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ABSTRACT

PINN approximation for solutions of non-linear equations is much more difficult
than the linear analogue. This is due to the non-differentiability of the solution at
some points and/or non-differentibility of the coefficients of the PDE. We develop
a PINN approach for Γ-convergence inspired TV regularization à la Chambolle
and Lions. We use smooth approximations of the TV functional that makes the
problem differentiable at all points. Our coordinate-based neural network rep-
resentation enables gradient computation while maintaining the continuous PDE
formulation. We train the network through increasingly less smooth approxima-
tions, gradually approaching the original TV solution. We next extend our results
from a single image and a single PDE to a class of images. This is done via opera-
tor learning that maps any initial image to its TV solution where a single network
learns the denoising operator across multiple images. Experiments on 2D and
3D data demonstrate that our method achieves competitive denoising quality with
classical TV solvers.

1 INTRODUCTION

Total variation (TV) regularization is fundamental for edge-preserving image denoising. The origi-
nal TV problem minimizes

E(u) =
1

2
∥u− u0∥2L2 + λ

∫
Ω

|∇u|dx (1)

However, minimizing sequences in the natural space lack convergence guarantees, necessitating
relaxation to the space of bounded variation (BV). This relaxed functional

Ē(u) =
1

2
∥u− u0∥2L2 + λTV (u) (2)

while theoretically sound, involves measure-valued derivatives that are computationally challenging.

We solve the relaxed TV problem using physics-informed neural networks (PINNs) through a se-
quence of smooth approximations. Following Chambolle & Lions (1997), we replace the non-
smooth functional with a decreasing sequence of smooth functionals

Eε(u) =
1

2
∥u− u0∥2L2 + λ

∫
Ω

ϕε(|∇u|)dx (3)

that converge to the relaxed TV functional Ē in BV. Each Eε has a unique minimizer in W 1,2, and
these minimizers converge in L1 to the minimizer of Ē.

Our approach transforms this framework into a neural network method. For each smooth functional
Eε, we minimize the corresponding Euler-Lagrange equation using a PINN Raissi et al. (2019).
The smoothness enables gradient computation through automatic differentiation. This is a key ad-
vantage over finite difference methods used in classical solvers and recent neural approaches like
DeepTV Langer & Behnamian (2024). We progressively reduce ε during training to approach the
TV solution. We extend this framework to operator learning using Lu et al. (2021) architecture ,
enabling a single network to learn the denoising operator across multiple images. Our experiments
on 2D and 3D data, under both low and high noise conditions, demonstrate competitive performance
with classical TV methods. Contributions: Our primary contribution is implementing the smooth
approximation strategy for TV regularization using PINNs, inspired by Chambolle & Lions (1997),
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demonstrating successful application in both 2D and 3D volumetric denoising. Additionally, we
develop an operator learning framework that enables TV denoising across multiple images simulta-
neously through a single trained network.

2 RELATED WORK

Classical TV methods handle the non-differentiability of |∇u| through various approaches. Cham-
bolle Chambolle (2004) introduced a dual projection algorithm that avoids direct computation of the
singular gradient term. Chambolle and Pock Chambolle & Pock (2011) extended this to primal-dual
methods. Most relevant to our work, Chambolle and Lions Chambolle & Lions (1997) proved that
smooth approximations ϕε(|∇u|) of the TV functional Γ-converge to the relaxed TV solution as
ε→ 0.

Recent neural approaches address TV-related problems. Grossmann et al. Grossmann et al. (2022)
learn the TV flow PDE ∂tu = ∇·(∇u/|∇u|) using a network that takes the noisy image u0 and time
t as inputs, outputting the denoised image u(t) and a flux field. They compute spatial derivatives
using finite differences on the network outputs.

Langer Langer & Behnamian (2024) establishes Γ-convergence for ReLU networks approximating
TV minimizers, with convergence properties related to network width and weight bounds. They use
coordinate-based networks but compute gradients through finite differences.

Our approach implements the Chambolle-Lions framework directly using coordinate-based PINNs
with smooth activations. This enables automatic differentiation for all gradient computations,
avoiding finite differences entirely. We solve the classical ROF functional through progressive ε-
reduction, maintaining the theoretical Γ-convergence guarantees while extending to 3D applications.

3 BACKGROUND

3.1 IMAGE DENOISING AND TOTAL VARIATION

Image reconstruction is a fundamental inverse problem where the observed degraded image u0 re-
lates to the true image u through:

u0 = Ru+ η (4)

where R : L2(Ω)→ L2(Ω) models degradation (blur, downsampling) and η represents noise.

