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Abstract

Inference scaling enhances the reasoning ca-
pabilities of large language models, with re-
inforcement learning serving as the key tech-
nique to draw out complex reasoning. However,
key technical details of state-of-the-art reason-
ing LLMs—such as those in the OpenAl O
series, Claude 3 series, DeepMind’s Gemini
2.5 series, and Grok 3 series—remain undis-
closed, making it difficult for the research com-
munity to replicate their reinforcement learn-
ing training results. We propose an Early Pre-
view Hierarchical Reinforcement Learning al-
gorithm based on the open-sourced Group Rel-
ative Policy Optimization (GRPO) framework.
In details, we introduce an early preview ver-
sion of a hierarchical reinforcement learning
approach that continues to enhance the rea-
soning capabilities of small-sized large lan-
guage models. In particular, a 1.5B-parameter
LLM achieves 53.3% on AIME and 90.4% on
Math500, These results, enabled by the pro-
posed early preview efficient hierarchical re-
inforcement learning, demonstrate math rea-
soning capabilities comparable to O1-mini/O3-
mini—achievable within a typical school lab-
oratory setting. In addition, we open-source
both the dataset and model checkpoints to sup-
port future research in large-scale reinforce-
ment learning for LLMs.

1 Introduction

Large language models (LLMs) with advanced rea-
soning capabilities, such as OpenAl o-series (Jaech
et al., 2024; OpenAl, 2024, 2025a,b), DeepSeek
R1 (Guo et al., 2025), and Claude 3.7 (Anthropic,
2025), grok3-reasoning (XAI, 2024), Gemini 2.5
(LLC, 2025), have achieved remarkable perfor-
mance in complex tasks like mathematical reason-
ing and code generation. Through large-scale rein-
forcement learning (RL), these models acquire ad-
vanced reasoning strategies—such as step-by-step
analysis (Wei et al., 2022), self-reflection (Wang

et al., 2023), and backtracking (Ahmadian et al.,
2024)—which enhance their ability to solve com-
plex reasoning problems with greater robustness
and accuracy across diverse domains.

Currently, most successful reinforcement
learning efforts—including open-source re-
search—depend on relatively large language base
models, especially when aiming to improve math
and code reasoning capabilities. Moreover, it
has been widely believed that improving both
mathematical and coding capabilities in small
models is particularly challenging. To further
explore the potential of reinforcement learning
in enhancing reasoning abilities, we investigate
the effectiveness of hierarchical reinforcement
learning—trained reasoning models based on
hierarchical reinforcement learning (Guo et al.,
2025; Christiano et al., 2017; Sutton and Barto,
2018; Ewveritt et al., 2017, 2021; Weng, 2024),
which shows promising potential for scalability.

In this work, we present the Early Preview Hi-
erarchical GRPO algorithm—an early version of
a hierarchical reinforcement learning method de-
signed to improve reasoning tasks in our series of
small to medium-sized large language models. Our
experiments demonstrate that the proposed Early
Preview Hierarchical Reinforcement Learning al-
gorithm exhibits exceptional reasoning capabilities,
outperforming many larger state-of-the-art closed-
source and open-source reasoning large language
models (OpenAl, 2024; Jaech et al., 2024). In de-
tail, it demonstrates superior performance on both
mathematics and code reasoning tasks, surpassing
OpenAI’s Ol-mini, O1, and O3-mini (low) models
(OpenAl, 2024; Jaech et al., 2024) within 1.5B-
and 14B-parameter LLMs trained using the early
preview version of the hierarchical GRPO algo-
rithm on major reasoning benchmarks for math and
coding.



