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ABSTRACT

Node classification is a fundamental task in graph learning. While Graph Neural
Networks (GNNs) have achieved remarkable success in this area, their effective-
ness relies heavily on large amounts of high-quality labels, which are costly to ob-
tain. Moreover, GNNs are typically developed under a closed-world assumption,
where all nodes belong to a fixed set of categories. In contrast, real-world graphs
follow an open-world setting, where newly emerging nodes often stem from out-
of-distribution (OOD) classes, making it challenging for GNNs to generalize. Mo-
tivated by the strong zero-shot reasoning and generalization ability of Large Lan-
guage Models (LLMs), we propose LANO (LLMs as Active Annotation Agents
for Open-World Node Classification). Our framework first aligns GNN represen-
tations with LLM token embeddings via instance-aware and feature-aware self-
supervised learning, enabling LLMs to serve as zero-shot predictors for graph
tasks. LANO then employs an influence- and uncertainty-driven strategy to select
the most representative nodes and leverages LLMs for cost-effective pseudo-label
generation. To suppress the spread of inaccurate labels and mitigate labeling bias,
a soft feedback propagation mechanism disseminates bias-reduced pseudo labels
to neighboring nodes with label decay mechanism, followed by iterative GNN
optimization. Extensive experiments on multiple benchmarks demonstrate that
LANO consistently outperforms popular baselines, showcasing the great potential
of LLMs as active annotation agents for advancing open-world graph learning.

1 INTRODUCTION

Node classification is one of the most typical research directions in graph analysis (Xiao et al., 2022),
with broad applications in citation network, amazon networks, and recommender systems. Under
the closed-world assumption, graph neural networks (GNNs) have achieved remarkable success in
this task (Wang et al., 2024b). Despite their effectiveness, GNN-based models face several inherent
limitations. First, they are notoriously label-hungry—their performance heavily relies on abundant
high-quality labeled, as shown in Figure 1, which is often costly and labor-intensive to obtain (Chen
et al., 2023). Second, most existing models assume that labeled and unlabeled nodes come from the
same set of predefined categories. However, this assumption rarely holds in real-world open-world
scenarios, where newly added nodes may belong to entirely novel, out-of-distribution (OOD) cate-
gories. As a result, models trained solely on seen classes struggle to generalize to unseen categories,
severely restricting their applicability in open-world graph learning (Wang et al., 2024b).

To address this challenge, prior work has explored OOD detection and open-world learning on
graphs. Energy-based approaches replace softmax confidence with energy functions to distinguish
in-distribution (ID) from OOD nodes (Liu et al., 2020). Other efforts, such as ORCA (Cao et al.,
2021), design joint objectives for classification and clustering to progressively discover novel cate-
gories, while OODGAT (Song & Wang, 2022) explicitly models interactions between ID and OOD
nodes via attention. Although these methods can mitigate misclassification and detect unknown
nodes, their performance often degrades significantly under distributional shifts, limiting their gen-
eralization capacity in truly open-world environments (Li et al., 2022).
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Figure 1: Motivation of this work. Traditional GNNs rely on abundant labeled data and closed-world
assumptions, while real-world open-world graphs face label scarcity and the emergence of OOD
nodes. Faced with such challenges, the integration of GNNs and LLMs with strong generalization
capabilities demonstrates success in node classification.

Recent advances in Large Language Models (LLMs) shed light on addressing the challenge. LLMs
exhibit remarkable zero-shot ability, often achieving strong performance without requiring labeled
data (Chen et al., 2023). Thus as illustrated in Figure 1, LLMs provide a promising direction to
alleviate both label scarcity and OOD generalization issues. Compared with costly human anno-
tation, LLM-assisted labeling substantially reduces supervision cost. However, directly applying
LLMs to graph-based node classification remains challenging: (1) Structure awareness: LLMs are
not inherently designed to capture the relational and structural information present in graphs (Wang
et al., 2024a); (2) Node selection: annotating all nodes with LLMs is infeasible, making it essen-
tial to identify the most representative nodes for labeling; and (3) Label reliability: LLM-generated
pseudo-labels are susceptible to hallucinations and biases, requiring mechanisms that can mitigate
noise while amplifying their benefits for GNN training (Sheng et al., 2025).

In this paper, we propose LANO, a novel framework that leverages LLMs as active annotation agents
for open-world node classification. Specifically, our method first employs instance-aware graph
learning to learn embeddings from unlabeled nodes, and introduces feature-aware self-supervised
alignment to map GNN representations into the LLM token embedding space, thereby enabling
LLMs to serve as zero-shot predictors for graph tasks. To further reduce annotation cost, LANO
computes node influence and uncertainty to select the most representative nodes for LLM labeling.
The obtained pseudo-labels are then propagated to neighboring nodes via a soft label propagation
mechanism with label decay, which not only improves efficiency but also mitigates bias in pseudo-
labeling. Finally, GNN training is iteratively refined using the enriched supervision, enhancing
performance in both ID and OOD settings.

Our main contributions are summarized as follows: (1) New Perspective: We introduce a novel per-
spective that leverages LLMs with strong zero-shot abilities as active annotation agents to address
label scarcity and OOD challenges in open-world node classification. (2) New Framework: We
propose LANO, which integrates GNN–LLM representation alignment, influence- and uncertainty-
based node selection, and bias-reduced soft label propagation into a unified framework to iteratively
optimize GNN training. (3) Experiments: Extensive experiments across multiple datasets demon-
strate that our framework consistently outperforms strong baselines, achieving extraordinary results
in open-world node classification.

