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Abstract001

Inference scaling enhances the reasoning ca-002
pabilities of large language models, with re-003
inforcement learning serving as the key tech-004
nique to draw out complex reasoning. However,005
key technical details of state-of-the-art reason-006
ing LLMs—such as those in the OpenAI O007
series, Claude 3 series, DeepMind’s Gemini008
2.5 series, and Grok 3 series—remain undis-009
closed, making it difficult for the research com-010
munity to replicate their reinforcement learn-011
ing training results. We propose an Early Pre-012
view Hierarchical Reinforcement Learning al-013
gorithm based on the open-sourced Group Rel-014
ative Policy Optimization (GRPO) framework.015
In details, we introduce an early preview ver-016
sion of a hierarchical reinforcement learning017
approach that continues to enhance the rea-018
soning capabilities of small-sized large lan-019
guage models. In particular, a 1.5B-parameter020
LLM achieves 53.3% on AIME and 90.4% on021
Math500, These results, enabled by the pro-022
posed early preview efficient hierarchical re-023
inforcement learning, demonstrate math rea-024
soning capabilities comparable to O1-mini/O3-025
mini—achievable within a typical school lab-026
oratory setting. In addition, we open-source027
both the dataset and model checkpoints to sup-028
port future research in large-scale reinforce-029
ment learning for LLMs.030

1 Introduction031

Large language models (LLMs) with advanced rea-032

soning capabilities, such as OpenAI o-series (Jaech033

et al., 2024; OpenAI, 2024, 2025a,b), DeepSeek034

R1 (Guo et al., 2025), and Claude 3.7 (Anthropic,035

2025), grok3-reasoning (XAI, 2024), Gemini 2.5036

(LLC, 2025), have achieved remarkable perfor-037

mance in complex tasks like mathematical reason-038

ing and code generation. Through large-scale rein-039

forcement learning (RL), these models acquire ad-040

vanced reasoning strategies—such as step-by-step041

analysis (Wei et al., 2022), self-reflection (Wang042

et al., 2023), and backtracking (Ahmadian et al., 043

2024)—which enhance their ability to solve com- 044

plex reasoning problems with greater robustness 045

and accuracy across diverse domains. 046

Currently, most successful reinforcement 047

learning efforts—including open-source re- 048

search—depend on relatively large language base 049

models, especially when aiming to improve math 050

and code reasoning capabilities. Moreover, it 051

has been widely believed that improving both 052

mathematical and coding capabilities in small 053

models is particularly challenging. To further 054

explore the potential of reinforcement learning 055

in enhancing reasoning abilities, we investigate 056

the effectiveness of hierarchical reinforcement 057

learning–trained reasoning models based on 058

hierarchical reinforcement learning (Guo et al., 059

2025; Christiano et al., 2017; Sutton and Barto, 060

2018; Everitt et al., 2017, 2021; Weng, 2024), 061

which shows promising potential for scalability. 062

In this work, we present the Early Preview Hi- 063

erarchical GRPO algorithm—an early version of 064

a hierarchical reinforcement learning method de- 065

signed to improve reasoning tasks in our series of 066

small to medium-sized large language models. Our 067

experiments demonstrate that the proposed Early 068

Preview Hierarchical Reinforcement Learning al- 069

gorithm exhibits exceptional reasoning capabilities, 070

outperforming many larger state-of-the-art closed- 071

source and open-source reasoning large language 072

models (OpenAI, 2024; Jaech et al., 2024). In de- 073

tail, it demonstrates superior performance on both 074

mathematics and code reasoning tasks, surpassing 075

OpenAI’s O1-mini, O1, and O3-mini (low) models 076

(OpenAI, 2024; Jaech et al., 2024) within 1.5B- 077

and 14B-parameter LLMs trained using the early 078

preview version of the hierarchical GRPO algo- 079

rithm on major reasoning benchmarks for math and 080

coding. 081
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2 Related Work082