2 Related Work

2.1 Reasoning Large Language Models

In the context of LLMs, reinforcement learning has
been widely used for aligning human preferences
(Christiano et al., 2017; Ouyang et al., 2022; Yuan
etal., 2024a; Azar et al., 2024; Rafailov et al., 2023;
Yuan et al., 2024a), but the open-source commu-
nity mostly adopt the data-driven imitation learning
methods (Yuan et al., 2024b; Yue et al., 2023; Guan
et al., 2025) to enhance the reasoning capabities of
LLMs. Over the past few months, the paradigm
gradually shifted. OpenAl ol (Jaech et al., 2024)
first showed the tremendous potential of large-sacle
RL for reasoning LLMs, and recent works have ver-
ified the scaling effect of the simple RL recipe with
merely outcome rewards (Guo et al., 2025; Qwen
Team, 2024; XAI, 2024). Meanwhile, the role of
dense rewards in RL remains underexplored, which
is the main focus of PRIME (Clui et al., 2025). Un-
fortunately, only outcome reward models (ORMs)
(Guo et al., 2025) are available in most practices of
LLMs, i.e., only the final token bears a meaningful
reward while intermediate tokens receive no re-
wards (Rafailov et al., 2023; Shao et al., 2024; Guo
et al., 2025). Very recently, the state-of-the-art rea-
soning models OpenAl o-series (Jaech et al., 2024;
OpenAl, 2024, 2025a,b), DeepSeek R1 (Guo et al.,
2025), and Claude 3.7 (Anthropic, 2025), grok3-
reasoning (XAI, 2024), Gemini 2.5 (LLC, 2025),
have achieved remarkable performance in complex
tasks like mathematical reasoning and code genera-
tion. However, deep reinforcement learning algo-
rithm is not well explored on the reasoning ability
of small-size (0.7B/1.5B) large language models
with support of small scale of math dataset and
school-lab resource.

2.2 Reinforcement Learning To Enhance
LLM Reasoning

Reinforcement learning (RL) has demonstrated
strong potential in enhancing the reasoning abil-
ities of LLMs across various domains, includ-
ing mathematics (Guo et al., 2025; Jaech et al.,
2024) and coding (OpenAl, 2025b; LLC, 2025).
Long-chain-of-thought (long-COT) LLMs, such as
OpenAI-O3 (OpenAl, 2025a) and DeepSeek-R1
(Guo et al., 2025), significantly outperform their
short-COT counterparts. These models demon-
strate that reinforcement learning with verifiable
rewards (RLVR) can effectively promote deep rea-
soning behaviors—such as broad exploration and

feasibility checks (Gandhi et al., 2025)—without
the need for complex reasoning data generation
techniques like Monte Carlo Tree Search (Hos-
seini et al., 2024; Yang et al., 2024). However,
these behaviors often result in significantly longer
reasoning traces—sometimes several times longer
than those generated by short-COT LLMs (Wang
et al., 2024; Zhang et al., 2024b)—leading to an
“overthinking’ problem that substantially increases
inference costs (Kumar et al., 2025). Recent stud-
ies have shown that extended reasoning often in-
cludes redundant or unnecessary verification and
reflection, even on simple problems (Shao et al.,
2024; KimiTeam et al., 2025). Other studies, such
as (Hao et al., 2024; Geiping et al., 2025), repre-
sent reasoning as an optimization over latent vec-
tors rather than text tokens, enabling a more ef-
ficient and concise reasoning process. To reduce
the reasoning length of trained LLMs, several test-
time methods—such as early-exit strategies—have
been developed (Muennighoff et al., 2025; Fu et al.,
2024; Zhang et al., 2024a). However, hierarchical
reinforcement learning is not well studied to boost
the reasoning ability of small-sized large language
models with support of small scale of math dataset.

