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Abstract

As vision-language models (VLMs) become embedded in
global technologies, ensuring that they are culturally aware
is critical for fairness, representation, and societal rele-
vance. Yet, current benchmarks for evaluating cultural
competence treat culture as static, overlooking the fact
that cultural norms, aesthetics, and values evolve over
time. In this work, we introduce the concept of Tem-
poral Cultural Awareness— the capacity of AI models
to recognize and adapt to shifting cultural representa-
tions across decades. To operationalize this concept, we
present a novel evaluation framework grounded in cin-
ema, leveraging film media as a time-aligned, globally res-
onant proxy for cultural evolution. We curate CineCul-
ture, a dataset of annotated movie screenshots from Hol-
lywood and Bollywood films spanning multiple decades,
capturing fine-grained, visually evident cultural attributes
across themes like clothing, architecture, gender roles, and
leisure. This dataset enables systematic assessment of how
well VLMs reflect evolving cultural signals, both geograph-
ically and temporally. Our contributions include a new
benchmark task, proposed evaluation metrics, and an em-
pirical analysis revealing that popular VLMs often fail
to track temporal cultural shifts. Our work calls for a
new dimension of evaluation in culturally competent AI:
not only geographic inclusivity but temporal inclusivity
as well. The link to the code and dataset can be found
https://github.com/gautamjajoo/TemporalCultureShift

1. Introduction
As Vision-Language models (VLMs) become increasingly
integrated into global applications—from content genera-
tion to educational tools and recommendation systems —
their ability to operate across diverse cultural contexts has
never been more critical. Culturally aware models can fos-
ter inclusivity, build user trust, and ensure relevance across
diverse environments [10]. In contrast, the failure to ac-
count for cultural nuances risks perpetuating bias, marginal-
izing underrepresented communities, and ultimately under-

mining both the fairness and efficacy of these technologies
[4, 9, 14, 18, 20].

Although recent studies recognize this and to a certain
extent assess cultural awareness in VLMs, these efforts
largely approach culture as a static phenomenon, evaluated
at a single point in time or in a time-agnostic manner using
aggregated datasets that obscure temporal nuance [7, 17].
However, culture is inherently dynamic. Social values,
norms, aesthetics, and roles shift across decades in response
to political movements, economic developments, techno-
logical change, and intergenerational ideologies. Moreover,
a biased or outdated understanding of a culture can amplify
harmful stereotypes. A culturally aware model must there-
fore recognize not only cultural diversity across geogra-
phies but also its evolution across time. We introduce the
concept of Temporal Cultural Awareness - the ability of
AI model to recognize, interpret, and adapt to cultural rep-
resentations as they evolve over time. For instance, trans-
formations in how themes such as family structure, gender
roles, fashion, or leisure are visually and narratively repre-
sented over decades provide rich signals about cultural evo-
lution. Yet, most VLMs, trained on temporally unaligned or
aggregated visual data, are not equipped to detect or adapt
to such longitudinal shifts.

To address this gap, we propose a novel framework for
evaluating temporal cultural awareness in VLMs by lever-
aging film media as a proxy for capturing the evolving cul-
tural expression. Cinema offers a compelling medium for
this purpose: it is both globally influential and temporally
rich, reflecting and shaping societal values across genera-
tions [2, 22]. By analyzing visual content from films across
different eras, we create a test bed to systematically evalu-
ate how well can VLMs capture temporal shifts in cultural
representation.

This study investigages the central research question of
whether VLMs can distinguish about how cultural represen-
tations have evolved over time?
Our contributions are as follows:
• We formalize Temporal Cultural Awareness as a critical

and previously underexplored dimension in evaluating AI
cultural competence.
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• We demonstrate the viability of using cinema-derived vi-
sual data as a scalable, time-aligned resource for studying
cultural evolution in VLMs.

