
Published in Transactions on Machine Learning Research (11/2025)

Node Embeddings via Neighbor Embeddings

Jan Niklas Böhm + mail@jnboehm.com
Hertie AI, University of Tübingen, Germany

Marius Keute +

Hertie AI, University of Tübingen, Germany

Alica Guzmán
Hertie AI, University of Tübingen, Germany

Sebastian Damrich sebastian.damrich@uni-tuebingen.de
Hertie AI, University of Tübingen, Germany

Andrew Draganov draganovandrew@gmail.com
Department of Computer Science, Aarhus University, Denmark

Dmitry Kobak dmitry.kobak@uni-tuebingen.de
Hertie AI, University of Tübingen, Germany

Reviewed on OpenReview: https: // openreview. net/ forum? id= 8APIU9cauZ

+ Equal contribution

Abstract

Node embeddings are a paradigm in non-parametric graph representation learning, where
graph nodes are embedded into a given vector space to enable downstream processing.
State-of-the-art node-embedding algorithms, such as DeepWalk and node2vec, are based
on random-walk notions of node similarity and on contrastive learning. In this work, we
introduce the graph neighbor-embedding (graph NE) framework that directly pulls together
embedding vectors of adjacent nodes without relying on any random walks. We show that
graph NE strongly outperforms state-of-the-art node-embedding algorithms in terms of local
structure preservation. Furthermore, we apply graph NE to the 2D node-embedding problem,
obtaining graph t-SNE layouts that also outperform existing graph-layout algorithms.

graph NE
InfoNCE

ℓij = − log exp(y⊤
i yj/τ)∑

k exp(y⊤
i yk/τ)

G = (V, E)

i

j

R2 KL divergence

ℓij = − log (1 + ∥yi − yj∥2)−1
∑

kl(1 + ∥yk − yl∥2)−1

node
embedding

graph
layout

S127

Figure 1: Graph G = (V, E) embedded into S127 and R2 with graph NE. Blue denotes the attractive force
between neighboring nodes i and j with (i, j) ∈ E , orange corresponds to repulsive forces between all points.

1

https://openreview.net/forum?id=8APIU9cauZ

Published in Transactions on Machine Learning Research (11/2025)

1 Introduction

Many real-world datasets, ranging from molecule structures to citation networks, come in the form of graphs.
A graph G is an abstract object consisting of a set of nodes V and a set of edges E between them; the nodes
do not inherently belong to any specific metric space. Therefore, the field of graph representation learning has
emerged with the goal of embedding the nodes into a metric space, such as Rd, so that the graph structure
(neighborhoods, graph distances, etc.) is well-preserved. In this paper, we only consider non-parametric
approaches that do not use any node features.

Popular node-embedding methods like DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec,
2016) are based on contrastive learning and random-walk notions of node similarity, reducing the node-
embedding problem to a word-embedding problem and then relying on the word2vec algorithm (Mikolov
et al., 2013) for optimization. At the same time, node embeddings into R2 for visualization purposes — known
as graph layouts — are typically obtained by algorithms that simply pull together neighboring (i.e. connected
by an edge) nodes, traditionally using spring models (Fruchterman & Reingold, 1991). In the context of
dimensionality reduction, the idea of pulling neighbors together has become known as neighbor embeddings
through methods like t-SNE (van der Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018). This raises
the question: Can such neighbor-embedding approaches be used for generic node-embedding problems?

In this work, we show that neighbor-embedding methods are remarkably effective for node-embedding
problems and introduce a framework called graph neighbor embeddings (graph NE) (Figure 1). Our work
builds on recent literature which allows to effectively optimize neighbor embeddings in high-dimensional
embedding spaces (McInnes et al., 2018; Damrich et al., 2023). We show that graph NE outperforms DeepWalk
and node2vec in terms of local structure preservation, while being conceptually simpler (no random walks are
needed) and without requiring costly hyperparameter tuning. Furthermore, we show that graph NE can also
be applied for 2D node embeddings (Figure 1), outperforming existing graph-layout methods. In short, our
results demonstrate that neighbor embeddings are a powerful approach to graph representation learning that
beats state-of-the-art node-embedding algorithms.

2 Related work

Non-parametric node embeddings The popular DeepWalk (Perozzi et al., 2014) and node2vec (Grover
& Leskovec, 2016) algorithms optimize node placement in a high-dimensional target space based on random
walks over a graph. These walks treat nodes as analogous to words and random-walk paths as sentences,
enabling the application of word-embedding techniques to learn the representation. Specifically, DeepWalk
achieves this by performing random walks from each starting node and then using the word2vec algorithm
(Mikolov et al., 2013) to ensure that nodes which often co-occur in these random walks are represented near
one another in the embedding space. The node2vec algorithm similarly obtains node embeddings by giving
graph traversals to the word2vec algorithm, but it differs from DeepWalk by defining two parameters which
control the depth-first vs. breadth-first nature of the random walk. These parameters (p and q) provide an
additional level of control over the community structure uncovered by the walks, with DeepWalk being a
specific instantiation of node2vec when these parameters are both set to 1.

Both DeepWalk and node2vec have been widely adopted for graph-based machine learning applications,
including classification and link-prediction tasks (Khosla et al., 2019). Although connections have been drawn
between word2vec and contrastive learning (Saunshi et al., 2019), we emphasize that the DeepWalk and
node2vec algorithms are often regarded as separate from standard contrastive techniques (Grohe, 2020).

Instead of optimizing the embedding coordinates freely, Alvarez-Gonzalez et al. (2023) found improved
performance after constraining the embedding coordinates in DeepWalk based on the graph connectivity
structure. Their approach, called IGEL, allows to embed new, previously unobserved nodes, which standard
non-parametric methods (including ours) do not allow. Their approach can in principle be combined with
any gradient-descent-based node-embedding method, including ours.

Parametric node embeddings and node-level graph contrastive learning Our paper is about
non-parametric embeddings that only use the structure of the graph G = (V, E). In contrast, parametric

2

Published in Transactions on Machine Learning Research (11/2025)

graph contrastive learning (GCL) methods use node feature vectors and employ a neural network, usually a
graph convolutional network (GCN; Kipf & Welling, 2017), to transform features into embedding vectors.

The basic principle behind contrastive learning is to learn a data representation by contrasting pairs of
observations that are similar to each other (positive pairs) with those that are dissimilar to each other
(negative pairs). In computer vision, positive pairs are generated via data augmentation, e.g. in SimCLR
(Chen et al., 2020). GCL can be graph-level or node-level, depending on whether representations are obtained
for a set of graphs or for the set of nodes of a single graph. Many graph-level (e.g. You et al., 2020) and
node-level GCL algorithms (Velickovic et al., 2019; Zhu et al., 2020b; Hassani & Khasahmadi, 2020; Thakoor
et al., 2022; Zhang et al., 2021; Zhu et al., 2021) are also based on graph augmentations, such as node
dropping or edge perturbation. A general problem with domain-agnostic graph augmentations is that they
can have unpredictable effects on graph semantics (Trivedi et al., 2022). This motivated development of
augmentation-free node-level GCL methods, where positive pairs are pairs of nodes that are located close
to each other in terms of graph distance (Lee et al., 2022; Li et al., 2023; Zhang et al., 2022). Recent work
argued that GCL methods effectively pull connected nodes together, sometimes explicitly through their loss
function, but also implicitly through the GCN architecture (Trivedi et al., 2022; Wang et al., 2023; Guo
et al., 2023). A GCN can also optimize a neighbor-embedding loss on node features and/or on shortest-path
distances (Leow et al., 2019).

Note that all algorithms mentioned in this paragraph are parametric and fundamentally depend on node
features. In contrast, our proposed graph NE algorithm is non-parametric and operates exclusively on graph
structure without requiring node features. Throughout this paper, we therefore restrict our comparisons to
other non-parametric methods.

Graph layouts Graph-layout algorithms have traditionally been based on spring models, where every
connected pair of nodes feels a distance-dependent attractive force Fa and all pairs of nodes feel a distance-
dependent repulsive force Fr (force-directed graph layouts). Many algorithms can be written as Fa = da

ij and
Fr = dr

ij (Noack, 2007), where da
ij (resp. dr

ij) is the embedding distance between nodes i and j raised to the
a-th (resp. r-th) power. For example, the Fruchterman–Reingold algorithm uses a = 2, r = −1 (Fruchterman
& Reingold, 1991); ForceAtlas2 uses a = 1, r = −1 (Jacomy et al., 2014); LinLog uses a = 0, r = −1 (Noack,
2007). Efficient implementations can be based on Barnes–Hut approximation of the repulsive forces, as in
SFDP (Hu, 2005). ForceAtlas2 has been shown to be related to neighbor embeddings (Böhm et al., 2022).

Several recent graph-layout algorithms have been inspired by neighbor embeddings, and in particular by
t-SNE (van der Maaten & Hinton, 2008). tsNET (Kruiger et al., 2017) applied a modified version of t-SNE
to the pairwise shortest-path distances between all nodes. DRGraph (Zhu et al., 2020a) accelerated tsNET
by using negative sampling (Mikolov et al., 2013). t-FDP (Zhong et al., 2023) suggested custom Fa and
Fr forces inspired by t-SNE and adopted the interpolation-based approximation of Linderman et al. (2019).
SGtSNEpi (Pitsianis et al., 2019) is the closest method to the 2D version of our proposed graph NE algorithm.
It applies t-SNE optimization to affinities derived from the graph G, but derives these affinities in a more
complex way than we do, and with additional hyperparameters (Section 4.3).

There is a separate set of methods which produce graph embeddings via classical dimensionality reduction
techniques. Some of these, such as Laplacian Eigenmaps (Belkin & Niyogi, 2003) and Diffusion Maps (Coifman
& Lafon, 2006), can be applied directly to graphs (and amount to eigendecomposition of the graph Laplacian).
We use Laplacian Eigenmaps in our comparisons as a representative algorithm from this family. Other
approaches employ variants of multidimensional scaling on graph-derived distances (Gansner et al., 2012;
Miller et al., 2023; Zhang et al., 2023).

3 Background: Neighbor-embedding framework

3.1 Neighbor embeddings

Neighbor embeddings are a family of dimensionality-reduction methods aiming to embed n observations from
some high-dimensional metric space X into a lower-dimensional (usually two-dimensional) Euclidean space

3

Published in Transactions on Machine Learning Research (11/2025)

Rd, such that neighborhood relationships between observations are preserved in the embedding space. We
denote the embedding vectors as yi ∈ Rd.