2.1 Reasoning Large Language Models083

In the context of LLMs, reinforcement learning has084

been widely used for aligning human preferences085

(Christiano et al., 2017; Ouyang et al., 2022; Yuan086

et al., 2024a; Azar et al., 2024; Rafailov et al., 2023;087

Yuan et al., 2024a), but the open-source commu-088

nity mostly adopt the data-driven imitation learning089

methods (Yuan et al., 2024b; Yue et al., 2023; Guan090

et al., 2025) to enhance the reasoning capabities of091

LLMs. Over the past few months, the paradigm092

gradually shifted. OpenAI o1 (Jaech et al., 2024)093

first showed the tremendous potential of large-sacle094

RL for reasoning LLMs, and recent works have ver-095

ified the scaling effect of the simple RL recipe with096

merely outcome rewards (Guo et al., 2025; Qwen097

Team, 2024; XAI, 2024). Meanwhile, the role of098

dense rewards in RL remains underexplored, which099

is the main focus of PRIME (Cui et al., 2025). Un-100

fortunately, only outcome reward models (ORMs)101

(Guo et al., 2025) are available in most practices of102

LLMs, i.e., only the final token bears a meaningful103

reward while intermediate tokens receive no re-104

wards (Rafailov et al., 2023; Shao et al., 2024; Guo105

et al., 2025). Very recently, the state-of-the-art rea-106

soning models OpenAI o-series (Jaech et al., 2024;107

OpenAI, 2024, 2025a,b), DeepSeek R1 (Guo et al.,108

2025), and Claude 3.7 (Anthropic, 2025), grok3-109

reasoning (XAI, 2024), Gemini 2.5 (LLC, 2025),110

have achieved remarkable performance in complex111

tasks like mathematical reasoning and code genera-112

tion. However, deep reinforcement learning algo-113

rithm is not well explored on the reasoning ability114

of small-size (0.7B/1.5B) large language models115

with support of small scale of math dataset and116

school-lab resource.117

2.2 Reinforcement Learning To Enhance118

LLM Reasoning119

Reinforcement learning (RL) has demonstrated120

strong potential in enhancing the reasoning abil-121

ities of LLMs across various domains, includ-122

ing mathematics (Guo et al., 2025; Jaech et al.,123

2024) and coding (OpenAI, 2025b; LLC, 2025).124

Long-chain-of-thought (long-COT) LLMs, such as125

OpenAI-O3 (OpenAI, 2025a) and DeepSeek-R1126

(Guo et al., 2025), significantly outperform their127

short-COT counterparts. These models demon-128

strate that reinforcement learning with verifiable129

rewards (RLVR) can effectively promote deep rea-130

soning behaviors—such as broad exploration and131

feasibility checks (Gandhi et al., 2025)—without 132

the need for complex reasoning data generation 133

techniques like Monte Carlo Tree Search (Hos- 134

seini et al., 2024; Yang et al., 2024). However, 135

these behaviors often result in significantly longer 136

reasoning traces—sometimes several times longer 137

than those generated by short-COT LLMs (Wang 138

et al., 2024; Zhang et al., 2024b)—leading to an 139

’overthinking’ problem that substantially increases 140

inference costs (Kumar et al., 2025). Recent stud- 141

ies have shown that extended reasoning often in- 142

cludes redundant or unnecessary verification and 143

reflection, even on simple problems (Shao et al., 144

2024; KimiTeam et al., 2025). Other studies, such 145

as (Hao et al., 2024; Geiping et al., 2025), repre- 146

sent reasoning as an optimization over latent vec- 147

tors rather than text tokens, enabling a more ef- 148

ficient and concise reasoning process. To reduce 149

the reasoning length of trained LLMs, several test- 150

time methods—such as early-exit strategies—have 151

been developed (Muennighoff et al., 2025; Fu et al., 152

2024; Zhang et al., 2024a). However, hierarchical 153

reinforcement learning is not well studied to boost 154

the reasoning ability of small-sized large language 155

models with support of small scale of math dataset. 156

2.3 Hierarchical Reinforcement Learning 157

Hierarchical Reinforcement Learning (HRL) (Sut- 158

ton and Barto, 2018) offers the advantages of tem- 159

poral abstraction and enhanced exploration effi- 160

ciency (Nachum et al., 2018). The options architec- 161

ture (Sutton and Barto, 2018; Bacon et al., 2017; 162

Harutyunyan et al., 2018; Klissarov et al., 2017; 163

Kaelbling, 1993; Gao et al., 2024; Dayan and Hin- 164

ton, 1993a; Salter et al., 2022b) learns temporally 165

extended macro-actions along with a termination 166

function, offering an elegant framework for hierar- 167

chical reinforcement learning. In goal-conditioned 168

feudal learning (Dayan and Hinton, 1993b; Vezh- 169

nevets et al., 2017), a higher-level agent generates 170