2.3 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) (Sut-
ton and Barto, 2018) offers the advantages of tem-
poral abstraction and enhanced exploration effi-
ciency (Nachum et al., 2018). The options architec-
ture (Sutton and Barto, 2018; Bacon et al., 2017;
Harutyunyan et al., 2018; Klissarov et al., 2017;
Kaelbling, 1993; Gao et al., 2024; Dayan and Hin-
ton, 1993a; Salter et al., 2022b) learns temporally
extended macro-actions along with a termination
function, offering an elegant framework for hierar-
chical reinforcement learning. In goal-conditioned
feudal learning (Dayan and Hinton, 1993b; Vezh-
nevets et al., 2017), a higher-level agent generates
subgoals for a lower-level agent, which then ex-
ecutes atomic actions in the environment. To ad-
dress the resulting non-stationarity, prior works
(Nachum et al., 2018; Levy et al., 2018) propose
relabeling previously collected transitions to train
goal-conditioned policies more effectively. Prior
methods (Rajeswaran et al., 2018; Nair et al., 2018;
Hester et al., 2018; Shiarlis et al., 2018; Fox et al.,
2017; Kipf et al., 2019; Zhang et al., 2020; Pertsch
et al., 2020; Chane-Sane et al., 2021; Kreidieh
et al., 2020; Singh et al., 2021) leverage expert
demonstrations to improve sample efficiency and



accelerate learning, particularly for task segmen-
tation. Other approaches either utilize bottleneck
option discovery (Salter et al., 2022a) or behavior
priors (Salter et al., 2022b) to identify and em-
bed behaviors from past experience, or rely on
hand-designed action primitives (Dalal et al., 2021;
Nasiriany et al., 2022). Inspired by the potential of
hierarchical reinforcement learning, we study the
effectiveness of hierarchal reinforcement learning
to boost the math reasonning ability of small-sized
large language models.

3 Method

3.1 Preliminary: LLM Reasoning Via GRPO+
(Yu et al., 2025)

3.1.1 Group Relative Policy
Optimization(Shao et al., 2024)

Compared to Proximal Policy Optimization (PPO)
(Schulman et al., 2017), Group-Relative Policy Op-
timization (GRPO) (Shao et al., 2024) eliminates
the value function and estimates the advantage in a
group-relative manner.

For a specific question-answer pair (g, a), the
behavior policy 7y, samples a group of G indi-
vidual responses {0;}$ ;. Then, the advantage of
the i-th response is calculated by normalizing the
group-level rewards {R; }$ as follows:

i T mean({R;}$ )
1,0 —
std({Ri}{)
Similar to PPO, GRPO adopts a clipped objec-

tive, together with a directly imposed KL penalty
term:
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It is also worth noting that GRPO (Shao et al.,
2024) computes the objective at the sample-level.
To be exact, GRPO first calculates the mean loss
within each generated sequence, before averaging

the loss of different samples. As we will be dis-
cussing in Section 3.3, such difference may have an
impact on the performance of the algorithm. where
g and o are the mean and standard deviation of
the rewards in the group:

3.1.2 Group Relative Policy Optimization
Plus(GRPO+)

The advanced Group Relative Policy Optimiza-

tion algorithm (Yu et al., 2025) is then developed.

It samples a group of outputs {0;}$, for each

questionq paired with the answer a, and optimizes

the policy via the following objective:
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Then, the key enhancements are represented as the
following:

ri,t(ﬁ) =

(6)

3.1.3 Enhancements

Removal of KL Loss (Kullback and Leibler,
1951) The KL penalty term SDxgy (7 || mrer) is
used to control the divergence between the learned
(online) policy and a fixed reference policy, thereby
encouraging stable and conservative policy updates.
However, during training of the long-CoT reason-
ing model, the policy distribution can diverge sub-
stantially from the initial model, making the KL
constraint less relevant. As a result, we omit the
KL penalty term from our proposed algorithm.