One of the most popular neighbor embedding methods, t-distributed stochastic neighbor embedding (t-SNE;
van der Maaten & Hinton, 2008), is an extension of the earlier SNE (Hinton & Roweis, 2002). t-SNE minimizes
the Kullback–Leibler divergence between the high-dimensional and low-dimensional affinities pij and qij :

L =
∑

ij

pij log pij

qij
= const −

∑

ij

pij log qij . (1)

Both affinity matrices are defined to be symmetric, positive, and to sum to 1. The high-dimensional affinities
P are computed using adaptive Gaussian kernels whose mass is concentrated on nearest neighbors. Low-
dimensional affinities Q are defined in t-SNE using a t-distribution kernel with one degree of freedom, also
known as the Cauchy kernel:

qij = (1 + ∥yi − yj∥2)−1
∑

k ̸=l(1 + ∥yl − yk∥2)−1 . (2)

In practice, t-SNE optimization can be accelerated by an approximation of the repulsive force field based on
the Barnes–Hut algorithm (van der Maaten, 2014; Yang et al., 2013), on interpolation (Linderman et al.,
2019), or on sampling (Artemenkov & Panov, 2020; Damrich et al., 2023; Draganov et al., 2023; Yang et al.,
2023).

3.2 Contrastive neighbor embeddings

The contrastive neighbor-embedding (CNE) algorithm (Damrich et al., 2023) is a flexible dimensionality-
reduction framework that replaces t-SNE’s Kullback–Leibler divergence loss with contrastive losses, such
as the InfoNCE loss (Jozefowicz et al., 2016; Oord et al., 2018). This loss function is called contrastive
because it is based on contrasting pairs of k-nearest neighbors and non-neighbors in the same mini-batch,
and does not require a global normalization like in Equation (2). As a result, the runtime of CNE scales
like O(nd) with the number of points n and the embedding dimensionality d, unlike other existing t-SNE
implementations that scale like O(n2d) (van der Maaten & Hinton, 2008) or O(n2d) (Linderman et al., 2019).
This enables CNE to optimize high-dimensional outputs (large d). CNE with the InfoNCE loss approximates
t-SNE (Damrich et al., 2023; Ma & Collins, 2018; see also Section 4.4).

The InfoNCE loss is defined for one pair of k-nearest neighbors ij (positive pair) with affinity pij as

ℓ(i, j) = −pij log wij

wij +
∑m

k=1 wik
, (3)

where wij are non-normalized low-dimensional affinities standing in for the normalized affinities qij above.
The sum in the denominator is over m negative pairs ik where k can be drawn from all points in the same
mini-batch apart from i and j. One mini-batch consists of b pairs of neighbors, and hence contains 2b points.
Therefore, for a given batch size b, the maximal value of m is 2b − 2. The larger the number of negative
samples m, the better is the approximation to t-SNE (Damrich et al., 2023). The InfoNCE loss aims to make
wij large, i.e. place embeddings yi and yj nearby, if ij is a positive pair, and small if it is a negative one.

The wij affinities do not need to be normalized. When embedding into R2, they can just be defined as

wij = (1 + ∥yi − yj∥2)−1. (4)

When using a high-dimensional embedding space, e.g. d = 128 instead of d = 2, embedding vectors are
usually projected to lie on the unit sphere. For points on the unit sphere, the cosine distance and the squared
Euclidean distance differ only by a constant multiplicative factor, making the following definitions of wij

equivalent:

wij = exp
(

y⊤
i yj

∥yi∥ · ∥yj∥ · τ

)
= const · exp

(
−

∥∥∥ yi

∥yi∥
− yj

∥yj∥
∥∥∥

2/
(2τ)

)
, (5)

4

Published in Transactions on Machine Learning Research (11/2025)

where τ is called the temperature (by default, τ = 0.5). Together with Equation (3), this gives the same loss
function as in SimCLR (Chen et al., 2020), a popular contrastive learning algorithm in computer vision. Note
that instead of nearest neighbors, SimCLR uses pairs of augmented images as positive pairs.

4 Graph NE: Applying the neighbor-embedding framework to graphs

4.1 General approach

Neighbor-embedding algorithms employ high-dimensional affinities with most pij ≈ 0. This can be seen as
a generalization of discrete nearest neighbors: if pij is close to 0, then the points are effectively dissimilar.
However, almost the same visualizations can be obtained using hard nearest neighbors, i.e. simply by
normalizing the symmetric kNN graph adjacency matrix A directly (Artemenkov & Panov, 2020; Damrich
et al., 2023):

P = A
/ ∑

ij

Aij . (6)

Here, A has element Aij = 1 if xj is within the k nearest neighbors of xi or vice versa. This is equivalent to
simply leaving out pij from Equation (3).

Thus, even though neighbor embeddings are usually not presented as such, they can be thought of as
node-embedding algorithms, specifically applied to kNN graphs. During optimization, neighboring nodes
(sharing a kNN edge) feel attraction, whereas all nodes feel repulsion, arising through the normalization in
Equations (2) and (3).

This suggests a simple strategy, which we call graph neighbor embedding (graph NE), for applying the neighbor
embedding framework to a general graph G: obtain affinities directly from G instead of a kNN graph of some
data, and then compute a non-parametric neighbor embedding on these affinities (Figure 1).

4.2 High-dimensional node embeddings via graph NE

Given an unweighted graph G = (V, E), its adjacency matrix A has elements Aij = 1 if (i, j) ∈ E and
Aij = 0 otherwise. Since all graphs considered in this study are undirected, the adjacency matrix is a binary,
symmetric square n × n matrix. In order to convert the adjacency matrix into an affinity matrix suitable
for neighbor embedding, we followed the simple normalization strategy in Equation (6). Then, graph NE
optimizes the embedding using the contrastive InfoNCE loss function (through the CNE backend) to place
neighbors close to each other in the embedding (Section 3.2). We used the cne library (Damrich et al., 2023).

For all experiments with CNE we used the output dimensionality d = 128, following the DeepWalk paper,
and the cosine distance (meaning the embedding vectors lie on a hypersphere, Equation 5). We set the
batch size to min{8192, |V|/10} (smaller graphs required smaller batch sizes for good convergence) and used
full-batch repulsion (m = 2b − 2) for better local structure preservation (Damrich et al., 2023). The number
of epochs was set to 100. We used the Adam optimizer (Kingma & Ba, 2015) with learning rate 0.001.
Graph NE was initialized with 128-dimensional Diffusion Maps (Coifman & Lafon, 2006), although we saw
almost no difference when using random initialization (Figure S4b,e). For this paper, we implemented in cne
version 0.4.0 some of the API options shown in the code snippet below.

1 from cne import CNE
2 C = CNE(
3 loss_mode =" infonce ", temperature =0.05 , parametric =False , embd_dim =128 ,
4 metric =" cosine ", batch_size =8192 , negative_samples ="full - batch ", optimizer ="adam"
5)
6 Y = C. fit_transform (graph =A, init=" diffmaps ")

Note that our method is conceptually much simpler than DeepWalk and node2vec. In both of these algorithms,
random walks are used to implicitly estimate node similarity by their co-occurence, and then word2vec is
employed to train the embedding. Furthermore, node2vec requires per-graph hyperparameter tuning so that
its random-walk distribution appropriately models the input graph (Grover & Leskovec, 2016). In our graph
NE method, all nodes connected by an edge attract each other, requiring no random walks.

5

Published in Transactions on Machine Learning Research (11/2025)

4.3 Graph layouts via 2D graph NE

A graph layout is a 2-dimensional node embedding. Therefore, we can apply graph NE in 2D to obtain graph
layouts. Since the main purpose for graph layouts is visualization, we use the Cauchy similarity (Equation 2).
The embedding dimensionality d = 2 allows us to use the KL divergence and openTSNE library (Poličar
et al., 2024) with default parameters for optimization. It supports Diffusion Maps for initialization (Kobak &
Linderman, 2021), sets the learning rate to n to achieve good convergence (Linderman & Steinerberger, 2019;
Belkina et al., 2019), and employs the FIt-SNE algorithm (Linderman et al., 2019). For this paper, we made
some improvements to the spectral initialization in openTSNE.

In this setting, we found the row-normalization of the adjacency matrix to perform better:

P = Ã + Ã⊤

2n
, where Ãij = Aij

/ n∑

k=1
Aik. (7)

Normalizing the adjacency matrix as in Equation (6) resulted in lower neighbor recalls and kNN accuracies,
and in hedgehog-shaped embeddings with low-degree nodes pushed out to the periphery and dominating the
embedding (Figure S4c,f). Furthermore, we experimented with various initialization schemes and found that
on our graphs, random initialization performed very similar to Diffusion Maps (Figure S4b,e). This setting of
graph NE can also be called graph t-SNE:

1 from openTSNE import TSNE
2 from openTSNE . affinity import PrecomputedAffinities
3 P = A / A.sum(axis =1)
4 P = (P + P.T) / 2 / A. shape [0]
5 Y = TSNE(initialization =" spectral ").fit(affinities = PrecomputedAffinities (P))

In contrast to the simple Equation (7) that we use for 2D graph NE, the closely related SGtSNEpi method
(Pitsianis et al., 2019) derives the affinity matrix P from the adjacency matrix A in a more complicated way
(Pitsianis et al., 2024, Supplementary). Non-zero elements Aij are first weighted by the Jaccard similarity
of the sets of neighbors of nodes i and j, then power-transformed to match a pre-specified row sum λ, and
finally divided by λ to yield Ã. By default, λ = 10.

4.4 Graph NE with CNE backend approximates t-SNE backend

Node embeddings computed via cne and via openTSNE backends have the same optima:
Theorem 4.1. [adapted from Ma & Collins 2018] Let p be a probability distribution over
S = {ij | 1 ≤ i ̸= j ≤ n}, so that for all pairs ij, there is a path pik1 , . . . , pklj with each step having positive
probability. Let w(θ) be a family of non-negative functions S → R≥0 parametrized by θ ∈ Θ and symmetric in
i and j, meaning wij(θ) = wji(θ). Let further ξ be a probability distribution over [n] := {1, . . . , n} with full
support. Suppose there is some θ∗ ∈ Θ and some c > 0 with w(θ∗)/c = p. Then, θ∗ minimizes the loss

LInfoNCE(θ) = −Eij∼pEk1,...,km∼ξ log wij(θ)/ξj

wij(θ)/ξj +
∑m

α=1 wikα
(θ)/ξkα

(8)

and for any other minimizer θ̃ ∈ Θ there exists c̃ > 0 with w(θ̃)/c̃ = p.