subgoals for a lower-level agent, which then ex- 171

ecutes atomic actions in the environment. To ad- 172

dress the resulting non-stationarity, prior works 173

(Nachum et al., 2018; Levy et al., 2018) propose 174

relabeling previously collected transitions to train 175

goal-conditioned policies more effectively. Prior 176

methods (Rajeswaran et al., 2018; Nair et al., 2018; 177

Hester et al., 2018; Shiarlis et al., 2018; Fox et al., 178

2017; Kipf et al., 2019; Zhang et al., 2020; Pertsch 179

et al., 2020; Chane-Sane et al., 2021; Kreidieh 180

et al., 2020; Singh et al., 2021) leverage expert 181

demonstrations to improve sample efficiency and 182
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accelerate learning, particularly for task segmen-183

tation. Other approaches either utilize bottleneck184

option discovery (Salter et al., 2022a) or behavior185

priors (Salter et al., 2022b) to identify and em-186

bed behaviors from past experience, or rely on187

hand-designed action primitives (Dalal et al., 2021;188

Nasiriany et al., 2022). Inspired by the potential of189

hierarchical reinforcement learning, we study the190

effectiveness of hierarchal reinforcement learning191

to boost the math reasonning ability of small-sized192

large language models.193

3 Method194

3.1 Preliminary: LLM Reasoning Via GRPO+195

(Yu et al., 2025)196

3.1.1 Group Relative Policy197

Optimization(Shao et al., 2024)198

Compared to Proximal Policy Optimization (PPO)199

(Schulman et al., 2017), Group-Relative Policy Op-200

timization (GRPO) (Shao et al., 2024) eliminates201

the value function and estimates the advantage in a202

group-relative manner.203

For a specific question-answer pair (q, a), the204

behavior policy πθold samples a group of G indi-205

vidual responses {oi}Gi=1. Then, the advantage of206

the i-th response is calculated by normalizing the207

group-level rewards {Ri}Gi=1 as follows:208

Âi,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (1)209

Similar to PPO, GRPO adopts a clipped objec-210

tive, together with a directly imposed KL penalty211

term:212

JGRPO(θ) = E(q,a)∼D,{oi}Gi=1∼π
θold (·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip(

ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)
− βDKL(πθ∥πref)

)]
(2)213

where214

ri,t(θ) =
πθ(oi,t | q, oi,<t)

π_θold(oi,t | q, oi,<t)
. (3)215

It is also worth noting that GRPO (Shao et al.,216

2024) computes the objective at the sample-level.217

To be exact, GRPO first calculates the mean loss218

within each generated sequence, before averaging219

the loss of different samples. As we will be dis- 220

cussing in Section 3.3, such difference may have an 221

impact on the performance of the algorithm. where 222

µR and σR are the mean and standard deviation of 223

the rewards in the group: 224

3.1.2 Group Relative Policy Optimization 225

Plus(GRPO+) 226

The advanced Group Relative Policy Optimiza- 227

tion algorithm (Yu et al., 2025) is then developed. 228

It samples a group of outputs {oi}Gi=1 for each 229

questionq paired with the answer a, and optimizes 230

the policy via the following objective: 231

JGRPO(θ) = Eq∼Dq , {oi}Gi=1∼πθ(·|q)[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
j=1

min

(
πθ(oi | q)
πθold(oi | q)

Ai,j ,

clip
(

πθ(oi | q)
πθold(oi | q)

, 1− εlow, 1 + εhigh

)
Ai,j

)]
(4) 232

where 233

Ai,j =
ri −mean({ri}Gi=1)

std({ri}Gi=1)
(5) 234

ri,t(θ) =
πθ(oi,t | q, oi,<t)

π_θold(oi,t | q, oi,<t)
. (6) 235

Then, the key enhancements are represented as the 236

following: 237

3.1.3 Enhancements 238

Removal of KL Loss (Kullback and Leibler, 239

1951) The KL penalty term βDKL(πθ ∥πref) is 240

used to control the divergence between the learned 241

(online) policy and a fixed reference policy, thereby 242

encouraging stable and conservative policy updates. 243

However, during training of the long-CoT reason- 244

ing model, the policy distribution can diverge sub- 245

stantially from the initial model, making the KL 246

constraint less relevant. As a result, we omit the 247

KL penalty term from our proposed algorithm. 248

Clip (Schulman et al., 2017)-Higher We ob- 249

served an entropy collapse phenomenon, where the 250

policy’s entropy rapidly decreases as training pro- 251

gresses. As a result, the sampled responses within 252

certain groups become nearly identical. This be- 253

havior suggests limited exploration and premature 254

convergence to a deterministic policy, which can 255

impede effective scaling. To mitigate this issue, 256

we propose the Clip-Higher strategy. Clipping 257
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Algorithm 1 HGRPO Level-Wise Rollout

