Under review as a conference paper at ICLR 2026

BONGARDS AT THE BOUNDARY OF PERCEPTION AND REA-
SONING: PROGRAMS OR LANGUAGE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have made great strides in everyday visual tasks, such
as captioning a natural image, or answering commonsense questions about such images.
But humans possess the puzzling ability to deploy their visual reasoning abilities in radi-
cally new situations — a skill rigorously tested by the classic set of visual reasoning chal-
lenges known as the Bongard problems. We present a neurosymbolic approach to solving
these problems: given a hypothesized solution rule for a Bongard problem, we leverage
LLMs to generate parameterized programmatic representations for the rule and perform
parameter fitting using Bayesian optimization. We evaluate our method on classifying
Bongard problem images given the ground truth rule, as well as on solving the problems
from scratch.

1 INTRODUCTION

Visual reasoning lives at the boundary of perception and thinking. For this reason, it is a central object of
study in artificial intelligence and cognitive science (Ullman,|1987;|Andreas et al., 2016), inter alia.). Vision-
Language Models (VLMs) have made great strides in everyday visual tasks, such as captioning a natural
image, or answering commonsense questions about such images. But humans possess the puzzling ability
to deploy their visual reasoning abilities in radically new situations, far outside everyday experience (LeGris
et al.| 2024)), ranging from visualizing curved geometry to making sense of cubist artwork. How close is Al
to capturing these abilities?

As a microcosm of this broadly-general visual reasoning, we turn to the Bongard problems (BPs), a few-shot
visual classification dataset from 1970 (Bongard & Hawkins| [1970). Despite their age, the BPs have been
studied by each successive wave of Al, from symbolic to probabilistic to neural to LLMs (Wiist et al., [2025}
Depeweg et al., [2024; |[Foundalis, 20065 Saito & Nakanol [1996; |Nie et al.,2020; Maksimov, |1975). The BPs
involve perceiving novel visual features on-the-fly, such as the "neck’ in Figure [I| A(i), and then reasoning
about those features to discriminate between two categories. Unlike other visual reasoning tasks such as
Raven’s Progressive Matrices, the essence of a BP is to fluidly define new perceptual primitives for each
problem, which forces learners to rapidly generalize precisely at the boundary of perception and reasoning.

Through a close examination of the BPs, our study explores how two different modes of reasoning — reason-
ing over programs and over natural language — can complement each other and push us closer to a solution
for difficult concept learning tasks. Solutions to the BPs combine high-level conceptual reasoning that
should benefit from VLMs’ vast pretraining data with geometric reasoning that requires a level of precision
characteristic of programs, motivating us to pursue a hybrid approach that could leverage the strengths of
both program synthesis and reasoning over natural language.

In total, we contribute the following:

Under review as a conference paper at ICLR 2026

(A)) (A)i. vertical neck horizontal neck (B) Raven’s Progressive Matrices
Bongard Problems: - Stresses reasoning, not perception

- Few-shot binary category learning @ DQ - Stereotvped visual inventor
- Category can require novel visual g g % [JL'Q yp y
features]

- Organic free-form drawing % & Q@ B% % Gé) ‘; "':

(A)ii. (A) iii. LA

smooth border squiggly border one curve two curves

ofd B2 RuliFel hin] I IS AN oS ol N 4 RS
>lO|ol[%:|<| Ol |o]o|=||€|]le

Figure 1: (A) Example Bongard problems, each of which consists of 6 positive examples (left drawings)
and 6 negative examples. The natural language descriptions shown above each category are not provided to
the learner. (B) In comparison, the well-known Raven’s Progressive Matrices trade perceptual richness for
deeper logical composition.

1. An evaluation of State-of-the-Art vision language models on two distinct tasks: classifying BP images
when the ground truth rule is present and solving the BPs by eliciting ground truth rules.

2. A new method that leverages the synthesis of parameterized programs alongside natural language rea-
soning to enable the selection of correct natural language rules.

3. An analysis of human data to quantify and compare vanilla VLMs and our approach against human
performance.

2 THE BONGARD PROBLEMS

The Bongard problems (BPs) are a set of abstract visual reasoning puzzles first presented in Mikhail Bon-
gard’s 1970 book Pattern Recognition (Bongard & Hawkins, |1970). Each BP consists of twelve total images
— six examples of a positive concept and six examples of a negative concept. The negative concept may be
the simple negation of the positive concept, or it may be a different concept entirely. Furthermore, unlike
reasoning puzzles like Raven’s Progressive Matrices (Raven & Raven, 2003), there is no sequential or causal
relationship between the different positive and negative examples; each image is independently an example
of the underlying positive or negative concept. A solution to a BP is a natural language rule that completely
separates the positive examples from the negative examples (Hofstadter, |1999); for instance, “has a smooth
border” would be an acceptable solution to BP #9 shown in Figure [I| Although BPs are intentionally de-
signed puzzles created with particular solutions in mind, multiple correct solutions may exist, as long as they
properly separate the positive and negative examples (Depeweg et al., 2024).

The concepts tested by the BPs are generally abstract and geometric in nature. Some of these concepts, such
as “triangles” vs. “quadrilaterals” in the solution of several BPs, may already be familiar to the solver. Oth-
ers, like the aforementioned solution to BP#19 (horizontal ’neck” vs. vertical “neck”), involve a combination
of concepts that the solver is not likely to have encountered before. Furthermore, the particular features of
an image that are relevant to the correct solution vary greatly between BPs, making them resistant to solution
via image preprocessing.

The original collection of Bongard problems were designed to be solved by humans in sequence, and give a
natural curriculum that gradually increases problem complexity while introducing new concepts one-by-one.
The system that we describe exploits the curriculum structure of the Bongard problems.

Under review as a conference paper at ICLR 2026

3 RELATED WORK

Human Performance on BPs. The BPs test a wide variety of unfamiliar concepts, but human performance
is generally strong in spite of these challenges: Wiist et al.| (2025) find that the average human solves ap-
proximately 47 Bongards for BPs (#2-#100), while the top 5 human solvers averaged approximately 63
problems.

Automatically Solving BPs. There is a long history of attempting to solve the BPs in Al (Foundalis|
2006; Maksimov, [1975}; [Saito & Nakanol [1996)), but the problems have become relevant once more due to
state-of-the-art Al systems’ struggle with human-solvable reasoning and perception tasks. Recent attempts
to solve the BPs have included Bayesian inference over a formal language (Depeweg et al., 2024) and
program synthesis coupled with inductive logic programming (Sonwane et al., |2021)), as well as attempts
to reimagine the BPs as a more traditional ML-based classification task (Raghuraman et al., [2023)), an RL
task setting (Youssef et al., 2022)), or as inspiration for new datasets that test the reasoning capabilities of
VLMs (Nie et al., 20205 Wu et al., 2023). An evaluation of VLMs on the Bongard problems was notably
absent until Wiist et al.| (2025), which tested a number of VLMs on solving the Bongards, as well as a
number of variations on the Bongard task. The best tested model, ol (Jaech et al., 2024)) solved 43 BPs —
a significant improvement over previous attempts to solve BPs automatically that still falls short of average
human performance.

Reasoning with Code. As LLMs emerge as ever more capable tools for code generation (L1 et al., 2022}
Novikov et al.}2025) and as they continue to struggle with complex reasoning tasks, many different systems
for generating executable code for solving reasoning problems have been proposed (Gao et al., 2023} |L1
et al.| 2023). For these systems, the answer to a reasoning problem is an executable program that, when run
on an appropriate input, produces the desired answer. When solving mathematical or algorithmic reasoning
problems, reasoning using code has the clear advantage of being exact, interpretable, and (in most cases) de-
terministic. However, formal programs have an inherent expressivity problem: there are reasoning problems
that can be easily formulated in natural language yet are difficult or impossible to express in code.

Induction and Transduction. The strengths and weaknesses of reasoning over both formal programs and
natural language indicate room for hybrid approaches/Li et al.|(2024)) formulate the problem as a question of
induction vs. transduction. Induction, here corresponding to the program induction approach to reasoning, is
defined as the paradigm in which, before predicting outputs for the test examples, the learner must explicitly
construct a function that produces the correct outputs given the training examples as inputs. On the other
hand, transduction, here corresponding roughly to test-time training or the Chain of Thought (CoT) (Wei
et al [2022) approach to reasoning, outputs a prediction for the test examples given the training examples,
without explicitly searching for a latent function. For the Abstraction and Reasoning Corpus (ARC) (Chollet,
2019), another task which, like the BPs, requires pattern recognition and conceptual generalization, the two
reasoning paradigms were found to be complementary (Li et al.l 2024), with induction and transduction
excelling at different problems. Drawing inspiration from this work, we also combine programmatic and
CoT reasoning to solve the BPs, in the hope that the two methods will complement each other.

4 METHOD

We experiment with two different tasks:

1. Verification: Given the other 5 positive/negative image pairs for a BP as training examples along with
the ground truth rule, correctly classify the held out positive/negative image pair.

2. Solution: Given all BP images, output a rule that correctly distinguishes positive from negative ones.

Under review as a conference paper at ICLR 2026

In order to more accurately measure performance on the verification task, we repeat the task six times,
holding out the positive and negative images at index 0 to 5 exactly once.

4.1 SYSTEM OVERVIEW

(A) Hypothesis Generation

positives negatives natural language rules

A e‘ @ OA . o 0 [“there’s a square”]
° A OV @ AO =) q °-° D -[ik ol] rule selection

i}" OA O OV Vision Language Model [“triangle bigger than circles”] [“there‘s a square”]
a (VLM) Score: 3/12
(B) Verifier (Rule Scoring) VLM and/or python (“many shapes” |
natural language rule i i Score: 5/12
guag q oo D P scoring on example images .
[“triangle bigger than circle”] + + A @ A @ [“triangle bigger than circle”
m ¥ ¥ ¥y ¥ Score: 12/12
true true false false

Bayesian Parameter
Optimization

Figure 2: Our system comprises (A) a hypothesis generator that samples possible rules from a VLM and (B)
a verifier that combines natural language and code to score and select the best rules.

We propose a BP solver with two main components: a hypothesis generator that generates several possible
rules and a verifier that can determine which of these hypothesized solutions are correct (Figure [2). The
verification task tests the verifier only: the ground truth rule and BP images are provided as input to the
verifier, which then scores that rule. In contrast, for the solution task, our hypothesis generator produces
several candidate rules, which are then scored by the verifier.

4.1.1 HYPOTHESIS GENERATOR

We sample possible solutions from a VLM, providing as input all positive and negative images for the BP
and three sample rules drawn from other BPs. Because the Bongard problems were designed to be solved by
humans sequentially, and have a natural curriculum ordering, we sample 6 rules given the rules of the three
previous BPs as in-context examples. For increased diversity we sample another 6 rules with the solutions
of three random BPs as in-context examples.