In particular, the minima of LInfoNCE correspond one-to-one to those of

DKL
(
p, w(θ)/Z(θ)

)
= −Eij∼p log wij(θ)

Z(θ) (9)

where Z(θ) =
∑

ij wij(θ).

The proof can be found in Appendix A. Consider this theorem in the case where p is the uniform distribution
of edges on a connected graph, parameters θ ∈ Rn×d are simply the embedding coordinates, and wij(θ) are
the non-normalized low-dimensional affinities. Applying this theorem then shows that the InfoNCE loss

6

Published in Transactions on Machine Learning Research (11/2025)

(when using a uniform noise distribution ξ, Equation 8) and the Kullback–Leibler divergence have the same
minima.

This means that our graph NE framework unifies node embeddings and graph layouts. The main difference
between graph NE with cne and openTSNE backends is the choice of optimization strategy for 128 and for 2
dimensions.

5 Experimental setup

Datasets We used eight publicly available graph datasets (Table 1). The first five datasets were retrieved
from the Deep Graph Library (Wang et al., 2019). The arXiv and MAG dataset were retrieved from the
Open Graph Benchmark (Hu et al., 2020). The MNIST kNN dataset was obtained by computing the kNN
graph with k = 15 on top of the 50 principal components of the MNIST digit dataset (LeCun et al., 1998).
Each dataset was treated as an unweighted and undirected graph, where each node has a class label, used
only for evaluation. We restricted ourselves to graphs with labeled nodes in order to use classification
accuracy as one of the performance metrics. In all datasets we used only the largest connected component and
excluded all self-loops if present, using NetworkX (Hagberg et al., 2008) functions connected_components
and selfloop_edges. We did not use any node features.

Dataset Nodes Edges Classes E/N

Citeseer 2 120 7 358 6 3.5
Cora 2 485 10 138 7 4.1
PubMed 19 717 88 648 3 4.5
Photo 7 487 238 086 8 31.8
Computer 13 381 491 556 10 36.7
MNIST kNN 70 000 1 501 392 10 21.4
arXiv 169 343 2 315 598 40 13.7
MAG 726 664 10 778 888 349 14.8

Table 1: Benchmark datasets.
Columns: number of nodes in
the largest connected component,
number of undirected edges, num-
ber of node classes, and the aver-
age number of edges per node.

Performance metrics We evaluated the performance using three main metrics: neighbor recall, kNN
classification accuracy, and linear classification accuracy. Such metrics are standard for evaluating graph
embedding quality (Perozzi et al., 2014; Grover & Leskovec, 2016; Zhu et al., 2020a; Zhong et al., 2023). In
addition to that, we used three further metrics: a metric based on the link-prediction task (Appendix B),
top-k 2-hop neighbor recall (Appendix C), and a Spearman correlation between shortest-path distances and
embedding distances (on 1 000 random node pairs).

The neighbor recall quantifies how well local node neighborhoods are preserved in the embedding. We defined
it as the average fraction of each node’s graph neighbors that are among the node’s nearest neighbors in the
embedding:

Recall = 1
|V|

|V|∑

i=1

∣∣NG[i] ∩ NE,ki
[i]

∣∣
ki

, (10)

where |V| is the number of nodes in the graph, NG[i] is the set of node i’s graph neighbors, ki = |NG[i]| is
the number of node i’s graph neighbors, and NE,ki

[i] denotes the set of node i’s ki nearest neighbors in the
embedding space. This metric does not require ground-truth classes and is similar to what is commonly used
in the literature to benchmark graph-layout algorithms (Kruiger et al., 2017; Zhu et al., 2020a; Zhong et al.,
2023). Therefore, we use this as our primary metric for measuring the embedding quality.

The kNN classification accuracy quantifies local class separation in the embedding. To calculate kNN
accuracy, we randomly split all nodes into a training (90% of all nodes) and a test set (10%), and used the
KNeighborsClassifier from scikit-learn (Pedregosa et al., 2011) with k = 15.

We used the cosine similarity for all kNN evaluations (recall and accuracy) in d = 128. CNE uses the cosine
metric in its loss function (Equation 5), so only cosine neighbors make sense for evaluation. DeepWalk and

7

Published in Transactions on Machine Learning Research (11/2025)

a b

0 10
epoch

0%

25%

50%

75%

ne
ig

hb
or

 re
ca

ll

 τ = 0.05

a

b

 τ = 0.5d e

c d e

Figure 2: Learning dynamics of the 128-dimensional CNE embeddings of nodes in a stochastic-block-model
graph with 10 blocks. (a, b) t-SNE visualizations of the 128D CNE embeddings with τ = 0.05, during the
first epoch and after ten epochs. (c) The neighbor recall as a function of the training epoch, for τ = 0.05
and for τ = 0.5. Labeled points correspond to t-SNE visualizations left/right. (d, e) Same as (a, b), but for
τ = 0.5.

node2vec rely on word2vec, which uses dot-product similarity in the loss function, and the original paper also
used cosine metric for evaluation (Mikolov et al., 2013). In our experiments cosine evaluation led to better
results on average for DeepWalk and node2vec. For all kNN evaluations in d = 2, we used the Euclidean
distance.

For linear accuracy we used LogisticRegression from scikit-learn with no regularization (penalty=None),
SAGA solver (Defazio et al., 2014) with tol=0.01, and the same train/test split. We standardized all features
to have unit variance, based on the training set (as this speeds up convergence of the solver).

6 Node embeddings with graph NE require low temperature

In pilot experiments, we noticed that the node-embedding performance of graph NE (in 128D, with CNE
backend) was strongly affected by the temperature parameter τ . To investigate it further, we synthesized a
graph following the stochastic block model (SBM; Holland et al., 1983). The generated graph had 80 000
nodes in 10 clusters, with any two nodes from the same cluster having probability 2.5 · 10−3 to be connected
by an edge, and any two nodes from two different clusters having probability 5 · 10−6 to be connected. The
resulting graph has a clear community structure that should be easy to recover.

CNE with the default temperature τ = 0.5 achieved near-perfect class separation but failed to retain the
neighborhood structure. The neighbor recall, after reaching 13% within the first training epoch, collapsed
to below 1% over the next several epochs (Figure 2c, orange line). The t-SNE visualization of the high-
dimensional embedding at the point of maximum neighbor recall showed ten compact clusters (Figure 2d), but
after convergence it showed nine subclusters for each of the ten classes (Figure 2e). These smaller subclusters
corresponded to nodes with an inter-cluster edge to a specific other class. During the optimization, these
nodes got ‘pulled out’ of their class, destroying the local structure of the embedding and leading to near-zero
neighbor recall.

In contrast, CNE with a lower temperature τ = 0.05 did not show this behavior. The neighbor recall
was almost monotonically increasing during training, reaching 78% after 10 epochs (Figure 2c, blue line).
The t-SNE visualization showed ten compact clusters (Figure 2b), without any visible subclusters. Our
interpretation is that the InfoNCE loss with low temperature could effectively ignore the noise in form of rare
inter-class edges.

In the following experiments, we set the temperature of graph NE with CNE backend to τ = 0.05 for all
datasets. We have also implemented learnable temperature, making τ an additional trainable parameter.
We found that on all our benchmark datasets, the temperature converged towards a value in a range of
[0.04, 0.08] (Table S7). In this setting, the evaluation results were close to the results with fixed τ = 0.05 and
both of them were usually much better than with τ = 0.5. We report the performance for learned τ , τ = 0.5,
and τ = 0.05 in Tables S1 to S6.

8

Published in Transactions on Machine Learning Research (11/2025)

Cite
see

r
Cora

Pub
Med

Pho
to

Comp.

MNIST
arX

iv
MAG

0%

25%

50%

75%

100%
neighbor recalla

Cite
see

r
Cora

Pub
Med

Pho
to

Comp.

MNIST
arX

iv
MAG

0%

25%

50%

75%

100%
kNN accuracyb

Cite
see

r
Cora

Pub
Med

Pho
to

Comp.

MNIST
arX

iv
MAG

0%

25%

50%

75%

100%
linear accuracyc graph NE

DeepWalk
node2vec

LE

Figure 3: Performance metrics for node embeddings: (a) neighbor recall, (b) kNN accuracy, (c) linear accuracy.
Datasets are ordered by the number of edges. For node2vec we did a grid search over p, q ∈ {0.25, 0.5, 1, 2, 4}
(Figure S2) and show results with the highest neighbor recall.

Cite
see

r
Cora

Pub
Med

Pho
to

Comp.

MNIST
arX

iv
MAG

0%

25%

50%

75%

100%
neighbor recalla

Cite
see

r
Cora

Pub
Med

Pho
to

Comp.

MNIST
arX

iv
MAG

0%

25%

50%

75%

100%
kNN accuracyb

Cite
see

r
Cora

Pub
Med

Pho
to

Comp.

MNIST
arX

iv
MAG

0%

25%

50%

75%

100%
linear accuracyc graph NE

SGtSNEpi
DRGraph

FA2
t-FDP

LE

Figure 4: Performance metrics for 2D graph layouts: (a) neighbor recall, (b) kNN accuracy, (c) linear
accuracy. See Figures 5 and S3 for the corresponding layouts.