Clip (Schulman et al., 2017)-Higher We ob-
served an entropy collapse phenomenon, where the
policy’s entropy rapidly decreases as training pro-
gresses. As a result, the sampled responses within
certain groups become nearly identical. This be-
havior suggests limited exploration and premature
convergence to a deterministic policy, which can
impede effective scaling. To mitigate this issue,
we propose the Clip-Higher strategy. Clipping



Algorithm 1 HGRPO Level-Wise Rollout

1: Input: skills my, , (a | s, z), manager 7y, (z | )
H', rollout pass threshold passl_l, reward /1,

, time-commitment bounds P!

and P!

 ax»> orizon

min

max])

2: Reset environment: sh ~ ph, ¢ < 0

3: while t < H' do

4: Sample time-commitment p' ~ Cat([P.. , P!
5: Sample skill al ™! ~ 7q, (- | /1)

6: if = 1(al™!) > pass'~! then

7: fort' =ttot+p' —1do

8: Sample action a, ~ (- | st,)

9: Observe new state sé, 41 and reward ré,
10: end for

11: else

12: Continue updating gradient at level [ — 1
13: end if

14: tt+p
15: end while
A S R R R | l

16: Output: (s}, a5 ', ab, s\, d),.. =1 gl

l
S SHy Qg 7aH73H+1)

the importance sampling ratio, as introduced in
Clipped Proximal Policy Optimization (PPO-Clip)
(Schulman et al., 2017), serves to constrain the
trust region and improve the stability of reinforce-
ment learning. We observe that the upper clipping
threshold can limit the policy’s ability to explore.
Specifically, it is often easier to increase the prob-
ability of a likely exploitation token than to boost
the probability of a less likely exploration token,
due to the constraints imposed by €0y and epigh.

Dynamic Sampling st. 0 <
[{o; | is_equivalent(a,0;)}| < G., To this
end, we propose over-sampling and filtering out
prompts with accuracy values of 1 or 0, ensuring
that all remaining prompts in the batch contribute
effective gradients while maintaining a consistent
batch size. Before training, we continuously
sample until the batch contains only examples with
accuracy strictly between 0 and 1.

Token-Level Policy Gradient Loss (KimiTeam
et al., 2025) To overcome the aforementioned
limitations in the long-CoT RL setting, we intro-
duce a Token-level Policy Gradient Loss that as-
signs greater weight to longer sequences, allowing
them to have a stronger impact on the overall gradi-
ent update compared to shorter sequences. Further-
more, from the perspective of individual tokens,
any generation pattern that leads to an increase
or decrease in reward is reinforced or suppressed

equally, regardless of the length of the response in
which it appears.

3.2 Early Preview Hierarchical GRPO

We define a discrete-time finite-horizon discounted
Markov decision process (MDP) by a tuple M =
(S, A, P,r,po,7, H), where S is a state set, A
is an action set, P : § x A xS — Ry is
the transition probability distribution, v € [0, 1]
is a discount factor, and H the horizon. Our
objective is to find a stochastic policy 7y that
maximizes the expected discounted return within
the MDP,n(mg) = E-. [Zio yir(se, at)]. We
use 7 = (Sp,ap,...) to denote the entire state-
action trajectory, where so ~ po(sg),ar ~
mo(at|st), ser1 ~ P(Se41]st, ar).

In this work, we propose a method to learn a
hierarchical policy and efficiently adapt all the lev-
els in the hierarchy to perform a new task. We
study hierarchical policies composed of a higher
level, or manager 7, , , (@thigh|Syhign ), and a lower
level, or sub-policy 7y, (asow|Siow ). The higher
level does not take actions in the environment di-
rectly, but rather outputs a command. The manager
typically operates at a lower frequency than the
sub-policies, only observing the environment every
p time-steps. When the manager receives a new
observation, it decides which low level policy to
commit to for p environment steps. To be noted, the
hierarchy contains L levels, high = [+ 1, low =,



Algorithm 2 Early Preview HGRPO1: Early Preview Hierarchical GRPO1 Difficulty Order Extension
Optimization

Require: initial policy model 7g; reward model { R'}; task prompts {D'} with corresponding difficulty
level {Q'}; hyperparameters {e 1, {5fligh}, l = , L, Q"1 < @' Length Reward {K'}

with corresponding max length {Len! 1, Lenl 1 S Len!