4.1.2 VERIFIER

The correctness of these hypothesized rules is judged by the verifier, which combines natural language and
Python programs to score each proposed rule. Given a set of training examples X4y, for each image-label
pair (T¢rain, Ytrain) and a rule, the verifier first attempts to synthesize a program 7 such that (2 ¢pqin) =
Ytrain- A candidate program’s score is then

8007"6(’]‘[‘) — Z]l{ﬂ(xtram) = yt’r‘ain}

Xtrai
rawn
(xtrain s Ytrain) € Xirain ‘ ‘

Under review as a conference paper at ICLR 2026

Parameter assignment for
Sampled programs . successful program fits

A B = A 44 O;B 414 &

| s ;
: training examples i

f(params)
El{params)

params I
Parameter sampling
per program

Successful programs

applied to test input Aggregated judgement
A ° ggreg judg

voo| [Blo| n—)
D ®

Figure 3: Overview of the program synthesis module of our verifier. Programs are sampled and undergo
parameter fitting via Bayesian optimization. If we can successfully optimize programs (i.e., find programs
that score at least 0.9 on the training examples), the highest-scoring programs are evaluated on the test
examples, with the majority label from these evaluations serving as the output label.

Let P denote the set of all candidate programs. The set of accepted programs A is defined as

A ={r € P | score(m) = maxyep(score(¢)) A score(m) > 0.9}

If A is nonempty, then programs will be used to determine the labels of the test images, as described in the
following sections. Otherwise, the verifier switches to the CoT approach, using as the output label the result
of prompting the VLM with positive and negative examples provided as in-context examples.

4.1.3 VERIFICATION WITH PROGRAMS

The verifier takes as input 5 positive-negative pairs of training examples, suggested method stubs (Appendix
[B), and in-context examples . For the in-context example, we use Retrieval Augmented Generation (RAG)
(Lewis et al.,[2020) in order to improve the quality of VLM-generated code. We generate a set of programs
for 59 different Bongard problems (Appendix [C) and use embedding similarity between the currently pro-
posed rulfﬂ and the ground truth rules associated with each of the 59 problems to select the most relevant
example and provide it as the in-context example in our prompt. n programs are sampled with the VLM
provided with these inputs.

For the inductive component of our verifier, the objective is to synthesize a classi fy_image method that,
given an input image (along with additional parameters that will be explained in the following section), will
return the image classification ("POSITIVE” or "NEGATIVE”).

'For the verification task, this will always be the the ground truth rule for the current problem.

Under review as a conference paper at ICLR 2026

4.1.4 PARAMETERIZED PROGRAMS AND OPTIMIZATION

Humans have an intuitive idea of when an image belongs to a particular concept, but expressing this as a rule
in a general-purpose formal language is challenging. For example, in BP #11 spotting the difference between
"elongated’ and ’compact’ shapes is not overly challenging, nor is even calculating the ’circularity’ of an
object or observing that the class of *compact’ objects is more similar to circles (see Figured). However, the
exact numerical dividing line between ’elongated’ and ’compact’ figures would be exceptionally difficult
to determine through guesswork, making it impractical to require our VLM to attempt to synthesize this
value along with the rest of the program. Instead, we leverage the pretraining knowledge of the VLM to
specify a range of possible values for a given parameter and perform just 15 steps of Bayesian optimization
(Frazier, |2018; [Shahriari et al., |2015) to find the value that maximizes the program score. The parameters
that require optimization are determined by the VLM and are given as additional inputs to the synthesized
"classify_image’ function. If optimizing a given program does not result in a perfect score on the training
examples, the VLM is prompted to revise the programs once. These new programs undergo the optimization

process once more.
é Generated Program

! Bayesian

<> \ g O <:> Optimization
i
! N\,
0 Y, Compactness
1 \

@ / ! o ° or Circularity

' Measure
I ‘vosiTive if g < [rasmold else s

/ — ' P 0 s
v TEsan
'

Elongated E Compact What compactness threshold encompasses the

“Compact“ Concept?

Figure 4: To solve BP#11 (’Elongated’ vs. ’Compact’), the critical but difficult-to-synthesize parameter
threshold is optimized via Bayesian optimization.

Should the verifier successfully synthesize one or more programs that obtain a score > 0.9 on the training
data, we obtain an output classification for the each held-out example by running all programs that have
achieved the maximum score for the problem on the example and outputting the majority label (3} If no
such program was synthesized, our verifier instead uses transduction to predict the output labels of the test
examples. Given the training examples as in-context examples, the VLM uses Chain of Thought (CoT)
reasoning [Wei et al.|(2022)) to label each held-out example as either positive or negative.

5 RESULTS

5.1 BASELINES

We evaluate GPT 40 and Claude 3.7 Sonnet on all three tasks. Full results are available in Table [Il For
the solution task, two human raters judged whether model outputs were correct or incorrect, with no partial
credit awarded. A rule is counted as correct only if both raters agreed on its correctness.

Under review as a conference paper at ICLR 2026

Model | Task
| Verification | Solution (BP #2 - #100) | Inversion

Human Average \ - \ 47 \ -
GPT-40 0.775 24 0.771
GPT-40 + programs 0.727 - -
GPT-40 + both 0.79 31 -
Claude 3.7 Sonnet 0.835 44 0.838
Claude 3.7 Sonnet + programs 0.821 - -
Claude 3.7 Sonnet + both 0.865 51 -

Table 1: Overall performance on the different tasks. Human data is taken from [Wiist et al.| (2025)). " Verifica-
tion” is classifying images given the ground truth label, ”Solution” is outputting the correct natural language
rule, and Inversion” is the verification problem with positive and negative examples are swapped. For con-
sistency with human data, only solution results for BPs #2-#100 are reported. Full data for all 100 problems
can be found in Appendix|Al We report accuracy for verification and inversion tasks and # problems solved
for the solution task.

We find that Claude 3.7’s performance is stronger on all three tasks. This is especially evident on the solution
task, where Claude’s accuracy is just below the average human performance on the BPs reported by Wiist
et al.|(20235)) (47 correct), while 40 does not even solve a third of BPs.

5.2 VERIFICATION RESULTS

We experiment with both Claude and GPT as the VLM for both the program induction and transduction
components of our verifier. Table[I] compares the performance of our method with a version of the verifier
that ablates the natural language component, as well as with the performance of the base VLMs. For all
results in Table|l} the number of programs synthesized per problem was 10.

The Claude model is able to achieve similar performance on the task with both programmatic verification
only and the vanilla CoT model. However, as highlighted in Table 2] which analyzes the average perfor-
mance of each verifier on different categories of BP problems (as introduced in [Wiist et al.[(2025))), these
two methods differ in the types of problems they are able to solve. Programmatic verification appears to be
advantageous for problems dealing with similarity between objects and with spatial concepts. This is un-
surprising given the way in which spatial reasoning problems lend themselves to geometric or mathematical
reasoning problems that can be encoded as formal programs with relative ease. Similarly, it does not come as
a surprise that CoT outperforms programmatic verification on tasks requiring high-level conceptual knowl-
edge; the gap between the two methods on number problems appears to be due to the fact that many BP
number problems require each image to be broken down into a unique set of subparts that may be difficult to
encode as a program. The strong results of both program verification and CoT, along with the complemen-
tary nature of the different problem categories they solve, lead to our combined method achieving improved
results in nearly every BP category.

On the other hand, program verification with GPT-40 underperforms CoT by a decent margin, which may
reflect the model’s more limited capabilities in program synthesis when compared with Claude. The com-
plementary nature of problems solved is not as evident as with Claude, and so the benefits of a combined
method are more limited. This indicates that the effectiveness of combining programmatic and CoT reason-
ing is partially dependent on the model’s abilities at these individual tasks.

Under review as a conference paper at ICLR 2026

\ Problem Category

Model | Concept | Number | Same | Size | Spatial
GPT-40 0.867 0.794 | 0.821 | 0.931 0.7
GPT-40 + programs 0.773 0.689 | 0.810 | 0.875 | 0.667
GPT-40 + both 0.846 0.833 | 0.702 | 0.958 | 0.681
Claude 3.7 Sonnet 0.904 0.878 0.845 | 0.972 | 0.744
Claude 3.7 Sonnet + programs | 0.858 0.756 | 0.893 | 0.931 | 0.792
Claude 3.7 Sonnet + both 0.919 0.833 | 0.893 | 0.958 | 0.815

Table 2: Performance across BP categories from Wiist et al.|(2025)). + programs” indicates that our method
for verification with programs was used, while + “both” indicates that both natural language and programs
were used by the verifier.

5.3 SOLUTION RESULTS

We test our full BP solving system with each of Claude and GPT as hypothesis generators. For the verifica-
tion component of our solver, we utilize the verifier described above with slight modifications (see Appendix
[C] With Claude as the VLM, our system improves to 51 problems solved, exceeding the average human accu-
racy reported by Wiist et al.|(2025)). Utilizing our method also leads to improvement in 40’s score, although
it remains far below human accuracy.

5.3.1 COMPARISON WITH HUMAN DATA

Both do well Both do poorly
- O |0 o ® ala_o0] 00
a .] 9 o
Jl & ‘A Al PR oafo®| (S |VEE LY %
[[(o Oo|ao0 o a_® o
o o o 8 4] 0 @
o] A A
‘ . o ola2 Ce|va | v ~ - Of o o o
AOa] ° 2 oA "LL \j‘j o _0
. n-a voo Ve w0 o | «o
E’ v x ° 0 o oo Ve ™ o .
Outline figures / Solid figures Black figure is a triangle /is a circle Small circles on different / same arcs Three parts / five parts
Human: 95% LLM: 100% Human: 95% LLM: 100% Human: 10% LLM: 0% Human: 0% LLM: 0%
Only humans do well Only LLMs do well
A \v4 y O A O | O .‘ O ef0oe
| (v A Q o &l S\ a ®o %y Oav | o*o
® 0O oV 0 0 v Ov
" (| D Al [COl| O Bf|o%|ee DO
R Vj) A (@ ‘ o |oav So | %1
7 [ao0oe ool a o
r A A O A O oy ®e .
a|N A ° @ II] O ¢ | ®0e 0| o2v
Triangle on concave / convex side of arc Triangle on top of circle / circle on top Acute / Not acute angle More solid black / outline circles
Human: 75% LLM: 0% Human: 65% LLM: 0% Human: 10% LLM: 100% Human: 15% LLM: 100%

Figure 5: Examples of problems with similar and dissimilar performance

While reasoning over natural language and programs appears to be a promising means of improving VLM
performance on reasoning problems like the BPs, whether it effectively models how humans solve these
problems is a separate question. Figure [5] examines several examples of where human and model perfor-
mance shows strong agreement or disagreement. The BPs that both humans and our system perform excep-

Under review as a conference paper at ICLR 2026

tionally well on tend to be conceptually simple, while the problems they both fail on either test particularly
unusual combinations of visual concepts (BP #44, *small circles on different arcs’) or present a very simple
ground truth concept in an intentionally complicated manner (BP #90, ’three’ vs. ’five’). The problems
where humans succeed and our system fails tend to either involve images that seem to be perceptually diffi-
cult for the VLM (BP #46, ’triangle on top of circle’, where depth perception is important), or problems that
compose a few concepts the VLM can independently recognize. BP #75 (’triangle on concave side of arc’)
is one such example, as the average VLM performance on earlier problems involving concavity (BP #4) and
triangles (BP#6, #10) was similar to or exceeded that of humans. For this BP, the failure occurred because
the VLM hypothesis generator was unable to generate the correct concept, highlighting the difficulty that
VLMs still have with generalization and flexibility in utilizing concepts they can recognize independently.