Table 2: Neighbor recall for all methods and datasets (in %). All values are mean ± standard deviation across
three training runs. The top performing method for each dimensionality is highlighted in bold. Methods in
blue are ours. See Table S1 for additional graph NE variants in 128D.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128
graph NE 81.0 ± 0.1 83.8 ± 0.0 44.3 ± 0.2 70.3 ± 0.1 64.8 ± 0.0 96.0 ± 0.0 72.3 ± 0.6 89.0 ± 0.5
DeepWalk 60.5 ± 0.9 67.1 ± 0.4 32.9 ± 0.6 50.0 ± 0.5 47.7 ± 0.3 70.8 ± 0.2 51.4 ± 0.6 60.0 ± 0.7
node2vec 70.7 ± 0.6 72.1 ± 1.0 70.1 ± 0.3 50.9 ± 0.5 41.3 ± 0.2 43.2 ± 0.2 42.9 ± 0.6 29.3 ± 0.4
Laplacian E. 53.4 ± 0.0 56.7 ± 0.0 18.3 ± 0.1 39.7 ± 0.0 32.4 ± 0.0 38.5 ± 0.0 32.1 ± 0.1 40.6 ± 0.3

2

graph NE 71.7 ± 2.2 66.7 ± 0.5 25.0 ± 0.2 46.9 ± 0.2 41.8 ± 0.1 40.2 ± 0.2 36.3 ± 0.3 32.3 ± 0.7
SGtSNEpi 59.1 ± 0.3 57.4 ± 0.8 23.3 ± 0.3 44.5 ± 0.4 39.0 ± 0.3 29.1 ± 0.1 23.6 ± 0.3 8.1 ± 0.4
DRGraph 42.8 ± 1.0 31.0 ± 0.5 7.5 ± 1.1 20.5 ± 0.1 12.8 ± 0.4 10.0 ± 0.1 4.7 ± 0.2 3.2 ± 0.3
ForceAtlas2 38.8 ± 0.3 24.4 ± 0.3 3.2 ± 0.1 20.6 ± 0.1 11.1 ± 0.1 7.0 ± 0.0 2.9 ± 0.3 1.7 ± 0.2
t-FDP 24.4 ± 1.2 15.2 ± 0.7 1.3 ± 0.1 21.6 ± 0.1 10.2 ± 0.2 13.9 ± 0.1 0.7 ± 0.2 0.3 ± 0.1
Laplacian E. 26.2 ± 0.1 17.9 ± 0.0 2.0 ± 0.1 16.0 ± 0.0 6.4 ± 0.0 5.0 ± 0.0 1.6 ± 0.3 0.8 ± 0.1

7 Benchmarking graph NE

7.1 Graph NE outperforms other node embeddings

We compared graph NE with the popular non-parametric node-embedding algorithms DeepWalk (Perozzi
et al., 2014) and node2vec (Grover & Leskovec, 2016), as well as with Laplacian Eigenmaps (LE), all optimizing
128-dimensional embeddings. We used node2vec’s implementation from PyTorch Geometric (Fey & Lenssen,
2019) and the DeepWalk implementation from DGL (Wang et al., 2019). We ran both methods with the
default parameters for 100 epochs (as we did for CNE, see Figure S1 for runtimes). For node2vec, we ran a
sweep over the parameters p, q ∈ {0.25, 0.5, 1, 2, 4}, as in the original paper, and report the results with the
highest neighbor recall (for all results, see Figure S2). For LE we used scikit-learn (Pedregosa et al., 2011),
with LOBPCG (Knyazev et al., 2007) for solving the generalized eigenproblem.

9

Published in Transactions on Machine Learning Research (11/2025)

We found that graph NE outperformed the other algorithms in terms of neighbor recall on seven datasets out
of eight; the only exception was the PubMed dataset (Figure 3a, Table 2). Across all datasets, the average
gap in neighbor recall between graph NE and the best other method was 13.4 percentage points, showing a
strong improvement over competitors. In terms of the top-k 2-hop neighbor recall (Appendix C), our graph
NE outperformed the competitors on all datasets apart from the Photo graph (Table S6).

In terms of the classification accuracies, the results on most datasets were very similar across all methods.
Graph NE had slightly lower kNN accuracy on the two smallest datasets (Citeseer and Cora), and was the
best or within 1% of the best on all other datasets (Figure 3b, Table S2). In terms of linear accuracy, graph
NE yielded competitive results and lagged only slightly behind other methods for some datasets (Figure 3c,
Table S3). Curiously, graph NE with τ = 0.5 was the best or within 1% of the best on all datasets apart from
Cora and MAG, where it was slightly behind (Table S3); but this temperature led to substantially worse
neighbor recall (Table S1). This suggests a trade-off between linear classification and neighbor quality.

Graph NE outperformed the other methods on the link prediction task (Table S4) but the performance
for many methods was close to saturated 100%. For that reason we prefer the kNN recall metric which is
conceptually similar (Appendix B). Graph NE also outperformed all other methods in terms of Spearman
correlation between the shortest-path distances and the embedding distances, on all datasets apart from
MAG, where Laplacian Eigenmaps showed the best results (Figure S5).

In summary, results in terms of classification accuracies were all similar, but neighbor recall showed large and
pronounced differences with graph NE performing the best by a large margin.

7.2 Graph NE outperforms other graph layouts in terms of local structure

We benchmarked graph NE with the openTSNE backend against five existing graph-layout algorithms:
SGtSNEpi Pitsianis et al. (2019), ForceAtlas2 (FA2; Jacomy et al., 2014), Laplacian Eigenmaps (LE; Belkin &
Niyogi, 2003), DRGraph (Zhu et al., 2020a), and t-FDP (Zhong et al., 2023). We also performed comparisons
with Diffusion Maps (Coifman & Lafon, 2006, with t = 1 diffusion step), which differ from Laplacian
Eigenmaps only by scaling, but found that they produced results very similar to Laplacian Eigenmaps, so we
do not report them separately. We did not include tsNET (Kruiger et al., 2017), because it cannot embed
large graphs.1 Unless specified otherwise, we used the original implementation of the algorithms and ran
them with the default parameters. For FA2 we used the Barnes–Hut implementation by Chippada (2017).
Both t-SNE and t-FDP are implemented in Cython, DRGraph and SGtSNEpi are implemented in C++ and
offer wrappers in Python and Julia, respectively. For consistency, we used Diffusion Maps initialization for all
algorithms where possible (all except SGtSNEpi and DRGraph).

Graph NE showed outstanding performance on all of our benchmark datasets. The neighbor recall of graph
NE was always the highest, with SGtSNEpi only sometimes coming close (Figure 4a, Table 2). In the top-k
2-hop neighbor recall that focuses on pairs of nodes that share many neighbors (Appendix C), graph NE
also performed on average the best (Table S6). In this metric, SGtSNEpi only marginally (within 1%)
outperformed graph NE on two graphs and was much worse on several other graphs.

In terms of kNN accuracy, graph NE was either the top performing method or within 1% of the top performing
method for all datasets (Figure 4b, Table S2). In terms of linear accuracy the same was true for six out of
the eight datasets (Figure 4c, Table S3).

In terms of the Spearman correlation between the shortest-path distances and the embedding distances,
consistent winners across datasets were ForceAtlas2 and t-FDP (Table S5). This is likely related to the fact
that in 2D embeddings, there is a trade-off between preserving local and global structure (Böhm et al., 2022).

Qualitatively, graph NE layouts performed well in terms of separating clusters from each other and bringing
out sub-cluster details within individual clusters (Figure 5).

1While our paper was in print, Meidiana et al. (2025) developed a fast implementation of tsNET. We leave its benchmarking
for future work. In parallel, Meidiana & Hong (2025) studied UMAP applied to the pairwise shortest-path distances between
nodes, like in tsNET.

10

Published in Transactions on Machine Learning Research (11/2025)

Co
m

pu
te

r

graph NEa

10

DRGraphb

1

ForceAtlas2c

1000

t-FDPd

10

Ph
ot

o

e

10

f

1

g

1000

h

10

Figure 5: Embeddings of the Computer and Photo datasets obtained using our graph NE (graph t-SNE),
DRGraph, ForceAtlas2, and t-FDP. Embeddings were aligned using Procrustes rotation. See Figure S3 for all
datasets and methods.

8 Discussion

We suggested graph NE, a novel approach to non-parametric node embeddings, and showed that it outperforms
existing competitors in terms of preserving local graph structure, both for high-dimensional embeddings and
for 2D graph layouts. Graph NE can be efficiently implemented using existing neighbor-embedding backends,
CNE and openTSNE. Both backends scale linearly in the number of graph edges and achieve competitive
runtimes for large graphs. For small graphs, we observed that the openTSNE backend was slower than some
of the competitors (Figure S1).

In this work, we focused on complex real-world graphs and have purposefully not tested our graph NE on
simple planar graphs or 3D mesh graphs that are often used for benchmarking graph layout algorithms. Such
graphs are arguably not an interesting case for high-dimensional embeddings, and we aimed to use the same
graphs for all of our benchmarks.

Our work opens up several directions for future work. First, CNE allows to train parametric embeddings
(Damrich et al., 2023), which we have not explored here. How would parametric CNE with a GCN mapping
compare to existing GCL methods, in particular augmentation-free methods? Parametric models need to use
node features. Given the ongoing debate about the usefulness of combining node and edge information in
graph learning (Errica et al., 2020; Faber et al., 2021; Bechler-Speicher et al., 2024; Coupette et al., 2025), it
would be interesting to study how much node features can help with node embeddings.

Second, we only used t-SNE-like losses here, but a similar approach could be implemented using other neighbor-
embedding algorithms, e.g. UMAP (McInnes et al., 2018). How would graph UMAP (2D and high-D) perform
for graph layouts and node embeddings, especially in contrast to DRgraph and DeepWalk/node2vec, which,
like UMAP, use negative sampling for optimization?

Third, our results point to a non-trivial effect that the temperature parameter τ can have on InfoNCE-based
embeddings (Figure 2). Further investigation of this phenomenon and its potential relevance for contrastive
learning in computer vision and other domains also remains for future work.

Our graph NE algorithms succeed because of their simplicity, not despite of it. The straightforward loss
function enables efficient optimization strategies, which scale linearly with the graph size and preserve nodes’
neighbors better than other algorithms.

11

Published in Transactions on Machine Learning Research (11/2025)

Code availability

Our code is available at https://github.com/berenslab/graph-ne-paper.

Acknowledgements

The authors would like to thank Leland McInnes and Pavlin Poličar for discussions, and Philipp Berens for
support and feedback. The authors benefited from the discussions at the Dagstuhl seminar 24122 supported
by the Leibniz Center for Informatics.

This work was partially funded by the Gemeinnützige Hertie-Stiftung, the Cyber Valley Research Fund
(D.30.28739), the Danmarks Frie Forskningsfond (Sapere Aude 1051-00106B), and the National Institutes of
Health (UM1MH130981). The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health. Dmitry Kobak is a member of the Germany’s
Excellence cluster 2064 “Machine Learning — New Perspectives for Science” (EXC 390727645). The authors
thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Jan
Niklas Böhm.

