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Abstract

Out-of-distribution (OOD) detection and OOD
generalization are widely studied in Deep Neural
Networks (DNNs), yet their relationship remains
poorly understood. We empirically show that the
degree of Neural Collapse (NC) in a network layer
is inversely related with these objectives: stronger
NC improves OOD detection but degrades gen-
eralization, while weaker NC enhances general-
ization at the cost of detection. This trade-off
suggests that a single feature space cannot simul-
taneously achieve both tasks. To address this, we
develop a theoretical framework linking NC to
OOD detection and generalization. We show that
entropy regularization mitigates NC to improve
generalization, while a fixed Simplex Equiangular
Tight Frame (ETF) projector enforces NC for bet-
ter detection. Based on these insights, we propose
a method to control NC at different DNN layers.
In experiments, our method excels at both tasks
across OOD datasets and DNN architectures.

1. Introduction

Out-of-distribution (OOD) detection and OOD generaliza-
tion are two fundamental challenges in deep learning. OOD
detection enables deep neural networks (DNNs) to reject
unfamiliar inputs, preventing overconfident mispredictions,
while OOD generalization allows DNNs to transfer their
knowledge to new distributions. For applications like open-
world learning, where a DNN continuously encounters new
concepts, both capabilities are essential: OOD detection
enables new concepts to be detected, while OOD generaliza-
tion facilitates forward transfer to improve learning of these
new concepts. Despite their importance, these tasks have
primarily been studied in isolation. Here, we empirically
and theoretically demonstrate a link between both tasks and
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Figure 1: In this paper, we show that there is a close inverse
relationship between OOD detection and generalization with
respect to the degree of representation collapse in DNN
layers. This plot illustrates this relationship for VGG17 pre-
trained on ImageNet-100 using four OOD datasets, where
we measure collapse and OOD performance for various lay-
ers. For OOD detection, there is a strong positive Pearson
correlation (R = 0.77) with the degree of neural collapse
(NC1) in a DNN layer, whereas for OOD generalization,
there is a strong negative correlation (R = —0.60). We
rigorously examine this inverse relationship and propose a
method to control NC at different layers.

Neural Collapse (NC), as illustrated in Fig. 1.

NC is a phenomenon where DNNs develop compact and
structured class representations (Papyan et al., 2020). While
NC was first identified in the final hidden layer, later work
has found that it occurs to varying degrees in the last K
DNN layers (Rangamani et al., 2023; Harun et al., 2024;
Stkenik et al., 2024). NC has a major impact on both OOD
detection and generalization. Strong NC improves OOD
detection by forming tightly clustered class features that
enhance separation between in-distribution (ID) and OOD
data (Haas et al., 2023; Wu et al., 2024b; Ming et al., 2022).
Conversely, NC impairs OOD generalization by reducing
feature diversity, making it harder to transfer knowledge
to novel distributions (Kothapalli, 2023; Masarczyk et al.,
2023; Harun et al., 2024). However, past work has consid-
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ered NC in the context of either OOD detection or OOD
generalization individually, leaving open the question of
how NC affects both tasks simultaneously. To the best of
our knowledge, no prior work has theoretically or empiri-
cally examined this relationship.

Here, we establish that the NC exhibited by a DNN layer
has an inverse relationship with OOD detection and OOD
generalization: stronger NC improves OOD detection but
degrades generalization, while weaker NC enhances gener-
alization at the cost of detection performance. This trade-off
suggests that a single feature space cannot effectively opti-
mize both tasks, motivating the need for a novel approach.

We propose a framework that strategically controls NC at
different DNN layers to optimize both OOD detection and
OOD generalization. We introduce entropy regularization
to mitigate NC in the encoder, improving feature diversity
and enhancing generalization. Simultaneously, we leverage
a fixed Simplex Equiangular Tight Frame (ETF) projector
to induce NC in the classification layer, improving feature
compactness and enhancing detection. This design enables
our DNNs to decouple representations for detection and
generalization, optimizing both objectives simultaneously.

Our key contributions are as follows:

1. We present the first unified study linking Neural Col-
lapse to both OOD detection and OOD generalization,
empirically demonstrating their inverse relationship and
extending analyses of NC beyond the final hidden layer.

2. We develop a theoretical framework that explains how
entropy regularization mitigates NC to improve OOD
generalization. Additionally, we empirically demonstrate
that a fixed Simplex ETF projector enforces NC, en-
abling effective OOD detection.

3. In extensive experiments on diverse OOD datasets and
DNN architectures, we demonstrate the efficacy of our
method compared to baselines. !

2. Background

2.1. OOD Detection

OOD detection methods aim to separate ID and OOD sam-
ples by leveraging the differences between their feature
representations. Most existing OOD detection methods are
post-hoc, meaning they apply a scoring function to a model
trained exclusively on ID data, without modifying the train-
ing process (Salehi et al., 2022). These methods inherently
rely on the properties of the learned feature space to distin-
guish ID from OOD samples.

Post-hoc detection techniques can be broadly categorized
based on the source of their confidence estimates. Density-
based methods model the ID distribution probabilistically

'Code: https://yousuf907.github.io/ncoodg

and classify low-density test points as OOD (Lee et al.,
2018; Zisselman & Tamar, 2020; Choi et al., 2018; Jiang
et al., 2023). More commonly, confidence-based approaches
estimate OOD likelihood using model outputs (Hendrycks &
Gimpel, 2016; Liang et al., 2017; Liu et al., 2020), feature
statistics (Sun et al., 2021; Zhu et al., 2022a; Sun et al.,
2022), or gradient-based information (Huang et al., 2021;
Wau et al., 2024a; Lee et al., 2023; Igoe et al., 2022).

Since post-hoc methods depend on the representations
learned during ID training, their effectiveness is fundamen-
tally constrained by the quality of those features (Roady
et al., 2020). Highly compact, well-separated ID representa-
tions generally improve OOD detection by reducing feature
overlap with OOD samples. For example, Haas et al. (2023)
demonstrated that Ly normalization of penultimate-layer
features induces NC, enhancing ID-OOD separability. Simi-
larly, Wu et al. (2024b) introduced a regularization loss that
enforces orthogonality between ID and OOD representa-
tions, leveraging NC-like properties to improve detection.
NECO (Ammar et al., 2024), a post-hoc OOD detection
method, leverages NC and the orthogonality between ID
and OOD samples to achieve state-of-the-art performance.
However, unlike our approach, NECO and other methods do
not focus on OOD generalization or representation learning.

Another representation learning approach is to learn repre-
sentations explicitly tailored for OOD detection by incorpo-
rating OOD samples during training (Wu et al., 2024b; Bai
et al., 2023; Katz-Samuels et al., 2022; Ming et al., 2022).
These methods encourage models to assign lower confi-
dence (Hendrycks et al., 2018) or higher energy (Liu et al.,
2020) to OOD inputs. However, this approach presents sig-
nificant challenges, as the space of possible OOD data is
essentially infinite, making it impractical to represent all
potential OOD variations. Moreover, strong OOD detec-
tion performance often comes at the cost of degraded OOD
generalization (Zhang et al., 2024), as representations op-
timized for separability may lack the diversity needed for
adaptation to novel distributions.

2.2. Transfer Learning and OOD Generalization

Transfer learning and OOD generalization methods focus
on learning features that remain effective across distribution
shifts. Robust transfer is particularly important in open-
world learning scenarios, where models must not only adapt
to new distributions but also improve sample efficiency over
time, a key requirement for continual learning. To facili-
tate generalization, techniques such as feature alignment (Li
et al., 2018b; Ahuja et al., 2021; Zhao et al., 2020; Ming
et al., 2024), ensemble/meta-learning (Balaji et al., 2018;
Li et al., 2018a; 2019; Bui et al., 2021), robust optimiza-
tion (Rame et al., 2022; Cha et al., 2021; Krueger et al.,
2021; Shi et al., 2021), data augmentation (Nam et al., 2021;
Nuriel et al., 2021; Zhou et al., 2020), and feature disentan-
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glement (Zhang et al., 2022) have been proposed.

Key properties of learned features significantly impact gen-
eralization to unseen distributions. Studies examining fac-
tors that affect OOD generalization emphasize that feature
diversity is essential for robustness (Masarczyk et al., 2023;
Harun et al., 2024; Kornblith et al., 2021; Fang et al., 2024;
Ramanujan et al., 2024; Kolesnikov et al., 2020; Vishni-
akov et al., 2024). Notably, recent work (Kothapalli, 2023;
Masarczyk et al., 2023; Harun et al., 2024) suggests that
progressive feature compression in deeper layers, linked to
NC emergence, can hinder OOD generalization by reducing
representation expressivity.

2.3. Neural Collapse

As noted earlier, NC arises when class features become
tightly clustered, often converging toward a Simplex
ETF (Papyan et al., 2020; Kothapalli, 2023; Zhu et al., 2021;
Han et al., 2022). Initially, NC was studied primarily in
the final hidden layer, but later work demonstrated that NC
manifests to varying degrees in earlier layers as well (Ranga-
mani et al., 2023; Harun et al., 2024). In image classification
experiments, Harun et al. (2024) showed that the degree of
intermediate NC is heavily influenced by the properties of
the training data, including the number of ID classes, image
resolution, and the use of augmentations.

NC can be characterized by four main properties:

1. Feature Collapse (N C1): Features within each class
concentrate around a single mean, exhibiting minimal
intra-class variability.

2. Simplex ETF Structure (N'C2): When centered at the
global mean, class means lie on a hypersphere with max-
imal pairwise distances, forming a Simplex ETF.

3. Self-Duality (NMC3): The last-layer classifiers align
tightly with their corresponding class means, creating a
nearly self-dual configuration.

4. Nearest Class Mean Decision (\NC4): Classification
behaves like a nearest-centroid scheme, assigning classes
based on proximity to class means.

While NC'’s structured representations can aid OOD detec-
tion by ensuring strong class separability (Haas et al., 2023;
Wu et al., 2024b), the same compression may limit the
feature diversity needed for generalization. One proposed
explanation is the Tunnel Effect Hypothesis (Masarczyk
et al., 2023), which suggests that as features become in-
creasingly compressed in deeper layers, generalization to
unseen distributions is impeded.

3. Problem Definition

We consider a supervised multi-class classification problem
where the input space is X and the label space is V =
{1,2,..., K}. A model parameterized by 6, fs : X — RX,

is trained on ID data drawn from P}?y, to produce logits,
fo(x) which are used to predict labels. For robust operation
in real-world scenarios, the model must classify samples
from P}, correctly and identify OOD samples from PS5
which represents the distribution with no overlap with the

ID label space, i.e., Y N Y = (.

At test time, the objective of OOD detection is to determine
whether a given sample z originates from the ID or an OOD
source. This can be achieved by using a threshold-based
decision rule through level set estimation, defined as:

~JID, S(x) > A
Cale) = {OOD, S(x) < A

where S(-) is a scoring function, and samples with S(x) >
A are classified as ID, while those with S(x) < A are classi-
fied as OOD. A denotes the threshold.

On the OOD generalization part, the objective is to build a
model f; : X — RX using the ID data such that it learns
transferable representations and becomes adept at both ID
task and OOD downstream tasks. This is a challenging
problem since we do not have access to OOD data during
training. In both OOD detection and OOD generalization,
the label space is disjoint between ID and OOD sets.

Differences from prior works. Prior works (Zhang et al.,
2024; Wang & Li, 2024; Bai et al., 2023) focusing on OOD
detection and OOD generalization, define the problem dif-
ferently than us. For OOD detection, they use “semantic
OOD” data from P35/ that has no semantic overlap with
known label space from P}\?y, ie., YNY = (. However,
for OOD generalization, they use “covariate-shifted OOD”
data from PSSY, that has the same label space as Py, but
with shifted marginal distributions P$°V due to noise or
corruption. Furthermore, they use additional semantic OOD
training data, PE(%,M during the training phase. Our problem
definition is fundamentally more challenging and practical
than the prior works because: (1) we aim to detect semantic
OOD samples, P35 without access to auxiliary OOD data
during training, and (2) we aim to generalize to semantic
OOD samples that belong to novel semantic categories.

Evaluation Metrics. We define ID generalization error
(&1p), OOD generalization error (£ggn), and OOD detection
error (Epgr) as follows:

1. l&p:=1- E(E,y)NPID (H{?)(fe(f)) = y}),

2. L Eeni=1— E(f’y)wpoon (]I{Ql](fg((f)) = y}),

3. | &pgr := E4. poop (]I{G)\ (.f’) = ID}),

where I{-} denotes the indicator function, and the arrows
indicate that lower is better. For OOD detection, ID samples

are considered positive. FPR95 (false positive rate at 95%
true positive rate) is used as Epgr. Details are in Appendix.