5.3.2 MEMORIZATION

The strong out-of-the-box performance of the two VLMs (particularly the Claude model) raises questions
about the extent to which the solutions to the BPs have been memorized. The BPs were published long
before the advent of VLMs, meaning they are more than likely in the models’ pretraining data.

To check for memorization, we invert the verification task: the positive concept and associated images are
now negative examples, and likewise for the negative concept. We find that this perturbation of the task has
very little impact on model performance (see Table[I)), indicating that memorization may not be the primary
driver of the observed performance of the VLMs.

5.4 DISCUSSION

Natural language and code as complementary reasoning approaches. Our analysis of the BP categories
solved by natural language and code revealed that the shortcoming of one method was often the strength
of the other. In particular, reasoning over natural language appears to be advantageous when high-level
conceptual thinking is required, while reasoning over formal programs is preferable for reasoning problems
involving exact calculations and fine-grained analysis. For VLMs that already excel in code generation,
programmatic reasoning may be the key to shoring up weaknesses in ordinary CoT reasoning.

Optimizable programmatic solutions to visual problems. Allowing the programs we synthesized to be
parameterizable and optimizable was central to our attempt to solve the BPs. Rather than attempt to syn-
thesize the exact value of parameters along with the rest of the code, with our method the VLM can simply
produce a high-level program and allow optimization to pinpoint exact values.

Formalized Rules and Interpretability Prior work such as |Wiist et al.| (2025) has largely focused on
whether models can articulate abstract rules in natural language and then apply them. While this is in-
formative, it leaves open the question of whether the stated rule actually governs the model’s predictions. A
model might claim to separate “spirals from non-spirals,” yet rely on spurious cues in practice. By contrast,
formalizing rules as executable programs provides a direct and verifiable link between reasoning and out-
come. Programs can be run deterministically on held-out examples, making it clear whether a hypothesized
rule truly accounts for correct classifications. Their structure also exposes intermediate operations that reveal
how a solution is implemented and make failures easier to diagnose.

5.5 CONCLUSION

Formal programs and natural language are two distinct mediums for representing and reasoning about con-
cepts, each with their own strengths and weaknesses with respect to flexibility, expressiveness, and precision.
Through our investigation of the BPs we found that combining the two allows us to reason more accurately
about the visual concepts central to the puzzles, allowing us to exceed average human accuracy for the first

Under review as a conference paper at ICLR 2026

time. Our hope is that this system, which is able to propose novel concepts and verify them adequately, is a
first step toward Al systems that can acquire and use new concepts as flexibly as humans.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In CVPR, 2016.
M.M. Bongard and J.K. Hawkins. Pattern Recognition. Spartan Books, 1970.

Francois Chollet. On the measure of intelligence, 2019.

Stefan Depeweg, Contantin A Rothkopf, and Frank Jikel. Solving bongard problems with a visual language
and pragmatic constraints. Cognitive Science, 48(5):e13432, 2024.

Harry E Foundalis. Phaeaco: A cognitive architecture inspired by Bongard’s problems. PhD thesis, ProQuest
Information & Learning, 2006.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764-10799. PMLR, 2023.

Douglas R Hofstadter. Godel, Escher, Bach: an eternal golden braid. Basic books, 1999.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Solim LeGris, Wai Keen Vong, Brenden M. Lake, and Todd M. Gureckis. H-arc: A robust estimate of human
performance on the abstraction and reasoning corpus benchmark, 2024. URL https://arxiv.org/
abs/2409.01374.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:9459-9474, 2020.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-
Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented code emulator.
arXiv preprint arXiv:2312.04474, 2023.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn, Hao Tang,
Michelangelo Naim, Dat Nguyen, et al. Combining induction and transduction for abstract reasoning.
arXiv preprint arXiv:2411.02272, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode.
Science, 378(6624):1092-1097, 2022.

V Maksimov. A system for teaching the classification of geometric patterns. Modeling of Learning and
Behavior, pp. 29-120, 1975.

Weili Nie, Zhiding Yu, Lei Mao, Ankit B. Patel, Yuke Zhu, and Animashree Anandkumar. Bongard-logo: a
new benchmark for human-level concept learning and reasoning. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS 20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

10

https://arxiv.org/abs/2409.01374
https://arxiv.org/abs/2409.01374

Under review as a conference paper at ICLR 2026

Alexander Novikov, Ngan Vi, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner,
Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphaevolve: A
coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131, 2025.

Nikhil Raghuraman, Adam W Harley, and Leonidas Guibas. Support-set context matters for bongard prob-
lems. Transactions on Machine Learning Research, 2023.

John Raven and Jean Raven. Raven progressive matrices. In Handbook of nonverbal assessment, pp. 223—
237. Springer, 2003.

Kazumi Saito and Ryohei Nakano. A concept learning algorithm with adaptive search. In Machine intelli-
gence 14: applied machine intelligence, pp. 347-363. 1996.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148-175, 2015.

Atharv Sonwane, Sharad Chitlangia, Tirtharaj Dash, Lovekesh Vig, Gautam Shroff, and Ashwin Srini-
vasan. Using program synthesis and inductive logic programming to solve bongard problems, 2021.
URL https://arxiv.org/abs/2110.09947.

Shimon Ullman. Visual routines. In Readings in computer vision, pp. 298-328. Elsevier, 1987.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837, 2022.

Rujie Wu, Xiaojian Ma, Zhenliang Zhang, Wei Wang, Qing Li, Song-Chun Zhu, and Yizhou Wang.
Bongard-openworld: Few-shot reasoning for free-form visual concepts in the real world. arXiv preprint
arXiv:2310.10207, 2023.

Antonia Wiist, Tim Tobiasch, Lukas Helff, Inga Ibs, Wolfgang Stammer, Devendra S. Dhami, Constantin A.
Rothkopf, and Kristian Kersting. Bongard in wonderland: Visual puzzles that still make ai go mad?, 2025.
URL https://arxiv.org/abs/2410.19546.

Salahedine Youssef, Matej Zecevi¢, Devendra Singh Dhami, and Kristian Kersting. Towards a solution to
bongard problems: A causal approach. arXiv preprint arXiv:2206.07196, 2022.

11

https://arxiv.org/abs/2110.09947
https://arxiv.org/abs/2410.19546

Under review as a conference paper at ICLR 2026

A OUTPUT RULES FOR SOLUTION TASK

The results in this section include BP#1, which was omitted above for consistency with human data.

A.1 CLAUDE 3.7+PROGRAMS+COT SOLUTION RESULTS

Problem Index Rule Rater 1 Rater 2 Final Score

1 Image is completely blank or white 1 1 1

2 The shapes in positive examples are larger, 1 1 1
taking up a significant portion of the frame
No solid filled-in areas appear in the image 1 1 1

4 Negative examples all have at least one 1 1 1
concave section (an indentation or inward
curve in the shape’s outline)

5 The shape is a polygon (has straight sides 1 1 1
and vertices/corners)

6 The shape is a triangle or has a triangular 0 1 0
element with a vertex pointing in the verti-
cal direction (up or down)

7 Shapes have vertical orientation (taller than 1 1 1
they are wide)

8 The shape is positioned on the right side of 1 1 1
the image

9 Shapes with continuous curves or straight 1 1 1
line segments only (no jagged edges)

10 The shape is triangular or has a triangular 1 1 1
outline

11 Shapes that are elongated (longer in one di- 1 1 1
mension than the other)

12 Figures with a single primary axis of elon- 1 1 1
gation (longer in one direction than others)

13 The shape is either a vertical rectangle or a 1 1 1
horizontal ellipse

14 Images contain connected, continuous 0 0 0
shapes (without disconnected elements)

15 The shape forms a continuous boundary 1 1 1
that completely encloses an area

16 The pattern spirals or curves in a counter- 1 1 1

clockwise direction when traced from out-
side to inside

12

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Final Score

17 The shape contains at least one "V or 1 1 1
wedge-like feature pointing inward or cre-
ating a notch in the shape

18 Shapes contain at least one area where the 1 1 1
outline pinches inward from both sides
19 The shape has roughly balanced left and 0 1 0

right sides connected by one or more hor-
izontal segments in the middle, creating a
shape that can be traversed left-to-right-to-
left without lifting your pen

20 In positive examples, if you trace the curve 0 0 0
from one dot to the other, both dots are
placed along the outer perimeter of the
shape

21 The largest shapes don’t occur in fixed 0 0 0
pairs (like large circle with large triangle)
but rather have more variety in their sizes
and relative positioning

22 Each positive image contains either multi- 1 0 0
ple circles or a combination of different ge-
ometric shapes without any shape appear-
ing to be significantly larger than others in
the same image

23 Each positive image contains exactly one 1 1 1
shape

24 The image contains at least one circle 1 1 1

25 The image contains at least one hollow cir- 1 1 1

cle (ring) and no solid/filled circles

26 Each positive image contains at least one 0 0 0
solid shape (filled triangle or filled circle)

27 Each positive example contains at least two 0 0 0
different types of filled shapes (among tri-
angle, circle, and square)

28 The number of hollow circles (rings) does 1 1 1
not exceed the number of solid circles in
the image

29 In positive examples, there is at least one 1 0 0

circle outside a closed shape, but the ma-
jority of circles are inside a closed shape

30 The image contains at least one intersection 1 1 1
where lines or curves cross each other
Continued on next page

13

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater 1 Rater 2 Final Score

31

In positive images, when there are
crossings/intersections, they are self-
intersections of the same curve, while
negative images either have multiple
disconnected components or intersections
between different components

1

1 1

32

The shape has at least one sharp outward-
pointing angle or corner

33

The shape contains at least one sharp point,
acute angle, or cusp

34

The white shape is relatively large com-
pared to its containing black shape (taking
up significant interior space rather than be-
ing a small element)

35

The white shape/hole is aligned parallel to
the major axis of the black shape

36

The triangle is positioned above the circle

37

The triangle is positioned above the circle

38

The triangle is larger than or equal to the
circle in size

39

All line segments in the image are parallel
or nearly parallel to each other

40

41

The image does not contain exactly 4 black
circles

In positive examples, the solid black circles
and hollow circles form alternating patterns
where they are distributed in opposite sides
or regions of the image

42

In positive examples, there is exactly one
dot outside the enclosed shape

43

Each figure has peaks or heights that in-
crease in size from left to right

44

All circles in the image are attached to the
outer/convex side of curves rather than be-
ing enclosed by or on the inside/concave
side of curves

45

In positive examples, when two shapes ap-
pear, the black shape is visually “follow-
ing” or positioned after the white/outlined
shape (when read left-to-right or top-to-
bottom)

14

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Final Score
46 The triangle points toward or into the circle 0 0 0
47 If triangles and circles appear together in 1 1 1

a nested relationship, the triangle must be
inside the circle (not the circle inside the
triangle)

48 Each positive image contains at least one 0 0 0
hollow/outline shape (empty square or
empty circle) AND at least one solid/filled
shape (filled triangle, filled square, or filled
circle)

49 Each positive image has exactly 3 small 1 1 1
circles grouped closely together inside a
larger shape

50 Positive examples have symmetrical ar- 1 1 1
rangements of shapes, with elements bal-
anced on the left and right sides of a verti-

cal axis

51 The circles are arranged in a line pattern or 0 0 0
can be connected to form straight lines

52 The direction of the arrows follows the 0 0 0

curve they’re on (arrows point along the
path’s direction rather than against it)

53 The outer shape has 4 or more sides, and 1 1 1
the inner shape has the same or fewer sides
than the outer shape

54 In positive examples, the three shapes (tri- 1 1 1
angle, circle, and plus sign) always appear
in a counter-clockwise arrangement when
viewed from the center of the image

55 In positive examples, all small circles (loop 0 0 0
shapes) are attached to the outside/edge of
the main shape

56 All positive examples have shapes arranged 0 0 0
in a way that no shape appears at the bottom
center of the image

57 Each image contains exactly two identical 1 1 1
shapes (same shape, same size, same style)

58 The image contains an even number of 0 0 0
solid black squares (2 or 4)

Continued on next page

15

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater 1 Rater 2 Final Score

59

The positive examples all contain two sim-
ilar shapes (same shape category) of dif-
ferent sizes, while negative examples ei-
ther contain different shape types or have
shapes that aren’t clearly related by simi-
larity

1

1 1

60

Each image contains exactly three geomet-
ric shapes

61

In positive examples, the plus symbols ap-
pear on both sides of the line(s), with at
least one plus symbol on each side of ev-
ery line.