2 PRELIMINARIES

Notations. We define the graph as G = (V, E ,X), where V is the set of nodes, E is the set of edges,
and X denotes the initial node features. Let |V| = N be the total number of nodes. The node set
V is partitioned into a labeled subset Vl and an unlabeled subset Vu. The classes of labeled nodes
are denoted as Cl (seen classes), while the classes of unlabeled nodes are denoted as Cu, which may

2
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Figure 2: The overall LANO framework. After aligning GNN representations with LLM embed-
dings, LANO selects the most representative nodes for LLM annotation based on influence and
uncertainty, propagation, thereby generating pseudo-labels. These pseudo-labels are further propa-
gated through soft feedback, and the debiased labels are ultimately leveraged to iteratively optimize
the training of the GNN.

also contain novel classes. Thus, nodes in Vu can belong either to Cl or to unseen classes in Cu, i.e.,
Cl ∩ Cu ̸= ∅. The adjacency matrix A satisfies A[i, j] = 1 if an edge exists between nodes i and j.
The set of manual labels for nodes in Vl is denoted by Yl = {yi | vi ∈ Vl, yi ∈ Cl}.

Graph Neural Networks. Graph Neural Networks (GNNs) are widely used for learning repre-
sentations of nodes in graph-structured data. The central idea is to iteratively aggregate information
from a node’s neighborhood to capture both structural and feature dependencies. Formally, a generic
GNN layer is given by:

hl+1
v = update

(
hl
v, aggregate({hl

u | u ∈ Nv})
)
, (1)

where hl
v is the representation of node v at the l-th layer, and Nv is its neighborhood. The aggregate

function summarizes information from neighbors (e.g., mean, sum, or attention-based weighting),
while update refines the representation, often via multilayer perceptrons (MLPs) (Sheng et al.,
2025). By stacking multiple layers, nodes can capture higher-order structural information. After L
layers, the final representation hL

v is obtained, which can be applied to downstream tasks.

Problem Definition. We investigate the task of node classification in an open-world graph set-
ting (Wang et al., 2024b). Given the graph G = (V, E ,X,Yl), the node set V consists of a labeled
subset Vl with labels Yl, and an unlabeled subset Vu. Among them, the unknown labels can be
represented as Yu = {yi | vi ∈ Vu, yi ∈ Cu}. The objective is to learn a function

F : G = (V, E ,X,Yl) −→ Yu, (2)

such that nodes belonging to Cl are accurately assigned to their corresponding seen classes, while
nodes from Cu are not only detected as unknown but further distinguished and categorized into their
respective novel classes. This formulation extends traditional closed-world node classification by
requiring the model to handle both recognition and classification of previously unseen categories
within the same unified framework.

3 METHOD

We propose a novel semi-supervised graph learning framework, LANO, which leverages LLMs
as active agents to facilitate open-world node classification. The framework consists of three key
modules: (1) Graph Self-supervised Learning for LLM Alignment, (2) Influence and Uncertainty
Maximization-aware LLM Annotation, and (3) Learning with Bias-Reduced Pseudo Labels. An
overview of the framework is illustrated in Figure 2.

3.1 GRAPH SELF-SUPERVISED LEARNING FOR LLM ALIGNMENT

In LANO, GNNs encoder is used to generate node representations, while an LLM, owing to its
strong generalization ability, serves as a zero-shot predictor for node classification (Wang et al.,
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2024a). However, LLMs cannot directly process graph-structured data. To bridge this gap, we
propose a self-supervised alignment scheme that maps GNN representations into the LLM token
embedding space. Our approach combines instance-aware graph learning and feature-aware align-
ment to capture both structural invariance and semantic compatibility.

Instance-aware Graph Learning. To ensure robustness of node embeddings against structural per-
turbations, we introduce instance-aware graph learning to enhance structural representation capacity.
We first generate node representations via GNNs, adopting a mixture-of-experts (MoE) architecture
where multiple experts are combined, each specialized in capturing distinct structural patterns. We
then construct two perturbed views of the graph via the feature-based random dropout mechanism
of GAT alongside the attention head random dropout mechanism, denoted as G1 and G2, for con-
trastive learning. Formally, given the original graph G = (V, E ,X,A), we generate two randomly
perturbed views G1 = (Ã1, X̃1) and G2 = (Ã2, X̃2). Each view is encoded by the GNN to produce
node embedding matrices:

U∗ = fGNN (Ã∗, X̃∗) ∈ RN×d, ∗ ∈ {1, 2}, (3)
where d is the dimension size of node representations. For node vi, we denote its embeddings from
the two views as ui and u′

i, respectively. Representations of the same node under different views
are regarded as a positive pair, while those of different nodes are treated as negative pairs. The
model learns discriminative embeddings in an unsupervised manner by maximizing the consistency
between positive pairs and minimizing the similarity between negative pairs. We adopt a contrastive
objective that encourages representations of the same node across views to be close, while pushing
apart different nodes. The corresponding loss function is defined as:

Lemb = − log
exp(sim(ui · u′i/τ))∑

k = 1N1[k ̸=i] exp(sim(ui · u′k/τ))
(4)

where sim(·) denotes cosine similarity, τ is the temperature parameter, and 1[k ̸=i] is an indicator
function that takes the value 1 if k ̸= i, and 0 otherwise.