OOD Detection. Following earlier work (Sun et al., 2021;
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Liu et al., 2020), we consider the energy-based scoring (Liu
et al., 2020) since it operates with logits and does not require
any fine-tuning or hyper-parameters. Scoring in energy-
based models is defined as

K
S(x) = —log Y exp (fi (x))

k=1

where the k-th logit, fi(z), denotes the model’s confidence
for assigning x to class k. Note that Liu et al. (2020) uses the
negative energy, meaning that OOD samples should obtain
high energy, hence low S(x). See Fig. 6 as an example.

OOD Generalization. For evaluating OOD generaliza-
tion, we consider linear probing which is widely used to
evaluate the transferability of learned embeddings to OOD
datasets (Alain & Bengio, 2016; Masarczyk et al., 2023;
Zhu et al., 2022b; Waldis et al., 2024; Grill et al., 2020;
He et al., 2020). For a given OOD dataset, we extract em-
beddings from a pre-trained model. A linear probe (MLP
classifier) is then attached to map these embeddings to OOD
classes. The probe is trained and evaluated on OOD data.

Increasing NC Helps
00D Detection

Mitigating NC Helps
00D Generalization

Classifier

Encoder Projector Head

Outputs

Inputs
Embeddings from
Encoder

Embeddings from
Projector

Figure 2: Implication of Neural Collapse. Mitigating
NC in the encoder enhances OOD generalization whereas
increasing NC in the projector improves OOD detection.

4. Controlling Neural Collapse

Typically, penultimate-layer embeddings from a pre-trained
DNN are used for downstream tasks. However, using the
same embedding space for both OOD detection and OOD
generalization is suboptimal due to their conflicting objec-
tives. We therefore propose separate embedding spaces at
different layers—one for OOD detection, another for OOD
generalization. Specifically, we attach a projector net-
work g(-) to the DNN backbone f(-) (the encoder) and
add a classifier head h(:) on top. Given an input
x, the encoder outputs f = f(x), e.g., a 512-dimensional
vector for ResNet18. The projector then maps f to g = ¢g(f),
and finally the classifier produces logits h = h(g) € R¥.

The encoder is trained to prevent NC and encourage trans-
ferable representations for OOD generalization, while the
projector is designed to induce NC, producing collapsed
representations beneficial for OOD detection. A high-level
illustration is provided in Fig. 2. For OOD detection and ID
classification tasks, the entire network (h o g o f) is utilized,
assuming projector embedding g is most discriminative

among all layers. Whereas the encoder alone is utilized
for OOD generalization, assuming encoder embedding f is
most transferable among all layers. In the following subsec-
tions, we will portray how we can build these collapsed and
transferable representations.

4.1. Entropy Regularization Mitigates Neural Collapse

In this section, we provide a theoretical justification for
using an entropy regularizer to prevent or mitigate interme-
diate neural collapse (NC1) in deep networks. By “interme-
diate” we mean that the collapse occurs in hidden layers.

Setup and Notation. Let L be the total number of layers
in our network, and ¢ € {1,2, ..., L} the intermediate layer
index. We denote the embedding (activation) in layer ¢ for
the i-th sample x; as z,; = fi(x;), where zy; € Rde,
Suppose we have K classes, labeled by 1, ..., K. We can
view the random variable Z; (the layer-¢ embeddings) as
distributed under the data distribution according to

K
pe(z) = > T pei(z)
k=1

where 7, = Pr(y = k) is the class prior, and p; 1 (z) is the
class—conditional distribution of Z, for label k.

Intermediate Neural Collapse (NC1). Empirically, neu-
ral collapse is observed when the within-class covariance
of these embeddings shrinks as training proceeds. Formally,
for each class k, the distribution py ;, concentrates around
its class mean p, . € R, resulting in:

Trace(Zg,) — 0, where Xy, = Cov(Z, | y =k).

Although often highlighted in the penultimate layer, such
collapse can appear across the final layers of a DNN (Ranga-
mani et al., 2023; Harun et al., 2024).

Differential Entropy and Collapsing Distributions. For
a continuous random variable Z, € R% with density p(z),
the differential entropy is given by

H(pg) = — /]Rdz pe(z) log pe(z) dz

It is well known that if py; collapses to a delta (or
near-delta) around g, ;. then H(psr) — —oo (Cover,
1999). Consequently, a mixture of such collapsing class—
conditional distributions also attains arbitrarily negative en-
tropy. The following proposition formalizes this point.

Proposition 4.1 (Entropy under Class—Conditional Col-
lapse). Consider a mixture distribution py(z) =
Z,If:l 7k Dok (2) on R, Suppose that, for each k, pq 1. be-
comes arbitrarily concentrated around a single point pu, ;.
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In the limit where each py i, approaches a Dirac delta, the
differential entropy H (pg) diverges to —o.

Proof Sketch. 1f each py j, is a family of densities approach-
ing 0(z— ;). the individual entropies H (py, 1) go to —oc.
The entropy of the mixture can be bounded above by the
weighted sum of H (p& k) plus a constant that depends on
the mixture overlap. Hence, the overall mixture entropy also
diverges to —oco. O

Appendix E contains the detailed proof.

Entropy Regularization to Mitigate Collapse. We see
from Proposition 4.1 that if all class—conditional distribu-
tions collapse to near-deltas, the layer’s overall density py(z)
has differential entropy H (py) — —oo. Since standard clas-
sification objectives can favor very tight class clusters (e.g.,
to sharpen decision boundaries), one can counteract this by
maximizing H(pg).

Concretely, we augment the training loss L.5(#) with a
negative—entropy penalty:

Ltotal(e) = Ecls(e) - aH(p@(Z | 9))7 (1)

where o > 0 is a hyperparameter. As 3,; — 0 would
force H (pg) to —oo (cf. Proposition 4.1), the additional
term —aH (p;) becomes unboundedly large. Therefore,
the model is compelled to maintain nonzero within—class
variance for each class distribution, preventing complete
layer collapse.

Since we do not have direct access to py(z), we need to
estimate (pz) using a data-driven density estimation ap-
proach. In particular, prior work (Kozachenko & Leonenko,
1987, Beirlant et al., 1997) shows that the differential en-
tropy can be estimated by nearest neighbor distances.

Given a batch of N random representations {z,,})_,, the
nearest neighbor entropy estimate is given by

N
1 .
Hpe) = 3y 2 log (¥ i,

|z — zi||2> +In 2+EC
where EC denotes the Euler constant. For our purposes, we
can simplify the entropy maximization objective by remov-
ing affine terms, resulting in the following loss function:

LN
Lieg(0) = —— lo min ||z, — Z;

wel0) == Sotox (_min 512

n=1

Total loss becomes: Liotal (0) = Leis(6) + a0 Lieg(0). In-
tuitively, £,., maximizes the distance between the nearest
pairs in the batch, encouraging an even spread of represen-
tations across the embedding space. The pairwise distances

can be sensitive to outliers with large magnitudes. Therefore,
in our method, the loss operates on the hyperspherical em-
bedding space with the unit norm, i.e., z = z/||z||2. Note
that unlike L5 acting on classifier head, L, is applied in
encoder for mitigating NC.

Although various loss functions including cross-entropy
(CE) and mean-squared-error (MSE) lead to NC, others pro-
duce less transferable features than CE (Zhou et al., 2022;
Kornblith et al., 2021). We also find that CE outperforms
MSE in both OOD detection and OOD generalization (see
Table 9). Therefore, we consider CE loss for L5 in Equa-
tion 1. It has been found that using label smoothing with
CE loss intensifies NC properties when compared with the
regular CE loss (Zhou et al., 2022; Kornblith et al., 2021).
Therefore, we use label smoothing with CE loss to expedite
NC properties in the projector and classifier head.

In addition to £, mitigating NC, we consider alternatives
to batch normalization (BN). In the context of learning trans-
ferable representations in the encoder, batch dependency, es-
pecially using BN, is sub-optimal as OOD data statistically
differs from ID data. Therefore, for all layers in the encoder,
we replace batch normalization with a batch-independent
alternative, particularly, a combination of group normaliza-
tion (GN) (Wu & He, 2018) and weight standardization
(WS) (Qiao et al., 2019) to enhance OOD generalization.

4.2. Simplex ETF Projector for Inducing Collapse

When a DNN enters into NC phase, the class-means con-
verge to a simplex ETF (equinorm and maximal equiangu-
larity) in collapsed layers (NC2 criterion). This implies that
fixing the collapsed layers to be ETFs does not impair ID
performance (Rangamani et al., 2023; Zhu et al., 2021). In
this work, we induce NC in the projector to improve OOD
detection performance. We do it by fixing the projector to
be simplex ETF, acting as an architectural inductive bias.

Our projector comprises two MLP layers sandwiched be-
tween encoder and classifier head. We set the projector
weights to simplex ETFs and keep them frozen during train-
ing. In particular, each MLP layer is set to be arank D — 1
simplex ETF, where D denotes width or output feature di-
mension. The rank D canonical simplex ETF is:

D 1
—(Ip — =1p15
10~ plrin)
Details on the projector are given in Appendix A.1. We
further apply Lo normalization to the output of the projector
since it constraints features to achieve equinormality and
helps induce early neural collapse (Haas et al., 2023).

While prior work has found that incorporating a projec-
tor improves transfer in supervised learning (Wang et al.,
2022a), the objective of our projector is to impede transfer.



Controlling Neural Collapse Enhances Out-of-Distribution Detection and Transfer Learning

The difference is that a projector is typically trained along
with the backbone, whereas in our method the projector is
configured as Simplex ETF and kept frozen during training.

5. Experimental Setup

Datasets. For ID dataset, we use ImageNet-100 (Tian et al.,
2020)- a subset (100 classes) of ImageNet-1K (Russakovsky
et al., 2015). To assess OOD generalization and OOD
detection, we study eight commonly used OOD datasets:
NINCO (Bitterwolf et al., 2023), ImageNet-R (Hendrycks
et al., 2021), CIFAR-100 (Krizhevsky & Hinton, 2014),
Oxford 102 Flowers (Nilsback & Zisserman, 2008), CUB-
200 (Wah et al., 2011), Aircrafts (Maji et al., 2013), Oxford-
IIIT Pets (Parkhi et al., 2012), and STL-10 (Coates et al.,
2011). Dataset details are given in Appendix B.

DNN Architectures. We train and evaluate a representa-
tive set of DNN architectures including VGG (Simonyan &
Zisserman, 2015), ResNet (He et al., 2016), and ViT (Doso-
vitskiy et al., 2020). In total, we experiment with five back-
bones: VGG17, ResNet18, ResNet34, ViT-Tiny, and ViT-
Small. Our projector is composed of two MLP layers for all
DNN architectures. Details are given in Appendix A.1.

NC Metrics (MC1-NC4). We use four metrics, NC1,
NC2, NC3, and N(C4, as described in (Zhu et al., 2021;
Zhou et al., 2022), to evaluate the NC properties of the
DNN features and classifier. These metrics correspond to
four NC properties outlined in Sec. 2.3. Note that N'C1 is
the most dominant indicator of neural collapse. We describe
each NC metric in detail in the Appendix C.

Training Details. In our main experiments, we train differ-
ent DNN architectures e.g., VGG17, ResNet18, and ViT-T
on ImageNet-100 for 100 epochs. The Entropy regular-
ization loss L.z is modulated with o = 0.05. We use
AdamW (Loshchilov, 2017) optimizer and cosine learning
rate scheduler with a linear warmup of 5 epochs. For a
batch size of 512, we set the learning rate to 6 x 102 for
VGG17, 0.01 for ResNet18, and 8 x 10~* for ViT-T. For
all models, we set the weight decay to 0.05 and the label
smoothing to 0.1. In all our experiments, we use 224 x 224
images. And, we use random resized crop and random hor-
izontal flip augmentations. Linear probes are attached to
the encoder and projector layers of a pre-trained model and
trained on extracted embeddings of OOD data using the
AdamW optimizer and CE loss for 30 epochs. Additional
implementation details are given in Appendix A.