62

In positive examples, any line segment or
curve never intersects/crosses itself or an-
other line segment

63

All positive examples have shapes with the
darker/shaded portion consistently on the
right side or right edge of the figure

64

In positive examples, the small circle and
the cross/plus sign are on opposite sides of
the oval (one is above/below the oval while
the other is to the left/right)

65

Circles surround or encircle the triangles

66

In positive examples, unconnected circles
always appear in a straight horizontal line
across the middle of the diagram

67

All branches curve in the same general di-
rection (either all curve left or all curve
right) within each positive example

68

The rightmost branch or curve starts higher
on the vertical line than the leftmost branch
or curve

69

The black circle (node) is positioned at the
top of a vertical stem/line that connects di-
rectly to other curved branches

70

The main branches extend outward hori-
zontally or diagonally from the trunk rather
than growing primarily upward

71

Each positive image contains at least one
circle with something inside it, or a larger
shape containing a circle

16

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Final Score

72 Positive examples have at least one end- 1 1 1
point that points in the same direction as
another part of the line (either continu-
ing in the same orientation or being par-
allel), while negative examples have end-
points pointing in different/diverging direc-

tions

73 Each image contains exactly three shapes: 0 0 0
one ellipse/oval, one triangle, and one rect-
angle/quadrilateral

74 If the shape has a stem/stalk, it connects to 1 1 1

the rounded end, not the pointed end

75 The curved line opens away from the trian- 1 0 0
gle (the concave side of the arc faces away
from the triangle)

76 Shapes that narrow in the middle like an 1 1 1
hourglass or bow-tie

77 All angles in the figure are acute (less than 0 0 0
90 degrees)

78 The arrangement of lines is asymmetrical 0 0 0
and appears random rather than structured

79 The triangle is never positioned above any 0 0 0
circle

80 The circles and plus sign form a triangle 0 0 0

pattern (not a straight line arrangement)

81 There is a clear spatial separation between 0 1 0
filled objects and outlined objects, with no
intermingling of the two types

82 The circle is positioned toward the center 0 0 0
of the arrangement rather than at the edge

83 The circle is positioned in the center of the 0 1 0
arrangement

84 The square is positioned outside or at the 0 1 0

edge of the arrangement of circles, not in
the center of the arrangement

85 Contains at most 3 distinct line segments 1 1 1
total (where a line segment is a straight line
without bends)

86 Negative examples all contain at least one 1 1 1
point where 4 or more lines meet or inter-
sect

Continued on next page

17

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Final Score
87 All angles in the figure are either right an- 0 0 0

gles (90°) or diagonal angles (around 45°

or 135°)
88 The arrangement must maintain symmetry 0 0 0

or balance in the overall design

89 In each positive example, whenever two 0 0 0
or more capsules are connected/touching,
at least one of those connected capsules is
filled (solid black)

90 All filled (black) shapes in the positive ex- 0 0 0
amples are symmetrically arranged from
the center or edges

91 Each image contains elements that form 0 0 0
specific geometric patterns with connected
components (like branching structures,
grouped shapes, or connected nodes) rather
than disconnected or crossing elements

92 The pattern forms a closed or nearly closed 0 0 0
loop (circle or oval shape)

93 The hollow circles form paths that diverge 0 0 0
or split in multiple directions rather than
following a single continuous curve

94 The black filled circle serves as a central 0 1 0
connector or internal element in the chain
of hollow circles

95 The internal lines are oriented vertically 1 1 1
from top to bottom rather than horizontally
from side to side

96 The pattern forms a triangular/pyramid 1 1 1
shape (whether upright or inverted) with
lines decreasing in length from center out-
ward, or with lines arranged to form a tri-
angular shape

97 The image contains a triangular shape or 1 1 1
triangular arrangement of elements

98 Contains a triangle shape 1 1 1

99 Triangles and circles are intermixed/inte- 1 1 1
grated throughout the image

100 The image contains the letter ”A” (Latin 1 1 1
letter A)

Total 56 58 52

18

Under review as a conference paper at ICLR 2026

A.2 GPT-40+PROGRAMS+COT SOLUTION RESULTS

Problem Index Rule Rater 1 Rater 2 Final Score

1 Positive images are completely blank, 1 1 1
without any shapes or marks.

2 The shape significantly fills the frame 1 1 1

3 contains no black-filled regions 1 1 1

4 Contains no irregular or concave edges 1 1 1

5 Contains shapes with only straight edges 1 1 1

6 Contains a triangle 1 1 1

7 shape is vertically elongated 1 1 1

8 The figure must have a convex polygo- 0 0 0
nal property OR resemble basic geometric
shapes

9 Contains smooth, continuous boundary 1 1 1
with no sharp angles

10 Shape not a quadrilateral 1 1 1

11 The figure or one of its holes is non-regular 0 0 0
or non-symmetrical

12 the figure is elongated or narrow 1 1 1

13 Shape is a vertically aligned rectangle or 1 0 0
horizontally aligned ellipse

14 Contains smooth, connected curves or 0 0 0
loops

15 Figure is fully enclosed without breaks 0 1 0

16 Contains a single spiral or looping element 0 0 0

17 Contains at least one sharp angle (less than 0 0 0
90°)

18 Contains a sharp inward-pointing angle 0 0 0

19 Contains at least one curve narrowing into 0 0 0
a ’neck”

20 The image contains at least one loop with a 0 0 0
small circle attached to its outline.

21 Images must have at least one triangle or 0 0 0

dot in an implied positional relationship.

Continued on next page

19

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Final Score

22 An image is positive if all shapes are open 0 0 0
or unfilled (e.g., no filled-in shapes).

23 Contains exactly one shape 1 1 1

24 The image contains at least one circle 1 1 1

25 No filled black circle is present 1 1 1

26 The only filled figures in the image are tri- 0 0 0
angles

27 contains at least one solid black circle 0 0 0

28 Has more filled circles than unfilled circles 1 1 1

29 All circles are contained within a boundary. 0 0 0

30 The image contains intersecting curves or 1 1 1
lines forming enclosed regions.

31 Contains no disconnected shapes 0 0 0

32 Must contain at least one sharp (non- 1 0 0

smooth) angle

33 Contains at least one sharp angle or pointed 1 1 1
projection

34 Contains a large, hollow region in the cen- 1 1 1
ter

35 contains exactly one central hole 0 0 0

36 No circle appears above a triangle in the 1 1 1
image.

37 The triangle is directly above the circle 0 1 0

38 Image is positive if the triangle in the image 1 1 1
is larger than the circle.

39 All black lines in the image are parallel or 1 1 1
approximately parallel

40 Dots do not form implied parallel lines 0 0 0

41 Contains three collinear points 0 0 0

42 At least three black points are evenly 0 1 0

spaced with similar distances

43 At least one smooth curve is present 0 0 0

Continued on next page

20

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Final Score

44 Each small circle is located at the end of a 0 0 0
curve.

45 At least one white shape is overlaid on a 1 1 1
black shape

46 Solid (black-filled) circles are present 0 0 0

47 No filled circle inside any triangle 0 0 0

48 Only filled shapes are on top 1 1 1

49 A group of 4 or more dots must be enclosed 0 0 0
within a single outlined shape.

50 Contains shapes arranged in symmetry 0 1 0
about a center point

51 Points are not evenly spaced 0 0 0

52 curve is continuous and does not self- 0 0 0
intersect

53 The inner shape has fewer sides than the 1 1 1
outer shape

54 No symbol is isolated in the bottom-left 0 0 0
corner.

55 The small circle is attached to the boundary 0 0 0
of the shape rather than floating away

56 No mixture of filled and outlined shapes 1 1 1

57 All shapes in the image are the same size. 0 1 0

58 contains exactly one hollow square 0 0 0

59 All objects are the same shape (e.g., both 0 1 0
circles, both triangles).

60 If the image contains two or more identical 0 1 0
shapes.

61 A ”+” symbol exists on both sides of any 0 0 0
adjacent line

62 Contains smooth curves or wavy lines 0 0 0
without sharp edges

63 Oval is oriented diagonally (not perfectly 0 0 0

horizontal or vertical)

21

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Final Score

64 Shapes are distributed randomly, not 0 0 0
stacked or lined up

65 Triangles and circles are evenly distributed 0 0 0
(not overly grouped in one main cluster)

66 Extra circular nodes are not forming verti- 1 1 1
cal groups

67 The image contains a vertical line with two 0 0 0
symmetrical curves.

68 The left branch begins at a lower vertical 1 0 0
position than the right branch.

69 Circle is attached to a line 0 0 0

70 Contains lines with fewer crossings or sim- 0 1 0
pler branching

71 The image contains exactly one nested en- 0 0 0
closure

72 One continuous curve with no sharp angles 0 0 0

73 All three shapes in the image differ in ori- 0 0 0
entation.

74 The shape must have at least one concave 0 0 0
side

75 The curved shape has an open end facing 0 0 0
outward (not closed around another fea-
ture).

76 Shape does not have a closed loop 0 0 0

77 The right branch begins higher than the left 0 0 0
branch.

78 Contains exactly three lines, all with differ- 0 0 0
ing orientations

79 contains a black circle and a white circle 0 0 0
that are parallel

80 Exactly two filled circles are present in the 0 0 0
image.

81 Images containing at least one pair of iden- 0 0 0

tical shapes (based on size and fill) are pos-
itive.