Feature-aware LLM Alignment Tuning. To bridge the gap between GNN node representations
and the semantic space of LLM token embeddings, the goal is to ensure that when GNN outputs
are converted into a sequence of token embeddings and provided as prompts, the LLM can perform
zero-shot reasoning. This is achieved in two steps: first, a feature-aware contrastive alignment is
conducted to align the feature axes (columns) of the GNN with the LLM token space; second, a
linear projector is trained to map the GNN’s central node representation into K token embeddings.
The projector is fine-tuned for alignment while keeping the LLM frozen. Through this Feature-
aware LLM Alignment Tuning, GNN outputs are directly adapted to the LLM embedding space,
thereby improving generalization across tasks and datasets.

Lble = − log
exp(sim(mi,ni)/τ)∑d

k=1 1[k ̸=i] exp(sim(mi,nk)/τ)
, (5)

where mi and ni are the i-th feature vectors from two augmented embeddings U1 and U2. Then the
overall self-supervised objective is a weighted combination:

LSCL =

N∑
i=1

(λ1Lemb + λ2Lble) + Llogits (6)

where λ1, λ2 balance the two terms. Llogits denotes the supervised contrast loss introduced on the
output logits of the classification layer, which is used to directly improve the differentiation of the
final prediction results.

Consequently, neither the GNN nor the LLM requires task-specific fine-tuning. Instead, by map-
ping graph representations into token embeddings via the projector and feeding them into a unified
LLM prompt template, the framework enables cross-task and cross-dataset reasoning in a zero-shot
manner (Wang et al., 2024a).

3.2 INFLUENCE MAXIMIZATION-AWARE LLM ANNOTATION

High-quality annotations are crucial for graph learning, yet manual labeling is prohibitively expen-
sive. In scenarios with scarce and noisy labels, it is therefore essential to select the most informative
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nodes for annotation, striking a balance between performance improvement and labeling cost. To
this end, we propose to leverage node influence for guiding LLM-based annotation, and further de-
sign task-specific prompts that enable LLMs to effectively capture graph information for zero-shot
node classification.

Influence Estimation for Node Selection. Building on reliable influence-based active learn-
ing (Zhang et al., 2021), we adopt a joint strategy that combines uncertainty estimation with in-
fluence maximization to identify representative nodes for annotation. We first compute the global
uncertainty of each node by considering its relation to cluster centroids obtained via k-means and
neighbor propagation. Specifically, a Student-t distribution is used to assign each node a probabil-
ity over clusters, and the entropy of this distribution quantifies the uncertainty. This uncertainty is
further refined via neighbor aggregation:

u(vi) = u(vi) +
1

|N (vi)|
∑

vj∈N (vi)

sim(zi, zj) · u(vj), (7)

where N (vi) denotes the k-nearest neighbors of vi, zi is the node representation, and sim(·, ·)
is a similarity function. Next, we estimate the influence of each node by considering multi-hop
propagation paths (self, 1-hop, and 2-hop neighbors). Following RIM (Zhang et al., 2021), the
influence score from node vi to vj after k propagation steps is defined as

Q(vj , vi, k) = rvi · I(vj , vi, k), (8)

where rvi denotes the influence quality of node vi, and I(·) measures the reliable influence of vi on
vj after k-step feature/label propagation. Combining global uncertainty and influence, the selection
score for node vi is given by

score(vi) = u(vi) ·
∑

vj∈Nk(vi)

Q(vj , vi, k), (9)

and the top-K nodes are selected for LLM annotation:

S = arg topKv∈V score(v). (10)

Prompt Engineering for Annotation. The prompts are structured into three components: task
information, graph information, and output rules. The task information is expressed as a question +
option set (Wang et al., 2024a); the graph information consists of node graph token embeddings plus
a title; and the output rules specify the classification result and confidence. For example: Your task:
Classify the target node into predefined categories or detect a new category. Predefined categories
(represented by semantic tokens): category 1: ... Target node: ... Rules: Known/New/Uncertain
Category and Confidence Level. The complete prompt design is provided in Appendix D.

After identifying the nodes requiring annotation by the LLM, we first align them to the LLM’s
semantic space and construct carefully designed prompts as input. The output from the LLM falls
into three categories: (1) If the LLM outputs a seen class label, we assign a soft label as a confidence-
weighted one-hot vector; (2) If the LLM outputs an unseen class, we use the classification head’s
predicted distribution, also weighted by confidence; (3) If the output is invalid or malformed, the
result is discarded. We retain only valid annotations and discard outdated nodes to ensure high-
quality supervision in the subsequent training stage.

3.3 LEARNING WITH BIAS-REDUCED PSEUDO LABELS

Although LLMs can provide pseudo-labels via carefully designed prompts, these annotations are
not guaranteed to be correct. To mitigate the risk of propagating noisy labels, we introduce two
mechanisms: soft feedback propagation and bias-reduced pseudo label concordance.

Soft Feedback Propagation. To efficiently expand the utility of LLM-generated pseudo-labels, we
propagate them to structurally and semantically similar neighbors. However, directly propagating
hard labels risks amplifying errors. We therefore adopt a soft feedback propagation strategy, where
only high-confidence outputs from LLMs are allowed to propagate. Specifically, for each node vsi
in the selected set S, its LLM-generated pseudo-label yLLM

i is propagated to uncertain neighbors
vj based on feature similarity:

sj = (1− sim(zj , z
s
i )) · sj + sim(zj , z

s
i ) · yLLM

i , (11)
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where sj denotes the soft prediction vector of node vj , and sim(·, ·) measures the similarity between
embeddings zj and zsi .