Baselines. Recent work defines the problem differently
where they focus on OOD detection and covariate OOD
generalization (same labels but different input distribution).
Our problem setup focuses on OOD detection and seman-
tic OOD generalization (different labels and different in-
put distribution). Adapting other methods to our problem

Table 1: Main Results (Encover Vs. Projector). Vari-
ous DNNs are trained on ImageNet-100 dataset (ID) and
evaluated on eight OOD datasets. All models incorporate
entropy regularization and the ETF projector to control NC.
Reported Egen (%) and Epgr (%) are averaged over eight
OOD datasets. A lower N'C indicates stronger neural
collapse. +Ap_,p and —Apg_, p indicate % increase and
% decrease respectively, when changing from the encoder
(E) to projector (P).

Model Ep Neural Collapse EGEN EDET
1 NC1  NC2 NC3 NC4 | Avg. | | Avg. |

VGG17
Projector | 12.62 | 0.393 0490 0468 0.316 | 66.36 | 65.10
Encoder | 1552 | 2.175 0.603  0.616 5364 | 41.85 | 87.62
Ap_p -18.69 | -81.93 -18.74 -24.03

ResNet18
Projector | 16.14 | 0.341 0456 0.306 0.540 | 63.08 | 69.70
Encoder | 20.14 | 1.762 0.552 0.555 10.695 | 47.72 | 86.17
Ag_p -19.86 | -80.65 -17.39 -44.86 -94.95 | +32.19 | -19.11
ViT-T
Projector | 32.04 | 2.748 0.609 0.798 1.144 | 63.53 | 83.16
Encoder | 33.94 | 5769 0.748 0.847 2332 | 52.63 | 90.89
Ag_,p -5.60 | -52.37 -18.58 -5.79  -50.94 | +20.71 | -8.50

-94.11 | +58.57 | -25.70

setup will require major modifications, hence we cannot
compare directly with them. We compare the proposed
method with baselines that do not use any of our mech-
anisms e.g., entropy regularization or fixed simplex ETF
projector. Additionally, in Sec. 6.5, we include a compar-
ison with NECO (Ammar et al., 2024), a state-of-the-art
OOD detection method that leverages NC properties.

6. Experimental Results

Sec. 6.1 shows how controlling NC improves representa-
tions for OOD detection and generalization. We compare
with baselines in Sec. 6.2, and analyze the roles of entropy
regularization and the ETF projector in Sec. 6.3 and Sec. 6.4,
respectively. Sec. 6.5 presents a comparison with NECO,
and Sec. 6.6 summarizes additional results.

6.1. Impact of Controlling NC

We investigate whether controlling NC improves OOD de-
tection and generalization by examining NC properties in
the encoder and projector. Table 1 summarizes the results
across eight OOD datasets. The projector, which exhibits
lower NC values (i.e., stronger NC), achieves superior OOD
detection (7.73%—22.52% margin) and lower ID error com-
pared to the encoder. In contrast, the encoder’s higher NC
values (i.e., weaker NC) lead to better OOD generalization
(10.90%-24.51% margin) than the projector. Comprehen-
sive results across OOD datasets are given in Appendix F.

We also visualize the encoder and projector embeddings in
Fig 3 and 8 for deeper insights. Unlike encoder embeddings,
projector embeddings cluster tightly around class means
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Encoder Embeddings

Projector Embeddings

Figure 3: UMAP Visualization of Embedding. The projec-
tor embeddings exhibit much greater NC (NMC1 = 0.393)
than the encoder embeddings (NC1 = 2.175) as indicated
by the formation of compact clusters around class means.
For clarity, we highlight 10 ImageNet classes by distinct
colors. For this, we use ImageNet-100 pre-trained VGG17.

Table 2: Comparison with Baseline. Various DNNs e.g.,
VGG17, ResNetl18, and ViT-T are trained on ImageNet-100
dataset (ID). Baseline models do not incorporate mecha-
nisms like entropy regularization or the ETF projector to
control NC. NC metrics are computed using the penultimate-
layer embeddings. Reported Eggn (%) and Epgr (%) are
averaged over eight OOD datasets.

Model Ep Neural Collapse EGEN EDET
J NC1 NC2 NC3 NC4 | Avg. | | Avg. |

VGG17 | 12.18 | 0.766 0.705 0.486 37.491 | 49.54 | 94.92
+Ours 12.62 | 0.393 0490 0468 0.316 | 41.85 | 65.10
ResNet18 | 15.38 1.11  0.658 0.590 31.446 | 49.42 97.40
+Ours 16.14 | 0.341 0.456 0306 0.540 | 47.72 | 69.70
ViT-T 31.78 | 2467 0.657 0.601 1.015 | 52.68 | 90.17
+Ours 32.04 | 2.748 0.609 0.798 1.144 | 52.63 | 83.16

(reflecting stronger NC1). Additionally, Fig. 5a in the Ap-
pendix shows that the projector exhibits greater ID-OOD
separation than the encoder. Finally, Fig. 5b and 6 in the
Appendix show that the energy score distribution reveals
the projector separates ID from OOD more effectively than
the encoder across multiple datasets. These observations
explain why the projector excels at OOD detection by ex-
ploiting more collapsed features.

Finally, we analyze different layers of VGG17 and
ResNet18 models and find that increasing NC strongly cor-
relates with lower OOD detection error and reducing NC
strongly correlates with lower OOD generalization error, as
shown in Fig. 1 and 7. Our experimental results validate
that controlling NC effectively enhances OOD detection and
00D generalization abilities.

6.2. Comparison with Baseline

We want to check how standard DNNs perform without any
mechanisms to control NC. As depicted in Table 2, different

Table 3: Impact of Entropy Regularization. VGG17 mod-
els are trained on ImageNet-100 dataset (ID) and evaluated
on eight OOD datasets. Both models share the same archi-
tecture and use an ETF projector; the difference lies solely in
the use of entropy regularization. NC metrics are measured
with encoder embeddings where entropy regularization is
applied or omitted. Reported Eggn (%) and Epgr (%) cor-
respond to the encoder and projector, respectively and are
averaged across eight OOD datasets.

Method | &p Neural Collapse 1 EGEN EDET
I NC1 NC2 NC3 NC4 | Avg. | | Avg. |

NoReg. | 1346 | 1.31 072 0.62 5.18 | 44.56 | 67.46
Reg. 12.62 | 2.18 0.61 062 536 | 41.85 | 65.10

DNNs including VGG17, ResNetl8, and ViT-T land on
higher OOD detection error and OOD generalization error
indicating that representations learned by these models can-
not achieve both OOD detection and OOD generalization
abilities. In contrast, our method shows significant improve-
ments over these baselines. While being competitive in ID
performance, our method controls NC unlike the baselines,
and achieves better performance in OOD tasks. Particularly,
OO0D generalization is improved by 1.70% — 7.69% (abso-
lute) and OOD detection is improved by 7.01% — 29.82%
(absolute). More comprehensive results across eight OOD
datasets are given in Table 18 in the Appendix.

6.3. Entropy Regularization Mitigates NC

At first, we measure entropy and NC1 across all VGG17 lay-
ers and observe that there lies a strong correlation between
entropy and NC1 (Pearson correlation 0.88). As illustrated
in Fig. 4, stronger NC correlates with lower entropy whereas
weaker NC correlates with higher entropy. This empirically
demonstrates why using entropy regularization mitigates
NC in the encoder. Next, we compare two identical VGG17
models, one uses entropy regularization and another omits
it. The results are summarized in Table 3. Entropy regu-
larization mitigates NC in the encoder, as evidenced by its
higher N'C1, and achieves better performance in all criteria
compared to the model without entropy regularization.

An implication of NC is that the collapsed layers exhibit
lower rank in the weights and representations (Rangamani
et al., 2023). In additional analyses provided in the Ap-
pendix G, we observe that our entropy regularization im-
plicitly encourages higher rank in the encoder embeddings
and helps reduce dependence between dimensions (thereby
promoting mutual independence).

6.4. Fixed Simplex ETF Projector Induces NC

We train two identical models the same way (same hyperpa-
rameters and training protocol), one of them uses a regular
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Figure 4: Neural collapse (NC1) correlates with entropy.
The stronger the neural collapse, the lower the entropy and
vice-versa. This suggests that increasing the entropy of the
encoder’s embeddings can help mitigate NC and enhance
OOD generalization. Similar to Fig. 1, we analyze differ-
ent layers of VGG17 networks that are pre-trained on the
ImageNet-100 (ID) dataset. R denotes the Pearson correla-
tion coefficient.

Table 4. Impact of Fixed ETF Projector and L, Nor-
malization on NC. The evaluation is based on projector
embeddings of ImageNet-100 pre-trained VGG17 networks.
A lower NC indicates higher neural collapse. Our model
(highlighted) uses a fixed ETF projector with Lo normaliza-
tion, whereas the baseline Plastic uses a trainable projector
with Lo normalization, and the baseline No Ly norm uses a
fixed ETF projector but omits Ly normalization. Reported
Eper (%) is averaged over eight OOD datasets.

Projector Ep Neural Collapse | EDpET
1 NC1 NC2 NC3 NC4 | Avg. |

Plastic 15.10 | 0.498 0.515 0.428 1.422 | 74.00
Fixed ETF | 12.62 | 0.393 0.490 0.468 0.316 | 65.10
No Lo norm | 12.74 | 0.579 0.538 0.349 1.339 | 68.93
L norm 12.62 | 0.393 0.490 0.468 0.316 | 65.10

trainable projector and the other one uses a frozen simplex
ETF projector. We summarize our findings in Table 4. Our
results indicate that the fixed simplex ETF projector strength-
ens NC more than a regular plastic projector as evidenced by
lower N'C1. Consequently, the ETF projector outperforms
plastic projector in OOD detection by an absolute 8.9%.

We also evaluate the impact of L, normalization on the
projector embeddings. We train two models in an identical
setting, the only variable we change is the L, normaliza-
tion. We observe that Lo normalization achieves a lower
NC1 value (thereby strengthening NC) and 3.83% (abso-
lute) lower OOD detection error than its counterpart. These
results demonstrate that using Lo normalization helps in-
duce NC and thereby enhances OOD detection performance.
Additional results are shown in Appendix H.

Table 5: NECO Vs. Our Method. Various DNNs e.g.,
VGG17, ResNetl8, and ViT-T are trained on ImageNet-100
dataset (ID). Reported OOD detection error, Epgr (%) is
averaged across eight OOD datasets.

Method Avg. Eper (%) |

VGG17 ResNet18 VIiT-T
NECO 77.82 88.13 85.67
Ours 65.10 (-12.72)  69.70 (-18.43) 83.16 (-2.51)

Table 6: Projector Configuration. VGG17 models with dif-
ferent ETF projector configurations are trained on ImageNet-
100 (ID) dataset. D and W denote the depth and width of
the projector, respectively. Reported Egen (%) and Epgr (%)
are averaged over eight OOD datasets.

Config. | &p Neural Collapse | EGEN EDET

{ NC1 NC2 NC3 NC4 | Avg. | | Avg. |
D=1 | 1286 | 0375 0.649 0.500 1.157 | 4537 | 87.37
D=2 | 12.62 | 0.393 0490 0.468 0.316 | 41.85 | 65.10
W=2|1348 | 0320 0.667 0.376 0.493 | 43.33 | 69.73

6.5. State-of-the-art Comparison

To put our work in context with respect to existing methods,
we compare our method with NECO (Ammar et al., 2024), a
state-of-the-art OOD detection method based on NC. Since
NECO does not address OOD generalization, we restrict
this comparison to OOD detection only. We train multi-
ple DNN architectures on ImageNet-100 (ID) and evaluate
their performance on eight OOD datasets. Remarkably, our
method consistently outperforms NECO across all settings.
As shown in Table 5, our approach reduces the average OOD
detection error by an absolute margin of 12.72% for VGG17,
18.43% for ResNet18, and 2.51% for ViT-T, highlighting its
superior effectiveness. Comprehensive results across OOD
datasets are presented in Table 22.

6.6. Ablation Studies

Projector Design Criteria. Here we ask: does a deeper
or wider projector achieve higher performance? Results
are summarized in Table 6. We find that the projector with
depth 2 performs better than shallower or wider projectors.
Table 19 in the Appendix contains comprehensive results.

Group Normalization Enhances Transfer. While the im-
pact of BN on NC has been studied in prior work (Pan &
Cao, 2023; Ergen et al., 2022), we evaluate the effectiveness
of both BN and GN within our framework. We compare BN
with GN (GN is combined with WS) and show the results in
Table 7. We find that GN helps mitigate NC in the encoder
as indicated by a higher A'C1 value than BN. This implies
that, unlike GN, BN leads to stronger NC and impairs OOD
transfer. This is further confirmed by GN outperforming BN
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Table 7: Impact of Group Normalization. Reported
EGen (%) and Epgr (%) are averaged across eight OOD
datasets. The comparison is based on ImageNet-100 pre-
trained VGG17 networks. Reported N'C1 corresponds to
the encoder.