22

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Final Score

82 There is exactly one outlined circle. 0 0 0

83 The convex hull of crosses always overlaps 1 1 1
the convex hull of the circle.

84 The small square is near the exterior bound- 0 1 0
ary of the arrangement

85 geometric configuration formed by no 1 0 0
more than 3 objects

86 The image contains exactly one or two ver- 1 1 1
tices where three lines meet.

87 Contains no intersections of lines 0 0 0

88 Each cap structure must exactly enclose 0 0 0
one other cap

89 contains three or fewer total shapes 1 0 0

90 Each row contains an odd number of 0 0 0
grouped oval shapes.

91 Contains exactly three components 1 1 1

92 Contains a continuous curve with at least 0 1 0
one large closed or rounded section

93 The image contains exactly three distinct 0 0 0
groups of dots.

94 The black circle (if present) is never at the 1 1 1
endpoint of the structure

95 Contains parallel vertical lines 0 1 0

96 The lines in positive examples form pat- 0 0 0
terns that converge (e.g., triangles or
peaks), whereas lines in negative examples
are parallel or form a uniform grid.

97 The design emphasizes a triangular pattern, 1 1 1
not circular patterns.

98 The image contains at least one triangle. 1 1 1

99 Triangles and circles are mixed together in 1 1 1
the pattern.

100 No loops or circles in the figure 0 1 0

Total 37 44 32

23

Under review as a conference paper at ICLR 2026

A.3 CLAUDE 3.7 (BASELINE) SOLUTION RESULTS

Problem Index

Rule

Rater 1 Rater 2 Score

1

An image is positive if it is blank/empty
with no visible content, while an image is
negative if it contains any visible shapes,
patterns, or lines

whether the shape extends to/near the edges
of the frame (positive) or is contained
well within the boundaries with significant
white space around it (negative)

An image is positive if it shows only the
outline/border of a shape (hollow), and
negative if it shows a solid/filled shape

A shape is positive if and only if it is con-
vex (has no indentations or inward curves),
while a shape is negative if it has at least
one concave section

Positive images contain only shapes with
straight edges and vertices, while negative
images contain only shapes with curved
edges and no vertices

An image is positive if and only if it con-
tains a shape with exactly 3 sides (a trian-
gle), while an image is negative if it con-
tains a shape with exactly 4 sides (a quadri-
lateral)

An image is positive if the shape has a ver-
tical orientation (taller than wide), and neg-
ative if the shape has a horizontal orienta-
tion (wider than tall)

the position of the shape within the frame:
positive examples have shapes on the right
side, while negative examples have shapes
on the left side

Positive images have smooth outlines (ei-
ther straight lines or curves), while negative
images have jagged, zigzag outlines with
many small angular segments

1 1 1
1 0 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

24

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

10

that positive images contain triangular
shapes (3-sided polygons) while negative
images contain quadrilateral shapes (4-
sided polygons)

11

that positive images contain shapes with
low rotational symmetry (0 or 2-fold),
while negative images contain shapes with
higher rotational symmetry (3-fold or
greater)

12

Positive images contain shapes that have a
single clear axis of elongation, while nega-
tive images contain shapes that either have
equal dimensions in multiple directions or
have multiple axes of similar length/impor-
tance

13

An image is positive if and only if the
shape’s major axis aligns with its natural
orientation (vertical for rectangles, hori-
zontal for ellipses), while an image is nega-
tive if the shape’s major axis contradicts its
natural orientation

14

Positive examples contain at least one
shape or structure that creates a bound-
ary or enclosure (either complete or nearly
complete), while negative examples lack
this property of enclosure

15

An image is positive if and only if it con-
tains a completely closed shape (a continu-
ous line that forms a complete loop with no
gaps or openings), while negative images
contain shapes with at least one opening or
gap in their boundary

16

the direction of rotation or winding: coun-
terclockwise rotation for positive examples
and clockwise rotation for negative exam-
ples

17

An image is positive if and only if the
shape contains at least one concave angle
(an inward-pointing vertex where the inte-
rior angle is greater than 180 degrees)

1 1 1
0 1 0
1 1 1
1 1 1
0 0 0
1 1 1
1 1 1
1 1 1

25

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

18

Positive images contain at least one con-
striction point where the shape narrows sig-
nificantly between wider sections, while
negative images lack such pinch points and
maintain more consistent width throughout
their form

1 1 1

19

that positive examples have their main con-
necting element oriented horizontally (con-
necting left and right parts), while nega-
tive examples have their main connecting
element oriented vertically (connecting top
and bottom parts)

20

An image is positive if and only if a straight
line connecting the two dots does not in-
tersect the boundary of the shape (the dots
have a direct line of sight” to each other)

21

An image is positive if and only if it con-
tains at least one small circle AND at least
one triangle (of any size)

22

An image is positive if and only if the geo-
metric shapes are arranged along a diagonal
axis across the image

23

An image is positive if and only if it con-
tains exactly one geometric shape

24

An image is positive if and only if it con-
tains at least one circle

25

Positive images must contain both a hollow
circle () AND a filled triangle (), while neg-
ative images contain at least one filled cir-
cle () and never have both a hollow circle
and filled triangle together

26

An image is positive if and only if it con-
tains BOTH at least one solid triangle AND
at least one hollow circle within the same
image

27

An image is positive if and only if it con-
tains at least one solid/filled triangle

28

An image is positive if and only if the num-
ber of filled circles exceeds the number of
hollow circles

26

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

29

An image is positive if and only if it con-
tains exactly one circle outside the closed
shape, while negative images contain mul-
tiple (two or more) circles outside the
closed shape

30

An image is positive if and only if it con-
tains at least one intersection where lines
or curves cross over each other

31

An image is positive if and only if it con-
sists of exactly one continuous curve (can
be drawn without lifting the pen), while
an image is negative if it contains two or
more disconnected components that would
require lifting the pen to draw the complete
image

32

An image is positive if it contains at least
one sharp, acute angle or pointed vertex;
negative images lack such sharp points
and are characterized by smoother, more
rounded contours

33

Positive images contain at least one acute
angle or sharp point in their geometry,
while negative images lack any acute an-
gles or sharp points

34

An image is positive if the white shape in-
side the black shape is large and extends to
(or near) the edge of the black shape

35

An image is positive if and only if the white
internal element is oriented parallel to the
major axis of the containing shape

36

an image is positive if and only if the trian-
gle is positioned in a higher or more right-
ward position relative to the circle

37

the directional arrangement of the three
shapes: clockwise arrangement for positive
images and counterclockwise arrangement
for negative images

0 0 0
1 1 1
1 1 1
1 0 0
1 1 1
1 1 1
1 1 1
0 0 0
0 0 0

38

An image is positive if and only if the tri-
angle is larger than or equal in size to the
circle; an image is negative if the circle is
larger than the triangle

27

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

39

An image is positive if and only if all three
line segments are parallel to each other
(have the same orientation)

40

An image is positive if the 4 dots cannot
form a rectangle when connected, while an
image is negative if the 4 dots can form
a rectangle (including squares) when con-
nected

41

An image is positive if and only if all solid
circles can be separated from all hollow cir-
cles by a single straight line (linear separa-
bility)

42

An image is positive if and only if it con-
tains a shape with exactly 3 dots inside ar-
ranged in a roughly linear pattern (where
the dots can be connected by a relatively
straight line)

43

An image is positive if the pattern shows
increasing amplitude/height from left to
right, and negative if the pattern shows de-
creasing amplitude/height from left to right

44

An image is positive if and only if all cir-
cles are positioned on the convex (outward)
side of curves

45

an image is positive if the filled (black)
shape appears to the right of or below the
unfilled (white) shape; an image is negative
if the filled (black) shape appears to the left
of or above the unfilled (white) shape

46

An image is positive if and only if there is a
directional ’pointing” relationship between
the shapes, where either a vertex of the tri-
angle points toward the circle or a portion
of the circle points toward the triangle

47

An image is positive if and only if it con-
tains at least one triangle inside a circle

48

An image is positive if and only if it con-
tains exactly one hollow square (outline
square)

1 1 1
0 0 0
0 0 0
1 1 1
1 1 1
0 0 0
0 0 0
0 0 0
1 1 1
0 0 0

28

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

49

In positive images, the cluster of 3 small
circles appears INSIDE the large geometric
shape, while in negative images, the clus-
ter of 3 small circles appears OUTSIDE the
large geometric shape

50

An image is positive if and only if it has
vertical (left-right) symmetry, meaning it
can be divided by a vertical line into two
mirror-image halves

51

An image is positive if and only if at least
3 of its circles can be connected to form
a straight line (either perfectly horizontal,
vertical, or diagonal)

52

whether all arrows in the image indicate the
same rotational direction (positive) or op-
posite rotational directions (negative)

53

An image is positive if and only if the num-
ber of sides of the inner shape is less than
or equal to the number of sides of the outer
shape

54

the directional arrangement of the shapes:
if you trace a path from triangle to circle
to plus sign and back to triangle, positive
examples follow a counterclockwise path,
while negative examples follow a clock-
wise path

55

An image is positive if it contains a small
circle that is attached to the right side of the
main shape, and negative if the small circle
is attached to the left side of the main shape

56

An image is positive if and only if it con-
tains at least one triangle that is positioned
vertically higher than at least one circle

57

An image is positive if and only if it con-
tains exactly two identical shapes

58

An image is positive if the shapes are dis-
tributed to occupy at least three of the four
quadrants (or corners) of the image

0 1 0
1 1 1
0 0 0
0 0 0
1 1 1
1 1 1
0 0 0
0 0 0
1 1 1
0 0 0

29

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

59

An image is positive if it contains two
shapes of the same type but different sizes,
while an image is negative if it contains two
shapes of different types

60

An image is positive if and only if it con-
tains at least one shape that is positioned
both to the right of some shape AND be-
low some shape (not necessarily the same
reference shape)

61

An image is positive if and only if the line
divides the space such that there is at least
one plus sign on each side of the line

62

Positive images have at least one endpoint
that remains “’free” (not connected back to
the shape and not crossing itself), while
negative images have shapes that either
form closed loops, have self-intersections,
or have all endpoints connecting back to
form closed figures

63

Positive examples all have shapes with
a distinct straight or thicker right edge,
while negative examples lack this consis-
tent right-side emphasis

64

that positive images have ellipses tilted at
an angle, while negative images have verti-
cally oriented ellipses

65

An image is positive if the circles are ar-
ranged to surround or encircle the triangles,
creating a containment relationship

66

An image is positive if and only if it con-
tains a horizontal row of disconnected cir-
cles that acts as a dividing line, separating
the connected network into distinct regions
above and below this row

67

An image is positive if the curved elements
are on the left side of the structure, and neg-
ative if the curved elements are on the right
side of the structure

1 1 1
0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0
0 1 0
0 0 0

30

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

68

An image is positive if all curved segments
have their concavity facing left, while an
image is negative if all curved segments
have their concavity facing right

69

An image is positive if the curved branches
open toward the right (concavity faces
right), and negative if the curved branches
open toward the left (concavity faces left)

70

that positive images show horizontally ori-
ented branching structures with a curved
main branch and asymmetrical growth pat-
tern, while negative images show vertically
oriented branching structures with more
symmetrical, multi-directional growth pat-
terns

71

An image is positive if and only if it con-
tains at least one instance of a shape that is
completely contained within another shape

72

An image is positive if and only if the curve
has at least one horizontal endpoint (point-
ing left or right) positioned at the bottom or
lower portion of the image