The propagated pseudo-label for vj is then assigned as

ypropj =

{
yLLM
i , if argmax(sj) = yLLM

i ,

−1, otherwise,
(12)

where yLLM
i is a one-hot vector with the predicted class set to 1. In this way, pseudo-labels are prop-

agated only when the updated prediction of vj is consistent with the LLM-assigned class, reducing
the risk of error amplification.

Bias-reduced Pseudo Label Concordance. Since the model is not pretrained, early-stage pseudo-
labels are often noisy. To alleviate bias accumulation, we introduce a label decay mechanism that
gradually attenuates the influence of outdated pseudo-labels. At each iteration, a batch of L new
pseudo-labels is generated by LLMs, and only the most recent M labels are preserved for prop-
agation together with the original labeled set. The historical pseudo-labels are maintained across
iterations but scaled down by a decay factor γ < 1:

Ŷt = γ · Ŷt−1 + Ŷt
new, (13)

where Ŷt denotes the aggregated pseudo-label matrix at iteration t. This decay ensures that earlier
noisy annotations gradually vanish, while recent high-quality LLM feedback dominates the training
process. Together, soft feedback propagation and bias-reduced concordance mitigate the risks of
error amplification and label bias, enabling the model to effectively exploit LLM annotations in an
open-world setting (Liang et al., 2024; Wang et al., 2024b).

3.4 OVERALL OPTIMIZATION

To optimize GNN training, we incorporate bias-reducing pseudo labels into iterative GNN training.
Our loss function during training primarily includes: (1) Supervised Contrastive Loss (LSCL), de-
signed to better separate known and unknown classes. (2) Cross-Entropy Loss (LCE), used to learn
valuable synthetic labels. We update the model using the following overall loss formula:

Lours = ηLCE + LSCL (14)

where η is the scaling factor. Contrastive loss is applied to GNN-output embeddings, projected LLM
embeddings, and classification layer logits. This encourages similar samples (different perspectives
from the same node) to cluster closely in embedding space while keeping dissimilar samples apart.
The LCE calculated from classification head logits is used for labeled training nodes, ensuring the
model correctly classifies known categories.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on several commonly used benchmark datasets for node clas-
sification tasks, including Citeseer (Kipf, 2016), Amazon photos (Shchur et al., 2018), Amazon
Computers (Shchur et al., 2018), Coauthor CS (Shchur et al., 2018) and Coauthor Physics (Shchur
et al., 2018). More detailed statistics of the datasets are provided in Appendix B.

Evaluation Metric. Under the open-world setting, node categories are divided into seen and unseen
classes. A prediction is considered correct only if the model assigns the node to its ground-truth
label. For LLM-based annotation, we additionally provide two options—decidable and undecidable.
A prediction is counted as correct if the LLM selects decidable and its output matches the true
label; if undecidable is chosen, the annotation is regarded as invalid and excluded from accuracy
computation. The more details of the metric is given in Appendix C. All experiments are repeated
10 times with different splits, and the reported accuracy is averaged across runs.

Baselines. We compare our method against a broad set of baselines applicable to open-world node
classification. These include open-world node classification algorithms OODGAT (Song & Wang,

6
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Table 1: Performance comparison on different datasets under open-world settings with test accuracy
(%). The best results in each column are highlighted in bold and pink, the second-best results in
each column are highlighted in yellow.

Method Citeseer Coauthor CS Coauthor phy Amazon photos Amazon computers
all seen novel all seen novel all seen novel all seen novel all seen novel

OODGAT 46.4 56.9 37.5 68.1 68.8 65.6 68.3 69.4 62.5 63.0 71.1 54.5 61.3 63.3 55.9
OpenWGL 62.4 71.0 54.2 58.6 67.1 50.3 73.3 85.0 68.1 71.8 74.8 69.3 57.6 65.9 44.6

ORCA-ZM 58.3 72.8 44.4 75.0 74.2 73.5 64.7 81.1 55.9 74.6 89.9 58.2 63.8 73.7 52.6
ORCA 58.2 68.0 49.0 73.9 81.6 68.3 66.2 84.8 58.2 76.2 87.1 64.9 60.9 67.8 53.7
SimGCD 61.5 70.6 53.4 71.2 84.2 61.2 60.9 81.1 52.8 80.5 90.0 70.8 61.9 73.8 50.3
OpenLDN 62.3 73.9 51.6 68.4 80.6 60.3 62.2 72.4 57.2 80.9 90.6 71.9 63.3 76.5 51.8
OpenCon 68.8 75.0 62.1 73.5 83.4 67.5 65.8 95.0 55.4 82.6 92.1 72.8 62.3 74.9 51.2
OpenCon 66.7 73.7 60.0 71.0 81.9 64.8 62.6 83.8 54.4 82.9 87.9 78.1 59.4 69.0 53.2
InfoNCE 68.1 70.7 65.2 72.2 72.8 72.7 60.6 58.1 60.2 76.3 78.5 75.1 56.1 51.3 59.1
InfoNCE+SupCon 68.1 71.9 64.1 75.6 80.3 72.0 56.3 52.5 58.9 72.4 75.1 71.0 60.5 59.7 59.8
InfoNCE+SupCon+CE 68.1 73.6 62.6 76.4 80.5 72.9 55.8 54.7 56.5 74.4 77.1 73.0 62.8 79.4 56.1
OpenIMA 68.1 71.8 64.3 77.1 78.3 75.9 78.0 93.6 72.2 83.6 89.9 77.3 67.8 77.8 59.0

ours(LANO) 70.2 73.8 66.2 83.4 85.2 80.7 80.2 79.6 72.6 84.3 86.2 83.1 70.3 70.4 70.2