Method NC1 Ep EGEN EDET
1 4 | Avg. || Avg. |

Batch Normalization 1.401 | 12.52 | 51.96 | 69.47
Group Normalization | 2.175 | 12.62 | 41.85 65.10

Table 8: SGD Optimizer. VGG17 models are trained on
ImageNet-100 (ID) dataset. Baseline VGG17 does not incor-
porate mechanisms like entropy regularization or the ETF
projector to control NC. NC metrics are computed using
the penultimate-layer embeddings. Reported Egen (%) and
Epet (%) are averaged over eight OOD datasets.

Model Ebp Neural Collapse | EGEN EpET
1 NC1 NC2 NC3 NC4 | Avg. | | Avg. |

VGGI17 | 13.06 | 1.017 0.449 0.479 26459 | 57.17 89.69

+Ours | 13.18 | 0.087 0.468 0.267 0.264 50.91 60.81

by 10.11% (absolute) in OOD generalization. Our results
suggest that replacing BN is crucial for OOD generalization.
Furthermore, using GN improves OOD detection by 4.37%
(absolute). Table 17 includes comprehensive results.

SGD Optimizer. While our main experiments employed
the AdamW optimizer, we also evaluate the effectiveness of
our method with the widely used SGD optimizer to ensure
its robustness across optimization schemes. To this end, we
train VGG17 models on ImageNet-100 dataset (ID) using
SGD optimizer and assess their performance on eight OOD
datasets. As shown in Table 8, our method outperforms the
baseline by 6.26% (absolute) in OOD generalization and
by 28.88% (absolute) in OOD detection. Comprehensive
results are provided in Appendix H.6.

Impact of Loss Functions: MSE Vs. CE. Both MSE
and CE are effective loss functions to achieve NC proper-
ties (Zhou et al., 2022). Unlike prior work, we evaluate their
efficacy in both OOD detection and OOD generalization
tasks. As shown in Table 9, CE outperforms MSE by 6.74%
(absolute) in OOD detection and by 17.71% (absolute) in
OOD generalization. Our observations are consistent with
prior work (Kornblith et al., 2021; Hui & Belkin, 2020).

Computational Efficiency. Our method is computation-
ally efficient, introducing minimal overhead compared to
standard DNNs. We assess efficiency by measuring training
time and FLOPs relative to baseline models. As shown in
Table 23, the additional cost remains below 0.3% across all
cases—a negligible overhead given the substantial perfor-
mance gains. Further details are provided in Appendix H.8.

7. Discussion

Our study highlights the impact of neural collapse on OOD
detection and OOD generalization. Several promising direc-
tions remain for future research. Extending our approach
to open-world continual learning (Kim et al., 2025; Dong
et al., 2024) presents an exciting challenge. While we fo-
cused on architectural and regularization-based techniques
to control NC, another avenue is optimization-driven strate-
gies. For instance, Markou et al. (2024) studies optimising
towards the nearest simplex ETF to accelerate NC. Guiding
NC to enhance task-specific representations or disentangle
conflicting tasks could improve robustness and generaliza-
tion. Moreover, beyond standard loss functions, alternative
formulations could be explored to regulate NC.

Following prior work, our study primarily focused on vi-
sion tasks and datasets. However, extending our method to
other modalities such as audio and text represents a promis-
ing direction for future research. While our experiments
centered on classification tasks, the proposed method is
inherently general and can be applied to other tasks, e.g.,
object detection or other regression tasks. The core of our
approach—the fixed ETF projector—is designed to enforce
NC in the final layer, enhancing feature representations that
benefit both classification and regression tasks. Furthermore,
our entropy regularization is task-agnostic and seamlessly
integrates with both classification and regression objectives.

Our study utilized nearest neighbor density estimation for
entropy regularization. Exploring parametric and adaptive
approaches could offer more robust regularization tech-
niques for improving OOD generalization. We demon-
strated that controlling NC improves OOD detection and
generalization, but a deeper theoretical understanding of this
relationship is needed. Future work could establish theoreti-
cal frameworks that unify OOD detection and generalization
from an NC perspective, offering a more comprehensive
view of representation learning under distribution shifts.

8. Conclusion

In this work, we established a concrete relationship between
neural collapse and OOD detection and generalization. Mo-
tivated by this relationship, our method enhances OOD
detection by strengthening NC while promoting OOD gen-
eralization by mitigating NC. We also provided a theoretical
framework to mitigate NC via entropy regularization. Our
method demonstrated strong OOD detection and general-
ization abilities compared to baselines that did not control
NC. This work has implications for open-world problems
where simultaneous OOD detection and generalization are
critical. We hope our work inspires future efforts to develop
more effective methods for building robust Al systems in
open-world conditions.
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Appendix

We organize the Appendix as follows:

* Appendix A describes the implementation details. It
describes the DNN architectures (VGG, ResNet, and
ViT), feature extraction for linear probing, training,
and evaluation details of both pre-training and linear
probing in various experiments.

* Appendix B provides details on the datasets used in
this paper. In total, we use 9 datasets.

* Appendix C describes four neural collapse metrics
(NC1 — NC4) used in this paper.

» Appendix D presents a comprehensive comparison be-
tween MSE and CE.

» Appendix E contains proof on the implication of NC
on entropy.

* Appendix F provides a comprehensive comparison be-
tween the encoder and projector across different archi-
tectures.

* Appendix G provides detailed analyses on entropy reg-
ularization and neural collapse.

» Additional experiments and analyses are summarized
in Appendix H. The mechanisms of controlling NC
have been examined.

* Appendix I includes the list of 100 classes in the
ImageNet-100 dataset.

A. Implementation Details

In this paper, we use several acronyms such as NC : Neu-
ral Collapse, ETF : Equiangular Tight Frame, ID : In-
Distribution, OOD : Out-of-Distribution, LR : Learning
Rate, WD : Weight Decay, GAP : Global Average Pooling,
GN : Group Normalization, BN : Batch Normalization, WS
: Weight Standardization, CE : Cross Entropy, MSE : Mean
Squared Error, FPR : False Positive Rate.

We use the terms “OO0D generalization” and “OO0D
transfer” interchangeably.

A.1. Architectures

VGG. We modified the VGG-19 architecture to create
our VGG-17 encoder. Additionally, we removed two
fully connected (FC) layers before the final classifier
head. And, we added an adaptive average pooling layer
(nn.AdaptiveAvgPool2d), which allows the network to ac-
cept any input size while keeping the output dimensions
the same. After VGG-17 encoder, we attached a projector

consisting of two MLP layers (5612 — 2048 — 512) and
finally added a classifier head. We use ReLLU activation
between projector layers. We replace BN with GN+WS in
all layers. For GN, we use 32 groups in all layers.

ResNet. We used the entire ResNet-18 or ResNet-34 as
the encoder and attached a projector (512 — 2048 — 512)
similar to the VGG networks mentioned above. We replace
BN with GN+WS in all layers. For GN, we use 32 groups
in all layers.

ViT. We consider ViT-Tiny/Small (5.73M/21.85M param-
eters) as the encoder for our experiments. The projector
comprising two MLP layers configured as fixed ETF Sim-
plex and added after the encoder. Following (Beyer et al.,
2022), we omit the learnable position embeddings and in-
stead use the fixed 2D sin-cos position embeddings. Other
details adhere to the original ViT paper (Dosovitskiy et al.,
2020).

1. ViT-Tiny Configuration: patch size=16, embedding
dimension=192, # heads=3, depth=12. Projector has
output dimension=192 and hidden dimension=768,
(192 — 768 — 192). We use ReLU activation be-
tween projector layers. The number of parameters in
ViT-Tiny + projector is 6.02M.

2. ViT-Small Configuration: patch size=16, embedding
dimension=384, # heads=6, depth=12. Projector has
output dimension=384 and hidden dimension=1536,
(384 — 1536 — 384). We use ReLU activation be-
tween projector layers. The number of parameters in
ViT-Small + projector is 23.03M.

A.2. Feature Extraction For Linear Probing

In experiments with CNNs, at each layer [, for each sample,
we extract features of dimension H; x W; x C}, where Hj,
W, and C; denote the height, width and channel dimensions
respectively. Next, following (Sarfi et al., 2023), we apply
2 x 2 adaptive average pooling on each spatial tensor (H; X
W1). After average pooling, features of dimension 2 x 2 x
are flattened and converted into a vector of dimension 4C;.
Finally, a linear probe is trained on the flattened vectors.
In experiments with ViTs, following (Raghu et al., 2021),
we apply global average-pooling (GAP) to aggregate image
tokens excluding the class token and train a linear probe on
top of GAP tokens. We report the best error (%) on the test
dataset for linear probing at each layer.

A.3. VGG Experiments

VGG ID Training: For training VGG on ImageNet-100, we
employ the AdamW optimizer with a LR of 6 x 10~2 and
WD of 5 x 102 for batch size 512. The model is trained for
100 epochs using the Cosine Annealing LR scheduler with
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a linear warmup of 5 epochs. In all experiments, we use CE
and entropy regularization (o = 0.05) losses. However, in
some particular experiments comparing CE and MSE, we
use MSE loss (k=15, M=60) and entropy regularization loss
(o = 0.05). In the experiments with SGD optimizer and CE
loss, we set LR to 0.2 and WD to 10~ for batch size 512.

VGG Linear Probing: We use the AdamW optimizer with
a flat LR of 1 x 1072 and WD of 0 for batch size 128.
The linear probes are trained for 30 epochs. We use label
smoothing of 0.1 with the cross-entropy loss.

A 4. ResNet Experiments

ResNet ID Training: For training ResNet-18/34, we em-
ploy the AdamW optimizer with an LR of 0.01 and a WD
of 0.05 for batch size 512. The model is trained for 100
epochs using the Cosine Annealing LR scheduler with a
linear warmup of 5 epochs. We use CE and entropy regular-
ization (o = 0.05) losses.

ResNet Linear Probing: In the linear probing experiment,
we use the AdamW optimizer with an LR of 1 x 10~ and
WD of 0 for batch size 128. The linear probes are trained
for 30 epochs. We use label smoothing of 0.1 with cross-
entropy loss.

A.5. ViT Experiments

ViT ID Training: For training ViT-Tiny, we employ the
AdamW optimizer with LR of 8 x 10~* and WD of 5 x 102
for batch size 256. The LR is scaled for n GPUs according
to: LR x n x batchsize Wwe yse an LR of 4 x 10~ for
ViT-Small when the batch size is 256. We use the Cosine
Annealing LR scheduler with warm-up (5 epochs). We train
the ViT-Tiny/Small for 100 epochs using CE and entropy
regularization (o = 0.05) losses. Following (Raghu et al.,
2021; Beyer et al., 2022), we omit class token and instead
use GAP token by global average-pooling image tokens and
feed GAP embeddings to the projector.

ViT Linear Probing: We use the AdamW optimizer with
LR of 0.01 and WD of 1 x 10~ for batch size 512. The lin-
ear probes are trained for 30 epochs. We use label smoothing
of 0.1 with cross-entropy loss.

Augmentation. We use random resized crop and random
flip augmentations and 224 x 224 images as inputs to the
DNNS.

In experiments with CE loss, we use label smoothing of 0.1.

A.6. Evaluation Criteria

FPRY5. The OOD detection performance is evaluated by
the FPR (False Positive Rate) metric. In particular, we use
FPRO5 (FPR at 95% True Positive Rate) that evaluates OOD

detection performance by measuring the fraction of OOD
samples misclassified as ID where threshold, A is chosen
when the true positive rate is 95%. Both OOD detection and
OOD generalization tasks are evaluated on the same OOD
test set.

Percentage Change. To capture percentage increase or de-
crease when switching from the encoder (E) to the projector
(P), we use

_E)

2 % 100.
|E|

App =

Normalization for different OOD datasets. In our correla-
tion analysis between NC and OOD detection/generalization
(Fig. 1 and 7), we use min-max normalization for layer-wise
0OOD detection errors and OOD generalization errors which
enables comparison using different OOD datasets. For a
given OOD dataset and a DNN consisting of total L layers,
let the OOD detection/ generalization error for a layer [ be
E;. For L layers we have error vector E = [Ey, Ea, -+ Ep)
which is then normalized by

E — min(E)
max(E) — min(E)’

Ey =

Effective Rank. We use RankMe (Garrido et al., 2023) to
measure the effective rank of the embeddings.