73

the directional arrangement of the three
shapes: clockwise arrangement indicates a
positive image, while counterclockwise ar-
rangement indicates a negative image

74

An image is positive if and only if it con-
tains at least one sharp point or corner in its
shape

75

An image is positive if and only if it con-
tains a curved line that opens toward the
left side AND has a triangle positioned to
the right of the curved line

76

An image is positive if the curves on oppo-
site sides bend in opposite directions (one
concave, one convex), creating a shape
with a pinched middle

77

An image is positive if and only if all angles
formed between any two adjacent lines at
all vertices are acute (less than 90 degrees)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0

31

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

78

An image is positive if and only if no two
lines in the image are parallel to each other

79

An image is positive if the three shapes
form a triangular arrangement (non-
collinear), while an image is negative if the
three shapes are arranged in a more linear
fashion (collinear or nearly collinear)

80

that in positive images, the plus sign and
the two dots form a right angle (90-degree
angle) when connected by imaginary lines,
with the plus sign at the vertex of the angle

81

Positive images have a clear spatial separa-
tion between filled (solid) shapes and un-
filled (outline) shapes, while negative im-
ages have these two types of shapes mixed
together without a clear spatial division

82

An image is positive if the circle is posi-
tioned at the periphery/edge of the arrange-
ment, away from the center and not sur-
rounded by plus signs

83

An image is positive if and only if the cir-
cle is centrally located and surrounded by
plus signs from multiple directions (at least
3-4 different sides), creating an enclosure
pattern

84

An image is positive if the square is posi-
tioned outside or at the periphery of the cir-
cle arrangement; an image is negative if the
square is positioned in the center or near the
center of the circle arrangement

85

An image is positive if and only if it con-
tains exactly 3 connected line segments

86

An image is positive if and only if every
junction in the image has at most 3 line seg-
ments meeting at a point

87

An image is positive if and only if all angles
formed by intersecting or connecting line
segments are multiples of 45 degrees

0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 1 0
1 1 1
0 0 0
1 1 1
0 0 0

32

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

88

An image is positive if and only if it con-
tains at least one “sandwich” arrangement
where either a filled black capsule is posi-
tioned between two hollow capsules, or a
hollow capsule is positioned between two
filled black capsules

89

An image is positive if and only if it con-
tains at least one filled black capsule that is
directly adjacent to (touching) at least one
hollow capsule

90

An image is positive if and only if it con-
tains an even number of filled (black) cap-
sules that is greater than zero

91

An image is positive if and only if it con-
tains exactly three primary elements or
components

92

In positive examples, solid black circles
mark the corners or turning points where
the pattern changes direction, while in neg-
ative examples, solid circles (if present) are
positioned randomly or along straight seg-
ments of the pattern

93

An image is positive if and only if no three
solid black circles can be connected to form
a straight line

94

An image is positive if the filled (black) cir-
cle is in a middle position serving as a junc-
tion point between branches, while an im-
age is negative if the filled (black) circle is
at an endpoint of the sequence

95

the orientation of the lines: positive images
contain vertical lines (running top to bot-
tom), while negative images contain hori-
zontal lines (running left to right)

96

An image is positive if and only if the
arrangement of lines forms a shape that
points to the left (+—)

0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0
0 1 0
1 1 1
0 0 0

97

that positive images contain triangular
shapes (3 sides/corners) while negative im-
ages contain circular shapes (continuous
curvature with no corners)

33

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater 1 Rater 2 Score
98 An image is positive if it contains a trian- 1 1 1
gle (3-sided polygon) and negative if it con-
tains a quadrilateral (4-sided polygon)
99 An image is positive if circles and trian- 1 1 1
gles are randomly mixed together through-
out the space; an image is negative if cir-
cles and triangles are spatially segregated
into their own distinct regions
100 that positive images show the letter ”A” 1 1 1
while negative images show the letter ”B”
Total 47 52 45

A.4 GPT-40 (BASELINE) SOLUTION RESULTS

Problem Index

Rule

Rater 1 Rater 2 Score

1

An image is positive if it contains a single,
closed, smooth, and continuous shape with
no sharp angles or straight edges. An im-
age is negative if it contains sharp angles,
straight edges, disconnected elements, or
multiple distinct shapes.

An image is positive if it contains a large,
centered shape that occupies a significant
portion of the image. An image is negative
if it contains a small, off-center shape that
occupies only a small portion of the image.

- An image is positive if it contains hollow
(outlined) shapes. - An image is negative if
it contains filled (solid) shapes.

An image is positive if it is a closed shape
that is either a smooth curve or a regular
polygon with straight sides. An image is
negative if it is irregular, wavy, or not a
closed shape.

A shape is positive if it is a polygon (com-
posed of straight lines and vertices). A
shape is negative if it contains curves or
lacks straight edges.

0 0 0
0 1 0
1 1 1
0 1 0
1 1 1

34

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

6

- An image is positive if it contains a trian-
gle (a three-sided polygon). - An image is
negative if it does not contain a triangle.

An image is positive if the shape is verti-
cally oriented (elongated along the vertical
axis). An image is negative if the shape is
horizontally oriented (elongated along the
horizontal axis or spread horizontally).

An image is positive if the shape is up-
right, centered, and in its standard geomet-
ric form. An image is negative if the shape
is rotated, flipped, distorted, or otherwise
not in its standard orientation.

An image is positive if its edges are smooth
and continuous, without jagged or spiky
features. An image is negative if its edges
are jagged, with sharp points or angular
transitions.

10

An image is positive if the shape is a trian-
gle or derived from a triangle. An image is
negative if the shape is not a triangle.

11

An image is positive if it contains an open
boundary, an irregular shape, or an inner
cutout. An image is negative if it is a
closed, regular, and symmetrical shape.

12

- An image is positive if it contains an open
shape (a shape with at least one gap or
opening). - An image is negative if it con-
tains a closed shape (a shape with no gaps
or openings).

13

An image is positive if the shape is verti-
cally oriented (taller than it is wide). An
image is negative if the shape is horizon-
tally oriented (wider than it is tall).

14

An image is positive if it contains contin-
uous, smooth, or connected shapes with
flowing curves or cohesive structures. An
image is negative if it contains discon-
nected, sharp, or angular elements or iso-
lated shapes.

1 1 1
1 1 1
0 0 0
1 1 1
1 1 1
0 0 0
0 0 0
0 0 0
0 0 0

35

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

15

An image is positive if it contains a closed
shape with no breaks or self-intersections.
An image is negative if the shape is open,
self-intersecting, or has a gap in its outline.

16

An image is positive if it contains a spiral
or nested shape that is incomplete or bro-
ken. An image is negative if it contains a
spiral or nested shape that is complete and
unbroken.

17

A shape is positive if it has at least one
sharp point or angle and is not fully en-
closed (i.e., it has an open boundary). A
shape is negative if it is fully enclosed and
lacks sharp points or angles.

18

An image is positive if the shape is sym-
metrical (either reflective or rotational). An
image is negative if the shape is asymmet-
rical.

19

An image is positive if it contains a closed
loop that is intersected or connected by a
straight line. Otherwise, it is negative.

20

An image is positive if the curve forms a
simple closed loop (does not cross itself)
and encloses the two dots. An image is neg-
ative if the curve crosses itself at least once.

21

An image is positive if and only if it con-
tains at least one non-inverted triangle and
one circle.

22

An image is positive if it contains at least
two shapes of the same type. An image is
negative if all shapes in the image are of
different types.

23

An image is positive if it contains exactly
one shape. An image is negative if it con-
tains two shapes.

24

An image is positive if it contains at least
one circle. Otherwise, it is negative.

25

An image is positive if it contains a black
triangle. Otherwise, it is negative.

1 1 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 1 1
1 1 1
1 1 1

36

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

26

- An image is positive if it contains a mix
of solid and hollow shapes. - An image is
negative if all shapes are either all solid or
all hollow.

27

- An image is positive if it contains at least
one solid shape and at least one hollow
shape. - An image is negative if it contains
only solid shapes or only hollow shapes.

28

An image is positive if it contains at least
one filled circle and one unfilled circle.
Otherwise, it is negative.

29

- An image is **positive** if at least one
smaller circle is **inside** a closed shape.
- An image is **negative** if no smaller
circles are **inside** a closed shape.

30

- An image is positive if it contains at least
one intersection where lines or curves cross
each other. - An image is negative if it does
not contain any intersections.

31

An image is positive if it consists of a single
continuous and closed curve without inter-
sections or overlaps of separate curves. An
image is negative if it contains multiple dis-
connected curves, open shapes, or intersec-
tions of separate curves.

32

An image is positive if it contains at least
one sharp corner or pointed edge and is
not fully enclosed. An image is negative
if it is a fully enclosed shape with smooth,
rounded edges.

33

An image is positive if it contains sharp an-
gles, irregularity, or intersections. An im-
age is negative if it is a regular geometric
shape, smooth, or symmetrical.

34

An image is positive if the hole is not cen-
tered within the larger shape. An image is
negative if the hole is centered within the
larger shape.

0 0 0
0 0 0
0 0 0
0 0 0
1 1 1
0 1 0
1 0 0
1 0 0
0 0 0

37

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

35

An image is positive if the hole is centered
and aligned with the larger shape. An im-
age is negative if the hole is off-center or
misaligned with the larger shape.

0 1 0

36

An image is positive if the triangle is po-
sitioned above the circle. Otherwise, it is
negative.

37

- An image is positive if the triangle is the
topmost shape. Otherwise, the image is
negative.

38

An image is positive if the circle is smaller
than the triangle. An image is negative if
the circle is larger than or equal in size to
the triangle.

39

An image is positive if all lines are parallel
to at least one other line. An image is neg-
ative if there is at least one line that is not
parallel to any other line.

40

An image is positive if no three dots are
collinear. An image is negative if at least
three dots are collinear.

41

- An image is positive if no two filled
(black) circles are adjacent. - An image is
negative if at least two filled (black) circles
are adjacent.

42

An image is positive if and only if there is
a closed shape that encloses exactly three
dots. If the number of enclosed dots is not
three, the image is negative.

43

An image is positive if it has a consistent,
alternating wave-like pattern of peaks and
valleys. An image is negative if the pattern
is irregular, includes vertical segments, or
has abrupt changes in the wave-like flow.

44

- An image is positive if the dots are on the
outer side of the curve. - An image
is negative if the dots are on the **inner
side** of the curve.

38

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

45

An image is positive if the white shape is
fully enclosed by the black shape, creating
a "hole” or “cut-out” effect. An image is
negative if the white shape is not fully en-
closed by the black shape.

46

- An image is positive if the triangle par-
tially overlaps the circle, and the triangle’s
interior is visible within the circle. - An
image is negative if the circle is fully inside
the triangle, the triangle is fully inside the
circle, or the shapes touch without overlap-
ping in the specified manner.

47

An image is positive if and only if it con-
tains at least one triangle that fully encloses
a circle. If no triangle fully encloses a cir-
cle, the image is negative.

48

- An image is positive if it contains at least
one solid shape and at least one hollow
shape. - An image is negative if it contains
only solid shapes or only hollow shapes.