2022) and OpenWGL (Wu et al., 2021), as well as baseline methods for end-to-end open-world semi-
supervised learning, namely ORCA (Cao et al., 2021), ORCA-ZM (Cao et al., 2021), SimGCD (Wen
et al., 2023), OpenLDN (Rizve et al., 2022), OpenCon (Sun & Li, 2022), InfoNCE (Oord et al.,
2018), and OpenIMA (Wang et al., 2024b). More detailed descriptions of these methods can be
found in Appendix E.

Implementation Details. Our model builds upon the architecture of OpenIMA by extending its
original GNN backbone. Specifically, we treat a single GAT network as one head responsible for
encoding a single token, and the number of heads is determined by the number of tokens required
as input to the LLM. To capture diverse structural representations of the graph, different heads are
designed with variations in hop size, hidden dimensionality, number of attention heads, dropout rate,
and whether residual connections are applied. To align the input dimension of the projection layers,
we set the output dimension of all heads to 256. We employ Adam as the optimizer with a batch size
of 4096. Training is conducted over 40 epochs with a learning rate of 0.004. For detailed model and
parameter configurations, please refer to Appendix F.

4.2 RESULTS AND ANALYSIS

Table 1 presents the classification accuracy of our method and various baselines on both seen and
unseen classes under the open-world setting. Overall, across most datasets and evaluation scenarios,
our approach outperforms all competing methods in terms of overall accuracy and unseen-class
recognition, while maintaining strong competitiveness on seen-class classification.

We attribute these performance gains to several key factors. First, incorporating LLMs as pseudo-
label generation agents aligns the semantic information encoded by GATs and leverages the LLMs’
semantic discrimination capability, enabling more efficient and accurate annotation of unseen classes
and providing more valuable supervision signals for training. Second, by combining node influence
and uncertainty metrics, we selectively propagate pseudo-labels only to the most representative un-
labeled nodes, effectively reducing noise interference and enhancing the reliability and diversity of
pseudo-labels.Third, the original framework relies solely on selecting the top ρ% of nodes closest to
cluster centroids as pseudo-labels, which can lead to label oscillations and unstable training when
decision boundaries are still ambiguous. To address this, we introduce soft feedback propagation
and label decay mechanisms, mitigating the spread of biased pseudo-labels and reducing the nega-
tive impact of oscillations. Finally, as suggested by theoretical insights from the training framework,
the introduction of LLMs partially alleviates the imbalance of supervision signals between seen and
unseen classes, further enhancing overall classification performance.

4.3 ABLATION STUDIES

We further conduct ablation experiments to investigate the contribution of each component of our
framework. Specifically, we design six variants: 1) Removing LLM-assisted pseudo-label gener-
ation; 2) Treating projection heads as fixed rather than learnable parameters; 3) Omitting the un-
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Table 2: Ablation studies by overall test accuracy (all, seen, novel). The best results in each column
are highlighted in bold.

Method Citeseer Coauthor CS
all seen novel all seen novel

ours 70.2 73.8 66.2 83.4 85.2 80.7
w/o LLMs 68.7 71.7 64.0 77.4 83.5 71.0
w/o projector 69.5 71.7 66.2 82.6 85.9 78.4
w/o influence 69.1 74.8 63.7 82.7 82.3 81.8
w/o uncertainty 68.2 66.2 69.4 80.1 79.8 81.6
variant1 67.1 69.3 65.7 68.7 70.8 67.5
variant2 67.3 68.7 66.3 81.4 82.2 80.0

certainty measure in high-value node selection; 4) Omitting the maximum activation criterion in
high-value node selection; 5) Replacing informed selection with random node sampling (variant1);
6) Replacing the multi-head architecture with a single head (variant2). Based on these six variants,
we perform repeated experiments on the Citeseer and Coauthor CS datasets, with the results sum-
marized in Table 2. The experiments reveal that excluding LLM-assisted pseudo-label generation
leads to a substantial drop in overall classification accuracy. A further breakdown between seen
and unseen classes shows that performance on seen classes remains largely unaffected, whereas the
accuracy on unseen classes degrades significantly. This highlights the critical role of the LLM in
enhancing the recognition of unseen classes under the open-world setting. Regarding high-value
node selection, removing the uncertainty measure causes a larger performance decline compared to
removing the maximum activation criterion, suggesting that uncertainty is more effective in iden-
tifying valuable unlabeled nodes. Moreover, any metric-based selection strategy yields a clear ad-
vantage over random sampling. For the multi-head design, replacing it with a single-head structure
results in performance degradation, as the absence of multi-view semantic information hampers the
model’s ability to learn well-defined decision boundaries.

4.4 HYPER-PARAMETERS SENSITIVITY ANALYSIS

We further investigate the impact of hyperparameters on the performance of the proposed method.
Specifically, we focus on three key hyperparameters: (1) τLLM, the temperature used in the su-
pervised contrastive loss applied to features projected into the low-dimensional LLM embedding
space; (2) ntoken, the number of heads in the multi-head GNN, corresponding to the number of en-
coded tokens; and (3)ρ, the ratio of cluster-labeled nodes assigned as pseudo-labels. For a detailed
sensitivity analysis of the hyperparameters ntoken and ρ, see Appendix G. In our experiments, we
adopt a single-factor control strategy, i.e., when analyzing one hyperparameter, the others are fixed
at their optimal values.