1: Input: skills πθl−1
(a | s, z), manager πθl(z | s), time-commitment bounds P l

min and P l
max, horizon

H l, rollout pass threshold passl−1, reward rl−1.
2: Reset environment: sl0 ∼ ρl0, t← 0
3: while t < H l do
4: Sample time-commitment pl ∼ Cat([P l

min, P
l
max])

5: Sample skill al−1
t ∼ πθl(· | s

l−1
t )

6: if rl−1(al−1
t ) > passl−1 then

7: for t′ = t to t+ pl − 1 do
8: Sample action alt′ ∼ πθl(· | slt′)
9: Observe new state slt′+1 and reward rlt′

10: end for
11: else
12: Continue updating gradient at level l − 1
13: end if
14: t← t+ pl

15: end while
16: Output: (sl0, a

l−1
0 , al0, s

l
1, a

l
1, . . . , s

l
H , al−1

H , alH , slH+1)

the importance sampling ratio, as introduced in258

Clipped Proximal Policy Optimization (PPO-Clip)259

(Schulman et al., 2017), serves to constrain the260

trust region and improve the stability of reinforce-261

ment learning. We observe that the upper clipping262

threshold can limit the policy’s ability to explore.263

Specifically, it is often easier to increase the prob-264

ability of a likely exploitation token than to boost265

the probability of a less likely exploration token,266

due to the constraints imposed by εlow and εhigh.267

Dynamic Sampling s.t. 0 <268

|{oi | is_equivalent(a, oi)}| < G., To this269

end, we propose over-sampling and filtering out270

prompts with accuracy values of 1 or 0, ensuring271

that all remaining prompts in the batch contribute272

effective gradients while maintaining a consistent273

batch size. Before training, we continuously274

sample until the batch contains only examples with275

accuracy strictly between 0 and 1.276

Token-Level Policy Gradient Loss (KimiTeam277

et al., 2025) To overcome the aforementioned278

limitations in the long-CoT RL setting, we intro-279

duce a Token-level Policy Gradient Loss that as-280

signs greater weight to longer sequences, allowing281

them to have a stronger impact on the overall gradi-282

ent update compared to shorter sequences. Further-283

more, from the perspective of individual tokens,284

any generation pattern that leads to an increase285

or decrease in reward is reinforced or suppressed286

equally, regardless of the length of the response in 287

which it appears. 288

3.2 Early Preview Hierarchical GRPO 289

We define a discrete-time finite-horizon discounted 290

Markov decision process (MDP) by a tuple M = 291

(S,A,P, r, ρ0, γ,H), where S is a state set, A 292

is an action set, P : S × A × S → R+ is 293

the transition probability distribution, γ ∈ [0, 1] 294

is a discount factor, and H the horizon. Our 295

objective is to find a stochastic policy πθ that 296

maximizes the expected discounted return within 297

the MDP,η(πθ) = Eτ

[∑H
t=0 γ

tr(st, at)
]
. We 298

use τ = (s0, a0, . . .) to denote the entire state- 299

action trajectory, where s0 ∼ ρ0(s0), at ∼ 300

πθ(at|st), st+1 ∼ P(st+1|st, at). 301

In this work, we propose a method to learn a 302

hierarchical policy and efficiently adapt all the lev- 303

els in the hierarchy to perform a new task. We 304

study hierarchical policies composed of a higher 305

level, or manager πθhigh(athigh |sthigh), and a lower 306

level, or sub-policy πθlow(atlow |stlow). The higher 307

level does not take actions in the environment di- 308

rectly, but rather outputs a command. The manager 309

typically operates at a lower frequency than the 310

sub-policies, only observing the environment every 311

p time-steps. When the manager receives a new 312

observation, it decides which low level policy to 313

commit to for p environment steps. To be noted, the 314

hierarchy contains L levels, high = l+1, low = l, 315
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Algorithm 2 Early Preview HGRPO1: Early Preview Hierarchical GRPO1 Difficulty Order Extension
Optimization