49

- An image is positive if the smaller cir-
cles inside the large geometric shape are
clustered together, and there are additional
smaller circles outside the shape. - An im-
age is negative if the smaller circles out-
side the large geometric shape are clustered
together, or the smaller circles inside the
shape are not clustered.

50

An image is positive if it exhibits symme-
try, balance, and alignment in the arrange-
ment of its shapes. An image is negative if
it lacks these qualities and appears disorga-
nized or asymmetrical.

51

An image is positive if no three circles are
collinear. An image is negative if three or
more circles are collinear.

52

An image is positive if the two arrows point
in opposite directions. An image is nega-
tive if the two arrows point in the same di-
rection.

0 0 0
0 1 0
1 0 0
0 0 0
1 1 1
0 1 0
0 0 0
0 1 0

39

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

53

An image is positive if the inner shape is
different from the outer shape. An image
is negative if the inner shape is the same as
the outer shape.

54

An image is positive if the triangle and the
circle are on opposite sides of the plus sign.
An image is negative if the triangle and the
circle are on the same side of the plus sign.

55

- An image is positive if the small circle is
connected to the closed shape via a smooth,
curved connection. - An image is negative
if the small circle is connected to the closed
shape via a sharp/angular connection or a
straight line.

56

- An image is positive if it does not contain
any filled circles. - An image is negative if
it contains at least one filled circle.

57

An image is positive if and only if the two
shapes in the image are identical in type,
size, and orientation. Otherwise, the image
is negative.

58

An image is positive if and only if it con-
tains at least one solid black square. Other-
wise, it is negative.

59

- An image is positive if it contains two
shapes that are identical in shape but differ
in size. - An image is negative if the two
shapes are not identical in shape.

60

An image is positive if it contains at least
one pair of identical shapes. An image is
negative if all shapes in the image are dis-
tinct.

61

- An image is positive if no 7+’ symbol is
intersected by the line. - An image is nega-
tive if at least one "+ symbol is intersected
by the line.

0 0 0
0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
1 1 1
0 1 0
0 0 0

40

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

62

- An image is positive if it is a continuous,
single-line drawing with smooth, flowing
lines and no sharp angles or uncontrolled
intersections/self-crossings. An image is
negative if it includes sharp angles, abrupt
changes in direction, disconnected seg-
ments, or uncontrolled intersections/self-
crossings.

63

An image is positive if it contains two
boundaries where the inner boundary is
fully enclosed by the outer boundary, and
the inner and outer boundaries are similar
in shape. Otherwise, the image is negative.

64

- An image is **positive** if the small cir-
cle and the ”+” or ’x” symbol are on **op-
posite sides** of the ellipse. - An image is
negative if the small circle and the ”+”
symbol are on the **same side** of the el-

lipse.

65

An image is positive if and only if the num-
ber of triangles equals the number of cir-
cles. Otherwise, the image is negative.

66

An image is positive if the unconnected cir-
cles are not aligned in a straight vertical
line. An image is negative if the uncon-
nected circles are aligned in a straight ver-
tical line.

67

Positive images typically have two curved
lines that intersect exactly once. The inter-
section is clean, and the lines do not touch
or overlap at any other point. Negative im-
ages typically have two curved lines that
either do not intersect at all (e.g., they are
disjoint or only touch at the endpoints) or
intersect more than once. An image is posi-
tive if the two curved lines intersect exactly
once. Otherwise, the image is negative.

68

An image is positive if the lines intersect at
a single point and do not cross each other
again. An image is negative if any of the
curves cross another line after the initial in-
tersection.

0 0 0
0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0

41

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

69

- An image is positive if at least one branch
crosses the vertical line. Otherwise, the im-
age is negative.

70

An image is positive if at least one pair of
lines crosses each other. An image is nega-
tive if no lines cross each other.

71

An image is positive if and only if it con-
tains at least one shape nested inside an-
other shape, and the nested shapes are of
different types. Otherwise, the image is
negative.

72

A shape is positive if it is a single continu-
ous line that is smooth, flowing, open (not
a closed loop), and does not intersect itself.
A shape is negative if it has sharp angles, is
a closed loop, or has self-intersecting lines.

73

- An image is positive if the shapes are not
aligned in a straight line. - An image is neg-
ative if the shapes are aligned in a straight
line or have a structured arrangement.

74

An image is positive if it contains a sharp,
pointed end. An image is negative if it lacks
a sharp point and is predominantly rounded
or looped.

75

An image is positive if the curved line
points toward the triangle or interacts with
it. An image is negative if the curved line
does not point toward the triangle or does
not interact with it.

76

An image is positive if it contains at least
one concave corner and is asymmetric. An
image is negative if it has no concave cor-
ners, is symmetric, or forms a closed loop.

77

An image is positive if all the lines origi-
nate from a single point, forming a ’fan” or
”V” shape. Animage is negative if the lines
do not all originate from a single point.

78

- An image is positive if no two lines are
parallel. - An image is negative if at least
two lines are parallel.

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0

42

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

79

- An image is positive if the black circle
and white circle are adjacent. Otherwise,
the image is negative.

0 0 0

80

An image is positive if the "+ symbol is
positioned between the two black dots, near
the midpoint of the line segment connect-
ing them. Otherwise, the image is negative.

81

An image is positive if it contains at least
one filled shape and one unfilled shape. An
image is negative if it contains only filled
shapes or only unfilled shapes.

82

An image is positive if the circle does not
overlap with any of the plus signs. An im-
age is negative if the circle overlaps with at
least one plus sign.

83

An image is positive if it contains exactly
one circle, surrounded by exactly four plus
signs arranged symmetrically around the
circle. Otherwise, the image is negative.

84

- An image is positive if the square is
outside the arrangement of circles. -
An image is negative if the square is **in-
side** the arrangement of circles.

85

- An image is positive if it does not contain
any closed shapes or regions. - An image
is negative if it contains at least one closed
shape or region.

86

An image is positive if it contains exactly
one branching point where exactly three
lines meet. An image is negative if it con-
tains a branching point where four or more
lines meet or if it has additional intersec-
tions or overlapping lines.

43

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index

Rule

Rater1 Rater 2 Score

87

An image is positive if it contains either:
1. A single connected structure formed by
lines, or 2. A closed shape with exactly
four sides (quadrilateral). An image is neg-
ative if it contains: 1. Multiple discon-
nected components, or 2. A closed shape
with more than four sides, or 3. Sym-
metrical intersecting lines (e.g., “plus” or
’cross”).

88

An image is positive if all the shapes are
connected into a single structure. An im-
age is negative if the shapes are separate or
overlapping without merging.

89

An image is positive if and only if every
black-filled shape has a corresponding hol-
low shape, and they are vertically aligned
in a 1-to-1 correspondence. Otherwise, the
image is negative.

90

An image is positive if all groups of shapes
alternate between white and black and have
an even number of shapes. An image is
negative if any group of shapes does not al-
ternate consistently or has an odd number
of shapes.

91

An image is positive if it contains asymme-
try or irregularity in its structure. An image
is negative if it exhibits symmetry, regular-
ity, or uniformity in its structure.

92

An image is positive if it contains exactly
one filled dot that is smoothly integrated
into a continuous shape without disrupting
its flow or creating intersections. Other-
wise, the image is negative.

93

An image is positive if it contains an asym-
metric, wavy, or oscillatory pattern without
forming closed shapes. An image is nega-
tive if it contains symmetry, closed shapes,
or static geometric arrangements.

94

An image is positive if the black circle is
centrally located within the arrangement of
circles. An image is negative if the black
circle is at the edge of the arrangement.

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 1 1

44

Continued on next page

Under review as a conference paper at ICLR 2026

Problem Index Rule Rater1 Rater 2 Score

95 An image is positive if the lines inside the 1 1 1
shape are vertical. An image is negative if
the lines inside the shape are horizontal.

96 An image is **positive** if the lines con- 0 0 0
verge or taper to form a shape with a clear
focal point. An image is **negative** if
the lines are parallel, grid-like, or do not
converge to a single point.

97 - An image is positive if it contains a tri- 1 1 1
angular shape. - An image is negative if it
contains a circular shape.

98 An image is positive if it contains at least 1 1 1
one triangle. Otherwise, it is negative.

99 An image is positive if the green circles and 0 1 0
black triangles are intermixed. An image is
negative if the green circles and black tri-
angles are segregated into separate regions.

100 An image is positive if it resembles the let- 1 1 1
ter ”A” (angular, triangular central region,
horizontal bar). An image is negative if
it resembles the letter "B (rounded, two
loops, vertical line).

Total 30 34 25

B PROMPTS

B.1 PROGRAM SYNTHESIS PROMPTS

In order to ensure that the programs synthesized by the VLM are able to manipulate the correct objects, we
prompt the VLM to identify some important objects and transform those into method stubs. These suggested
methods are intended to provide guidance on what final programs should look like (i.e., what parts of the
image should be focused on / manipulated by the programs)

————— USEer —————————————————

You are solving a Bongard-style problem where you must write a program that outputs
"POSITIVE’ if an input image is an example of the positive concept <positive

concept> and ’'NEGATIVE’ otherwise.

Consider the steps you must take to write this program.

List 0-3 objects you will need to detect in the image. Please output as a comma-

separated list in the format <objects>objectl, object2, object3</objects>.

45

Under review as a conference paper at ICLR 2026

Example: The positive concept is ’'many squares’ and the negative concept is ’few
squares’ .

Answer:

<objects>square</objects>
rr

\.

The returned list of objects are transformed into method stubs with the following signature:

.

def find_<object_name> (image: np.ndarray) -> np.ndarray:

nwn

Returns the bounding boxes for all {obj}s in the image, if they exist, and None
otherwise. The output array has the shape [N, 4] where N is the number of {objl}s
in that image, and 4 corresponds to the bounding box format [x coordinate of upper
left hand corner,

y coordinate of upper left hand corner, width of the box, height of the box].

\.

These are used in program generation prompt, which uses the template below:

77777 user ————————————————————

You are solving a Bongard-style problem where you will be given several examples of
two hidden concepts, along with the rule for each of these examples. Your job is
to write a Python program that will determine whether an input image is a positive
or negative example of a concept. This program must generalize to images other than
the examples I give you. These are the positive examples, which represent the

concept <positive concept>.

<positive examples>

77777 system -————————————————————
I see you’ve uploaded the positive examples. Please upload the negative examples.

————— user ————————————————————

These are the negative examples, which represent the concept <negative concept>
Please structure your program as a detection phase, where you first detect the
necessary objects in the image, and then a classification phase, where you perform
a series of operations to determine whether each image is a positive or negative
example. The following method stubs are given to you as suggestions of methods you
might want to implement for the detection phase: <existing method stubs>

<negative examples>
77777 system —-——m—mmmmo—mmmm e
————— user ————————————————————

Please write <n_programs> different Python programs, each enclosed in Markdown
backticks, that will determine whether an input image is an example of the positive

46

Under review as a conference paper at ICLR 2026

concept {positive_concept}. Each program should include a method called
classify_image that, given an input image test_image, as well as any parameters
that you needed to use in your program, will correctly output a ’'POSITIVE’ or '
NEGATIVE’ classification. If helper methods other than those given to you are
needed, please fully implement them all. Please also make a comment specifying the

range of values for any parameters to the function, in the format ’values (
param_name) : (low, high)’, and a comment specifying the type of the parameter as
either an int or a float in the format ’type (param_name): int’ or ’type (param_name)

float’, respectively. Think a bit before you start writing code.

