase, CAPTURE steadily improves, outperforming the
baselines. By the 7th and 9th iterations, CAPTURE achieves
the lowest trajectory differences of 0.29 and 0.27, respec-
tively. In the final iterations, CAPTURE delivers about 20%
better performance than the top baseline methods.

5 Conclusion
This paper introduces a novel in-context learning approach
to bridge the sim-to-real gap in robotic tasks by adjusting
environment parameters online. By leveraging interaction
histories as context, we enable dynamics adaptation to
real-world environments without requiring model updates.
Evaluated in scooping and table air-hockey tasks, our
method outperforms traditional approaches such as domain
randomization and TuneNet, reducing the sim-to-real gap
and improving both sim-to-sim and sim-to-real perfor-
mance. The approach leverages historical multi-episode
data to infer system parameters and provide a better
real-world dynamics prediction. While our method demon-
strates strong performance, it still requires to train a new
SysID model for new task environments. Nonetheless, the
framework offers a more efficient and accurate solution for
real-world deployment of simulation-based robotic systems.

Acknowledgments
The authors want to acknowledge the support from the Na-
tional Science Foundation under grants CNS-2047454. We
also thank Haohong Lin and Changyi Lin for discussion.

References
Al-Rfou, R.; Choe, D.; Constant, N.; Guo, M.; and Jones, L.
2019. Character-level language modeling with deeper self-
attention. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 33, 3159–3166.

Allevato, A.; Short, E. S.; Pryor, M.; and Thomaz, A. 2020.
Tunenet: One-shot residual tuning for system identification
and sim-to-real robot task transfer. In Conference on Robot
Learning, 445–455. PMLR.

Chebotar, Y.; Handa, A.; Makoviychuk, V.; Macklin, M.; Is-
sac, J.; Ratliff, N.; and Fox, D. 2019. Closing the sim-to-real
loop: Adapting simulation randomization with real world
experience. In 2019 International Conference on Robotics
and Automation (ICRA), 8973–8979. IEEE.

Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I. 2021.
Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing sys-
tems, 34: 15084–15097.

Chen, Z.; He, X.; Wang, Y.-J.; Liao, Q.; Ze, Y.; Li, Z.; Sastry,
S. S.; Wu, J.; Sreenath, K.; Gupta, S.; et al. 2024. Learn-
ing Smooth Humanoid Locomotion through Lipschitz-
Constrained Policies. arXiv preprint arXiv:2410.11825.

Chuck, C.; Qi, C.; Munje, M. J.; Li, S.; Rudolph, M.;
Shi, C.; Agarwal, S.; Sikchi, H.; Peri, A.; Dayal, S.; et al.
2024. Robot Air Hockey: A Manipulation Testbed for Robot
Learning with Reinforcement Learning. arXiv preprint
arXiv:2405.03113.

Dai, T.; Wong, J.; Jiang, Y.; Wang, C.; Gokmen, C.; Zhang,
R.; Wu, J.; and Fei-Fei, L. 2024. ACDC: Automated Cre-
ation of Digital Cousins for Robust Policy Learning. arXiv
preprint arXiv:2410.07408.
Di Palo, N.; and Johns, E. 2024. Keypoint Action tokens en-
able in-context imitation learning in robotics. arXiv preprint
arXiv:2403.19578.
Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Wu, Z.; Chang, B.;
Sun, X.; Xu, J.; and Sui, Z. 2022. A survey on in-context
learning. arXiv preprint arXiv:2301.00234.
Evans, B.; Thankaraj, A.; and Pinto, L. 2022. Context is ev-
erything: Implicit identification for dynamics adaptation. In
2022 International Conference on Robotics and Automation
(ICRA), 2642–2648. IEEE.
Fu, L.; Huang, H.; Datta, G.; Chen, L. Y.; Panitch, W. C.-
H.; Liu, F.; Li, H.; and Goldberg, K. 2024. In-Context Im-
itation Learning via Next-Token Prediction. arXiv preprint
arXiv:2408.15980.
Grigsby, J.; Fan, L.; and Zhu, Y. 2024. AMAGO: Scalable
In-Context Reinforcement Learning for Adaptive Agents. In
The Twelfth International Conference on Learning Repre-
sentations.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In International
conference on machine learning, 1861–1870. PMLR.
Hu, H.; Zhang, X.; Lyu, X.; and Chen, M. 2024.
Learning Robust Policies via Interpretable Hamilton-
Jacobi Reachability-Guided Disturbances. arXiv preprint
arXiv:2409.19746.
Huang, P.; Xu, M.; Fang, F.; and Zhao, D. 2022. Ro-
bust Reinforcement Learning as a Stackelberg Game via
Adaptively-Regularized Adversarial Training. In the 31st
International Joint Conference on Artificial Intelligence (IJ-
CAI). Proceedings of the Thirty-First International Joint
Conference on Artificial
Huang, P.; Zhang, X.; Cao, Z.; Liu, S.; Xu, M.; Ding, W.;
Francis, J.; Chen, B.; and Zhao, D. 2023. What Went
Wrong? Closing the Sim-to-Real Gap via Differentiable
Causal Discovery. In Tan, J.; Toussaint, M.; and Darvish, K.,
eds., Proceedings of The 7th Conference on Robot Learning,
volume 229 of Proceedings of Machine Learning Research,
734–760. PMLR.
Jiang, C.; Ke, N. R.; and van Hasselt, H. 2023. Learning
how to infer partial mdps for in-context adaptation and ex-
ploration. arXiv preprint arXiv:2302.04250.
Jiang, Y.; Wang, C.; Zhang, R.; Wu, J.; and Fei-Fei, L. 2024.
TRANSIC: Sim-to-Real Policy Transfer by Learning from
Online Correction. arXiv preprint arXiv:2405.10315.
Krishnamurthy, A.; Harris, K.; Foster, D. J.; Zhang, C.; and
Slivkins, A. 2024. Can large language models explore in-
context? arXiv preprint arXiv:2403.15371.
Kumar, A.; Fu, Z.; Pathak, D.; and Malik, J. 2021. Rma:
Rapid motor adaptation for legged robots. arXiv preprint
arXiv:2107.04034.