max max
Ensure: mg
1: fori=1,...,Ldo
2: for step! =1,...,H' do
3: Sample a batch Dll) from D!
4: Update the old policy model 7, < mp
5: Sample G' outputs {oé}ﬁl:l Ty, (- | ¢') for each questlon ¢ €D
6: Compute rewards {r’; }Zcflzl for each sampled output 0! by running R
7: Filter out o} and add the remaining to the dynamic sampling buffer (Dynamic Sampling

Equation (11))

8: if buffer size né < N' then

9: continue

10: end if

11: For each o in the buffer, compute Al i gl for the ¢!-th token of oﬁ (Equation (9))

12: end for

13: for iteration = 1, ..., ' do

14: Update the policy model my by maximizing the GRPO+ objective combining with Length
Reward /C!

15: end for

16: end for

where [ = {0,1,..,L — 1}. 3.2.2 Early Preview HGRPO Level-Wise

Rollout

Most hierarchical methods either consider a fixed
time-commitment to the lower level skills (Florensa
et al., 2017a; Frans et al., 2018), or implement the
complex options framework (Precup, 2000; Ba-
con et al., 2017). In this work we propose an in-
between, where the time-commitment to the skills
is a random variable sampled from a fixed distri-
bution Categorical(Tmin , Tmax ) just before the
manager takes a decision. This modification does
L not hinder final performance, and we show it im-
H proves zero-shot adaptation to a new task. This
g'~D}, {0}y ~mo (la') approach to sampling rollouts is detailed in Algo-

rithm 1.

3.2.1 Reformulation

Then, we propose the early preview hierarchical
grpo algorithm(HGRPO). HGRPO samples a group
of outputs {oﬁ}ZG:ll for each question ¢! paired with
the answer a', [ = {1,..., L} and optimizes the
policy via the following objective:

jGRPOH”(e) =

- ¢ U (0} | ¢')
H [ o] Z Z ( Ay 7' 3.2.3 Implementation
Z

ol
=1 =1 jl=1 To40(0; | ')
L The, we implement our proposed preview hierar-
clip (71.9(0il|q) 1- 10w7 1+ 5h1gh> Al i jl> chical grpo+(HGRPO) algorithm with two versions
Toga(0f | ¢) for the reinforcement learning training of reasoning

(M LLMs. Particularly, the implementation is made to

where L is the total number of levels in the Early
Preview GRPO Hierarchy. Similarly, [ denotes the
index of lever in the L hierarchy.

take the difficulty of the reasoning tasks in accor-
dance with the hierarchy in the proposed preview
HGRPO. The details of the proposed two imple-



Algorithm 3 Early Preview HGRPO2: Early Preview Hierarchical GRPO2 Difficulty Re-Order

Extension Optimization

Require: initial policy model 7p; reward model {R'}; task prompts {D'} with corresponding
difficulty level {Q'}; hyperparameters {el 1, {afligh}, 1=1,2,...,L, Q"1 > Q. Length

Reward {K'} with corresponding max length { Len

Ensure: 7y
1: fori=1,...,Ldo
2 forstep=1,...,M do

l

-1 _ l
max}’ Lenmax - Lenmax'

3: Sample a batch Dll) from D!
4: Update the old policy model 7, <— g
5: Sample G' outputs {oﬁ}?l:l ~ T, (+ | ¢') for each question ¢' € D},
6: Compute rewards {r'; }fflzl for each sampled output o by running R
7: Filter out o} and add the remaining to the dynamic sampling buffer (Dynamic Sampling
Equation (11))
8: if buffer size né < N' then
9: continue
10: end if
11: For each oé in the buffer, compute flil 4 for the ¢!-th token of oé (Equation (9))
12: end for
13: for iteration = 1, ..., 1! do
14: Update the policy model 7mg by maximizing the GRPO+ objective combining with Length
Reward /C!
15: end for
16: end for

mentations are represented as the following:

In the implementation of Early Preview
HGRPOLI, the total number of hierarchy is set as
4 for math reasoning problems, in details, Q' <
Q? < Q3,0 < @3, Len,lmn < Len? <

max
3 2 4 3
Len;, .. Len; =< Len, . < Len; ..