Figure 3: Hyper-parameters sensitivity analysis of τLLM on Citeseer and Coauthor CS datasets.

Figure 3 illustrates the effect of τLLM on the classification accuracy of seen classes, unseen classes,
and LLM annotation. The overall trend exhibits an increase-then-decrease pattern: as τLLM in-
creases (i.e., the similarity computation becomes more relaxed), there exists an optimal point for
distinguishing between same-class and different-class nodes. At moderate values, τLLM effectively
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pulls together nodes of the same class while pushing apart nodes of different classes, thereby enhanc-
ing discriminative capability. However, when τLLM becomes too large, the similarity distribution is
overly smoothed, weakening the constraints of contrastive learning. Consequently, the model’s dis-
criminative power decreases, and both the classification accuracy for seen and unseen classes as well
as the reliability of LLM-generated pseudo-labels decline significantly.

4.5 VISUALIZATION

To further illustrate the effectiveness of our model, we present the visualization results of the pro-
posed method compared with OpenIMA, along with the corresponding predicted categories and
ground-truth labels in Figure 4. On the Citeseer dataset, the node distribution produced by Open-
IMA is relatively scattered. While it reveals some degree of class separation, the clusters are neither
compact nor well-defined. On the Coauthor CS dataset, OpenIMA yields comparatively tighter
clusters, yet the overall cluster boundaries remain indistinct. We attribute this to its pseudo-labeling
strategy, which assigns labels only to the top-ρ% of nodes closest to cluster centroids. When decision
boundaries are ambiguous, this approach tends to cause oscillations in pseudo-label assignments for
the same node, leading to unstable supervision signals and consequently undermining both discrim-
inative power and clustering quality. In contrast, our method integrates a multi-head architecture
with LLM-assisted pseudo-label generation, further enhanced by soft labeling and label-smoothing
updates. The visualizations clearly demonstrate that, across both datasets, nodes of the same class
form compact and well-delineated clusters. These results suggest that our approach is capable of
learning higher-quality and more discriminative graph representations.

(a) ground-truth label (b) OpenIMA (c) ground-truth label (d) ours

(e) ground-truth label (f) OpenIMA (g) ground-truth label (h) ours

Figure 4: The T-SNE visualizations of target node representations for the Citeseer and Coauthor CS
dataset, comparing a baseline model OpenIMA with our method (colors indicate classes).

5 CONCLUSION

In this work, we address the challenge of node classification under the open-world setting, where
novel classes inevitably emerge beyond the scope of training labels. To tackle the limitations of
conventional GNN-based approaches, we propose LANO, a novel framework that leverages LLMs
as active annotation agents. Specifically, LANO aligns GNN representations with LLM token em-
beddings through instance- and feature-aware self-supervised learning, enabling LLMs to serve as
zero-shot predictors for graph tasks. An influence- and uncertainty-driven node selection strategy
is introduced to identify representative samples for annotation, while a soft feedback propagation
mechanism effectively suppresse label noise and incorporate bias-reduced pseudo labels into itera-
tive GNN training . Extensive experiments on multiple benchmarks demonstrate the effectiveness of
LANO, highlighting the potential of integrating LLMs with GNNs for open-world graph learning.

9
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A RELATED WORK

A.1 OPEN-WORLD SEMI-SUPERVISED GRAPH LEARNING

Open-world semi-supervised learning (OW-SSL) (Cao et al., 2021) on graphs aims to address the
realistic scenario where unlabeled test nodes may belong to novel classes that are unseen during
training. A representative method, ORCA (Cao et al., 2021), originally proposed in the vision
domain, introduces an uncertainty-based adaptive margin to balance intra-class variance. Within an
end-to-end framework, it jointly tackles both classification and clustering, enabling the discovery
of novel categories in an open-world setting. More recently, OpenIMA (Wang et al., 2024b) has
explored a more practical OW-SSL setting by introducing a two-stage training framework. Through
contrastive learning and bias-reduced pseudo-labeling, OpenIMA mitigates the imbalance between
seen and novel classes and improves classification accuracy. Despite these advances, existing OW-
SSL approaches still face key challenges: (1) they often rely on extensive human annotations for
initial supervision, (2) their performance can degrade under distributional shifts

A.2 LARGE LANGUAGE MODELS FOR GRAPH LEARNING

Although LLMs are not inherently designed to capture relational structures in graphs (Wang et al.,
2024a), recent studies have begun to explore their potential in graph reasoning tasks. The perfor-
mance of such methods, however, strongly depends on graph encoding strategies, prompt engineer-
ing, and the structural properties of the input graph (Fatemi et al., 2023). For example, ALUP (Liang
et al., 2024) investigates generalized category discovery (GCD) by integrating LLMs with active
learning strategies, thereby improving the recognition of novel classes while maintaining reliable
feedback and significantly reducing annotation costs. Similarly, DMA (Sheng et al., 2025) high-
lights that LLM-based annotation can be noisy and is sensitive to both dataset characteristics and
the choice of LLM, suggesting the need for robust mechanisms to handle annotation variability. In
summary, while open-world graph learning methods focus on OOD detection and novel class discov-
ery, they remain constrained by annotation costs and distributional shifts. LLM-based approaches,
on the other hand, offer strong generalization and zero-shot capabilities but suffer from structural
limitations, annotation noise, and dependency on encoding strategies. These gaps motivate the de-
sign of a hybrid framework that integrates GNN-based representation learning with LLM-driven
annotation to advance open-world node classification.