B. Datasets

ImageNet-100. ImageNet-100 (Tian et al., 2020) is a sub-
set of ImageNet-1K (Deng et al., 2009) and contains 100
ImageNet classes. It consists of 126689 training images
(224 x 224) and 5000 test images. The object categories
present in ImageNet-100 are listed in Appendix I.

CIFAR-100. CIFAR-100 (Krizhevsky & Hinton, 2014) is a
dataset widely used in computer vision. It contains 60, 000
RGB images and 100 classes, each containing 600 images.
The dataset is split into 50, 000 training samples and 10, 000
test samples. The images in CIFAR-100 have a resolution of
32 x 32 pixels. Unlike CIFAR-10, CIFAR-100 has a higher
level of granularity, with more fine-grained classes such as
flowers, insects, household items, and a variety of animals
and vehicles. For linear probing, all samples from both the
training and validation datasets were used.

NINCO (No ImageNet Class Objects). NINCO (Bitter-
wolf et al., 2023) is a dataset with 64 classes. The dataset
is curated to eliminate semantic overlap with ImageNet-1K
dataset and is used to evaluate the OOD performance of the
models pre-trained on imagenet-1K. The NINCO dataset
has 5878 samples, and we split it into 4702 samples for
training and 1176 samples for evaluation. We do not have a
fixed number of samples per class for training and evaluation
datasets.
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ImageNet-Rendition (ImageNet-R). ImageNet-R incor-
porates distribution shifts using different artistic ren-
ditions of object classes from the original ImageNet
dataset (Hendrycks et al., 2021). We use a variant of
ImageNet-R dataset from (Wang et al., 2022b). ImageNet-R
is a challenging benchmark for continual learning, transfer
learning, and OOD detection. It consists of classes with
different styles and intra-class diversity and thereby poses
significant distribution shifts for ImageNet-1K pre-trained
models (Wang et al., 2022b). It contains 200 classes, 24000
training images, and 6000 test images.

CUB-200. CUB-200 is composed of 200 different bird
species (Wah et al., 2011). The CUB-200 dataset comprises
a total of 11,788 images, with 5,994 images allocated for
training and 5,794 images for testing.

Aircrafts-100. Aircrafts or FGVCAircrafts dataset (Maji
et al., 2013) consists of 100 different aircraft categories and
10000 high-resolution images with 100 images per category.
The training and test sets contain 6667 and 3333 images
respectively.

Oxford Pets-37. The Oxford Pets dataset includes a total
of 37 various pet categories, with an approximately equal
number of images for dogs and cats, totaling around 200
images for each category (Parkhi et al., 2012).

Flowers-102. The Flowers-102 dataset contains 102 flower
categories that can be easily found in the UK. Each cate-
gory of the dataset contains 40 to 258 images. (Nilsback &
Zisserman, 2008)

STL-10. STL-10 has 10 classes with 500 training images
and 800 test images per class (Coates et al., 2011).

For all datasets, images are resized to 224 x 224 to train and
evaluate DNNGs.

C. Neural Collapse Metrics

Neural Collapse (NC) describes a structured organization
of representations in DNNs (Papyan et al., 2020; Kotha-
palli, 2023; Zhu et al., 2021; Rangamani et al., 2023). The
following four criteria characterize Neural Collapse:

1. Feature Collapse (AC1): Features within each class
concentrate around a single mean, with almost no vari-
ability within classes.

2. Simplex ETF Structure (AC2): Class means, when
centered at the global mean, are linearly separable,
maximally distant, and form a symmetrical structure
on a hypersphere known as a Simplex Equiangular
Tight Frame (Simplex ETF).

3. Self-Duality (NC3): The last-layer classifiers align
closely with their corresponding class means, forming

a self-dual configuration.

4. Nearest Class Mean Decision (AC4): The classifier
operates similarly to the nearest class-center (NCC)
decision rule, assigning classes based on proximity to
the class means.

Here, we describe each NC metric used in our results. Let
e denote the global mean and g, the c-th class mean of
the features, {z.;} at layer [, defined as follows:

C n n
Ho= G DD i o= D g (15e<0)
i=1

c=1i=1

We drop the layer index [ from notation for simplicity. Also
bias is excluded for notation simplicity. Feature dimension
is d instead of d + 1.

Within-Class Variability Collapse (N'C1): It measures the
relative size of the within-class covariance Xy with respect
to the between-class covariance X g of the DNN features:

C n
_ 1 T dxd
2VV - E Z Z (ZC-,i - “’c) (ZC‘,?: - ll’c) €R )

c=1i=1

C
1
Sp= 5D (He = pe) (e — 1) € R
c=1

The N'C1 metric is defined as:

NC1 = %traee (EWEE) ,

where EE is the pseudo-inverse of X 5. Note that N'C1 is
the most dominant indicator of neural collapse.

Convergence to Simplex ETF (NC2): It quantifies the
{5 distance between the normalized simplex ETF and the
normalized WWT, as follows:

WW' 1 1
- Ic — =101}
WWT | VO-1 ( cTce C)

where W € R¢*4 denotes the weight matrix of the learned
classifier.

NC2 =

)

F

Convergence to Self-Duality (MC3): It measures the /5
distance between the normalized simplex ETF and the nor-
malized WZ:

WZ 1 1
= — Ic — =101/
Nes Hnwan c-1 < “ce C>

b

F

where Z = [z1 — pg -+ 2o — pg] € R is the cen-

tered class-mean matrix.

Simplification to NCC (N C4): It measures the collapse of
bias b:
NCA = [[b+ Wiig]l,
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Table 9: Comparison between MSE and CE. VGG17 net-
works are trained on ImageNet-100 dataset (ID). For OOD
generalization we report £ggn (%) whereas for OOD detec-
tion we report Epgr (%), both are averaged over eight OOD
datasets. All models incorporate entropy regularization and
the ETF projector to control NC. A lower A/C indicates
stronger neural collapse. +Agr_,p and —Ag_, p indicate
% increase and % decrease respectively, when changing
from the encoder (E) to projector (P).

Method Ep Neural Collapse EGEN EDET

1 NC1L  NC2 NC3 NC4 | Avg. | | Avg. |
CE Loss

Projector | 12.62 | 0.393 0490 0468 0.316 | 6636 | 65.10
Encoder 15.52 | 2.175 0.603 0.616 5.364 41.85 87.62
Ap_p -18.69 | -81.93 -18.74 -24.03 -94.11 +58.57 | -25.70

MSE Loss
Projector 14.04 | 0469 0.743 0279 0.382 70.87 71.84
Encoder 1474 | 2.267 0.843 0.673 10.773 | 59.56 | 88.88
Ap_p -4.75 | -79.31 -11.86 -58.54 -96.45 +18.99 | -19.17

D. Mean Squared Error vs. Cross-Entropy

Prior work (Kornblith et al., 2021) finds that MSE rivals
CE in ID classification task but underperforms CE in OOD
transfer. However, the comparison between CE and MSE in
OQD detection task remains unexplored. In this work, we
find that CE significantly outperforms MSE in both OOD
transfer and OOD detection tasks. As shown in Table 9,
MSE underperforms CE by 6.74% (absolute) in OOD detec-
tion and by 17.71% (absolute) in OOD generalization. Our
OQOD generalization results are consistent with Kornblith
et al. (2021). CE also obtains lower ID error than MSE,
thereby showing good overall performance.

In terms of inducing neural collapse, both MSE and CE are
effective and achieve lower NC values (i.e., stronger NC).
However, our results suggest that CE does a better job than
MSE in enhancing NC without sacrificing OOD transfer.
We find MSE to be sensitive to the hyperparameters. The
comparison on all OOD datasets is shown in Table 10.

E. Formal Proposition: Collapsing Implies
Entropy —oo

Proposition E.1 (Entropy under Class—Conditional Col-
lapse). Consider a mixture of K class—conditional densities
{pek(z; €)M | in R with mixture weights {m }E_,. Sup-
pose that for each k, the density py 1,(z; €) is a member of a
family indexed by € > O that converges in the weak sense to
a Dirac delta, i.e.,

lg%pe,k(z; €) =0(z — pyy)-

Then, the differential entropy of the mixture

K
pe(zi€) =Y mpn(zie)
k=1

diverges to —oc in the limit ¢ — 0, that is,

lim H (p¢(z;€)) = —oo.

e—0

Detailed Proof. We begin by considering the mixture distri-
bution

K
pe(zi€) =Y m pen(zie).
k=1
For each k, assume that the density py i (z; €) satisfies
lim pe,1o(25€) = 0(2 — pg,1),
and, importantly, that its differential entropy diverges as
gi_r%H(pg7k(z; e)) = —00.

A concrete example is when py ,(2; €) is a Gaussian with
covariance €l. In that case,

d
H (pei(z;€)) = EZ log(2mee),
which clearly tends to —oo as € — 0.

Step 1: Introduce a Latent Class Variable. Define a
discrete random variable K taking values in {1,..., K}
with Pr(K = k) = . Then, the joint distribution of
(Z, K) is given by

p(z, ks €) = T poi(z;€).

Step 2: Apply the Chain Rule for Differential Entropy.
Using the chain rule for differential entropy, we have

H(Z,K) = H(K)+ H(Z | K).

Here, the entropy of the discrete variable K is

K
H(K)=-> mlogm,
k=1

which is finite since there are only finitely many classes.
The conditional entropy is given by

K

H(Z | K) =" m H(per(z€)).
k=1
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Step 3: Relate the Entropy of the Mixture to the Condi-
tional Entropies. By a standard property of conditional
entropy, we have

H(Z)=H(Z,K) - H(K | Z) < H(Z, K).

Thus, the entropy of the mixture satisfies

K

H(pe(z;e)) = H(Z) < H(K) + > _ m H(pei(z:€)).
k=1

Step 4: Conclude that the Mixture Entropy Diverges to
—o0. Since H(K) is a finite constant and for each k,

lim H (pg (25 €)) = —o,

it follows that
K
lgr(l) ; T H(pz,k(z; e)) = —o0.

Therefore,
E%H(m(z; 6)) = —o0.

Discussion. The essential idea is that even though the
mixture might appear to smooth the singular behavior of in-
dividual class—conditional distributions, the overall entropy
is still governed by the weighted sum of the entropies of its
components. Because each component entropy diverges to
—00, the entire mixture’s entropy must also diverge to —oo,
up to the finite additive constant H (K).

This completes the proof. O

F. Comprehensive Results (Encoder Vs.
Projector)

F.1. VGG Experiments

The detailed VGG17 results are given in Table 10. VGG re-
sults demonstrate that the encoder effectively mitigates NC
for OOD generalization and the projector builds collapsed
features and excels at the OOD detection task. The results
also confirm that NC properties can be built using both CE
and MSE loss functions.

Qualitative Comparison. We compare and visualize en-
coder embeddings and projector embeddings using UMAP.
We also visualize the energy score distribution of ID and
OOD data. The analysis is based on the VGG17 model
pre-trained on the ImageNet-100 (ID) dataset and evaluated
on OOD datasets: NINCO-64, Flowers-102, and STL-10.
We observe the following:

* In Fig. 5a, the UMAP shows that projector embeddings
nicely separate ID and OOD sets whereas encoder embed-
dings exhibit substantial overlap between ID and OOD

sets. This demonstrates that, unlike the encoder, the pro-
jector can intensify NC and is adept at OOD detection.

* We show the energy distribution of ID and OOD sets in
Fig. 5b and 6. In all comparisons, we observe that the
projector outperforms the encoder in separating ID and
OOD sets based on energy scores.

F.2. ResNet Experiments

The detailed ResNet18/34 results are given in Table 11.
Our findings validate that NC can be controlled in vari-
ous ResNet architectures for improving OOD detection and
OOD generalization performance. Additionally, NC shows
a strong correlation with OOD detection and OOD general-
ization as illustrated in Fig. 7.

We also visualize embeddings extracted from the encoder
and projector of the ResNet18 model. As depicted in Fig. 8,
projector embeddings exhibit much greater neural collapse
than encoder embeddings.

F.3. ViT Experiments

As shown in Table 12, the projector outperforms the en-
coder in OOD detection by absolute 7.73% (ViT-Tiny) and
9.23% (ViT-Small). Whereas the encoder outperforms the
projector in OOD transfer by absolute 10.90% (ViT-Tiny)
and 11.56% (ViT-Small). This demonstrates that controlling
NC improves OOD detection and generalization in ViTs.