H'> H? > H® Hjz ~ H,.

In the implementation of Early Preview
HGRPO?2, the total number of hierarchy is set as
4 for math reasoning problems, in details, Q' <
Q? < Q3 0% < @3, Len}nam < Len? <

max

Lenfnam,Lenimm = Lenfnax. H'> H? >
H3, Hy ~ Hy.

4 Experiment

To investigate the effectiveness of the proposed two
implementations of the preview hierarchical GRPO
on the reasoning of LLMs. We conduct a set of
experiments in the comparison with the state-of-the
art reasoning LLMs models.

4.1 Experiment Setup

We choose DEEPSEEK-R1-DISTILL-QWEN-
1.5B (Guo et al., 2025) as our base model, which is

a 1.5B parameter model and distilled from larger
models. We utilize the AdamW (Loshchilov and
Hutter, 2019) optimizer with a constant learning
rate of 1 x 10° for optimization. For rollout, we
set the temperature to 0.6 and sample 16 responses
per prompt. In this experiment, we do not utilize a
system prompt; instead, we add "Let’s think step
by step and output the final answer within boxed."
at the end of each problem.

4.2 Benchmarks

Math Reasoning Benchmark To better evaluate
the trained model, we have selected five bench-
marks to assess its performance: MATH 500
(Hendrycks et al., 2021), AIME 2024 (AI-MO,
2024a), AMC 2023 (AI-MO, 2024b), Minerva
Math (Lewkowycz et al., 2022), and Olympiad-
Bench (He et al., 2024).

4.3 Dataset

Math Reasoning Dataset The training dataset
is consisted of 40K problems with three-diffculity
level. Particularly, it is consisted of AIME (Ameri-
can Invitational Mathematics Examination) prob-



Table 1: Model Performance Comparison

Model MATHS00 AIME24 AMC Minerva OBench Avg.
Close-Source

O1-Preview 85.5 44.6 - - _ _
O1-Mini 90.0 70.0 - - - -
Ol 90.4 71.5 - - - -
Claude 3.7 Sonnet (Standard) 82.2 23.3 - - - -
Open-Source-Large

DeepSeek-R1 97.3 79.8 - - — _
Owen3-235B 94.6 85.7 - - - -
Llama 4 Behemoth 95.0 78.0 - - - -
Kimi-1.5 96.2 77.5 - - - -
Owen 2.5-72B 83.1 30.0 - - — —
Phi4-Reasoning-14B — 81.3 - - _ _
Llama 4 Maverick 18.0 64.0 - — _ _
Open-Source-4B/7B

MIMO-7B 95.8 68.2 - - - -
DeekSeek-7B 92.8 55.5 - — _ _
OWEN3-4B - 73.8 - - — _
Open-Source-1.5B

DEEPSeek-R1-Distill-QWEN-1.5B 82.8 28.8 62.9 26.5 433 489
STILL-3-1.5B-Preview 84.4 32.5 66.7 29.0 454 51.6
DEEPSCALER-1.5B-Preview 87.8 43.1 73.6 30.2 50.0 57.0
FastCuRL-1.5B-Preview 88.0 43.1 74.2 31.6 504 575
Oursl-1.5B 88.1 43.2 74.3 31.7 504 57.6
Ours2-1.5B 89.2 50.0 771 353 519 60.7

lems (1984-2023), AMC (American Mathemat-
ics Competition) problems (prior to 2023), Omni-
MATH dataset and Still dataset. For the ranks of
particular leaderboard, we split the math reasoning
dataset to contain relative sampling according to
the particular (Math500,AIME24)leaderboard.