Direct inversion is ill-posed small noise perturbations cause large reconstruction errors. Total varia-
tion (TV) regularization Rudin et al. (1992) stabilizes this by exploiting the image structure, where
natural images contain piecewise smooth regions separated by edges. The TV-regularized problem
minimizes:

E(u) =
1

2

∫
Ω

|Ru− u0|2 dx+ λ

∫
Ω

|∇u| dx (5)

where λ > 0 balances fidelity against smoothness.

3.2 MATHEMATICAL FRAMEWORK AND RELAXATION

The natural space for image reconstruction with TV regularization is V = {u ∈ L2(Ω) : ∇u ∈
L1(Ω)}, but this space is non-reflexive and lacks the sequential compactness necessary for the direct
method. We therefore work in BV (Ω), which retains boundedness of minimizing sequences and
provides sequential weak* compactness. However, the extended functionalfrom V to BV still lacks
weak* lower semicontinuity, requiring further regularization. This necessitates working with the
relaxed functional:

Ē(u) =
1

2

∫
Ω

|Ru− u0|2 dx+ λTV (u) (6)

where the total variation for u ∈ BV (Ω) decomposes as:

TV (u) =

∫
Ω

|∇u|dx+

∫
Su

|u+ − u−|dHd−1 +

∫
Ω\Su

|Cu|dx (7)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

comprising the smooth part, jumps across discontinuities Su, and the Cantor part Cu. This relax-
ation preserves the variational structure while gaining the analytical properties needed for existence
theory. Minimizers of E in V remain minimizers of Ē in BV , and minimizing sequences now
converge in the weak* topology to actual minimizers. Most importantly, Ē achieves lower semicon-
tinuity, enabling the direct method to guarantee existence in BV.

3.3 NUMERICAL SOLUTION VIA SMOOTH APPROXIMATIONS

Direct optimization of Ē is challenging because it involves measure-valued terms. Chambolle and
Lions Chambolle & Lions (1997) addressed this by constructing smooth approximations. They
replace the non-smooth absolute value with a smooth function ϕε:

ϕε(s) =


s2

2ε + ε
2 , 0 ≤ s ≤ ε

s, ε ≤ s ≤ 1
ε

εs2

2 + 1
2ε , s ≥ 1

ε

(8)

This leads to a family of smooth functionals:

Eε(u) =

{
1
2

∫
Ω
|Ru− u0|2dx+ λ

∫
Ω
ϕε(|∇u|)dx, u ∈W 1,2(Ω)

+∞, otherwise
(9)

These functionals are smooth, which guarantees that each Eε has a unique minimizer uε in the
Sobolev space W 1,2(Ω).

As ε decreases, the sequence {Eε} converges pointwise to Ē on W 1,2(Ω) (and remains infinite
elsewhere). More importantly, this sequence Γ-converges to the extended functional on BV (Ω)
(infinite outside BV ). Combined with the equi-coercivity of {Eε}, we obtain a strong result: the
minimizers uε converge strongly in L1(Ω) to the minimizer of Ē.

E on V Ē on BV Eε on W 1,2

Needs relaxation u∗ uε

relax smooth approx.

ε → 0

Figure 1: From non-reflexive V to relaxed BV to smooth W 1,2: the theoretical path enabling neural
network solutions for TV denoising.

3.4 SOLUTION APPROACHES FOR THE SMOOTHED FUNCTIONAL

The smooth approximations Eε enable various numerical solution strategies. Classical approaches
include the primal-dual. These methods discretize the domain and solve the resulting finite-
dimensional optimization problems. We propose a different approach by parameterizing solutions
through neural networks, leveraging physics-informed neural networks Raissi et al. (2019) and op-
erator learning Lu et al. (2021). This continuous parameterization avoids explicit discretization,
provides solutions defined everywhere on Ω, and naturally extends to high-dimensional problems.

4 METHOD

4.1 NEURAL NETWORK PARAMETERIZATION FOR TV MINIMIZATION

We parameterize the solution using a neural network Nθ : Ω → R with parameters θ ∈ Rp. For
each ε > 0, we seek θ∗ such that Nθ∗

ϵ
approximates the minimizer u∗

ε ∈ W 1,2(Ω) of the smoothed
functional Eε.