G. Analysis on Entropy Regularization

Table 13 presents the detailed comparison between a model
using the entropy regularization vs another model omitting
it. We observe that using entropy penalty enhances OOD
transfer by 2.71% (absolute), OOD detection by 2.36% (ab-
solute), and ID performance by 0.84% (absolute).

Additionally, we analyze the impact of the entropy regular-
ization loss coefficient on the ID and OOD transfer. Table 14
shows that increasing coefficient increases OOD transfer
and rank of embeddings. This suggests that entropy regu-
larization helps encode diverse features and reduce redun-
dant features, encouraging utilization of all dimensions. Al-
though entropy regularization is not sensitive to coefficient,
over-regularization may hurt ID performance. Thereby, any
non-aggressive coefficient can maintain good performance
in both ID and OOD tasks.

We also analyze the impact of entropy regularization on
encoder embeddings during the training phase. During each
training epoch, we measure the NC1 criterion, entropy, and
effective rank of encoder embeddings. These experiments
are computationally intensive for large-scale datasets. There-
fore, we perform small-scale experiments where we train
VGG17 models on the ImageNet-10 (10 ImageNet classes)
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Table 10: Comprehensive VGG Results. VGG17 models are trained on ImageNet-100 dataset (ID) and evaluated on eight
OQD datasets. All models incorporate entropy regularization and the ETF projector to control NC. For OOD transfer we
report £gen (%) whereas for OOD detection we report Eper (%). A lower NC indicates stronger neural collapse. The

same color highlights the rows to compare.

Method Ep | Neural Collapse OOD Datasets
IN | NC1 NC2 WNC3 NC4 | IN-R CIFAR Flowers NINCO CUB  Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
CE Loss
Projector 12.62 | 0.393 0490 0468 0.316 | 91.38  65.72 64.51 64.97 82.22 97.42 43.17 21.51 66.36
Encoder 15.52 | 2.175 0.603 0.616 5364 | 71.52 47.24 25.10 24.32 63.67 67.81 21.56 13.55 41.85
Projector 12.62 | 0.393 0.490 0468 0316 | 60.85 48.23 42.35 67.69  56.51 99.04 76.32 69.84 65.10
Encoder 1552 | 2.175 0.603 0.616 5.364 | 67.17 98.14 81.76 84.95 84.57 99.70 97.36 87.34 87.62
MSE Loss
Projector 14.04 | 0469 0.743 0.279 0.382 | 87.18 70.33 82.16 5595  90.35 97.09 5593 28.01 70.87
Encoder 14.74 | 2.267 0.843 0.673 10.773 | 83.22  60.55 66.27 40.73  78.89 88.27 36.17 2241 59.56
Projector 14.04 | 0.469 0.743 0.279 0382 | 63.75 48.02 61.18 69.50 74.58 99.10 84.57 74.06 71.84
Encoder 14.74 | 2.267 0.843 0.673 10.773 | 93.32 62.42 77.55 92.14  95.77 99.19 99.13 91.50 88.88
Encoder Embeddings Projector Embeddings Encoder (FPR95: 84.95%) Projector (FPR95: 67.69%)
1.0 -
e IDData % 2 ID Data ID Data
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(a) UMAP of Embeddings
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(b) Energy Score Distribution

Figure 5: ID & OOD Data Visualization. In (a), The projector exhibits a greater separation between ID and OOD
embeddings than the encoder. For clarity, we show 10 ImageNet classes as ID data and 64 classes from the NINCO dataset
as OOD data. In (b), The projector achieves higher energy scores (and lower FPR9S5) for ID data. For ID and OOD datasets,

we show ImageNet-100 and NINCO-64 respectively.

subset for 100 epochs. We evaluate two cases: one with
entropy regularization and another without entropy regular-
ization.

The results are illustrated in Fig. 9. We find that entropy
regularization achieves higher NC1 values during training
compared to the model without any regularization. Thus, it
helps mitigate NC during training, thereby contributing to
OOD generalization. These findings align with our theoreti-
cal analysis showing entropy as an effective mechanism to
prevent NC in the encoder.

Entropy regularization also increases the entropy and effec-
tive rank of the encoder embeddings. This demonstrates
that entropy regularization helps encode diverse features,
ensuring the features remain sufficiently “spread out.”

Without the entropy regularization, the entropy of encoder
embeddings does not improve. Also, the effective rank ends
up at a low value (as low as the number of ID classes). The
low rank is a sign of strong neural collapse and suggests
that the encoder uses a few feature dimensions to encode in-
formation with huge redundancy in other dimensions. This
degeneracy of embeddings impairs OOD transfer. Entropy
regularization counteracts this and improves OOD transfer.

H. Additional Experimental Results
H.1. Fixed ETF Projector Vs. Learnable Projector

In Table 15, we observe that the fixed ETF projector shows
a higher transfer error (2.47% absolute) than the plastic
projector but outperforms the plastic projector in ID error
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(b) OOD Dataset: STL-10

Figure 6: Energy Score Distribution. The projector creates a greater separation between ID and OOD data and achieves a
lower FPR95 than the encoder. For better OOD detection, ID data should obtain higher energy scores than OOD data. For
ID and OOD datasets, we show ImageNet-100 and Flowers-102/ STL-10 respectively. The energy scores are calculated
based on logits from the VGG17 model pre-trained on ImageNet-100.

Table 11: Comprehensive ResNet Results. ResNet models are trained on ImageNet-100 dataset (ID) and evaluated on
eight OOD datasets. All models incorporate entropy regularization and the ETF projector to control NC. For OOD transfer
we report £gen (%) whereas for OOD detection we report Eper (%). A lower N'C indicates stronger neural collapse.

Model Emp ) Neural Collapse OOD Datasets
IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
ResNet18
Projector 16.14 | 0.341 0.456 0.306 0.540 | 86.65 60.33 63.92 50.09  81.79 94.36 43.15 2432 63.08
Encoder 20.14 | 1.762 0.552 0.555 10.695 | 74.17 53.33 31.37 28.15 68.85 81.61 27.72 16.56 47.72
Projector 16.14 | 0.341 0.456 0.306 0.540 | 67.92 61.21 71.18 71.09  23.20 99.28 8141 8229 69.70
Encoder 20.14 | 1.762 0.552 0.555 10.695 | 71.50 96.44 86.27 84.78  65.48 99.43 95.86 89.63 86.17
ResNet34
Projector 14.54 | 0252 0.672 0.294 0324 | 8393 58.65 64.41 44.05  81.65 93.58 43.64 22.87 61.60
Encoder 17.20 | 0.737 0.634 0.871 22.587 | 76.97 54.45 41.47 3333 71.25 82.00 29.25 1645 50.65
Projector 14.54 | 0.252 0.672 0.294 0324 | 61.72  60.05 47.94 66.24  67.59 98.35 83.78 78.49 70.52
Encoder 17.20 | 0.737 0.634 0.871 22.587 | 69.67 93.07 70.59 76.87  83.02 99.34 97.17 90.75 85.06

(2.48% absolute) and OOD detection error (8.9% absolute).

A fixed ETF projector should intensify NC and hinder OOD
transfer and our fixed ETF projector fulfills this goal.

H.2. Impact of L, Normalization on NC

We verify whether Lo normalization effectively induces
more neural collapse and improves OOD detection. We
analyze two VGG17 models pre-trained on ImageNet-100
dataset where one model uses Lo normalization and the
other omits it. The results are summarized in Table 16. We
find that L+ normalization induces more NC as evidenced by
the lower NC1 value than its counterpart. Consequently, Lo

normalization improves OOD detection by 3.83% (absolute).

Also, it achieves lower ID error than the compared model
without Lo normalization.

Next, we analyze how Lo normalization impacts NC during

training. We perform small-scale experiments since large-
scale experiments are compute-intensive. We train two
VGG17 models on the ImageNet-10 (10 ImageNet classes)
subset where one model uses Lo normalization and another
does not. During training, we measure the NC1 metric for
the encoder embeddings. The impact of Ly normalization
on NC1 is exhibited in Fig. 9d. We find that L, normaliza-
tion helps intensify NC during training. Consequently, it
promotes better OOD detection.

H.3. Batch Normalization Vs. Group Normalization

In this experiment, we analyze how batch normalization and
group normalization perform within our framework. We
find that group normalization (combined with weight stan-
dardization) outperforms batch normalization by 10.11%
(absolute) in OOD generalization and by 4.37% (absolute) in
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Table 12: Comprehensive ViT Results. ViT-Tiny (6.02M) and ViT-Small (21.62M) are trained on ImageNet-100 dataset
(ID) and evaluated on eight OOD datasets. All models incorporate entropy regularization and the ETF projector to control
NC. For OOD transfer we report £gen (%) whereas for OOD detection we report Epgr (%). A lower NC indicates

stronger neural collapse.

Model Ep ! Neural Collapse OOD Datasets
IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
ViT-Tiny
Projector 32.04 | 2.748 0.609 0.798 1.144 | 87.37 60.71 64.61 39.71 80.00 92.00 5427 29.55 63.53
Encoder 3394 | 5769 0.748 0.847 2.332 | 82.28 52.00 42.94 30.36 63.15 84.31 44.86 21.13 52.63
Projector 32.04 | 2.748 0.609 0.798 1.144 | 81.12 60.81 77.55 82.40 79.05 99.10 95.15 90.06 83.16
Encoder 3394 | 5769 0.748 0.847 2.332 | 83.80 96.76 87.65 93.11 82.14 99.10 95.75 88.79 90.89
ViT-Small
Projector 31.28 | 0.822 0.522 0.712 0.962 | 86.57 5846  64.51 3920 7825 90.70  53.86 2930 62.61
Encoder 3340 | 1.610 0.601 0.740 2.814 | 80.53 49.68 40.49 29.93 61.08 81.28 4445 2098 51.05
Projector 31.28 | 0.822 0.522 0.712 0.962 | 76.03 58.79 75.20 81.97 82.46 98.50 9542 88.74 82.14
Encoder 3340 | 1.610 0.601 0.740 2.814 | 82.47 96.84 90.39 92.60 86.00 99.25 9436 89.04 91.37
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Figure 7: Lower NCI1 values (indicating stronger neu-
ral collapse) correlate with lower OOD detection error
but higher OOD transfer error, and vice versa. This sug-
gests that stronger neural collapse improves OOD detection,
while weaker neural collapse enhances OOD generaliza-
tion. We analyze various layers of ResNet18, pre-trained on
ImageNet-100 dataset (ID), and evaluate them on four OOD
datasets. R denotes the Pearson correlation coefficient.

OOD detection (see Table 17). This demonstrates that batch
normalization leads to less transferable representations.

Moreover, group normalization achieves a higher N'C1
value (i.e., lower neural collapse) than batch normaliza-
tion, thereby mitigating NC effect and enhancing OOD
generalization. Group normalization also achieves ID per-
formance similar to that of batch normalization. Our results
demonstrate that group normalization achieves competitive

collapse (NC1 = 0.341) than the encoder embeddings
(MC1 = 1.762) as indicated by the formation of tight
clusters around class-means. For clarity, we highlight 10
ImageNet classes by distinct colors. The embeddings are
extracted from ImageNet-100 pre-trained ResNet18.

performance and plays a crucial role in OOD generalization.

H.4. Comparison with Baseline

Our experimental results show that our method significantly
improves OOD detection and OOD transfer performance
across all DNN architectures. We summarize the results
in Table 18. We evaluate VGG17, ResNetl8, and ViT-T
baselines on 8 OOD datasets and compare them with our
models. The absolute improvements over VGG17 baseline
are 7.69% (OOD generalization) and 29.82% (OOD detec-
tion). Similarly, our method outperforms other DNNS in all
criteria. Our results corroborate our argument that control-
ling NC enables good OOD detection and OOD general-
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Table 13: Entropy Regularization Vs. No Entropy Regularization. VGG17 models are pre-trained on ImageNet-100
dataset (ID) and evaluated on eight OOD datasets. All models incorporate an ETF projector. Entropy regularization loss
with a coefficient, « is applied in the last encoder layer. The same color highlights the rows to compare. All metrics except
NC are reported in %. The lower the NC value, the stronger the neural collapse. For OOD transfer we report £ggn (%)

whereas for OOD detection we report Epgr (%).