4.4 Evaluation Metric

We set the maximum generation length for the mod-
els to 32768 tokens and leverage PASS @1 as the
evaluation metric. Specifically, we adopt a sam-
pling temperature of 0.6 and a top-p value of 1.0
to generate k responses for each question, typically
k = 16.

Specifically, PASS @1 is then calculated as:

k
1
PASS@1 = = 5 p; 8
k;p (8)

4.5 Math Reasoning Experiments

The proposed hierarchical reasoning model is eval-
uated against both open-source and closed-source
state-of-the-art reasoning models, including O4-
Mini, Gemini-2.5-Pro, O3-Mini-2025-01-31, Grok-
3-Mini (High), Qwen3-235B-A22B, and others. As
shown in Table 3, our 1.5B model achieves impres-
sive performance across multiple benchmarks: 50.0
Pass@1 on AIME24, 89.2 on MATH500, 74.7 on
AMC23, 35.3 on Minerva, and 51.9 on Olympiad-
Bench. These results demonstrate the model’s ro-
bust general reasoning ability across various math-
ematical and competition-level tasks.

Notably, the hierarchical training strategy en-
ables our 1.5B model to outperform the current
best-performing 1.5B reasoning model by 6.9
points on AIME24, 1.4 points on MATHS500, 1.1
on AMC23, 4.1 on Minerva, and 1.9 on Olympiad-
Bench—averaging a 3.7-point gain overall. Fur-



Table 2: Combined Model Rankings

MATH-500 AIME

Model Accuracy Model Accuracy
Gemini 2.5 Pro Exp 95.2% 03 Mini 86.5%
03 94.6% Gemini 2.5 Pro Exp 85.8%
Qwen 3 (235B) 94.6% 03 85.3%
Grok 3 Mini Fast High Reasoning 94.2% Grok 3 Mini Fast High Reasoning  85.0%
04 Mini 94.2% Qwen 3 (235B) 84.0%
DeepSeek R1 92.2% 04 Mini 83.7%
03 Mini 91.8% DeepSeek R1 74.0%
Gemini 2.5 Flash Preview (Thinking) 91.8% 0O1 71.5%
Claude 3.7 Sonnet (Thinking) 91.6% Grok 3 Mini Fast Low Reasoning 70.6%
Gemini 2.5 Flash Preview 91.6% Grok 3 Beta 58.7%
Ol 90.4% Ours-1.5B 53.3%
Ours-1.5B 90.4% DeepSeek V3 (03/24/2025) 52.2%
Grok 3 Beta 89.8% GPT 4.1 mini 49.4%
DeepSeek V3(03/24/2025) 88.6% Claude 3.7 Sonnet(Thinking) 44.6%
Gemini 2.0 Flash(001) 88.0% Mistreal Medium 3(05/2025) 42.3%
GPT4.1 Mini 88.0% GPT4.1 39.8%
GPT4.1 87.2% Gemini 2.0 Flash(001) 29.8%
Mistreal Medium 3(05/2025) 87.0% DeepSeek V3 27.5%
LLama4 Maveric 85.2% GPT4.1 nano 27.3%
Gemini 2.0 Falsh Think Exp 84.6% LLama 4 Maverick 25.2%
Gemini 1.5 Pro(002) 82.8% Claude 3.7 Sonnet 22.3%
DeepSeek V3 80.4% LLama4 Scout 22.3%

thermore, it surpasses several larger parameter mod-
els, including O1-Preview, O1-2024-12-17 (Low),
03-Mini-2025-01-31 (Low), and O1-Mini.

On competitive benchmarks, the model
ranks 11th on both the Math500 and AIME24
leaderboards, establishing its competitiveness
not only among models of similar size but also
against larger state-of-the-art LLMs. Particularly,
On Math-500, Ours-15B super-passes Grok 3
Beta(89.8%), DeepSeek V3(03/24/2025)(88.6%),

Gemini 2.0 Flash(001)(88.0%), GPT4.1
Mini(88.0%), GPT4.1(87.2%), Mistreal
Medium  3(05/2025)(87.0%), Gemini 2.0

Falsh Think Exp(84.6%). Similarly, On
AIME24, Ours-15B super-passes DeepSeek V3
(03/24/2025)(53.3%), GPT 4.1 mini(49.4 %),
Claude 3.7 Sonnet(Thinking)(44.6%), Mistreal
Medium 3(05/2025)(42.3%), GPT4.1(39.8%).