References
Nurudin Alvarez-Gonzalez, Andreas Kaltenbrunner, and Vicenç Gómez. Beyond Weisfeiler–Lehman with

local ego-network encodings. Machine Learning and Knowledge Extraction, 5(4):1234–1265, 2023.

Aleksandr Artemenkov and Maxim Panov. NCVis: noise contrastive approach for scalable visualization. In
Proceedings of The Web Conference 2020, pp. 2941–2947, 2020.

Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, and Amir Globerson. Graph neural networks use
graphs when they shouldn’t. In International Conference on Machine Learning, 2024.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, 2003.

Anna C Belkina, Christopher O Ciccolella, Rina Anno, Richard Halpert, Josef Spidlen, and Jennifer E
Snyder-Cappione. Automated optimized parameters for T-distributed stochastic neighbor embedding
improve visualization and analysis of large datasets. Nature Communications, 10(1):5415, 2019.

Jan Niklas Böhm, Philipp Berens, and Dmitry Kobak. Attraction-repulsion spectrum in neighbor embeddings.
The Journal of Machine Learning Research, 23(1):4118–4149, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International Conference on Machine Learning, pp. 1597–1607. PMLR,
2020.

Bhargav Chippada. forceatlas2: Fastest Gephi’s ForceAtlas2 graph layout algorithm implemented for Python
and NetworkX. https://github.com/bhargavchippada/forceatlas2, 2017.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 21
(1):5–30, 2006.

Corinna Coupette, Jeremy Wayland, Emily Simons, and Bastian Rieck. No metric to rule them all: Toward
principled evaluations of graph-learning datasets. In International Conference on Machine Learning, 2025.

Sebastian Damrich, Niklas Böhm, Fred A Hamprecht, and Dmitry Kobak. From t-SNE to UMAP with
contrastive learning. In International Conference on Learning Representations, 2023.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems, volume 27, 2014.

12

https://github.com/berenslab/graph-ne-paper
https://github.com/bhargavchippada/forceatlas2

Published in Transactions on Machine Learning Research (11/2025)

Andrew Draganov, Jakob Jørgensen, Katrine Scheel, Davide Mottin, Ira Assent, Tyrus Berry, and Cig-
dem Aslay. ActUp: analyzing and consolidating tSNE & UMAP. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, pp. 3651–3658, 2023.

Federico Errica, Marco Podda, Davide Bacciu, Alessio Micheli, et al. A fair comparison of graph neural
networks for graph classification. In International Conference on Learning Representations, 2020.

Lukas Faber, Yifan Lu, and Roger Wattenhofer. Should graph neural networks use features, edges, or both?
arXiv, 2021.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed placement. Software:
Practice and Experience, 21(11):1129–1164, 1991.

Emden R Gansner, Yifan Hu, and Stephen North. A maxent-stress model for graph layout. IEEE Transactions
on Visualization and Computer Graphics, 19(6):927–940, 2012.

Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured
data. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pp. 1–16, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864,
2016.

Xiaojun Guo, Yifei Wang, Zeming Wei, and Yisen Wang. Architecture matters: Uncovering implicit
mechanisms in graph contrastive learning. In Advances in Neural Information Processing Systems, 2023.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using
NetworkX. Technical report, Los Alamos National Lab, 2008.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs. In
International Conference on Machine Learning, pp. 4116–4126. PMLR, 2020.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in Neural Information
Processing Systems, 15, 2002.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps.
Social Networks, 5(2):109–137, 1983. ISSN 0378-8733.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in Neural
Information Processing Systems, 33:22118–22133, 2020.

Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica Journal, 10(1):37–71, 2005.

Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian. ForceAtlas2, a continuous
graph layout algorithm for handy network visualization designed for the gephi software. PloS One, 9(6):
e98679, 2014.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410, 2016.

Megha Khosla, Vinay Setty, and Avishek Anand. A comparative study for unsupervised network representation
learning. IEEE Transactions on Knowledge and Data Engineering, 33(5):1807–1818, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 2015.

13

Published in Transactions on Machine Learning Research (11/2025)

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. Interna-
tional Conference for Learning Representations, 2017.

A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov. Block locally optimal preconditioned
eigenvalue xolvers (blopex) in hypre and petsc. SIAM Journal on Scientific Computing, 29(5):2224–2239,
2007.

Dmitry Kobak and George C Linderman. Initialization is critical for preserving global data structure in both
t-SNE and UMAP. Nature Biotechnology, 39(2):156–157, 2021.

Johannes F Kruiger, Paulo E Rauber, Rafael Messias Martins, Andreas Kerren, Stephen Kobourov, and
Alexandru C Telea. Graph layouts by t-SNE. In Computer Graphics Forum, volume 36, pp. 283–294. Wiley
Online Library, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning on graphs.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 7372–7380, 2022.

Yao Yang Leow, Thomas Laurent, and Xavier Bresson. GraphTSNE: a visualization technique for graph-
structured data. Representation Learning on Graphs and Manifold Workshop at the International Conference
for Learning Representations, 2019.

Haifeng Li, Jun Cao, Jiawei Zhu, Qinyao Luo, Silu He, and Xuying Wang. Augmentation-free graph contrastive
learning of invariant-discriminative representations. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–11, 2023.

George C Linderman and Stefan Steinerberger. Clustering with t-SNE, provably. SIAM Journal on
Mathematics of Data Science, 1(2):313–332, 2019.

George C Linderman, Manas Rachh, Jeremy G Hoskins, Stefan Steinerberger, and Yuval Kluger. Fast
interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nature Methods, 16(3):
243–245, 2019.

Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for conditional models:
Consistency and statistical efficiency. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 3698–3707, 2018.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Amyra Meidiana and Seok-Hee Hong. SS-GUMAP, SL-GUMAP, SSSL-GUMAP: Fast UMAP algorithms for
large graph drawing. arXiv preprint arXiv:2509.19703, 2025.

Amyra Meidiana, Seok-Hee Hong, and Kwan-Liu Ma. BH-tsNET, FIt-tsNET, L-tsNET: Fast tsNET algorithms
for large graph drawing. arXiv preprint arXiv:2509.19785, 2025.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26,
2013.

Jacob Miller, Vahan Huroyan, and Stephen Kobourov. Balancing between the local and global structures
(LGS) in graph embedding. In International Symposium on Graph Drawing and Network Visualization, pp.
263–279. Springer, 2023.

Andreas Noack. Energy models for graph clustering. Journal of Graph Algorithms and Applications, 11(2):
453–480, 2007.

14

Published in Transactions on Machine Learning Research (11/2025)

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 701–710, 2014.

Nikos Pitsianis, Alexandros-Stavros Iliopoulos, Dimitris Floros, and Xiaobai Sun. Spaceland embedding of
sparse stochastic graphs. In 2019 IEEE High Performance Extreme Computing Conference (HPEC), pp.
1–8, 2019.

Nikos Pitsianis, Alexandros-Stavros Iliopoulos, Dimitris Floros, and Xiaobai Sun. Sg-tsne-π. http://web.
archive.org/web/20250124132719/https://t-sne-pi.cs.duke.edu/, 2024. Accessed: 2025-01-25.

Pavlin G. Poličar, Martin Stražar, and Blaž Zupan. openTSNE: a modular Python library for t-SNE
dimensionality reduction and embedding. Journal of Statistical Software, 109(3):1–30, 2024.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar. A
theoretical analysis of contrastive unsupervised representation learning. In International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5628–5637. PMLR, 2019.

Peter H. Schönemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 1966.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi Munos,
Petar Veličković, and Michal Valko. Large-scale representation learning on graphs via bootstrapping. In
International Conference on Learning Representations, 2022.

Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra. Augmentations in graph
contrastive learning: Current methodological flaws & towards better practices. In Proceedings of the ACM
Web Conference 2022, pp. 1538–1549, 2022.

Laurens van der Maaten. Accelerating t-SNE using tree-based algorithms. The Journal of Machine Learning
Research, 15(1):3221–3245, 2014.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(11), 2008.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon. Deep graph
infomax. International Conference for Learning Representations, 2(3):4, 2019.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

Yifei Wang, Qi Zhang, Tianqi Du, Jiansheng Yang, Zhouchen Lin, and Yisen Wang. A message passing per-
spective on learning dynamics of contrastive learning. International Conference on Learning Representations,
2023.

Zhirong Yang, Jaakko Peltonen, and Samuel Kaski. Scalable optimization of neighbor embedding for
visualization. In International Conference on Machine Learning, pp. 127–135. PMLR, 2013.

Zhirong Yang, Yuwei Chen, Denis Sedov, Samuel Kaski, and Jukka Corander. Stochastic cluster embedding.
Statistics and Computing, 33(1):12, 2023.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in Neural Information Processing Systems, 33:5812–5823, 2020.

15

http://web.archive.org/web/20250124132719/https://t-sne-pi.cs.duke.edu/
http://web.archive.org/web/20250124132719/https://t-sne-pi.cs.duke.edu/

Published in Transactions on Machine Learning Research (11/2025)

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation analysis to
self-supervised graph neural networks. Advances in Neural Information Processing Systems, 34:76–89, 2021.

Hengrui Zhang, Qitian Wu, Yu Wang, Shaofeng Zhang, Junchi Yan, and Philip S Yu. Localized contrastive
learning on graphs. arXiv preprint arXiv:2212.04604, 2022.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in Neural
Information Processing Systems, volume 31, 2018.

Shiqi Zhang, Renchi Yang, Xiaokui Xiao, Xiao Yan, and Bo Tang. Effective and efficient pagerank-based
positioning for graph visualization. Proceedings of the ACM on Management of Data, 1(1):1–27, 2023.

Fahai Zhong, Mingliang Xue, Jian Zhang, Fan Zhang, Rui Ban, Oliver Deussen, and Yunhai Wang. Force-
directed graph layouts revisited: a new force based on the t-distribution. IEEE Transactions on Visualization
and Computer Graphics, 2023.

Minfeng Zhu, Wei Chen, Yuanzhe Hu, Yuxuan Hou, Liangjun Liu, and Kaiyuan Zhang. DRGraph: An
efficient graph layout algorithm for large-scale graphs by dimensionality reduction. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1666–1676, 2020a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive representation
learning. arXiv preprint arXiv:2006.04131, 2020b.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning with
adaptive augmentation. In Proceedings of the Web Conference 2021, pp. 2069–2080, 2021.