3
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4.1.1 ACTIVATION FUNCTIONS AND REGULARITY

The selection of smooth activation functions σ ∈ C∞(R) (tanh, SiLU, softplus) is fundamental to
our approach. For a network with L layers:

Nθ(x) = WLσ(WL−1σ(· · ·σ(W1x+ b1) · · · ) + bL−1) + bL

where Wi ∈ Rni×ni−1 and bi ∈ Rni .

For any fixed parameter configuration θ, the network Nθ belongs to W 1,2(Ω). Since σ ∈ C∞(R)
and compositions of smooth functions remain smooth, we have Nθ ∈ C∞(Ω). On bounded do-
mains Ω ⊂ Rd, smooth functions with all their derivatives bounded automatically belong to Sobolev
spaces, thus C∞(Ω) ⊂ W k,p(Ω) for all k ≥ 0 and 1 ≤ p ≤ ∞. In particular, Nθ ∈ W 1,2(Ω) for
any θ ∈ Rp.

Networks with smooth activations approximate functions in the Sobolev norm, not just point-
wise. On bounded domains Ω ⊂ Rd, the universal approximation theorem for smooth activations
Hornik et al. (1989) guarantees simultaneous approximation of both function values and derivatives.
When Nθ approximates f , it also approximates ∇f , ensuring convergence in the full W 1,2 norm
∥u∥2W 1,2 = ∥u∥2L2 + ∥∇u∥2L2 .

Combining this with the Meyers-Serrin theorem ??, which states that C∞(Ω) ∩W 1,2(Ω) is dense
in W 1,2(Ω) for bounded Ω, we obtain that theoretically our parameterization can approximate any
minimizer u∗

ε ∈W 1,2(Ω) arbitrarily well in both function values and gradients.

4.1.2 FUNCTIONAL CONSTRAINTS AND SOLUTION PROPERTIES

This guaranteed membership Nθ ∈W 1,2(Ω) for all θ serves two critical purposes:

(i) Constraint Satisfaction and Solution Regularity: The smoothed functional (equation 9) is
defined as:

Eε(u) =

{
1
2∥Ru− u0∥2L2 + λ

∫
Ω
ϕε(|∇u|)dx if u ∈W 1,2(Ω)

+∞ otherwise

Since Nθ ∈ W 1,2(Ω) for any θ ∈ Rp, our neural network parameterization automatically satisfies
the constraint of Eε. Further more, this guarantees that our final solution Nθ∗ belongs to W 1,2(Ω),
the correct function space for the variational problem. This is not trivial: the constraint u ∈W 1,2(Ω)
is essential for the mathematical well-posedness of the TV regularization framework, and our smooth
activation functions ensure this constraint is satisfied by construction rather than requiring explicit
enforcement during optimization.

(ii) Well-Defined Physics Constraints: The Euler-Lagrange equation for Eε is:

R∗(Ru− u0)− λ∇ ·
(
ϕ′
ε(|∇u|)

∇u
|∇u|

)
= 0

With Nθ ∈ C∞(Ω), this divergence exists and can be computed via automatic differentiation.

4.2 PHYSICS-INFORMED TRAINING FOR SINGLE IMAGES

Having established that neural networks with smooth activations provide the necessary W 1,2(Ω)
regularity and approximation capabilities, we now detail how we leverage these properties to solve
the TV minimization problem through physics-informed training.

4.2.1 FROM THEORY TO IMPLEMENTATION

We solve the sequence of smoothed problems {Eε} to approximate the minimizer of the original
TV functional Ē, exploiting the theoretical convergence uε → u∗ as ε → 0 established in Section
3. The neural network Nθ : Ω → R directly maps continuous spatial coordinates to function
values, transforming the non-differentiable TV minimization into a sequence of smooth optimization
problems that standard gradient-based methods can handle.
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4.2.2 CONTINUOUS REPRESENTATION OF DISCRETE DATA

For single-instance denoising, we construct the training set directly from the noisy image u0. Given
discrete data on an n1 × n2 × . . . × nd grid, we establish a continuous representation by mapping
each grid point to coordinates in [0, 1]d. Specifically, grid indices (i1, i2, . . . , id) map to:

x =

(
i1 − 1

n1 − 1
,
i2 − 1

n2 − 1
, . . . ,

id − 1

nd − 1

)
∈ [0, 1]d (10)

The training dataset consists of coordinate-value pairs {(xj , u0(xj))}
∏d

k=1 nk

j=1 . The network Nθ :

[0, 1]d → R takes spatial coordinates as input and outputs the denoised intensity. For all exper-
iments, we synthesize training data by adding Gaussian noise to clean images: u0 = uclean + η
where η ∼ N (0, σ2). This controlled setup allows quantitative evaluation against ground truth
while demonstrating the unsupervised nature of our method, which only uses u0 during training.