5 Discussion

We begin to explore the potential of hierarchical
reinforcement learning in enhancing the reasoning
capabilities of large language models. By imple-
menting our proposed early preview hierarchical

reinforcement learning framework on a relatively
limited-scale mathematical dataset, our 1.5B-sized
language model demonstrates significant improve-
ments in mathematical reasoning benchmarks. No-
tably, its performance surpasses the O1-Preview
model and approaches the O1-Mini model. Fur-
thermore, on the Math500 and AIME24 mathemat-
ical reasoning leaderboards, our model achieves re-
markable results, ranking 11th overall. It matches
the score of the O1 model on Math500 and secures
a position just one rank below Grok 3 Beta on
AIME24.

However, we are continuing our exploration of
hierarchical reinforcement learning to enhance rea-
soning capabilities in both small-sized and mid-
sized language models. Our focus is on efficiently
harnessing small-scale datasets to address math
and code reasoning problems. We aim to develop
a unified small/mid-sized language model that can
achieve competitive scores on both code and math
reasoning benchmarks. We plan to release this uni-
fied model to the research community, providing a
versatile tool for advancing work in mathematical
and programming reasoning.



Limitations

This early preview presents an exploratory inves-
tigation into hierarchical reinforcement learning,
building upon the open-sourced GRPO algorithm.
While our initial results are promising, the current
version of our work has several important limita-
tions that should be acknowledged to guide future
research.

First, our experiments are primarily conducted
on datasets focused on mathematical reasoning.
This narrow focus restricts the generalizability of
our findings to broader domains, such as code rea-
soning, symbolic logic, and other forms of com-
plex problem-solving. These other areas may in-
volve fundamentally different reasoning dynamics
or structural challenges. Consequently, extending
our methods to cover a wider range of reasoning
tasks across various domains remains an important
direction for future work. We believe that rigorous
evaluation across diverse task types would help ver-
ify the robustness and adaptability of our approach.

Second, due to computational resource con-
straints, our experiments are conducted on rela-
tively small-scale models with approximately 1.5
billion parameters. While this allows for faster iter-
ation and lower training costs, it potentially limits
the scope of our conclusions. Larger models may
display qualitatively different learning behaviors,
more pronounced performance gains, or even un-
expected generalization properties that our current
results do not capture. Thus, scaling up the model
size and assessing its impact on the effectiveness
of hierarchical reinforcement learning methods is a
key avenue for future investigation.

Third, our current evaluation framework primar-
ily focuses on task performance metrics in math-
ematical reasoning scenarios. However, it does
not include a detailed analysis of potential societal
harms associated with deploying large language
models. Issues such as biased output generation,
reinforcement of harmful stereotypes, or misuse of
models in sensitive applications are critical ethical
concerns that remain underexplored in our study.
We recognize the significance of these considera-
tions and strongly encourage future work to adopt
a more comprehensive and responsible approach
that rigorously assesses the social and ethical im-
plications of deploying such models in real-world
settings.

Lastly, our evaluation methodology heavily re-
lies on standardized benchmarks that are widely

used in the research community. While these bench-
marks provide a useful basis for comparison, they
may not accurately represent real-world use cases
or user preferences, particularly within the con-
text of applied math reasoning tasks. To obtain a
more complete understanding of model utility and
practical performance, we recommend incorporat-
ing human-in-the-loop evaluation protocols and
designing domain-specific metrics that better re-
flect end-user needs and task-specific requirements.
Such an approach would facilitate more meaning-
ful insights into the real-world applicability and
value of the proposed methods.
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