• We intend to publicly release the CineCulture Dataset and
our evaluation framework, facilitating future research to
this end.
In doing so, our work calls attention to an essential fron-

tier in culturally responsive AI: temporal inclusivity. Just
as AI systems must understand and respect cultural diver-
sity across geographies, they must also remain sensitive to
the evolving nature of cultural expression across genera-
tions. Without this capacity, models risk reinforcing out-
dated assumptions, misrepresenting communities, and fail-
ing to serve the needs of an ever-changing world.

2. Related Work
Recent advances in VLMs have spurred a growing interest
in evaluating their cultural awareness. This is highighted by
the development of benchmarks such as CulturalVQA [16],
CVQA [19], All Languages Matter (ALM) Bench [21], and
GlobalRG [5], which primarily employ the visual question
answering (VQA) tasks to evaluate models on their abil-
ity to recognize and reason about culturally grounded ele-
ments such as traditional clothing, rituals, food, and every-
day practices.

Beyond question-answering, recent efforts have explored
generative evaluations of cultural competence. Benchmarks
like CUBE [11] test text-to-image generation across do-
mains such as cuisine, landmarks, and art from eight coun-
tries. While, DALL-E Street [15] uses culturally diverse
household scenes to assess visual representation. Compre-
hensive efforts like CultureVLM [13] expand these evalu-
ations to more than 100 countries, and benchmarks like K-
ViScuit [3] integrate human-in-the-loop evaluation to assess
cultural appropriateness in visual scenes.

Complementing these datasets, multiple metrics like
Cultural Awareness Score (CAS) [6], diversity@k in Glob-
alRG and LAVE[16] assess cultural awareness in captions,
retrieval, and VQA tasks. However, these benchmarks
adopt a static view of culture, capturing representations at
a single time point and overlooking temporal shifts. This
limits their ability to evaluate AI performance in dynamic,
time-sensitive cultural contexts.

In parallel, the VLM and video understanding commu-
nities have introduced several movie-based benchmarks,
aimed primarily at long-form narrative comprehension.
Datasets like MoVQA [24] evaluate models on long-form
narrative comprehension through the visual question an-
swering task, while SF20K [8] extends this effort with
a larger-scale dataset focused on story-level video QA.
MovieBench [23] offers hierarchical annotations across
full-length films — at the summary, scene, and shot lev-
els—supporting structured understanding and character-

consistent generation. Among efforts intersecting with tem-
poral reasoning, VITATECS [12] introduces a diagnostic
benchmark for understanding temporal concepts in video-
language models using movie data. However, these movie-
based benchmarks largely focus on temporal aspects like
coherence, story flow, and character tracking, rather than
the cultural implications embedded in visual content.

Crucially, none of these existing benchmarks whether
culturally or temporally oriented—explicitly examine how
cultural representations evolve over time. This gap leaves
unaddressed a key dimension of AI cultural intelligence:
Temporal Cultural Awareness. Our work addresses this gap
by introducing a new benchmark situated at the intersection
of cultural understanding and temporal analysis. Leverag-
ing cinema as a rich, longitudinal record of societal values
and norms, we curate a dataset of film imagery spanning
multiple decades to study cultural evolution through visual
narratives. Unlike prior efforts, our benchmark is designed
to evaluate how well VLMs can detect, interpret, and adapt
to the temporal shifts in cultural expression. This enables
a new class of evaluations that move beyond a static snap-
shot of cultural representation to assess AI’s capacity to un-
derstand culture as a dynamic, evolving phenomenon—an
essential step toward building AI systems that are both tem-
porally inclusive and globally competent.

Benchmark name Focus Culture Temporal

CulturalVQA VQA Yes No
GlobalRG RAG Yes No
AK-ViScuit Interpretation Yes No
ALM Bench Multimodal Yes No
CVQA Multimodal Yes No
CUBE Image Yes No
MaRVL Multimodal Yes No
CineCulture (Ours) VQA Yes Yes

Table 1. Existing Benchmarks for Cultural Awareness in VLMs

3. Methodology
3.1. Creating the CineCulture Dataset
Art has long served as a mirror of societal norms and values,
with film acting as a particularly rich medium for capturing
cultural transformations over time. To enable the quanti-
tative study of such shifts in visual media, we construct a
curated dataset comprising carefully selected movie screen-
shots. These images span a wide range of historical peri-
ods, geographic locations, and cultural settings, offering a
diverse and representative set of ground-truth visual data.