Kumar, A.; Li, Z.; Zeng, J.; Pathak, D.; Sreenath, K.; and
Malik, J. 2022. Adapting rapid motor adaptation for bipedal
robots. In 2022 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 1161–1168. IEEE.
Laskin, M.; Wang, L.; Oh, J.; Parisotto, E.; Spencer, S.;
Steigerwald, R.; Strouse, D.; Hansen, S.; Filos, A.; Brooks,
E.; et al. 2022. In-context reinforcement learning with algo-
rithm distillation. arXiv preprint arXiv:2210.14215.
Li, Y.; Li, J.; Fu, W.; and Wu, Y. 2024. Learning Ag-
ile Bipedal Motions on a Quadrupedal Robot. In 2024
IEEE International Conference on Robotics and Automation
(ICRA), 9735–9742.
Lim, V.; Huang, H.; Chen, L. Y.; Wang, J.; Ichnowski,
J.; Seita, D.; Laskey, M.; and Goldberg, K. 2022.
Real2sim2real: Self-supervised learning of physical single-
step dynamic actions for planar robot casting. In 2022 Inter-
national Conference on Robotics and Automation (ICRA),
8282–8289. IEEE.
Lin, H.; Corcodel, R.; and Zhao, D. 2024. Generalize by
Touching: Tactile Ensemble Skill Transfer for Robotic Fur-
niture Assembly. arXiv preprint arXiv:2404.17684.
Martı́nez, C.; and Roura, S. 1998. Randomized binary
search trees. Journal of the ACM (JACM), 45(2): 288–323.
Mehta, B.; Diaz, M.; Golemo, F.; Pal, C. J.; and Paull, L.
2020. Active Domain Randomization. In Kaelbling, L. P.;
Kragic, D.; and Sugiura, K., eds., Proceedings of the Con-
ference on Robot Learning, volume 100 of Proceedings of
Machine Learning Research, 1162–1176. PMLR.
Memmel, M.; Wagenmaker, A.; Zhu, C.; Fox, D.; and Gupta,
A. 2024. ASID: Active Exploration for System Identifica-
tion in Robotic Manipulation. In The Twelfth International
Conference on Learning Representations.
Min, S.; Lyu, X.; Holtzman, A.; Artetxe, M.; Lewis, M.; Ha-
jishirzi, H.; and Zettlemoyer, L. 2022. Rethinking the role
of demonstrations: What makes in-context learning work?
arXiv preprint arXiv:2202.12837.
Muratore, F.; Gruner, T.; Wiese, F.; Belousov, B.; Gienger,
M.; and Peters, J. 2022. Neural posterior domain randomiza-
tion. In Conference on Robot Learning, 1532–1542. PMLR.
Murooka, T.; Hamaya, M.; von Drigalski, F.; Tanaka, K.;
and Ijiri, Y. 2021. Exi-net: Explicitly/implicitly conditioned
network for multiple environment sim-to-real transfer. In
Conference on Robot Learning, 1221–1230. PMLR.
Peng, X. B.; Andrychowicz, M.; Zaremba, W.; and Abbeel,
P. 2018. Sim-to-Real Transfer of Robotic Control with Dy-
namics Randomization. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), 3803–3810.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog, 1(8): 9.
Ramos, F.; Possas, R. C.; and Fox, D. 2019. Bayessim:
adaptive domain randomization via probabilistic inference
for robotics simulators. arXiv preprint arXiv:1906.01728.
Ren, A. Z.; Dai, H.; Burchfiel, B.; and Majumdar, A. 2023.
AdaptSim: Task-Driven Simulation Adaptation for Sim-to-
Real Transfer. In Tan, J.; Toussaint, M.; and Darvish, K.,

eds., Proceedings of The 7th Conference on Robot Learning,
volume 229 of Proceedings of Machine Learning Research,
3434–3452. PMLR.