16

Published in Transactions on Machine Learning Research (11/2025)

Appendix

A Proof of Theorem 1

Theorem 4.1. [adapted from Ma & Collins 2018] Let p be a probability distribution over
S = {ij | 1 ≤ i ̸= j ≤ n}, so that for all pairs ij, there is a path pik1 , . . . , pklj with each step having positive
probability. Let w(θ) be a family of non-negative functions S → R≥0 parametrized by θ ∈ Θ and symmetric in
i and j, meaning wij(θ) = wji(θ). Let further ξ be a probability distribution over [n] := {1, . . . , n} with full
support. Suppose there is some θ∗ ∈ Θ and some c > 0 with w(θ∗)/c = p. Then, θ∗ minimizes the loss

LInfoNCE(θ) = −Eij∼pEk1,...,km∼ξ log wij(θ)/ξj

wij(θ)/ξj +
∑m

α=1 wikα(θ)/ξkα

(8)

and for any other minimizer θ̃ ∈ Θ there exists c̃ > 0 with w(θ̃)/c̃ = p.

In particular, the minima of LInfoNCE correspond one-to-one to those of

DKL
(
p, w(θ)/Z(θ)

)
= −Eij∼p log wij(θ)

Z(θ) (9)

where Z(θ) =
∑

ij wij(θ).

Proof. The key idea is to rewrite the loss as an average over cross-entropy losses over the set {0, . . . , m}. For
i, k0, . . . , km ∈ {1, . . . , n} define

α(i, k0, . . . , km) :=
m∑

µ=0

(
pikµ

m∏

ν=0,ν ̸=µ

ξkν

)
(11)

β(µ | i, k0, . . . , km) :=
pikµ

∏m
ν=0,ν ̸=µ ξkν

α(i, k0, . . . , km) =
pikµ

/ξkµ∑m
ν=0 pikν

/ξkν

(12)

γθ(µ | i, k0, . . . , km) :=
wikµ

(θ)/ξkµ∑m
ν=0 wikν

(θ)/ξkν

(13)

Note that α(i, k0, . . . , km) can only be zero if pikµ = 0 for all µ = 0, . . . , m. In this case, we define
β(µ | i, k0, . . . , km) = 0 for all µ = 0, . . . , m. If all wikν (θ) are zero for ν = 0, . . . , m, we define
γθ(µ | i, k0, . . . , km) = 0. If they are not identical to zero, β(· | i, k0, . . . , km) and γθ(· | i, k0, . . . , km) are
probability distributions over {0, . . . , m}.

By the proof of Theorem 4.1 in Ma & Collins (2018), we can rewrite

LInfoNCE(θ) =
∑

i,k0,...,km∈[n]

α(i, k0, . . . , km)
m + 1

(
−

m∑

µ=0
β(µ | i, k0, . . . , km) log γθ(µ | i, k0, . . . , km)

)
(14)

The latter term in parentheses is a cross-entropy loss over probability distributions over the set {0, . . . , m}.
It becomes minimal if and only if β(· | i, k0, . . . , km) = γθ(· | i, k0, . . . , km). Since α(i, k0, . . . , km) is positive
as soon as minµ pikµ > 0 for some µ, we conclude that the minima of LInfoNCE(θ) are those θ for which
β(· | i, k0, . . . , km) = γθ(· | i, k0, . . . , km) whenever minµ pikµ > 0.

Clearly θ∗ is a minimum of LInfoNCE(θ) as

β(· | i, k0, . . . , km) = γθ∗(· | i, k0, . . . , km)

holds for all i, k0, . . . , km ∈ [n].

17

Published in Transactions on Machine Learning Research (11/2025)

Conversely, let θ̃ be a minimizer of LInfoNCE(θ). Consider ij with pij > 0 and arbitrary k ∈ [n]. Taking
k0 = j and k1, . . . , km = k, we have

β(0 | i, k0 = j, k1 = k, . . . , km = k) = γθ̃(0 | i, k0 = j, k1 = k, . . . , km = k) (15)

⇔ pij/ξj

pij/ξj + mpik/ξk
= wij(θ̃)/ξj

wij(θ)/ξj + mwik(θ̃)/ξk

(hence wij(θ̃) > 0) (16)

⇔ 1
1 + m

pikξj

pijξk

= 1
1 + m

wik(θ̃)ξj

wij(θ̃)ξk

(17)

⇔ pik

pij
= wik(θ̃)

wij(θ̃)
(18)

⇒
∑

k pik

pij
=

∑
k wik(θ̃)
wij(θ̃)

(19)

⇒ wij(θ̃)
pij

=
∑

k wik(θ̃)∑
k pik

=: ci, (20)

which only depends on i, not on j. By symmetry of w, we have for any ij with pij > 0 that pji > 0, too, and

ci = wij(θ̃)
pij

= wij(θ̃)
wij(θ∗) = wji(θ̃)

wji(θ∗) = wji(θ̃)
pji

= cj .

Now we use the assumption that one can get from any i to any j via transitions with positive p. This implies
that for each i, there is some j with pij > 0 (which we ensure in our experiments by only considering a
connected component, Section 5). Moreover, for any i, j we get ci = cj =: c. So, we have for any ij with
pij > 0 that pij = wij(θ̃)/c.

Finally, let ij be such that pij = 0. By the path connectedness assumption, there is some k ∈ [n] with pik > 0.
Taking k0 = k and k1, . . . , km = j we get as above that

1 = pik

pik + mpij
= wik(θ̃)

wik(θ̃) + mwij(θ̃)
(21)

from which we can conclude that wij(θ̃) must be zero, whenever pij is zero. This implies p = w(θ̃)/c.

It is well-known that the KL divergence between two probability distributions is minimal if and only if they
are equal.

Our setup in Theorem 4.1 deviates from that of Theorem 4.1 in Ma & Collins (2018), because they only show
a statement along the lines of Equation (20). In contrast, we show that the InfoNCE loss has same minima
as the KL divergence using stronger assumptions (Ma & Collins’s Assumption 2.2, symmetry, and the path
connectedness with positive probability).

B Link prediction as evaluation metric

Link prediction is one of the standard evaluation criteria in the graph-learning community (Kipf & Welling,
2017). In a link-prediction task, the predictive model is given pairs of nodes which may or may not be
connected by an edge and must rank these pairs by the likelihood of predicting an edge correctly (Zhang &
Chen, 2018). We used 10% of all graph edges as positive test pairs and equally many non-edges as negative
test pairs. We scored each of the test pairs based on their embedding points, either by cosine similarity
(128D) or by negative Euclidean distance (2D) and computed the area under the ROC curve, similar to the
setup from Grover & Leskovec (2016).

The neighbor recall metric is conceptually similar to link prediction. It is the recall of a directed link
predictor P that predicts the links from node i to the ki nearest nodes to i’s, where ki is the degree of node

18

Published in Transactions on Machine Learning Research (11/2025)

i. In the case of constant, known node degree k, the recall r is linearly related to the accuracy a of P by
a = 1 − (1 − r) · 2k/(n − 1). As the task of link prediction is easier and saturates faster compared to the
neighbor recall (Table S1 vs. Table S4), we use neighbor recall as our main metric.

C Top-k 2-hop neighbor recall as evaluation metric

Our neighbor recall metric, defined in Equation (10), treats all neighbors of a node equally. In some cases,
it may be desirable to focus on node pairs that have many shared neighbors, and make sure that they are
embedded close together. We quantified this using an additional metric, which we call top-k 2-hop neighbor
recall.

We first compute number of shared neighbors for any pair of nodes i, j:

S(i, j) =
∣∣NG[i] ∩ NG[j]

∣∣, (22)

where NG[i] is the set of neighbors of node i in graph G. Be definition, the S(i, ·) is non-zero for all 2-hop
neighbors of node i. Note that S(i, j)

/∣∣NG[i] ∪ NG[j]
∣∣ gives Jaccard similarity between i and j.

Now let NS,k[i] denote the set of k nodes with the highest values of S(i, ·). The top-k 2-hop neighbor recall is
the fraction of these nodes contained among the k closest embedding points NE,k[i] of node i:

Top-k 2-hop recall = 1
|V|

|V|∑

i=1

∣∣NS,k[i] ∩ NE,k[i]
∣∣

k
. (23)

We used k = 10 and report the results in Table S6. For nodes that had fewer than k other nodes with
non-zero S(i, ·), the set NS,k[i] contained fewer than k elements.

19

Published in Transactions on Machine Learning Research (11/2025)

D Supplementary Figures and Tables

Table S1: Neighbor recall for all methods and datasets (in %). All values are mean ± standard deviation
across three training runs. The top performing method for each dimensionality (and all methods within 1%)
is highlighted in bold. Methods in blue are ours. “Graph NEτ” means that the temperature τ was learned
as a parameter during training, see Section 6.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 81.0 ± 0.1 83.8 ± 0.0 44.3 ± 0.2 70.3 ± 0.1 64.8 ± 0.0 96.0 ± 0.0 72.3 ± 0.5 89.0 ± 0.4
graph NEτ 80.3 ± 0.0 82.8 ± 0.1 42.3 ± 0.1 69.5 ± 0.0 64.0 ± 0.1 96.0 ± 0.0 72.5 ± 0.7 91.0 ± 0.1
CNE, τ = 0.5 55.9 ± 0.1 58.1 ± 0.0 21.9 ± 0.3 35.7 ± 0.1 31.9 ± 0.0 39.2 ± 0.0 34.4 ± 0.2 33.2 ± 0.2
DeepWalk 60.5 ± 0.7 67.1 ± 0.3 32.9 ± 0.5 50.0 ± 0.4 47.7 ± 0.3 70.8 ± 0.2 51.4 ± 0.5 60.0 ± 0.6
node2vec 70.7 ± 0.5 72.1 ± 1.0 70.1 ± 0.3 50.9 ± 0.5 41.3 ± 0.2 43.2 ± 0.2 42.9 ± 0.6 29.3 ± 0.3
Laplacian E. 53.4 ± 0.0 56.7 ± 0.0 18.3 ± 0.1 39.7 ± 0.0 32.4 ± 0.0 38.5 ± 0.0 32.1 ± 0.1 40.6 ± 0.2