Method Ep | Neural Collapse OOD Datasets |
IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
No Reg. (a« = 0)
Projector 13.46 | 0.260 0.636 0.369 0.883 | 84.30  60.73 65.69 45.15 8290 93.73 40.56 22.85 61.99
Encoder 1524 | 1.308 0.719 0.619 5.184 | 73.52 49.26 37.06 25.51 6431 69.58 22.24  15.00 44.56
Reg. (o = 0.05)
Projector 12.62 | 0.393 0490 0.468 0.316 | 91.38  65.72 64.51 64.97  82.22 97.42 43.17 21.51 66.36
Encoder 1552 | 2.175 0.603 0.616 5364 | 71.52 47.24 25.10 2432  63.67 67.81 21.56 13.55 41.85
Reg. (¢« =0.1)
Projector 13.04 | 0428 0.671 0.340 0.320 | 93.62  66.00 55.29 79.25 81.84 97.09 46.96 23.00 67.88
Encoder 16.12 | 2.861 0.538 0.636 6.677 | 73.05 48.61 27.84 22.62 61.91 70.21 22.87 13.83 42.62
No Reg. (a« = 0)
Projector 13.46 | 0.260 0.636 0.369 0.883 | 65.22 54.32 45.20 67.18 5237 98.41 84.38 7258 67.46
Encoder 15.24 | 1.308 0.719 0.619 5.184 | 7422  99.75 85.10 88.52 9299 98.59 95.34 92.14 90.83
Reg. (o = 0.05)
Projector 12.62 | 0.393 0.490 0.468 0.316 | 60.85 48.23 42.35 67.69  56.51 99.04 76.32 69.84 65.10
Encoder 15.52 | 2.175 0.603 0.616 5.364 | 67.17 98.14 81.76 8495  84.57 99.70 97.36 87.34 87.62
Reg. (¢« =0.1)
Projector 13.04 | 0428 0.671 0.340 0.320 | 61.13  54.69 43.14 64.63  50.73 98.74 82.42 7151 65.87
Encoder 16.12 | 2.861 0.538 0.636 6.677 | 68.72 94.67 85.78 8776  85.49 98.92 95.15 86.28 87.85

ization performance. It is also evident that a single feature
space cannot simultaneously achieve both OOD detection
and OOD generalization abilities.

H.S5. Projector Design Criteria

Here we study the design choices of the projector net-
work. We want to know how depth and width impact the
performance. For this, we examine projectors consisting
of a single layer (depth=1, 512d), two layers (depth=2,
512d — 2048d — 512d), three layers (depth=3, 512d —
2048d — 2048d — 512d), and a wider variant (width=2,
512d — 4096d — 512d). All of these variants are trained
in identical settings and only the projector is changed. We
train VGG17 networks on ImageNet-100 dataset (ID) and
evaluate OOD detection/generalization on 8 OOD datasets.
The results are shown in Table 19. The projector with depth
2 outperforms other variants across all evaluations.

H.6. SGD Optimizer

In our experiments, we mainly used AdamW optimizer and
thereby we want to verify if our method works well with
other commonly used optimizers e.g., SGD. For this, we
train VGG17 models on ImageNet-100 dataset (ID) with the
SGD optimizer and evaluate them on eight OOD datasets.
As shown in Table 20, our method outperforms the baseline
by an absolute 6.26% in OOD generalization and by an

absolute 28.88% in OOD detection. Also, we observe that
our encoder reduces NC and enhances OOD generalization
by an absolute 13.86% compared to the projector. Whereas
the projector intensifies NC and improves OOD detection by
an absolute 25.34% compared to the encoder. While SGD
intensifies NC more than AdamW, AdamW achieves better
overall performance (Table 18 in Appendix).

H.7. Fixed ETF Classifier Vs. Plastic Classifier

We investigate how using a fixed ETF classifier head im-
pacts NC and OOD detection/generalization performance.
We train two identical models consisting of our proposed
mechanisms to control NC, the only thing we vary is the
classifier head. One model consists of a plastic (learnable)
classifier head which is our proposed model and the other
consists of an ETF classifier head. The ETF classifier head
is configured with Simplex ETF and frozen during train-
ing. We train VGG17 networks on ImageNet-100 (ID) and
evaluate them on 8§ OOD datasets.

Table 21 shows results across all OOD datasets, where the
plastic classifier outperforms the fixed ETF classifier by
4.39% (absolute) in OOD detection and by 15.6% in OOD
generalization. The plastic classifier also outperforms ETF
classifier in the ID task. Our results suggest that imposing
NC in the classifier head is sub-optimal for enhancing OOD
detection and generalization.
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Table 14: Entropy Regularization Loss Coefficient. We examine the impact of entropy regularization on the OOD
generalization of a regular VGG17 without any projector. VGG17 models are pre-trained on the ImageNet-10 (10
ImageNet classes) ID dataset and evaluated on eight OOD datasets. o denotes the entropy regularization loss coefficient.
Effective rank corresponds to the penultimate embeddings where entropy regularization is applied or omitted. For OOD

generalization, we report £ggn (%).

Reg. Coeff. & | Rank? EGen |
o IN IN IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
10 10 200 100 102 64 200 100 37 10
0 920 2211.99 | 94.62  83.77 72.45 65.56  86.76 89.32 80.32 49.44 77.78
0.1 9.80 2964.39 | 90.72  75.58 57.94 50.09  79.96 84.13 7272 39.79 68.87
0.2 10.20 317092 | 90.25  72.77 57.84 50.85  79.48 84.16 7043 3771 6794
0.6 12.00 3761.33 | 88.33 68.73 50.29 4745 7710 82.57 67.73 39.00 65.15
1.0 12.80 4815.32 | 88.38 67.81 50.29 4711 7748 81.64 68.27 38.74 64.96

Table 15: ETF Fixed Projector Vs. Plastic Projector. VGG17 models are trained on ImageNet-100 dataset (ID) and
evaluated on eight OOD datasets. All models incorporate entropy regularization and a projector (plastic/fixed ETF). The
same color highlights the rows to compare. For OOD transfer we report £gen (%) whereas for OOD detection we report

Eper (%).
Projector Ep Neural Collapse OOD Datasets
IN NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
Plastic
Projector 15.10 | 0.498 0.515 0.428 1.422 | 8752 64.83 79.71 53.32  87.00 93.46 48.76  28.04 67.83
Encoder 23.64 | 13.953 0.526 0.833 6.697 | 69.43 45.12 20.00 2355 5790 60.10 2540 13.52 39.38
Fixed ETF (Ours)
Projector 12.62 | 0.393 0490 0.468 0.316 | 91.38  65.72 64.51 6497 8222 97.42 43.17 21.51 66.36
Encoder 1552 | 2.175 0.603 0.616 5.364 | 71.52 47.24 25.10 2432 63.67 67.81 21.56 13.55 41.85
Plastic
Projector 15.10 | 0.498 0.515 0428 1.422 | 63.05 47.87 62.45 70.07  80.88 98.95 89.37 79.25 74.00
Encoder 23.64 | 13953 0.526 0.833 6.697 | 81.27 98.82 93.33 86.48  79.98 99.40 91.25 93.88 90.55
Fixed ETF (Ours)
Projector 12.62 | 0.393 0490 0.468 0.316 | 60.85 48.23 42.35 67.69  56.51 99.04 76.32 69.84 65.10
Encoder 1552 | 2.175 0.603 0.616 5.364 | 67.17 98.14 81.76 84.95  84.57 99.70 97.36 8734 87.62

H.8. Computational Efficiency & Scalability

Our proposed method is computationally efficient and does
not require higher computational costs than standard DNNs.
It introduces two additional components compared to stan-
dard DNN architecture and training protocol:

1. Entropy regularization applied at the encoder’s output.
2. A frozen ETF projector (two MLP layers) following the
DNN backbone.

For entropy regularization, we employ an efficient batch-
level nearest neighbor distance computation, which incurs
negligible computational overhead during training. Regard-
ing the ETF projector, since it remains frozen and does not
undergo gradient updates, it does not introduce any notice-
able training costs beyond those of the baseline DNN.

Training Time. When training DNNs on ImageNet-100
(ID dataset) for 100 epochs using four NVIDIA RTX A5000
GPUs, both our method and the baseline require almost the

same training time (see Table 23).

FLOPs. In terms of FLOPs (floating-point operations per
second), both our method and the baseline require almost
the same amount of computation. For FLOPs analysis, we
use DeepSpeed 2 with the same GPU (single NVIDIA RTX
A5000) across compared models. As shown in Table 23, the
overhead introduced by our method remains below 0.3% in
all cases, which we believe is trivial and well-justified given
the observed performance gains.

Scalability. Here we ask: does the proposed method scale to
deeper architectures? Our method is inherently compatible
with deeper architectures since the ETF projector (two MLP
layers) can be seamlessly integrated into encoders of any
depth. Additionally, while deeper DNNs typically exhibit
stronger NC in their top layers, our entropy regularizer
effectively mitigates NC in encoders of any depth. As shown

https://github.com/deepspeedai/DeepSpeed
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Figure 9: Analyzing entropy regularization & L2 normalization. (a) Entropy regularization reduces neural collapse
(indicated by higher NC1 values) in the encoder. (b) Entropy regularization increases the entropy of encoder embeddings
otherwise entropy remains unchanged. (c) Entropy regularization increases the effective rank of encoder embeddings
otherwise effective rank remains as low as the number of classes (i.e., 10 ImageNet classes). (d) L2 normalization increases
neural collapse (indicated by lower NCI1 values) in the projector. For this analysis, we train VGG17 networks on the

ImageNet-10 subset (10 ImageNet classes) for 100 epochs.

in Table 11, our method performs effectively with both
ResNet18 and ResNet34, highlighting its scalability. Similar
trend is observed for ViTs (Table 12).

I. Classes of ImageNet-100 ID Dataset

We list the 100 classes in the ID dataset, ImageNet-
100 (Tian et al., 2020). This list can also be
found at: https://github.com/HobbitLong/
CMC/blob/master/imagenet100.txt

Rocking chair, pirate, computer keyboard, Rottweiler, Great
Dane, tile roof, harmonica, langur, Gila monster, hognose
snake, vacuum, Doberman, laptop, gasmask, mixing bowl,
robin, throne, chime, bonnet, komondor, jean, moped, tub,
rotisserie, African hunting dog, kuvasz, stretcher, garden
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spider, theater curtain, honeycomb, garter snake, wild boar,
pedestal, bassinet, pickup, American lobster, sarong, mouse-
trap, coyote, hard disc, chocolate sauce, slide rule, wing,
cauliflower, American Staffordshire terrier, meerkat, Chi-
huahua, lorikeet, bannister, tripod, head cabbage, stinkhorn,
rock crab, papillon, park bench, reel, toy terrier, obelisk,
walking stick, cocktail shaker, standard poodle, cinema, car-
bonara, red fox, little blue heron, gyromitra, Dutch oven,
hare, dung beetle, iron, bottlecap, lampshade, mortarboard,
purse, boathouse, ambulance, milk can, Mexican hairless,
goose, boxer, gibbon, football helmet, car wheel, Shih-Tzu,
Saluki, window screen, English foxhound, American coot,
Walker hound, modem, vizsla, green mamba, pineapple,
safety pin, borzoi, tabby, fiddler crab, leafhopper, Chesa-
peake Bay retriever, and ski mask.


https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
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Table 16: Lo Normalization. VGG17 models are trained on ImageNet-100 dataset (ID) and evaluated on eight OOD
datasets. All models incorporate entropy regularization and the ETF projector to control NC. The same color highlights the
rows to compare. For OOD detection, we report £Epgr (%).

Method Ep Neural Collapse | EpET 4
IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
No L, Norm

Projector 12.74 | 0.579 0.538 0.349 1.339 | 57.43 4941 62.35 69.81 58.04 99.58 85.28 69.53 68.93
Encoder 14.70 | 1.788 0.633 0.823 10.643 | 77.08  96.77 91.18 92.35 89.47 99.64 89.51 85.31 90.16
Lo Norm
Projector 12.62 | 0.393 0.490 0468 0.316 | 60.85 48.23 42.35 67.69 56.51 99.04 7632 69.84 65.10
Encoder 15.52 | 2.175 0.603 0.616 5364 | 67.17 98.14 81.76 84.95 84.57 99.70 97.36 87.34 87.62

Table 17: Batch Norm Vs. Group Norm. VGG17 models are trained on ImageNet-100 dataset (ID) and evaluated on
eight OOD datasets. All models incorporate entropy regularization and the ETF projector to control NC. The same color
highlights the rows to compare. Group norm is integrated with weight standardization. All metrics except NC are reported
in percentage. For OOD transfer we report £ggn (%) whereas for OOD detection we report Epgr (%).