To structure this dataset for systematic analysis, we de-
velop a cultural taxonomy encompassing key visual cate-
gories indicative of cultural identity. These are organised
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Figure 1. Workflow with the evaluation of temporal cultural awareness in VLMs from ground truth annotation and prompt generation to
image creation, followed by annotation and assessment

into two primary classes: Demographic Proxies (DP), at-
tributes linked to population identity and Semantic Proxies
(SP), as outlined in [1], which capture cultural aesthetics,
practices, and belief systems. The taxonomy of nine high-
level categories guiding the dataset’s structure are:
1. Geography/Region (DP)
2. Gender
3. Clothing and Accessories (incorporating both DP/SP as-

pects)
4. Architecture and Environment (DP)
5. Food and Eating Practices (SP)
6. Religion (DP)
7. Art and Music (including Dance forms, Musical instru-

ments, Festivals) (SP)
8. Time/Year context
9. Objects and Artifacts (SP)
This categorical framework allows for a systematic ap-
proach to studying cultural representation across different
facets of visual scenes.

3.2. Annotation
The CineCulture dataset employs a rigorous annotation pro-
cess to capture fine-grained cultural nuances. Each image is
labeled using a structured one-hot encoding scheme, where
cultural attributes are grouped into predefined classes (e.g.,
Headwear, Footwear, Building Style), and each vector di-
mension corresponds to a discrete, exhaustively defined at-
tribute (e.g., ‘Mojaris’, ‘Geta sandals’). Trained human
annotators follow standardized guidelines to ensure con-
sistency and cultural fidelity across annotations, which are

nested within the broader taxonomy defined during dataset
construction.

1. Clothing and Accessories: Specific garment types (Sher-
wani, saree, jeans, Kimono), symbolic colors/patterns,
jewelry (Nose rings, Mangalsutra), headwear (Turbans,
Hijabs, Sombreros), and footwear (Mojaris, Geta san-
dals).

2. Architecture and Environment: Housing styles (Tradi-
tional, modern), setting (Urban vs. Rural), landscaping
features (Gardens, marketplaces), construction materi-
als (Wood, stone), design patterns (Islamic geometric,
Colonial arches), and transportation modes (Rickshaws,
Camels, Bullet trains).

3. Food and Eating Practices: Specific food types (Sushi,
Thali meals, Tacos), dining styles (Floor seating, chop-
sticks), and related household items (Brass utensils,
Tatami mats).

4. Religion: Identifiable religious items (Statues, prayer
beads) and structures (Temples, Mosques, Churches).

5. Art and Music: Recognizable dance forms, specific mu-
sical instruments, and indicators of festivals.

6. Objects and Artifacts: Culturally specific tools/utensils,
depicted technology levels, logos/emblems (Flags, sym-
bols), and visible written languages/scripts.

This human-in-the-loop process ensures high-fidelity,
multi-attribute cultural labeling suitable for comprehensive
visual cultural analysis.
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3.3. Evaluation
3.3.1. IoU, Precision and Recall on the One-Hot Vectors
To rigorously assess the performance of our cultural at-
tribute detection system on movie screenshots, we employ
three standard evaluation metrics: Intersection over Union
(IoU), Precision and Recall. Our ground-truth dataset, an-
notated with one-hot vectors indicating the presence of var-
ious cultural artifacts, serves as the reference for these as-
sessments.
1. Intersection over Union (IoU)
2. Precision
3. Recall

3.3.2. Measuring Temporal Distribution Shifts
To evaluate how well Vision-Language Models (VLMs)
capture the temporal evolution of cultural elements in cin-
ema, we introduce a framework that compares the distri-
bution of cultural attributes over time between real movie
shots and VLM-generated images.

The pipeline consists of the following steps:
1. Context Extraction: From a curated dataset of movie

shots sgt spanning various eras and regions, we ex-
tract contextual information c—including activity de-
scription, country, and time period.