Require: initial policy model πθ; reward model {Rl}; task prompts {Dl} with corresponding difficulty
level {Ql}; hyperparameters {εllow}, {εlhigh}, l = 1, 2, . . . , L, Ql−1 ≤ Ql. Length Reward {Kl}
with corresponding max length {Lenl

max}, Lenl−1
max ≤ Lenl

max.
Ensure: πθ

1: for l = 1, . . . , L do
2: for stepl = 1, . . . ,H l do
3: Sample a batch Dl

b from Dl

4: Update the old policy model πθold ← πθ
5: Sample Gl outputs {oli}G

l

il=1
∼ πθold(· | ql) for each question ql ∈ Dl

b

6: Compute rewards {rlil}G
l

il=1
for each sampled output oli by running Rl

7: Filter out oli and add the remaining to the dynamic sampling buffer (Dynamic Sampling
Equation (11))

8: if buffer size nl
b < N l then

9: continue
10: end if
11: For each oli in the buffer, compute Âl

il,tl
for the tl-th token of oli (Equation (9))

12: end for
13: for iteration = 1, . . . , µl do
14: Update the policy model πθ by maximizing the GRPO+ objective combining with Length

Reward Kl

15: end for
16: end for

where l = {0, 1, .., L− 1}.316

3.2.1 Reformulation317

Then, we propose the early preview hierarchical318

grpo algorithm(HGRPO). HGRPO samples a group319

of outputs {oli}G
l

i=1 for each question qli paired with320

the answer al, l = {1, ..., L} and optimizes the321

policy via the following objective:322

JGRPOHer(θ) =
L∏
l=1

E
ql∼Dl

q , {oli}G
l

i=1∼πθ(·|ql)

L∏
l=1

[
1∑Gl

il=1 |oli|

Gl∑
il=1

|oli|∑
jl=1

min

(
πθ(o

l
i | ql)

πθold(o
l
i | ql)

Al
il,jl ,

clip
(

πθ(o
l
i | ql)

πθold(o
l
i | ql)

, 1− εllow, 1 + εlhigh

)
Al

il,jl

)]
(7)323

where L is the total number of levels in the Early324

Preview GRPO Hierarchy. Similarly, l denotes the325

index of lever in the L hierarchy.326

3.2.2 Early Preview HGRPO Level-Wise 327

Rollout 328

Most hierarchical methods either consider a fixed 329

time-commitment to the lower level skills (Florensa 330

et al., 2017a; Frans et al., 2018), or implement the 331

complex options framework (Precup, 2000; Ba- 332

con et al., 2017). In this work we propose an in- 333

between, where the time-commitment to the skills 334

is a random variable sampled from a fixed distri- 335

bution Categorical(Tmin , Tmax ) just before the 336

manager takes a decision. This modification does 337

not hinder final performance, and we show it im- 338

proves zero-shot adaptation to a new task. This 339

approach to sampling rollouts is detailed in Algo- 340

rithm 1. 341

3.2.3 Implementation 342

The, we implement our proposed preview hierar- 343

chical grpo+(HGRPO) algorithm with two versions 344

for the reinforcement learning training of reasoning 345

LLMs. Particularly, the implementation is made to 346

take the difficulty of the reasoning tasks in accor- 347

dance with the hierarchy in the proposed preview 348

HGRPO. The details of the proposed two imple- 349
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Algorithm 3 Early Preview HGRPO2: Early Preview Hierarchical GRPO2 Difficulty Re-Order
Extension Optimization

Require: initial policy model πθ; reward model {Rl}; task prompts {Dl} with corresponding
difficulty level {Ql}; hyperparameters {εllow}, {εlhigh}, l = 1, 2, . . . , L, Ql−1 > Ql. Length
Reward {Kl} with corresponding max length {Lenl

max}, Lenl−1
max = Lenl

max.
Ensure: πθ

1: for l = 1, . . . , L do
2: for step = 1, . . . ,M do
3: Sample a batch Dl

b from Dl

4: Update the old policy model πθold ← πθ
5: Sample Gl outputs {oli}G

l

il=1
∼ πθold(· | ql) for each question ql ∈ Dl

b

6: Compute rewards {rlil}G
l

il=1
for each sampled output oli by running Rl

7: Filter out oli and add the remaining to the dynamic sampling buffer (Dynamic Sampling
Equation (11))