Method Ep ) Neural Collapse OOD Datasets
IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
Batch Norm
Projector 12.52 | 0.372  0.669 0.263 0.536 | 89.43  66.00 63.14 64.46  83.00 94.57 38.65 21.30 65.07
Encoder 14.54 | 1401 0.605 0.590 25.611 | 78.02 53.34 49.51 3325  74.08 85.27 2546 16.75 51.96
Group Norm
Projector 12.62 | 0.393 0490 0.468 0.316 | 91.38  65.72 64.51 6497 82.22 97.42 43.17 21.51 66.36
Encoder 15.52 | 2.175 0.603 0.616 5.364 | 71.52 47.24 25.10 2432  63.67 67.81 21.56 13.55 41.85
Batch Norm
Projector 12.52 | 0.372 0.669 0.263 0.536 | 57.30 74.62 44.12 66.33 65.14 99.19 7593 73.13 69.47
Encoder 14.54 | 1401 0.605 0.590 25.611 | 92.17  99.77 91.08 9141 9948 98.62 8539 9326 93.90
Group Norm
Projector 12.62 | 0.393 0490 0468 0.316 | 60.85 48.23 42.35 67.69  56.51 99.04 76.32 69.84 65.10
Encoder 15.52 | 2.175 0.603 0.616 5.364 | 67.17 98.14 81.76 8495  84.57 99.70 9736 8734 87.62

Table 18: Comprehensive Comparison with Baseline. Various DNNs are trained on ImageNet-100 dataset (ID) and
evaluated on eight OOD datasets. Baseline models do not incorporate mechanisms like entropy regularization or the ETF
projector to control NC. NC metrics are computed using the penultimate-layer embeddings. For OOD transfer we report
EGen (%) whereas for OOD detection we report Epgr (%).

Model Ep Neural Collapse OOD Datasets
IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10

VGG17 12.18 | 0.766  0.705 0.486 37.491 | 75.60  50.11 42.75 29.17  71.35 84.13 27.58 15.65 49.54

VGG17+Ours 12.62 | 0.393 0490 0468 0.316 | 71.52 47.24 25.10 2432 63.67 67.81 21.56 13.55 41.85

VGG17 12.18 | 0.766  0.705 0.486 37.491 | 96.02 97.16 97.94 93.11  95.19 98.59 87.33 94.05 94.92
VGG17+Ours 12.62 | 0.393 0490 0.468 0.316 | 60.85 48.23 42.35 67.69  56.51 99.04 76.32 69.84 65.10

ResNet18 1538 | 1.11 0.658 0.590 31.446 | 75.75 49.48 41.37 30.02  69.80 82.75 29.63 16.53 49.42
ResNet18+Ours 16.14 | 0.341 0.456 0.306 0.540 | 74.17 53.33 31.37 28.15  68.85 81.61 27.72 1656 47.72

ResNet18 1538 | 1.11  0.658 0.590 31.446 | 98.40 98.85 98.33 96.68  96.60 99.67 9240 98.25 97.40
ResNet18+Ours 16.14 | 0.341 0.456 0.306 0.540 | 67.92 61.21 71.18 71.09  23.20 99.28 8141 8229 69.70

ViT-T 31.78 | 2467 0.657 0.601 1.015 | 82.18 52.64 41.67 3274 6348 81.61 45.11 2200 52.68
ViT-T+Ours 32.04 | 2748 0.609 0.798 1.144 | 8228  52.00 42.94 30.36  63.15 84.31 44.86 21.13 52.63

ViT-T 31.78 | 2467 0.657 0.601 1.015 | 85.18 91.70 87.06 89.54  87.78 98.35 91.77 89.99 90.17
ViT-T+Ours 32.04 | 2748 0.609 0.798 1.144 | 81.12 60.81 77.55 82.40  79.05 99.10 95.15 90.06 83.16
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Table 19: Projector Design Criteria. VGG17 models are trained on ImageNet-100 dataset (ID) and evaluated on eight
OOD datasets. All compared projectors are configured as fixed simplex ETFs. And, entropy regularization is used in all
cases. The same color highlights the rows to compare. Our final model has depth 2 and performs better than other variants.
For OOD transfer we report £ggn (%) whereas for OOD detection we report Epgr (%).

Criteria Ep Neural Collapse OOD Datasets
IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
Depth=1
Projector 12.86 | 0.375 0.649 0.500 1.157 | 90.27 64.61 60.88 55.02  81.12 96.34 4434  23.04 64.45
Encoder 16.34 | 1.673 0.667 0.589 7.936 | 74.08 50.61 30.00 28.06  66.74 71.95 2573 15775 45.37
Depth=2 (Ours)
Projector 12.62 | 0.393 0490 0.468 0.316 | 91.38  65.72 64.51 6497  82.22 97.42 43.17 21.51 66.36
Encoder 15.52 | 2.175 0.603 0.616 5.364 | 71.52 47.24 25.10 2432  63.67 67.81 21.56 13.55 41.85
Width=2
Projector 13.48 | 0.320 0.667 0.376 0.493 | 89.88  66.46 64.51 53.40  82.50 95.77 4176 2390 64.77
Encoder 1646 | 2.341 0.607 0.646 5.899 | 73.05 50.61 27.25 25.60  64.84 67.87 2235 15.10 43.33
Depth=1
Projector 12.86 | 0.375 0.649 0.500 1.157 | 80.15 95.98 81.68 84.18 92.75 98.38 73.62 92.24 87.37
Encoder 16.34 | 1.673 0.667 0.589 7.936 | 62.72 95.04 84.65 8495 9222 99.43 89.75 83.66 86.55
Depth=2 (Ours)
Projector 12.62 | 0.393 0490 0.468 0.316 | 60.85 48.23 42.35 67.69  56.51 99.04 76.32 69.84 65.10
Encoder 15.52 | 2.175 0.603 0.616 5.364 | 67.17 98.14 81.76 8495  84.57 99.70 97.36 87.34 87.62
Width=2
Projector 13.48 | 0.320 0.667 0.376 0.493 | 6543 60.83 51.96 67.77  57.70 99.52 79.29 7533 69.73
Encoder 16.46 | 2.341 0.607 0.646 5.899 | 66.80 97.64 89.61 8342  88.39 98.89 98.58 94.39 89.78

Table 20: Comprehensive Results with SGD Optimizer. VGG17 models are trained on ImageNet-100 dataset (ID) using
the SGD optimizer. Baseline models do not incorporate mechanisms like entropy regularization or the ETF projector to
control NC. A lower NC value indicates stronger neural collapse. For OOD transfer we report £ggn (%) whereas for OOD
detection we report Epgr (%). OOD performance is averaged across eight OOD datasets. The same color highlights the
rows to compare.

Model Ep Neural Collapse OOD Datasets
IN NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts  Pets STL  Avg.
100 200 100 102 64 200 100 37 10
VGG17
Encoder 13.06 ‘ 1.017 0.449 0.479 26.459 ‘ 82.10 56.82 59.71 39.20 77.70 88.21 35.00 18.58 57.17
VGG17+O0urs
Projector 13.18 | 0.087 0.468 0.267 0264 | 84.48 64.69 72.35 4728  85.88 94.66 42.85 2593 64.77
Encoder 15.36 ‘ 0.459 0.804 0972 3.898 ‘ 7820 57.27 45.59 32.06 74.27 74.49 27.58 17.80 50.91
VGG17
Encoder 13.06 ‘ 1.017 0.449 0.479 26.459 ‘ 81.63 93.34 87.25 86.31  94.89 97.93 8476 91.40 89.69
VGG17+0urs
Projector 13.18 | 0.087 0.468 0.267 0264 | 52.28 35.80 60.59 67.60 67.77 67.35 67.52 67.60 60.81
Encoder 15.36 ‘ 0.459 0.804 0972 3.898 ‘ 93.58 95.11 68.43 84.01 87.42 87.16 87.00 86.48 86.15
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Table 21: Fixed ETF Classifier Vs. Plastic Classifier. VGG17 models are trained on ImageNet-100 dataset (ID) and
evaluated on eight OOD datasets. All models incorporate entropy regularization and the ETF projector to control NC; only
the classifier (final layer) differs, being either trainable or a fixed ETF. The same color highlights the rows to compare.
All metrics except NC are reported in percentage. For OOD transfer we report £gpn (%) whereas for OOD detection we
report Epgr (%).

Classifier Ep Neural Collapse OOD Datasets
(Last layer) IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
Fixed ETF
Projector 13.56 | 0.088 0.702 0.374 0.379 | 98.18  84.28 92.25 96.94  96.86 97.60 7223 36.59 84.37
Encoder 1640 | 3.794 0.773 0.786 54.24 | 82.47 63.19 55.98 36.31 81.00 88.36 31.18 20.88 57.42
Plastic (Ours)
Projector 12.62 | 0.393 0490 0.468 0.316 | 91.38  65.72 64.51 6497  82.22 97.42 43.17 21.51 66.36
Encoder 15.52 | 2.175 0.603 0.616 5364 | 71.52 47.24 25.10 2432 63.67 67.81 21.56 13.55 41.85
Fixed ETF
Projector 13.56 | 0.088 0.702 0.374 0.379 | 73.80  26.45 73.04 68.20  55.80 98.98 96.05 63.56 69.49
Encoder 1640 | 3.794 0.773 0.786 5424 | 81.03 98.98 81.57 87.25 97.29 99.01 86.48 93.11 90.59
Plastic (Ours)
Projector 12.62 | 0.393 0490 0.468 0.316 | 60.85 48.23 42.35 67.69 56.51 99.04 7632 69.84 65.10
Encoder 1552 | 2.175 0.603 0.616 5364 | 67.17 98.14 81.76 8495  84.57 99.70 97.36 87.34 87.62

Table 22: Comprehensive Comparison with NECO. We compare our method against a SOTA OOD detection method
NECO (Ammar et al., 2024). Since NECO does not address OOD generalization, we do not compare OOD generalization
performance. Here, various DNNs are trained on ImageNet-100 dataset (ID) and evaluated on eight OOD datasets. NC
metrics are computed using the penultimate-layer embeddings. A lower NC value indicates stronger neural collapse.

Model Emp Neural Collapse OOD Detection Error Epgt (%)
IN | NC1 NC2 NC3 NC4 | IN-R CIFAR Flowers NINCO CUB Aircrafts Pets STL  Avg.
100 200 100 102 64 200 100 37 10
VGG17
NECO 12.18 | 0.766 0.705 0.486 37.491 | 83.20 26.41 87.94 7874  83.45 83.53 96.76  82.49 77.82
Ours 12.62 | 0.393 0.490 0.468 0.316 | 60.85 48.23 42.35 67.69  56.51 99.04 76.32 69.84 65.10
ResNet18
NECO 1538 | 1.11 0.658 0.590 31.446 | 93.88  66.81 94.12 90.05  90.05 90.05 90.05 90.05 88.13
Ours 16.14 | 0.341 0.456 0.306 0.540 | 67.92 61.21 71.18 71.09  23.20 99.28 81.41 82.29 69.70
ViT-T
NECO 31.78 | 2.467 0.657 0.601 1.015 | 79.90 74.76 82.84 84.44  85.12 98.50 92.67 87.10 85.67
Ours 32.04 | 2.748 0.609 0.798 1.144 | 81.12 60.81 717.55 82.40 79.05 99.10 95.15 90.06 83.16

Table 23: Compute Overhead. We compare our method with baseline DNNs in terms of FLOPs and training time. Training
time (wall-clock) is reported in minutes.

Model FLOPs Comparison Time Comparison
FLOPs | % Increase | Time (Mins) | % Increase

VGG17 4,955,622,740,132,864 - 307.80 -
VGG17 + Ours | 4,956,972,705,684,480  +0.0272% 307.98 +0.0585 %

ResNet18 461,500,110,825,472 - 136.81 -
ResNetl8 + Ours | 462,031,742,464,000 +0.1152 % 137.04 +0.1681 %

ResNet34 931,123,885,195,264 - 140.89 -
ResNet34 + Ours | 931,655,516,833,792 +0.0571 % 141.26 +0.2626 %

ViT-T 271,301,725,913,088 - 63.03 -
ViT-T + Ours 271,376,414,539,776 +0.0275 % 63.18 +0.2380 %

ViT-S 1,068,921,092,308,992 - 102.02 -
ViT-S + Ours 1,069,219,652,567,040  +0.0279% 102.24 +0.2156 %
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