B DATASETS

This section provides a more detailed introduction to the popular datasets commonly used for node
classification, including Citeseer, Coauthor CS and Coauthor Physics, Amazon Photos, and Ama-
zon Computers, as shown in Table 3.

In our experimental setup, we randomly select 50% of the classes in each dataset as known classes,
while the remaining classes are treated as unknown classes. For each known class, 50 nodes are
randomly sampled as the training set, another 50 nodes as the validation set, and the rest are used
for testing. To ensure robustness, we generate 10 independent train/validation/test splits using 10
different random seeds.

C EVALUATION METRIC

LLM Labeling Accuracy. During the process of generating pseudo-labels with LLMs, we evaluate
their consistency with the ground-truth labels. According to our prompt design rules, if a node is
classified by the LLM as belonging to a visible class, the pseudo-label is considered correct only if
it matches the ground truth. If a node is classified as belonging to an unseen class, we instead refer
to the output of the classification head as its pseudo-label, and correctness is determined by whether
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Table 3: Statistics of Datasets

Graph Type Nodes Edges Features Class
Citeseer Citation network 3327 4277 3703 6
Coauthor CS Co-author network 18333 81894 6805 15
Coauthor Physics Co-author network 34493 247962 8415 5
Amazon Photos Amazon network 7650 119082 745 8
Amazon Computers Amazon network 13752 245861 767 10

this label matches the ground truth. If the LLM outputs “unrecognizable,” the labeling result is
discarded and excluded from evaluation. All other cases—including assigning incorrect labels or
producing non-standardized outputs—are regarded as labeling errors.

D PROMPTS

In this part, we show the complete prompt designed to query LLMs for annotations.

Prompt for Large Language Model Annotation in Open-World Node Classification

Your task is to classify the given target node into one of the predefined categories or deter-
mine if it belongs to a new category based on semantic similarity.
Please carefully read the following set of predefined categories, where each category is rep-
resented by a list of representative semantic tokens:
{ % for category in categories -%

category {{ category.id }}: % for token in category.tokens
%{{token}}% endfor %;
% endfor

Now, here is the target node represented by a token sequence:
% for token in target tokens %{{token}}% endfor %;

When classifying the target node, please follow these rules:
1. Match to Known Category:
If the target node’s semantics strongly align with one of the known category X (where X is
a number), output the result in the format:
[X][ConfidenceLevel]
Confidence Levels:
A: ≥ 99% confidence
B: ≥ 75% confidence
C: ≥ 50% confidence
D: ≥ 25% confidence

2. New Category Detection:
If the target node’s semantics are inconsistent with all known categories but indicate a novel
and coherent class, return:
[N][ConfidenceLevel]

3. Uncertain Classification:
If the classification is ambiguous or insufficient evidence is available, return:
[-1]

Final Rule: Please only return the final classification label ([X][ConfidenceLevel],
[N][ConfidenceLevel], [-1]). Do not output explanations or reasoning.

12
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E BASELINES

This section introduces the baselines used for comparison with our method in the experiments, as
summarized in Table 1. The details are as follows:

• OODGAT: Out-of-Distribution Graph Attention Network (OODGAT) is a GNN model
that explicitly models the interactions among different types of nodes and separates in-
distribution and out-of-distribution nodes during feature propagation.

• OpenWGL: A new paradigm for open-world graph learning, whose objective is not only
to classify nodes belonging to visible classes correctly but also to classify nodes outside the
known classes into the unseen category.

• ORCA: A model specifically designed to address open-set recognition under long-tailed
distributions. Its main objective is to prevent the model from misclassifying rare unknown
samples as rare known classes. ORCA without the margin mechanism is denoted as ORCA-
ZM.

• SimGCD: A simple yet effective method for generalized category discovery (GCD), aim-
ing to simultaneously recognize known classes and discover unknown classes.

• OpenLDN: OpenLDN employs a pairwise similarity loss to discover novel classes. Lever-
aging a bi-level optimization scheme, the pairwise similarity loss exploits available infor-
mation from the labeled set to implicitly cluster samples of new categories while identifying
samples from known categories.

• OpenCon: A method targeting open-world classification and novel class clustering by
combining semi-supervised learning with contrastive losses. It determines the total num-
ber of classes, introduces a classification head, and optimizes using contrastive objectives
tailored for labeled, unlabeled, and novel categories.

• InfoNCE: Noise Contrastive Estimation Loss is a widely used self-supervised loss function
for representation learning. Rooted in information-theoretic principles, it learns model
parameters by contrasting the similarity between positive and negative samples.

• OpenIMA: OpenIMA is designed for open-world semi-supervised node classification. It
trains a classifier from scratch using unbiased pseudo-labels and contrastive learning, ef-
fectively mitigating intra-class imbalance and improving classification accuracy. Compared
to many existing node classification approaches, OpenIMA demonstrates superior perfor-
mance.