8: if buffer size nl
b < N l then

9: continue
10: end if
11: For each oli in the buffer, compute Âl

il,tl
for the tl-th token of oli (Equation (9))

12: end for
13: for iteration = 1, . . . , µl do
14: Update the policy model πθ by maximizing the GRPO+ objective combining with Length

Reward Kl

15: end for
16: end for

mentations are represented as the following:350

In the implementation of Early Preview351

HGRPO1, the total number of hierarchy is set as352

4 for math reasoning problems, in details, Q1 <353

Q2 < Q3, Q4 < Q3, Len1
max < Len2

max <354

Len3
max,Len2

max ≤ Len4
max < Len3

max.355

H1 ≫ H2 ≫ H3, H3 ∼ H4.356

In the implementation of Early Preview357

HGRPO2, the total number of hierarchy is set as358

4 for math reasoning problems, in details, Q1 <359

Q2 < Q3, Q4 < Q3, Len1
max < Len2

max <360

Len3
max,Len4

max = Len3
max. H1 ≫ H2 ≫361

H3, H3 ∼ H4.362

4 Experiment363

To investigate the effectiveness of the proposed two364

implementations of the preview hierarchical GRPO365

on the reasoning of LLMs. We conduct a set of366

experiments in the comparison with the state-of-the367

art reasoning LLMs models.368

4.1 Experiment Setup369

We choose DEEPSEEK-R1-DISTILL-QWEN-370

1.5B (Guo et al., 2025) as our base model, which is371

a 1.5B parameter model and distilled from larger 372

models. We utilize the AdamW (Loshchilov and 373

Hutter, 2019) optimizer with a constant learning 374

rate of 1 × 106 for optimization. For rollout, we 375

set the temperature to 0.6 and sample 16 responses 376

per prompt. In this experiment, we do not utilize a 377

system prompt; instead, we add "Let’s think step 378

by step and output the final answer within boxed." 379

at the end of each problem. 380

4.2 Benchmarks 381

Math Reasoning Benchmark To better evaluate 382

the trained model, we have selected five bench- 383

marks to assess its performance: MATH 500 384

(Hendrycks et al., 2021), AIME 2024 (AI-MO, 385

2024a), AMC 2023 (AI-MO, 2024b), Minerva 386

Math (Lewkowycz et al., 2022), and Olympiad- 387

Bench (He et al., 2024). 388

4.3 Dataset 389

Math Reasoning Dataset The training dataset 390

is consisted of 40K problems with three-diffculity 391

level. Particularly, it is consisted of AIME (Ameri- 392

can Invitational Mathematics Examination) prob- 393
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Table 1: Model Performance Comparison

Model MATH500 AIME24 AMC Minerva OBench Avg.

Close-Source

O1-Preview 85.5 44.6 – – – –
O1-Mini 90.0 70.0 – – – –
O1 90.4 71.5 – – – –
Claude 3.7 Sonnet (Standard) 82.2 23.3 – – – –

Open-Source-Large

DeepSeek-R1 97.3 79.8 – – – –
Qwen3-235B 94.6 85.7 – – – –
Llama 4 Behemoth 95.0 78.0 – – – –
Kimi-1.5 96.2 77.5 – – – –
Qwen 2.5-72B 83.1 30.0 – – – –
Phi4-Reasoning-14B – 81.3 – – – –
Llama 4 Maverick 18.0 64.0 – – – –

Open-Source-4B/7B

MIMO-7B 95.8 68.2 – – – –
DeekSeek-7B 92.8 55.5 – – – –
QWEN3-4B - 73.8 – – – –

Open-Source-1.5B

DEEPSeek-R1-Distill-QWEN-1.5B 82.8 28.8 62.9 26.5 43.3 48.9
STILL-3-1.5B-Preview 84.4 32.5 66.7 29.0 45.4 51.6
DEEPSCALER-1.5B-Preview 87.8 43.1 73.6 30.2 50.0 57.0
FastCuRL-1.5B-Preview 88.0 43.1 74.2 31.6 50.4 57.5
Ours1-1.5B 88.1 43.2 74.3 31.7 50.4 57.6
Ours2-1.5B 89.2 50.0 77.1 35.3 51.9 60.7