2

graph NE 71.7 ± 1.8 66.7 ± 0.4 25.0 ± 0.1 46.9 ± 0.1 41.8 ± 0.1 40.2 ± 0.2 36.3 ± 0.3 32.3 ± 0.6
SGtSNEpi 59.1 ± 0.3 57.4 ± 0.6 23.3 ± 0.2 44.5 ± 0.3 39.0 ± 0.2 29.1 ± 0.1 23.6 ± 0.2 8.1 ± 0.3
DRGraph 42.8 ± 0.8 31.0 ± 0.4 7.5 ± 0.9 20.5 ± 0.1 12.8 ± 0.3 10.0 ± 0.1 4.7 ± 0.1 3.2 ± 0.2
ForceAtlas2 38.8 ± 0.3 24.4 ± 0.3 3.2 ± 0.1 20.6 ± 0.1 11.1 ± 0.1 7.0 ± 0.0 2.9 ± 0.3 1.7 ± 0.1
t-FDP 24.4 ± 0.9 15.2 ± 0.6 1.3 ± 0.1 21.6 ± 0.1 10.2 ± 0.2 13.9 ± 0.1 0.7 ± 0.1 0.3 ± 0.1
Laplacian E. 26.2 ± 0.1 17.9 ± 0.0 2.0 ± 0.1 16.0 ± 0.0 6.4 ± 0.0 5.0 ± 0.0 1.6 ± 0.2 0.8 ± 0.1

Table S2: kNN classification accuracy. The same setup as in Table S1, with random training/test splits used
for each run.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 72.0 ± 0.4 82.7 ± 0.0 84.1 ± 0.1 94.3 ± 0.1 92.4 ± 0.1 97.2 ± 0.0 71.3 ± 0.1 41.6 ± 0.1
graph NEτ 72.2 ± 0.4 83.1 ± 0.3 83.8 ± 0.3 94.3 ± 0.1 92.4 ± 0.2 97.1 ± 0.0 71.7 ± 0.1 41.7 ± 0.1
CNE, τ = 0.5 72.8 ± 0.2 83.3 ± 0.2 83.1 ± 0.0 92.6 ± 0.0 91.4 ± 0.0 96.9 ± 0.0 71.1 ± 0.1 36.5 ± 0.1
DeepWalk 73.6 ± 1.0 84.7 ± 0.6 83.7 ± 0.2 93.3 ± 0.1 91.1 ± 0.2 97.0 ± 0.1 71.2 ± 0.1 40.5 ± 0.0
node2vec 73.1 ± 0.4 82.8 ± 0.5 83.6 ± 0.4 93.1 ± 0.2 90.5 ± 0.2 96.8 ± 0.0 70.1 ± 0.0 34.4 ± 0.1
Laplacian E. 74.5 ± 0.0 83.1 ± 0.0 82.6 ± 0.0 93.0 ± 0.0 90.3 ± 0.0 96.7 ± 0.0 67.2 ± 0.1 36.5 ± 0.0

2

graph NE 70.3 ± 0.4 83.1 ± 1.5 82.9 ± 0.5 92.6 ± 0.5 91.0 ± 0.0 96.8 ± 0.1 69.4 ± 0.2 35.3 ± 0.0
SGtSNEpi 70.6 ± 0.6 80.5 ± 1.3 82.4 ± 0.9 92.8 ± 0.4 90.6 ± 0.3 96.9 ± 0.1 65.9 ± 0.3 23.5 ± 0.3
DRGraph 70.3 ± 0.7 79.8 ± 2.9 80.4 ± 0.6 89.8 ± 0.2 80.1 ± 0.9 95.2 ± 0.3 54.7 ± 0.7 23.3 ± 0.1
ForceAtlas2 69.3 ± 0.4 80.6 ± 0.3 77.6 ± 0.2 88.6 ± 0.2 77.2 ± 0.4 81.4 ± 0.0 50.6 ± 0.6 20.0 ± 0.2
t-FDP 66.0 ± 1.0 76.6 ± 0.6 64.2 ± 0.5 84.5 ± 0.4 71.6 ± 0.5 83.9 ± 0.0 26.1 ± 0.4 7.5 ± 0.6
Laplacian E. 65.6 ± 0.0 71.8 ± 0.0 72.4 ± 0.2 84.8 ± 0.2 73.2 ± 0.2 75.3 ± 0.1 27.8 ± 0.8 9.4 ± 1.2

Table S3: Linear classification accuracy. The same setup as in Table S2 applies.
d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 71.5 ± 1.2 84.3 ± 1.0 80.9 ± 0.2 93.0 ± 0.2 89.7 ± 0.2 95.3 ± 0.0 62.6 ± 0.2 26.1 ± 0.1
graph NEτ 71.9 ± 1.4 83.6 ± 0.7 80.2 ± 0.7 93.4 ± 0.4 89.5 ± 0.4 90.8 ± 0.3 63.6 ± 0.1 27.6 ± 0.1
CNE, τ = 0.5 72.8 ± 0.8 84.3 ± 0.7 83.6 ± 0.3 92.7 ± 0.2 89.4 ± 0.2 97.1 ± 0.0 67.9 ± 0.2 32.2 ± 0.0
DeepWalk 70.3 ± 0.0 83.3 ± 0.7 81.9 ± 0.3 92.5 ± 0.4 88.5 ± 0.2 96.7 ± 0.1 68.1 ± 0.0 34.2 ± 0.1
node2vec 66.4 ± 1.4 81.0 ± 1.4 77.0 ± 0.5 93.0 ± 0.5 88.5 ± 0.1 96.1 ± 0.1 64.6 ± 0.0 29.9 ± 0.2
Laplacian E. 73.6 ± 0.0 86.7 ± 0.0 81.4 ± 0.0 92.8 ± 0.0 85.5 ± 0.0 97.0 ± 0.0 40.0 ± 0.1 21.3 ± 0.1

2

graph NE 63.2 ± 2.7 66.9 ± 1.2 62.8 ± 2.0 72.5 ± 4.8 70.9 ± 0.7 96.0 ± 0.1 48.4 ± 0.3 18.9 ± 0.6
SGtSNEpi 52.7 ± 5.2 64.0 ± 4.2 64.1 ± 0.5 79.2 ± 5.8 68.3 ± 2.8 93.3 ± 0.7 42.6 ± 1.4 10.2 ± 1.9
DRGraph 59.1 ± 1.8 64.8 ± 2.8 67.4 ± 0.2 72.5 ± 5.2 68.8 ± 1.5 94.2 ± 0.1 47.6 ± 0.6 18.5 ± 0.3
ForceAtlas2 62.4 ± 0.2 67.3 ± 0.0 71.6 ± 0.0 71.4 ± 0.4 67.3 ± 0.2 73.1 ± 0.0 45.4 ± 0.8 18.2 ± 0.3
t-FDP 50.5 ± 1.7 60.3 ± 0.2 57.5 ± 0.8 66.0 ± 0.4 60.6 ± 0.5 69.1 ± 0.2 26.5 ± 0.5 8.0 ± 1.1
Laplacian E. 47.6 ± 0.0 47.2 ± 0.0 57.1 ± 0.0 60.4 ± 0.0 47.3 ± 0.0 69.4 ± 0.0 15.6 ± 0.0 7.1 ± 1.4

20

Published in Transactions on Machine Learning Research (11/2025)

Table S4: Area under the link prediction ROC curve. The same setup as in Table S2. See Appendix B.
d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.0 99.4 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
graph NEτ 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.6 ± 0.0 99.3 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
CNE, τ = 0.5 99.7 ± 0.0 99.7 ± 0.0 99.8 ± 0.0 97.5 ± 0.0 96.2 ± 0.0 99.8 ± 0.0 98.7 ± 0.0 99.7 ± 0.0
DeepWalk 99.8 ± 0.0 99.8 ± 0.0 99.9 ± 0.0 98.1 ± 0.1 97.2 ± 0.1 100.0 ± 0.0 99.5 ± 0.0 100.0 ± 0.0
node2vec 91.6 ± 0.3 88.3 ± 0.2 84.3 ± 0.3 83.3 ± 0.2 71.9 ± 0.2 99.9 ± 0.0 66.3 ± 0.2 93.7 ± 0.1
Laplacian E. 99.8 ± 0.0 99.7 ± 0.0 98.9 ± 0.0 97.8 ± 0.0 96.0 ± 0.0 99.8 ± 0.0 95.3 ± 0.0 99.2 ± 0.0

2

graph NE 98.2 ± 0.1 96.6 ± 0.2 96.3 ± 0.3 96.4 ± 0.1 94.1 ± 0.0 98.4 ± 0.0 95.7 ± 0.2 98.4 ± 0.0
SGtSNEpi 97.6 ± 0.2 95.5 ± 0.2 96.0 ± 0.3 96.1 ± 0.1 93.8 ± 0.2 98.2 ± 0.1 95.3 ± 0.1 96.4 ± 0.1
DRGraph 98.9 ± 0.0 97.6 ± 0.1 97.6 ± 0.0 96.4 ± 0.2 94.5 ± 0.1 98.7 ± 0.0 97.2 ± 0.1 99.0 ± 0.0
ForceAtlas2 98.9 ± 0.1 97.7 ± 0.0 97.6 ± 0.0 96.4 ± 0.0 94.7 ± 0.0 98.6 ± 0.0 97.2 ± 0.1 98.8 ± 0.1
t-FDP 97.8 ± 0.0 96.1 ± 0.1 93.7 ± 0.3 96.1 ± 0.1 94.3 ± 0.2 98.9 ± 0.0 88.8 ± 0.5 92.8 ± 0.6
Laplacian E. 95.7 ± 0.0 88.9 ± 0.0 91.9 ± 0.0 89.8 ± 0.0 86.7 ± 0.0 96.7 ± 0.0 89.7 ± 0.3 93.4 ± 1.4