Shi, H.; Xu, H.; Clarke, S.; Li, Y.; and Wu, J. 2023. Robo-
Cook: Long-Horizon Elasto-Plastic Object Manipulation
with Diverse Tools. In Conference on Robot Learning, 642–
660. PMLR.

Sikorski, K. 1982. Bisection is optimal. Numerische Math-
ematik, 40: 111–117.

Torne, M.; Simeonov, A.; Li, Z.; Chan, A.; Chen, T.; Gupta,
A.; and Agrawal, P. 2024. Reconciling reality through sim-
ulation: A real-to-sim-to-real approach for robust manipula-
tion. arXiv preprint arXiv:2403.03949.

Wang, X.; Wang, W.; Cao, Y.; Shen, C.; and Huang, T.
2023a. Images speak in images: A generalist painter for
in-context visual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
6830–6839.

Wang, Y.; Xu, M.; Shi, G.; and Zhao, D. 2023b. Guardians
as you fall: Active mode transition for safe falling. arXiv
preprint arXiv:2310.04828.

Xu, M.; Liu, Z.; Huang, P.; Ding, W.; Cen, Z.; Li, B.; and
Zhao, D. 2022a. Trustworthy reinforcement learning against
intrinsic vulnerabilities: Robustness, safety, and generaliz-
ability. arXiv preprint arXiv:2209.08025.

Xu, M.; Lu, Y.; Shen, Y.; Zhang, S.; Zhao, D.; and Gan, C.
2023. Hyper-decision transformer for efficient online policy
adaptation. arXiv preprint arXiv:2304.08487.

Xu, M.; Shen, Y.; Zhang, S.; Lu, Y.; Zhao, D.; Tenenbaum,
J.; and Gan, C. 2022b. Prompting decision transformer for
few-shot policy generalization. In international conference
on machine learning, 24631–24645. PMLR.

Yao, Y.; Liu, Z.; Cen, Z.; Zhu, J.; Yu, W.; Zhang, T.; and
Zhao, D. 2024. Constraint-conditioned policy optimization
for versatile safe reinforcement learning. Advances in Neu-
ral Information Processing Systems, 36.

Yu, C.; Lu, H.; Gao, J.; Tan, Q.; Yang, X.; Wang,
Y.; Wu, Y.; and Vinitsky, E. 2024. Few-shot In-
Context Preference Learning Using Large Language Mod-
els. arXiv:2410.17233.

Yu, W.; Tan, J.; Liu, C. K.; and Turk, G. 2017. Preparing
for the unknown: Learning a universal policy with online
system identification. arXiv preprint arXiv:1702.02453.

Zhang, C.; Xiao, W.; He, T.; and Shi, G. 2024. WoCoCo:
Learning Whole-Body Humanoid Control with Sequential
Contacts. arXiv preprint arXiv:2406.06005.

Zhu, J. Y.; Cano, C. G.; Bermudez, D. V.; and Drozdzal, M.
2024. InCoRo: In-Context Learning for Robotics Control
with Feedback Loops. arXiv preprint arXiv:2402.05188.

Zhu, Y.; Wong, J.; Mandlekar, A.; Martı́n-Martı́n, R.; Joshi,
A.; Nasiriany, S.; and Zhu, Y. 2020. robosuite: A modu-
lar simulation framework and benchmark for robot learning.
arXiv preprint arXiv:2009.12293.

Appendix
5.1 Analysis on Different Transition Sequence

Length L
We conducted ablation studies on the transition sequence
length L to validate the chosen hyperparameters in our ex-
periments. The sequence length L was varied from 5 to 13,
as shown in Figure 7. We collected 100 pairs of simula-
tion and simulated real environment parameters to compre-
hensively evaluate performance under different initial con-
ditions. The results demonstrate minimal performance vari-
ation across different values of L, with some degradation
observed at L = 5 and L = 13. Transition sequence lengths
between 7 and 9 consistently yielded stable performance.

This range aligns well with other settings, as the proposed
randomized binary search algorithm is independent of the
dimensionality of state trajectories, action spaces, and envi-
ronment parameter spaces.

A similar pattern was observed in the object scooping
task, shown in Figure 11a. Parameter estimation perfor-
mance followed similar trends, further validating the choice
of transition sequence length.

5.2 Analysis on Different Transformer Window
Sizes k

We evaluated the impact of varying the transformer window
size k on performance, with the transition sequence length
L fixed at 7. The window size k was varied from 2 to 6, with
results shown in Figures 8 and 11b.