2. Image Generation: Using c as input, the VLM gener-
ates an image sgen corresponding to each sgt.

3. Cultural Annotation: Both sgt and sgen are annotated
with a binary vector v ∈ {0, 1}N indicating the presence
of N predefined cultural attributes (e.g., fashion, food,
architecture).

4. Temporal Distribution Estimation: For each attribute
i, we compute its empirical distribution across time bins
(e.g., decades) for both ground truth (Dgt,i) and gener-
ated images (Dgen,i), reflecting its frequency over time.

5. Significance Testing: A χ2 goodness-of-fit test com-
pares Dgt,i and Dgen,i, yielding p-values pi to assess
whether the temporal distributions differ significantly.

6. Divergence Scoring: For attributes with pi < α (e.g.,
α = 0.05), we compute the Jensen-Shannon Divergence
(JSD) between Dgt,i and Dgen,i. We then calculate an
overall score:

S =

N∑
i=1

I(pi < α) · (1− pi) · JSD(Dgt,i ∥Dgen,i)

where I(·) is the indicator function. A lower S indicates
closer alignment between VLM-generated outputs and
historical ground truth data.
This method enables fine-grained, temporal analysis of

cultural fidelity in VLMs, identifying both broad trends and
specific eras or attributes where the model may exhibit bi-
ases or inaccuracies.

4. Discussion
While our research remains in progress, the methodological
approach offers several promising areas for understanding
how VLMs conceptualize and represent cultural elements
across temporal and geographical contexts.

The IoU metric in our evaluation will offer pointers into
how VLMs perceive and replicate distinct cultural compo-
nents. This quantitative approach is useful for identifying
which cultural features are accurately captured and which
tend to be consistently neglected. Initial findings indicate
that general characteristics, such as gender presentation and
basic spatial arrangement, often yield higher IoU scores. In
contrast, nuanced cultural elements like the traditional drap-
ing of a saree (Fig 3) or the authentic design of a Rumi cap
tend to be less accurately recognized.

The most compelling insights may arise from elements
with particularly low IoU scores, as these often highlight
cultural blind spots in current VLM systems. These over-
looked features frequently encompass culturally rich de-
tails, such as symbolic objects, specific traditional attire, or
architectural motifs, that hold deep cultural significance.

We also analyze various kinds of shifts like:
1. Temporal modernization: VLMs may introduce con-

temporary elements into historical settings, such as mod-
ern architectural features in representations of 1950s
homes.

2. Cultural homogenization: Models might blend distinc-
tive cultural elements, replacing historically accurate el-
ements with more generalized representations.

3. Western-centric normalisation: The distribution anal-
ysis may reveal tendencies to subtly westernise non-
Western cultural contexts, particularly in spatial arrange-
ments, posture, or stylistic elements.

5. Conclusion
We propose a dataset and evaluation method aimed at ad-
dressing the critical yet underexplored capability of Vision-
Language Models to comprehend the evolution of cul-
ture over time through visual media. We intend to create
CineCulture, a novel dataset curated from chronologically
diverse movie screenshots, providing a unique benchmark.
Future work should focus on expanding the dataset’s scope,
by including more demographies, incorporating multimodal
information (like dialogue or sound) and benchmarking on
multiple SoTA models. Ultimately bridging this gap is es-
sential for creating AI systems that possess a deeper, more
historically and culturally informed understanding of the
human experience as represented visually.
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A. Prompt Template

The Prompt Template for feeding the data from the anno-
tated ground truth image to the VLM is as follows:

Prompt Template

Create an image depicting a
scene in <Region>, specifically
during <Time/Year>. The genders
of the people involved in the
image are listed as <Gender>.
The pertinent context for the

setting of this image is
<Context>.

B. Pictoral Depiction of Cultural Shifts Over
Time

Figure 2. Pictoral Depiction of Cultural Shifts Over Time

C. Workflow with the evaluation for an
�Example of an Image from a Hollywood
Movie

Figure 3. Workflow for an example image taken from a Hollywood
Movie
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