lems (1984-2023), AMC (American Mathemat-394

ics Competition) problems (prior to 2023), Omni-395

MATH dataset and Still dataset. For the ranks of396

particular leaderboard, we split the math reasoning397

dataset to contain relative sampling according to398

the particular (Math500,AIME24)leaderboard.399

4.4 Evaluation Metric400

We set the maximum generation length for the mod-401

els to 32768 tokens and leverage PASS @1 as the402

evaluation metric. Specifically, we adopt a sam-403

pling temperature of 0.6 and a top-p value of 1.0404

to generate k responses for each question, typically405

k = 16.406

Specifically, PASS @1 is then calculated as:407

PASS@1 =
1

k

k∑
i=1

pi (8)408

4.5 Math Reasoning Experiments 409

The proposed hierarchical reasoning model is eval- 410

uated against both open-source and closed-source 411

state-of-the-art reasoning models, including O4- 412

Mini, Gemini-2.5-Pro, O3-Mini-2025-01-31, Grok- 413

3-Mini (High), Qwen3-235B-A22B, and others. As 414

shown in Table 3, our 1.5B model achieves impres- 415

sive performance across multiple benchmarks: 50.0 416

Pass@1 on AIME24, 89.2 on MATH500, 74.7 on 417

AMC23, 35.3 on Minerva, and 51.9 on Olympiad- 418

Bench. These results demonstrate the model’s ro- 419

bust general reasoning ability across various math- 420

ematical and competition-level tasks. 421

Notably, the hierarchical training strategy en- 422

ables our 1.5B model to outperform the current 423

best-performing 1.5B reasoning model by 6.9 424

points on AIME24, 1.4 points on MATH500, 1.1 425

on AMC23, 4.1 on Minerva, and 1.9 on Olympiad- 426

Bench—averaging a 3.7-point gain overall. Fur- 427
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Table 2: Combined Model Rankings

MATH-500 AIME
Model Accuracy Model Accuracy

Gemini 2.5 Pro Exp 95.2% O3 Mini 86.5%
O3 94.6% Gemini 2.5 Pro Exp 85.8%

Qwen 3 (235B) 94.6% O3 85.3%
Grok 3 Mini Fast High Reasoning 94.2% Grok 3 Mini Fast High Reasoning 85.0%

O4 Mini 94.2% Qwen 3 (235B) 84.0%
DeepSeek R1 92.2% O4 Mini 83.7%

O3 Mini 91.8% DeepSeek R1 74.0%
Gemini 2.5 Flash Preview (Thinking) 91.8% O1 71.5%

Claude 3.7 Sonnet (Thinking) 91.6% Grok 3 Mini Fast Low Reasoning 70.6%
Gemini 2.5 Flash Preview 91.6% Grok 3 Beta 58.7%

O1 90.4% Ours-1.5B 53.3%
Ours-1.5B 90.4% DeepSeek V3 (03/24/2025) 52.2%
Grok 3 Beta 89.8% GPT 4.1 mini 49.4%

DeepSeek V3(03/24/2025) 88.6% Claude 3.7 Sonnet(Thinking) 44.6%
Gemini 2.0 Flash(001) 88.0% Mistreal Medium 3(05/2025) 42.3%

GPT4.1 Mini 88.0% GPT4.1 39.8%
GPT4.1 87.2% Gemini 2.0 Flash(001) 29.8%

Mistreal Medium 3(05/2025) 87.0% DeepSeek V3 27.5%
LLama4 Maveric 85.2% GPT4.1 nano 27.3%

Gemini 2.0 Falsh Think Exp 84.6% LLama 4 Maverick 25.2%
Gemini 1.5 Pro(002) 82.8% Claude 3.7 Sonnet 22.3%