4.2.3 PHYSICS-INFORMED LOSS AND TRAINING STRATEGY

For each fixed ε, we enforce the Euler-Lagrange equation by minimizing the residual:

LEL =

∥∥∥∥R∗(RNθ − u0)− λ∇ ·
(
ϕ′
ε(|∇Nθ|)

∇Nθ

|∇Nθ|

)∥∥∥∥2
L2(Ω)

(11)

We enforce homogeneous Neumann boundary conditions through:

LBC =

∥∥∥∥∂Nθ

∂n

∥∥∥∥2
L2(∂Ω)

(12)

The total loss combines both terms: L = LEL + λBCLBC.

The key innovation is our progressive ε-reduction strategy. Starting from a large ε0 where the
problem is highly smooth, we solve a sequence of increasingly less regularized problems. After
convergence at each ε, we reduce it by a factor α ∈ (0, 1) and continue training with warm-starting.
The complete procedure is formalized in Algorithm 1.

Algorithm 1 PINN Training for TV Minimization
1: Input: Network Nθ, initial ε0 > 0, decay α ∈ (0, 1), tolerance τ
2: Output: Network Nθ∗ approximating TV minimizer
3: ε← ε0
4: while ε > τ do
5: Sample coordinate batch {xj}Mj=1 ⊂ [0, 1]d

6: repeat
7: Evaluate u0(xj) via interpolation from discrete data
8: Compute residual: rj = R∗(RNθ(xj)− u0(xj))− λDε[Nθ](xj)
9: Update θ to minimize L = 1

M

∑
j |rj |2 + λBCLBC

10: until convergence
11: ε← α · ε
12: Warm start: retain θ for next iteration
13: end while
14: return Nθ∗

This approach combines the theoretical guarantees from our neural network parameterization with
practical computational efficiency. Implementation details are provided in Appendix ??. While
effective for single images, practical applications require processing multiple images efficiently,
motivating our operator learning extension.
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4.3 OPERATOR LEARNING FOR MULTIPLE IMAGES

While PINNs solve individual denoising instances, practical applications demand processing multi-
ple images efficiently. We extend our approach to learn the TV denoising operator that generalizes
across a distribution of noisy inputs.

4.3.1 DEEPONET ARCHITECTURE FOR TV REGULARIZATION

We employ the Deep Operator Network (DeepONet) framework Lu et al. (2021), which learns
mappings between function spaces through a branch-trunk decomposition:

Gθ(u0)(x) =

p∑
i=1

Bi(u0) · Ti(x) (13)

The branch network Bθ : Rm → Rp encodes the noisy input u0 sampled at m fixed sensor locations.
The trunk network Tθ : [0, 1]d → Rp maps spatial coordinates to features. Crucially, we use
smooth activations (SiLU) in the trunk to ensure T ∈ C∞([0, 1]d), maintaining the W 1,2 regularity
required for the Euler-Lagrange equation. The branch can use non-smooth activations (ReLU) since
derivatives are only computed with respect to trunk coordinates.

4.3.2 TRAINING DATASET CONSTRUCTION

For operator learning, we prepare N noisy instances {u(k)
0 }Nk=1. Each instance is normalized to

[0, 1] intensity range, consistent with our PINN approach. The operator conceptually maps triplets
(u0,xin,xout) where u0 is the normalized noisy input image, xin are the sensor locations where we
sample the input, and xout are the coordinates where we evaluate the denoised output.

However, the unsupervised nature of our approach imposes a critical constraint. To evaluate the
fidelity term in the Euler-Lagrange equation, we need to compute Gθ(u0)(x) − u0(x) at the same
spatial location x. This requirement collapses the triplet to a pair by enforcing xin = xout.

Specifically, for each training batch we sample coordinates {xj}Mj=1 ⊂ [0, 1]d. The branch network
receives the normalized noisy image u0 evaluated at these coordinates as {u0(xj)}Mj=1, while the
trunk network receives the same coordinates {xj}Mj=1. The loss function then compares Gθ(u0)(xj)
with u0(xj) at identical locations. This alignment between sensor and evaluation locations, com-
bined with intensity normalization, enables unsupervised learning without clean ground truth. For
operator learning, we prepare N noisy instances {u(k)

0 }Nk=1 by adding Gaussian noise from the same
distribution to clean images: u

(k)
0 = u

(k)
clean + η(k) where η(k) ∼ N (0, σ2) with fixed σ across the

dataset. Each instance is then normalized to [0, 1] intensity range. This consistency in noise charac-
teristics enables the operator to learn a robust denoising mapping.