77777 system —-——m—mmmmm—mmmm e

————— USer ————————————————————
<retrieved examples>

\. J

Programs that do not achieve a perfect score on the training set after optimization are repaired using this
prompt. Note that the message about an exception is only displayed if an exception occurred.

————— user ————————————————————
You are an expert Python programmer. You wrote the following program: <program>"""

When running the program, the following exception was encountered: <exception>
The program returned the wrong output on <# positive examples classified

incorrectly> images that were positive examples of the concept <positive concept>
and <# negative examples classified incorrectly> images that were negative examples

Please output a repaired version of this program enclosed in Markdown backticks.
You are able to use libraries like OpenCV, numpy, and scipy.

Please also make a comment specifying the range of values for any parameters to the

function, in the format ’values (param_name): (low, high)’
, and a comment specifying the type of the parameter as either an int or a float in
the format ’type(param_name): int’ or ’'type(param_name): float’, respectively.

Think a bit about what went wrong with the original implementation before you start
writing code.

B.2 PROMPTS FOR VLM VERIFICATION AND SOLUTIONS

The following prompt template was used for the verification task with the base VLMs, as well as when the
VLMs were called inside our program+CoT verifier:

77777 user —-——————————————————
You are solving a Bongard-style problem where you need to check whether an image
corresponds to the rule <positive concept>, which separates positive and negative
images. The negative images adhere to the rule <negative concept> instead.

47

Under review as a conference paper at ICLR 2026

\.

Here are <n_shot> positive examples. Please look at them and then await the
negative examples, which I will give you after this message. Answer with only ok
and nothing else.
77777 system -————————————————————

ok.
77777 user ————————————————————
Here are <n_shot> negative examples. These do not fulfill the rule <positive
concept>, but instead adhere to the rule <negative concept>. Please look at them,
and then, finally, I will give you a last image which you should classify as
positive (adheres to the positive rule) or negative (does not adhere to the
positive rule, but instead to the negative rule). Answer with only ok and nothing
else.
————— system -—-—7————————"—"—"——————

ok.
————— USer ————————————————————
Taking all prior information into consideration, given the following image, do you
think it is positive, meaning it displays the concept ’<positive concept>’? Or is
it negative and displays the concept ’<negative concept>’? First think about it,
and then provide your answer in the following form:
Output enclosed in Markdown backticks either POSITIVE or NEGATIVE depending on your

final decision. Do not produce any other output.

Hypotheses were generated using the prompt below:

————— user ————————————————————
You are solving a Bongard-style problem where you will be given several examples of
two hidden concepts, along with the rule for each of these examples. Your job is
to write a Python program that will determine whether an input image is a positive
or negative example of a concept. This program must generalize to images other than
the examples I give you. These are the positive examples, which represent the

concept <positive concept>.

<positive examples>

————— system —-————m——m——m———m—
I see you’ve uploaded the positive examples. Please upload the negative examples.

77777 user —o————————————
These are the negative examples, which represent the concept <negative concept>
Please structure your program as a detection phase, where you first detect the
necessary objects in the image, and then a classification phase, where you perform
a series of operations to determine whether each image is a positive or negative
example. The following method stubs are given to you as suggestions of methods you
might want to implement for the detection phase: <existing method stubs>

<negative examples>
————— system —-—-—-—-————————————

I see you’ve uploaded the negative examples. Please provide instructions for
solving the Bongard problem.

48

Under review as a conference paper at ICLR 2026

77777 USer —————————————

Given these positive and negative images, please do the following:

1. Someone has given you the following rules: <example rules>. Consider how these
rules apply to the positive and negative examples. Which examples do each of them
work on? Which examples do they fail on?

2. Output <n_sample> rules which predict when an image is positive. Please enclose
each rule in <rule></rule>, e.g. <rule>contains red circle</rule>"""

Baseline VLMs were tested on the solution task using the following prompt:

————— USer ———————————————————

You are solving a Bongard-style problem where to solve the problem you need to
infer a hidden rule that separates positive and negative images. Pay attention to
abstract geometric properties.

Here are <n_shot> positive examples. Please look at them and then await the
negative examples, which I will give you after this message.

<positives>

77777 system -—————————————————

I see you’ve uploaded the positive examples. Please provide the negative examples
for the Bongard problem, and I’11 help you analyze the differences between the two
groups in order to infer the hidden rule that separates positive and negative
images.

77777 user ————————————————————
Here are <n_shot> negative examples.

1. Analyze the positive examples (looking for what is common between them)

2. Analyze the negative examples (looking for what is common between them)

3. Compare negative and positive examples (looking for what is different between
them)

4. Output a rule which predicts when an image is positive or negative.

<negatives>

C VERIFIER DETAILS FOR SOLUTION TASK

When using our verifier in the solution task, we make two slight modifications to our original system. These
modifications were made because the number of rules to verify in the solution task is much larger than the

verification task, where there was only one rule per problem.

1. Programs generated per rule is set to 5 instead of 10

2. Rather than generating programs and evaluating on 6 different train/test splits, we only evaluate on

one, and the evaluation score along with the training score is the accuracy assigned to the rule

49

Under review as a conference paper at ICLR 2026

D RAG AND GENERATED PROGRAMS

We generated a dataset of 59 BP programs by either writing programs by hand or editing the output of older
versions of our verifier. Sample programs for BP # 14 (’large total line length’ vs. ’small total line length’)
and BP #40 (’three points collinear’) are included below. Since the BP problems are hand-drawn, problems
like BP#40 are actually a matter of finding approximately collinear points.

(3

import cv2
import numpy as np
from typing import List

def find_lines (image) :
nwn

Detects lines in the image and returns their contours
nnwn
if len(image.shape) > 2 and image.shape[2] > 1:

gray = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)
else:

gray = image.copy ()

Threshold the image to get binary image
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)

Find contours in the binary image
contours, _ = cv2.findContours (binary, cv2.RETR_EXTERNAL, cv2.
CHAIN_APPROX_SIMPLE)

return contours

def calculate_line_length (contour) :
nwn

Calculate the approximate length of a line represented by a contour
nnn

For a line, the perimeter is broximately twice its length

perimeter = cv2.arclLength (contour, closed=False)
return perimeter / 2

def classify_image (image, length_threshold=500) :

nnn

Classifies an image as 'POSITIVE’ if it has large total line length, ’'NEGATIVE’
otherwise.

Args:
image: the image to classify
length_threshold: Threshold for total line length to be considered "large"
values (length_threshold): (100, 2000)
type (length_threshold) : float

Returns:
A "POSITIVE’ or 'NEGATIVE’ classification for the image

contours = find_lines (image)

50

Under review as a conference paper at ICLR 2026

Calculate total line length in the image
total_length = 0
for contour in contours:
length = calculate_line_length (contour)
total_length += length

Normalize by image size
image_diagonal = np.sqrt (image.shape[0]**x2 + image.shape[l]**2)
normalized_length = total_length / image_diagonal

Classify based on normalized length

if normalized_length > length_threshold / 1000: # Convert to reasonable scale
return 'POSITIVE’

else:
return ’'NEGATIVE’

import numpy as np
import cv2
from scipy import ndimage

def find_points (image) :
nnn
Find all points in the image by detecting contours.
Returns a list of (x, y) coordinates representing the centers of objects.

if (len(image.shape) == 3):
gray = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)
else:
gray = image.copy ()
(_, binary) = cv2.threshold(gray, 127, 255, cv2.THRESH_ BINARY_INV)
(contours, _) = cv2.findContours (binary, cv2.RETR_EXTERNAL, cv2.
CHAIN_APPROX_SIMPLE)
points = []

for contour in contours:
M = cv2.moments (contour)
if (M['m00"] != 0):
cx = int ((M['m10’] / M['m00"1]))
cy = int ((M['m01’] / M['m00’1]))
points.append((cx, cy))
return points

def has_three_collinear_points (points, slope_tolerance, distance_threshold):

Check if there are at least 3 collinear points.

Args:

points: List of (x, y) coordinates

slope_tolerance: Maximum allowed difference in slopes to consider lines
parallel

51

Under review as a conference paper at ICLR 2026

distance_threshold: Maximum distance from a point to a line to consider it
collinear

Returns:
True if at least 3 points are collinear, False otherwise\n
nnn
n = len(points)
if (n < 3):
return False
for 1 in range(n):

for j in range((i + 1), n):
(x1, yl) = points[i]
(x2, y2) = points[j]
collinear_points = [points[i], points[]j]]
if (abs((x2 - x1)) < 1le-06):
(a, b, ¢c) = (1, 0, (- x1))
else:
slope = ((y2 - yl) / (x2 - x1))
a = slope
b= (-1)
c = (yl - (slope » x1))
norm = np.sqgrt(((a x a) + (b * b)))
(a, b, ¢) = ((a / norm), (b / norm), (c / norm))
for k in range(n):
if ((k !'= 1) and (k !'= 3j)):
(x3, y3) = points[k]
distance = abs((((a * x3) + (b x y3)) + c))

if (distance < distance_threshold):
collinear_points.append (points[k])
if (len(collinear_points) >= 3):
return True
return False

def classify_image (image, slope_tolerance=0.05, distance_threshold=2.0):

Classify an image based on whether they contain at least 3 collinear points.

Args:

image: image to classify

slope_tolerance: Tolerance for slope differences
distance_threshold: Maximum distance to consider a point collinear

Returns:
"POSITIVE’ or ’'NEGATIVE’ classification

values (slope_tolerance): (0.01, 0.1)

type (slope_tolerance): float

values (distance_threshold): (1.0, 5.0)
type (distance_threshold): float
points = find_points (image)

if ((points is not None) and (len(points) >= 3)):
if has_three_collinear_points(points, slope_tolerance, distance_threshold):
return "POSITIVE’

52

Under review as a conference paper at ICLR 2026

return ’'NEGATIVE’

E ADDITIONAL TECHNICAL DETAILS

We use the high resolution BP dataset introduced in Depeweg et al.[(2024)).

For all verification experiments, the number of programs sampled per rule is 10. This is decreased to 5 for
solution experiments. The number of rules sampled per problem is always 6.

For optimization, we perform 15 iterations of Bayesian optimization.

We sample natural language rules at temperature 1 and code at temperature 0.5.

53

	Introduction
	The Bongard Problems
	Related Work
	Method
	System Overview
	Hypothesis Generator
	Verifier
	Verification with Programs
	Parameterized Programs and Optimization

	Results
	Baselines
	Verification Results
	Solution Results
	Comparison with Human Data
	Memorization

	Discussion
	Conclusion

	Output Rules for Solution Task
	Claude 3.7+Programs+CoT Solution Results
	GPT-4o+Programs+CoT Solution Results
	Claude 3.7 (Baseline) Solution Results
	GPT-4o (Baseline) Solution Results

	Prompts
	Program Synthesis Prompts
	Prompts for VLM Verification and Solutions

	Verifier Details for Solution Task
	RAG and Generated Programs
	Additional Technical Details