DeepSeek V3 80.4% LLama4 Scout 22.3%

thermore, it surpasses several larger parameter mod-428

els, including O1-Preview, O1-2024-12-17 (Low),429

O3-Mini-2025-01-31 (Low), and O1-Mini.430

On competitive benchmarks, the model431

ranks 11th on both the Math500 and AIME24432

leaderboards, establishing its competitiveness433

not only among models of similar size but also434

against larger state-of-the-art LLMs. Particularly,435

On Math-500, Ours-15B super-passes Grok 3436

Beta(89.8%), DeepSeek V3(03/24/2025)(88.6%),437

Gemini 2.0 Flash(001)(88.0%), GPT4.1438

Mini(88.0%), GPT4.1(87.2%), Mistreal439

Medium 3(05/2025)(87.0%), Gemini 2.0440

Falsh Think Exp(84.6%). Similarly, On441

AIME24, Ours-15B super-passes DeepSeek V3442

(03/24/2025)(53.3%), GPT 4.1 mini(49.4 %),443

Claude 3.7 Sonnet(Thinking)(44.6%), Mistreal444

Medium 3(05/2025)(42.3%), GPT4.1(39.8%).445

5 Discussion446

We begin to explore the potential of hierarchical447

reinforcement learning in enhancing the reasoning448

capabilities of large language models. By imple-449

menting our proposed early preview hierarchical450

reinforcement learning framework on a relatively 451

limited-scale mathematical dataset, our 1.5B-sized 452

language model demonstrates significant improve- 453

ments in mathematical reasoning benchmarks. No- 454

tably, its performance surpasses the O1-Preview 455

model and approaches the O1-Mini model. Fur- 456

thermore, on the Math500 and AIME24 mathemat- 457

ical reasoning leaderboards, our model achieves re- 458

markable results, ranking 11th overall. It matches 459

the score of the O1 model on Math500 and secures 460

a position just one rank below Grok 3 Beta on 461

AIME24. 462

However, we are continuing our exploration of 463

hierarchical reinforcement learning to enhance rea- 464

soning capabilities in both small-sized and mid- 465

sized language models. Our focus is on efficiently 466

harnessing small-scale datasets to address math 467

and code reasoning problems. We aim to develop 468

a unified small/mid-sized language model that can 469

achieve competitive scores on both code and math 470

reasoning benchmarks. We plan to release this uni- 471

fied model to the research community, providing a 472

versatile tool for advancing work in mathematical 473

and programming reasoning. 474
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Limitations475

This early preview presents an exploratory inves-476

tigation into hierarchical reinforcement learning,477

building upon the open-sourced GRPO algorithm.478

While our initial results are promising, the current479

version of our work has several important limita-480

tions that should be acknowledged to guide future481

research.482

First, our experiments are primarily conducted483

on datasets focused on mathematical reasoning.484

This narrow focus restricts the generalizability of485

our findings to broader domains, such as code rea-486

soning, symbolic logic, and other forms of com-487

plex problem-solving. These other areas may in-488

volve fundamentally different reasoning dynamics489

or structural challenges. Consequently, extending490

our methods to cover a wider range of reasoning491

tasks across various domains remains an important492

direction for future work. We believe that rigorous493

evaluation across diverse task types would help ver-494

ify the robustness and adaptability of our approach.495

Second, due to computational resource con-496

straints, our experiments are conducted on rela-497

tively small-scale models with approximately 1.5498

billion parameters. While this allows for faster iter-499

ation and lower training costs, it potentially limits500

the scope of our conclusions. Larger models may501

display qualitatively different learning behaviors,502

more pronounced performance gains, or even un-503

expected generalization properties that our current504

results do not capture. Thus, scaling up the model505

size and assessing its impact on the effectiveness506

of hierarchical reinforcement learning methods is a507

key avenue for future investigation.508

Third, our current evaluation framework primar-509

ily focuses on task performance metrics in math-510

ematical reasoning scenarios. However, it does511

not include a detailed analysis of potential societal512

harms associated with deploying large language513

models. Issues such as biased output generation,514

reinforcement of harmful stereotypes, or misuse of515

models in sensitive applications are critical ethical516

concerns that remain underexplored in our study.517

We recognize the significance of these considera-518

tions and strongly encourage future work to adopt519

a more comprehensive and responsible approach520

that rigorously assesses the social and ethical im-521

plications of deploying such models in real-world522

settings.523

Lastly, our evaluation methodology heavily re-524

lies on standardized benchmarks that are widely525

used in the research community. While these bench- 526

marks provide a useful basis for comparison, they 527

may not accurately represent real-world use cases 528

or user preferences, particularly within the con- 529

text of applied math reasoning tasks. To obtain a 530

more complete understanding of model utility and 531

practical performance, we recommend incorporat- 532

ing human-in-the-loop evaluation protocols and 533

designing domain-specific metrics that better re- 534

flect end-user needs and task-specific requirements. 535

Such an approach would facilitate more meaning- 536

ful insights into the real-world applicability and 537

value of the proposed methods. 538
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