4.3.3 PHYSICS-INFORMED OPERATOR TRAINING

We apply the same ε-reduction strategy to the operator setting. For each fixed ε, we minimize the
physics residual across all instances:

LEL =
1

NM

N∑
i=1

M∑
j=1

∥∥∥R∗(RGθ(u
(i)
0 )(xj)− u

(i)
0 (xj))− λDε[Gθ(u

(i)
0 )](xj)

∥∥∥2 (14)

where Dε denotes the divergence term from the Euler-Lagrange equation. Boundary conditions are
enforced similarly across all instances. The complete procedure is given in Algorithm 2.
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Algorithm 2 Physics-Informed Operator Learning for TV Denoising

1: Input: Dataset {u(i)
0 }Ni=1, initial ε0 > 0, decay α ∈ (0, 1), tolerance τ

2: Output: Operator Gθ∗ approximating TV denoising operator
3: Initialize branch network Bθ and trunk network Tθ

4: ε← ε0
5: while ε > τ do
6: Sample triplet batch {(u(ik)

0 ,xj , u
(ik)
0 (xj))} for k = 1, . . . , Nb and j = 1, . . . ,M

7: repeat
8: Compute operator output: Gθ(u

(ik)
0 )(xj) =

∑
l Bl(u

(ik)
0 ) · Tl(xj)

9: Compute residuals and update θ to minimize LEL + λBCLBC
10: until convergence
11: ε← α · ε
12: Warm start: retain θ for next iteration
13: end while
14: return Gθ∗

Implementation details are provided in Appendix ??.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate our methods on 3D imaging tasks. We compare against the Chambolle primal algo-
rithm Chambolle (2004) as it provably converges to the same TV minimizer we approximate. Both
methods solve identical variational problems, isolating the effect of neural parameterization versus
classical discretization. For fair comparison, we optimize the baseline extensively. For each test
case, we evaluate Chambolle with 10 different regularization parameters λ logarithmically spaced
around the noise level, reporting the best SSIM resuls for optimal performance, as λ controls the
trade-off between data fidelity and TV regularization.

We evaluate using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and
RMSE.

5.2 3D VOLUME DENOISING WITH PINN

We demonstrate our PINN approach on a synthetic 3D heart cone phantom of size 643 voxels. The
phantom consists of a cone-shaped region with intensity 1 inside and 0 outside, creating a pure jump
discontinuity at the cone boundary. This binary structure specifically tests TV regularization’s core
strength: preserving sharp edges defined by the jump set Su in the BV decomposition. We corrupt
this binary phantom with Gaussian noise (σ = 0.2), a challenging noise level that severely obscures
the sharp boundary.

RMSE ↓ PSNR ↑ SSIM ↑
Chambolle TV Ours Chambolle TV Ours Chambolle TV Ours

Full volume 0.172 0.154 15.29 16.27 0.875 0.921
Slice 1 0.188 0.183 14.50 14.70 0.860 0.900
Slice 49 0.146 0.136 16.70 17.33 0.905 0.931

Table 1: Quantitative results for 3D heart cone denoising. TV denotes Chambolle with optimal λ
selected from 10 candidates.

Our PINN method consistently outperforms the optimally-tuned Chambolle baseline across all met-
rics. The full volume shows a 10.5% reduction in RMSE and nearly 1 dB improvement in PSNR.
The SSIM improvement of 0.046 is particularly significant for this binary phantom, as it indicates
better structural preservation of the cone geometry. The slice-wise analysis reveals interesting pat-
terns. Slice 1, with a larger cross-section near the cone base, shows our method achieving SSIM

7
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Slice 1

Slice 49

Original Noisy (σ = 0.2) Chambolle TV PINN (Ours)

Figure 2: 3D heart cone denoising showing two representative slices.

of 0.900 versus 0.860 for TV, a 4.7% improvement. Slice 49, near the apex with minimal cross-
section, demonstrates even stronger performance with SSIM of 0.931 versus 0.905. The superior
performance on both slices, particularly on the geometrically simpler Slice 49, suggests our contin-
uous representation effectively captures the jump discontinuity regardless of boundary complexity.
as seen in Figure 2 Figure 2 visualizes these quantitative gains. While both methods remove noise,
our PINN produces cleaner boundaries. The continuous neural representation avoids the staircase
artifacts visible in the TV solution, particularly evident along the cone edges.