Table S5: Spearman correlation between the shortest-path distances and the embedding distances (Euclidean
for 2D embeddings, cosine for 128D embeddings). The same setup as in Table S1.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 67.4 ± 1.0 81.6 ± 0.1 71.4 ± 0.3 82.4 ± 0.3 75.6 ± 0.0 54.2 ± 0.6 60.7 ± 0.6 7.3 ± 0.8
graph NEτ 48.4 ± 0.2 62.6 ± 0.3 59.2 ± 1.2 75.1 ± 0.1 70.5 ± 0.1 35.0 ± 1.0 46.8 ± 2.1 12.6 ± 0.3
CNE, τ = 0.5 33.5 ± 0.0 35.8 ± 0.1 32.9 ± 0.2 39.1 ± 0.0 32.0 ± 0.0 50.8 ± 0.0 7.8 ± 0.4 21.1 ± 0.3
DeepWalk 31.1 ± 0.3 25.9 ± 0.6 17.0 ± 0.9 48.1 ± 0.4 34.6 ± 0.8 48.3 ± 0.9 −6.0 ± 0.5 9.7 ± 1.8
node2vec 27.1 ± 1.3 27.5 ± 0.5 23.6 ± 0.8 47.9 ± 0.3 42.7 ± 0.3 35.1 ± 1.5 17.4 ± 3.0 15.5 ± 1.8
Laplacian E. 29.6 ± 0.0 26.1 ± 0.0 37.7 ± 0.0 25.8 ± 0.0 30.0 ± 0.0 26.8 ± 0.0 44.8 ± 0.2 37.5 ± 0.4

2

graph NE 56.9 ± 1.5 47.6 ± 3.2 35.0 ± 2.6 58.3 ± 1.0 47.2 ± 2.0 41.6 ± 0.3 32.9 ± 0.9 34.0 ± 2.4
SGtSNEpi 46.5 ± 6.1 40.0 ± 2.1 33.8 ± 1.7 52.5 ± 2.7 44.1 ± 1.7 37.8 ± 5.3 33.8 ± 3.0 29.9 ± 4.1
DRGraph 61.8 ± 3.2 65.1 ± 0.9 41.3 ± 1.2 64.9 ± 1.5 49.5 ± 1.9 51.3 ± 2.9 34.6 ± 1.0 31.0 ± 1.0
ForceAtlas2 65.3 ± 0.2 71.6 ± 0.1 51.0 ± 0.0 69.7 ± 0.2 54.9 ± 0.0 58.2 ± 0.0 40.2 ± 0.7 23.4 ± 0.5
t-FDP 65.7 ± 0.1 71.1 ± 0.1 63.6 ± 0.0 64.7 ± 0.4 63.8 ± 0.5 53.5 ± 0.0 56.9 ± 1.7 53.6 ± 1.3
Laplacian E. 45.5 ± 0.0 50.7 ± 0.0 21.3 ± 0.0 55.4 ± 0.0 36.2 ± 0.0 52.2 ± 0.0 35.7 ± 1.5 20.7 ± 0.3

Table S6: Top-k (k = 10) 2-hop neighbor recall. The same setup as in Table S1. See Appendix C.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 44.5 ± 0.0 46.3 ± 0.0 35.9 ± 0.0 27.2 ± 0.1 25.9 ± 0.1 57.8 ± 0.1 30.3 ± 0.1 30.9 ± 0.2
graph NEτ 44.3 ± 0.0 46.1 ± 0.1 35.4 ± 0.1 26.7 ± 0.0 25.6 ± 0.0 57.7 ± 0.1 30.2 ± 0.1 29.6 ± 0.2
CNE, τ = 0.5 38.0 ± 0.0 38.8 ± 0.1 30.5 ± 0.1 21.4 ± 0.0 20.0 ± 0.0 37.0 ± 0.0 22.3 ± 0.1 22.3 ± 0.1
DeepWalk 39.7 ± 0.1 40.2 ± 0.3 32.8 ± 0.3 25.4 ± 0.1 22.0 ± 0.2 53.1 ± 0.6 25.9 ± 0.1 30.7 ± 0.2
node2vec 41.8 ± 0.1 43.7 ± 0.1 33.4 ± 0.1 30.9 ± 0.1 24.4 ± 0.1 36.1 ± 0.3 20.9 ± 0.1 14.2 ± 0.1
Laplacian E. 36.5 ± 0.0 38.0 ± 0.0 26.5 ± 0.0 23.1 ± 0.0 19.8 ± 0.0 36.5 ± 0.0 20.4 ± 0.0 27.0 ± 0.2

2

graph NE 35.3 ± 0.1 35.0 ± 0.1 28.2 ± 0.1 24.0 ± 0.1 21.8 ± 0.2 39.5 ± 0.2 22.0 ± 0.0 20.2 ± 0.3
SGtSNEpi 34.1 ± 0.1 33.0 ± 0.4 28.7 ± 0.2 23.8 ± 0.2 21.9 ± 0.1 24.6 ± 0.1 14.2 ± 0.2 5.2 ± 0.1
DRGraph 29.2 ± 0.5 24.1 ± 0.5 11.0 ± 0.2 9.8 ± 0.2 6.1 ± 0.2 7.1 ± 0.1 3.8 ± 0.1 2.1 ± 0.2
ForceAtlas2 25.3 ± 0.0 20.1 ± 0.1 14.0 ± 0.1 11.3 ± 0.1 5.8 ± 0.1 4.8 ± 0.0 3.2 ± 0.1 1.4 ± 0.1
t-FDP 17.3 ± 0.0 13.8 ± 0.2 3.8 ± 0.1 11.6 ± 0.2 5.1 ± 0.1 11.5 ± 0.2 0.6 ± 0.0 0.2 ± 0.0
Laplacian E. 18.9 ± 0.0 14.7 ± 0.0 13.0 ± 0.0 8.4 ± 0.0 3.5 ± 0.0 3.2 ± 0.0 1.3 ± 0.2 0.5 ± 0.1

Table S7: Learned temperature τ for the graph NEτ variant in Tables S1–S5. Means across three training
runs reported. Standard deviations were alsways below 0.0005.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128 graph NEτ 0.071 0.077 0.070 0.079 0.076 0.057 0.058 0.042

21

Published in Transactions on Machine Learning Research (11/2025)

Cite
see

r
Cora

Pub
Med

Pho
to

Compute
r

MNIST kN
N

arX
iv

MAG
1 s

100 s

10,000 s

128Da

graph NE
DeepWalk
node2vec
Laplacian E.

Cite
see

r
Cora

Pub
Med

Pho
to

Compute
r

MNIST kN
N

arX
iv

MAG
1 s

100 s

10,000 s

Ru
nt

im
e

2Db
graph NE
SGtSNEpi
DRGraph
ForceAtlas2
t-FDP
Laplacian E.

Figure S1: Computation times. All computations were performed on a cluster which isolates the computing
resources and removes interference between concurrent computations. All 2D experiments require only CPUs
and were ran on 8 cores of an Intel Xeon Gold 6226R. Experiments in 128D ran on a single Nvidia 2080ti
GPU card. For node2vec, this shows runtime for p = q = 1; we ran 25 parameter combinations (Figure S2),
so our actual runtime including hyperparameter tuning was much larger.

25%
50%
75%

100%
recall

Cora
kNN acc. lin. acc.

25%
50%
75%

100%
recall

Computer
kNN acc. lin. acc.

25%
50%
75%

100%
recall

Photo
kNN acc. lin. acc.

25%
50%
75%

100%
Citeseer

25%
50%
75%

100%
MNIST kNN

25%
50%
75%

100%
PubMed

0.25 1 4
p

25%
50%
75%

100%

0.5 2
p

arXiv

0.25 1 4
p

0.5 2
p

25%
50%
75%

100%

0.25 1 4
p

MAG

0.5 2
p

q
4
2
1
0.5
0.25

Figure S2: Evaluations for node2vec (Grover & Leskovec, 2016) with the hyperparameter sweep over
p, q ∈ {0.25, 0.5, 1, 2, 4}. These parameter values were taken from the original node2vec paper. The highest
neighbor recall was always achieved at p = 0.25, q = 4. This corresponds to oversampling unseen nodes.

22

Published in Transactions on Machine Learning Research (11/2025)

graph NE SGtSNEpi DRGraph ForceAtlas2 t-FDP Laplacian E.
Ci

te
se

er
Co

ra
Pu

bM
ed

Ph
ot

o
Co

m
pu

te
r

M
NI

ST
 k

NN
ar

Xi
v

M
AG

Figure S3: Embeddings of all considered datasets obtained using our graph NE, SGtSNEpi (Pitsianis et al.,
2019), DRGraph (Zhu et al., 2020a), ForceAtlas2 (Jacomy et al., 2014), t-FDP (Zhong et al., 2023), and
Laplacian Eigenmaps (Belkin & Niyogi, 2003). Embeddings in each row were aligned using orthogonal
Procrustes rotation (Schönemann, 1966). Numbers in the top-right corner correspond to the kNN accuracy
and the neighbor recall, respectively (as indicated in the bottom-right panel).

23

Published in Transactions on Machine Learning Research (11/2025)

Co
m

pu
te

r

kNN acc. = 91.0%
recall = 41.7%

Defaulta
kNN acc. = 90.1%

recall = 42.0%

Random init.b
kNN acc. = 87.9%

recall = 33.3%

Whole-matrix norm.c

Ph
ot

o

kNN acc. = 92.9%
recall = 47.1%

Defaultd
kNN acc. = 93.3%

recall = 46.8%

Random init.e
kNN acc. = 91.3%

recall = 39.6%

Whole-matrix norm.f

Figure S4: The effect of initialization and normalization on 2D graph NE for the Computer and Photo
datasets. (a, d) Default graph NE with Diffusion Maps initialization and using per-node normalization of
the adjacency matrix. (b, e) Graph NE using random initialization. (c, f) Graph NE with whole-matrix
normalization. Embeddings in each row were aligned using Procrustes rotation.

24

	Introduction
	Related work
	Background: Neighbor-embedding framework
	Neighbor embeddings
	Contrastive neighbor embeddings

	Graph NE: Applying the neighbor-embedding framework to graphs
	General approach
	High-dimensional node embeddings via graph NE
	Graph layouts via 2D graph NE
	Graph NE with CNE backend approximates t-SNE backend

	Experimental setup
	Node embeddings with graph NE require low temperature
	Benchmarking graph NE
	Graph NE outperforms other node embeddings
	Graph NE outperforms other graph layouts in terms of local structure

	Discussion
	Proof of Theorem 1
	Link prediction as evaluation metric
	Top-k 2-hop neighbor recall as evaluation metric
	Supplementary Figures and Tables