F IMPLEMENTATION DETAILS

Design of GNN Heads. All GNN heads adopt Graph Attention Networks (GAT) as the feature en-
coder. To enable multi-perspective node representation, we vary the hop number, hidden dimension,
number of attention heads, dropout rate, and whether to apply residual connections across different
heads. For compatibility with the projector, the output dimension of the final GAT layer is fixed to
256. During training, we employ the Adam optimizer with a weight decay of 1× 10−4. Since both
feature and attention mechanisms involve dropout, we sample each input twice to construct positive
pairs for contrastive learning.

Obtaining Low-dimensional LLM Embeddings. To efficiently leverage the semantic represen-
tations of LLMs under limited GPU memory, we perform dimensionality reduction on their high-
dimensional embeddings. As the datasets used lack bag-of-words information, semantic textual
features cannot be directly obtained. Instead, we encode node attributes as tokens and feed them
into the LLM to obtain semantic embeddings. Taking QWen3-8B as an example, the embedding
dimension typically exceeds 4000, which would incur prohibitive GPU memory costs if directly
used for supervised contrastive loss. Therefore, we apply PCA to reduce embeddings to 1000 di-
mensions. The projection head then maps generated word vectors into this reduced space, where
supervised contrastive loss is computed for semantic alignment.

13
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Choice of LLM. Prior studies suggest that LLM performance saturates around 7B parameters,
with marginal gains from larger models. Considering model scale and release time, we evaluate
Mistral-7B, QWen3-8B, and Deepseek-r1-7B. Experiments show that Mistral-7B often outputs “un-
certain” predictions with very low confidence, while Deepseek-r1-7B, due to its built-in chain-of-
thought mechanism, generates unnecessarily long reasoning when fed non-standard token embed-
dings, leading to high inference cost. In contrast, QWen3-8B provides stable outputs with control-
lable reasoning and more efficient inference. Consequently, we adopt Qwen3-8B as the pseudo-label
generator in subsequent experiments.

Soft Pseudo-labels from LLM. Since the input tokens fed into the LLM are multi-head encoded
rather than complete natural language text, directly producing hard labels may introduce bias. To
address this, we design the LLM outputs as “label + confidence level,” a soft pseudo-label format
analogous to a softmax distribution. This not only reflects predictive uncertainty but also better sup-
ports pseudo-label propagation and forgetting mechanisms, thereby improving overall robustness.

Experimental Hyperparameter Settings. When inheriting default hyperparameters from the
framework, we set the scaling factor η = 1, temperature τ = 0.7, and pseudo-label selection
rate ρ = 75%. An additional supervised contrastive loss is introduced for low-dimensional projec-
tion alignment. To prevent unstable training caused by large gradients, we apply a scaling factor of
0.025 to the GAT embeddings. Parameter search shows that as model complexity increases, stronger
performance on the amazon computers and amazon photos datasets requires increasing η to 30 and
slightly lowering τ , making the model more confident in pseudo-labeling while slowing down the
forgetting rate to retain high-confidence pseudo-labels. In contrast, for citeseer, where validation
accuracy is significantly lower, we adopt a stricter strategy by reducing the pseudo-label selection
rate ρ and maintaining a higher forgetting rate, so as to mitigate the adverse impact of noisy pseudo-
labels in early training.

G MORE HYPER-PARAMETERS SENSITIVITY ANALYSIS

We conduct hyperparameter sensitivity analysis on the number of heads ntoken and the ratio of
cluster-labeled nodes assigned as pseudo-labels ρ.

The number of heads ntoken. Figure 5 illustrates the impact of ntoken on the accuracy of LLM
annotations. The results show that as ntoken increases, the accuracy of LLM annotations gradually
improves. However, performance bottlenecks are observed on both citeseer and coauthor cs: on
citeseer, the optimal performance is achieved with approximately 3 tokens, whereas on coauthor cs,
a larger number of tokens is required to sufficiently capture semantic information. This discrepancy
may be attributed to the smaller number of classes and nodes in citeseer, where fewer tokens are
sufficient to cover node features, thus reaching the performance optimum earlier.

Figure 5: Hyper-parameters sensitivity analysis of ntoken on Citeseer and Coauthor CS datasets.

The ratio of cluster-labeled nodes assigned as pseudo-labels ρ. Figure 6 illustrates the impact
of the pseudo-label ratio ρ on performance. On both citeseer and coauthor cs, the accuracies of
seen classes, unseen classes, and LLM annotations all achieve their optimum when ρ is set to 50%
or 75%. However, as ρ continues to increase, the performance degrades, with the accuracy of LLM
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annotations exhibiting a cliff-like drop. We attribute this phenomenon to the fact that an excessively
large ρ leads the model to overconfidently assign incorrect pseudo-labels to nodes, which disrupts
feature encoding, blurs the decision boundary, and directly results in a drastic decline in the reliabil-
ity of LLM annotations.

Figure 6: Hyper-parameters sensitivity analysis of ρ on Citeseer and Coauthor CS datasets.

H LARGE LANGUAGE MODELS USAGE STATEMENT

In the preparation of this research, large language models (LLMs) were employed strictly as a
limited-purpose auxiliary tool. The models were used exclusively for language polishing tasks,
including grammar checking, sentence structure optimization, and wording refinement to improve
the readability and linguistic fluency of portions of the text. The LLMs played no role in any core
research activities, including but not limited to: research ideation, theoretical development, exper-
imental design, data analysis, result interpretation, or scientific decision-making. All intellectual
contributions to this work originate solely from the human authors. The authors take full responsi-
bility for the entire content of this paper, including text polished by LLMs, and affirm its originality,
accuracy, and academic integrity.
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