5.3 2D OPERATOR LEARNING ON CHESTMNIST

We evaluate on 2D medical images from the ChestMNIST dataset. We train a single DeepONet on
100 chest X-ray images, Each volume has dimensions 64 × 64 pixels testing the operator’s ability
to generalize across varying structures.

Original Noisy (σ2 = 0.1) Chambolle TV DeepONet (Ours)

Figure 3: ChestMNIST denoising results. Our operator preserves anatomical structures while effec-
tively removing noise.

Method RMSE ↓ PSNR ↑ SSIM ↑
Chambolle TV 0.00020 26.2 0.886
DeepONet (Ours) 0.00019 27.3 0.910

Table 2: Quantitative results on ChestMNIST with σ2 = 0.1. TV uses optimal λ from 10 candidates.

Our operator achieves consistent improvements: 1.1 dB PSNR gain and 0.024 SSIM improvement
over the Chambolle TV. The improvements demonstrate that our physics-informed operator success-
fully generalizes to 2D. Figure 3 shows that our method better preserves fine details while avoid-
ing the over-smoothing visible in the TV solution. Additional experiment with higher noise levels
(σ2 = 0.3) are provided in Appendix ??.
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5.4 OPERATOR LEARNING FOR MULTIPLE 3D VOLUMES

We evaluate our physics-informed DeepONet on the OrganMNIST3D dataset, learning a single
operator to denoise 100 different organ volumes. Each volume has dimensions 64× 64× 12 voxels,
representing various organ types with distinct anatomical structures. We corrupt all volumes with
Gaussian noise (σ = 0.1) to test the operator’s ability to generalize across different anatomies.
The DeepONet architecture employs a branch network (4-layer CNN followed by MLP with ReLU
activations, 7500 hidden units) to encode noisy images at fixed sensor locations, and a trunk network
(4-layer MLP with SiLU activations, 5500 hidden units) to encode spatial coordinates. The output
dimension of 7500 combines as Gθ(u0)(x) =

∑7500
i=1 Bi(u0) · Ti(x).

Original Noisy (σ = 0.1) Chambolle TV DeepONet (Ours)

Figure 4: Representative slice from OrganMNIST3D volume (64× 64× 12). Our operator method
preserves organ boundaries while reducing noise.

Method PSNR ↑ SSIM ↑ RMSE ↓
Chambolle TV 21.10 0.767 0.00776

DeepONet (Ours) 21.55 0.836 0.00700

Table 3: Quantitative results for the representative OrganMNIST3D slice shown in Figure 4.

Our DeepONet operator consistently outperforms the optimally-tuned Chambolle baseline. The
RMSE reduction of 9.8% and PSNR improvement of 0.45 dB demonstrate effective noise removal
across diverse organ types. The SSIM improvement of 0.069 indicating better preservation of
anatomical structures despite the operator being trained on multiple organ types simultaneously.

Figure 4 shows the qualitative differences. While both methods remove noise, our operator better
preserves fine anatomical details and organ boundaries. The continuous neural representation avoids
the over-smoothing artifacts visible in the TV solution, maintaining internal organ texture while still
achieving effective denoising.

6 CONCLUSION

We presented a physics-informed neural network approach for total variation denoising that bridges
variational methods with deep learning. By solving the sequence of smoothed problems Eε through
progressive reduction, our method approximates the TV solution while maintaining theoretical guar-
antees through the Γ-convergence framework. Our key contributions include: (1) demonstrating that
coordinate-based neural networks can effectively solve the TV problem in both 2D and 3D, achiev-
ing consistent improvements over classical methods despite using smooth activations to approxi-
mate discontinuous functions; (2) extending to operator learning for processing multiple images
efficiently. Limitations and Future Work: We lack explicit approximation rates for neural net-
works in Sobolev spaces while bounds exist for linear PDEs Ben-Shaul et al. (2023), extending to
nonlinear problems remains open. The precise function space of trained PINNs requires characteri-
zation. Future directions include establishing convergence rates, exploring direct energy minimiza-
tion versus Euler-Lagrange residuals, and incorporating attention mechanisms for improved operator
learning. Additionally, validation on real medical data with acquisition-specific noise models would
strengthen practical applicability. Despite these theoretical gaps, our empirical results demonstrate
that physics-informed approaches offer a promising direction for combining the mathematical rigor
of variational methods with the computational advantages of neural networks, particularly for high-
dimensional imaging problems where classical methods face computational constraints.
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