Shorter window sizes (k = 2, k = 3) generally outper-
formed larger ones, likely due to reduced overfitting and
improved generalization. Larger window sizes exhibited di-
minished performance, especially in later iterations, due to
overfitting to training data sequences and reduced general-
ization in out-of-distribution (OOD) settings. Smaller win-
dow sizes focus on local features, enhancing their OOD ro-
bustness.

5.3 Comparison with State-of-the-Art Offline
SysID Baselines

We included COMPASS as a baseline for comparison. Fig-
ures 9 and 11c compare the performance of CAPTURE and
COMPASS, highlighting CAPTURE’s faster convergence
and superior performance in most cases.

In the table air hockey setting, COMPASS struggled to
perform well, despite favorable initialization for some envi-
ronment parameters. For object scooping tasks, COMPASS
aligned the center of mass but exhibited slower convergence
compared to CAPTURE.

5.4 Limitations of Monotonicity Assumptions
Between Environment Parameters and State
Trajectories

The binary search method assumes monotonic relationships
between parameters and trajectories. However, CAPTURE
demonstrated strong performance even in non-monotonic
environments. We modified the scoop environment to intro-
duce non-monotonic relationships, and CAPTURE outper-
formed baselines in these settings, as shown in Figure 11d.

In non-monotonic settings, CAPTURE experienced
slower convergence in the initial iterations but significantly
reduced errors after the 10th iteration. CAPTURE consis-
tently maintained superior performance compared to base-
lines in non-monotonic environments.

5.5 Additional Evaluation Under Noisy
Observations

We further evaluated CAPTURE’s robustness under noisy
observations, as shown in Figures 10 and 11e, for both table
air hockey and object scooping tasks.

In the object scooping task, random angular perturbations
were introduced to simulate pose disturbances. Despite these
challenges, CAPTURE maintained robust performance and
outperformed baseline methods.

For table air hockey, uniform noise was added to state
trajectory components, resulting in observed trajectory val-
ues ranging between 90% and 110% of ground-truth values.
CAPTURE demonstrated resilience to noisy observations,
outperforming baselines in later iterations.

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_friction

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_friction

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Mallet_damping

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_damping

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_damping

L= 5 L= 7 L= 9 L= 11 L= 13

Figure 7: Table air hockey sim-to-sim transfer SysID performance across different parameter transition sequence lengths L.

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_friction

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_friction

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
No

rm
al

ize
d

Pa
ra

m
et

er
 D

iff
er

en
ce

s Mallet_damping

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_damping

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_damping

k= 2 k= 3 k= 4 k= 5 k= 6

Figure 8: Table air hockey sim-to-sim transfer SysID performance across different window sizes.

0 1 2 3 4 5 6 7 8 9

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_friction

0 1 2 3 4 5 6 7 8 9

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_friction

0 1 2 3 4 5 6 7 8 9

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Mallet_damping

0 1 2 3 4 5 6 7 8 9

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_damping

0 1 2 3 4 5 6 7 8 9

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_damping

Expert Distillation TuneNet Capture (Ours) Capture + linterp Capture + binary COMPASS

Figure 9: Table air hockey sim-to-sim transfer with added baseline.

0 5 10 15 20 25

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_friction

0 5 10 15 20 25

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_friction

0 5 10 15 20 25

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Mallet_damping

0 5 10 15 20 25

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Left_damping

0 5 10 15 20 25

Adaptation Iterations
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Right_damping

Expert Distillation TuneNet Capture (Ours) Capture + linterp Capture + binary Capture + noisy

Figure 10: Table air hockey sim-to-sim transfer under noisy observations.

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Center of Mass

L= 5
L= 7
L= 9
L= 11
L= 13

(a)

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Center of Mass

k= 2
k= 3
k= 4
k= 5
k= 6

(b)

0 1 2 3 4 5 6 7 8 9
Adaptation Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s

Center of Mass
Expert Distillation
TuneNet
Capture (Ours)
Capture + linterp
Capture + binary
COMPASS

(c)

0 5 10 15 20 25

Adaptation Iterations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s Center of Mass

Capture
Expert Distillation
TuneNet

(d)

0 5 10 15 20 25
Adaptation Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
Pa

ra
m

et
er

 D
iff

er
en

ce
s

Center of Mass
Expert Distillation
TuneNet
Capture (Ours)
Capture + linterp
Capture + binary
Capture + noisy

(e)

Figure 11: Object scooping sim-to-sim transfer SysID performance under different variants: (a) Performance across varying
parameter transition sequence lengths L. (b) Performance across different window sizes k. (c) Performance with an added
baseline. (d) Comparison of CAPTURE, Expert Distillation, and TuneNet in a non-monotonic scooping environment. (e) Per-
formance under noisy observation conditions.

