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Abstract

Node embeddings are a paradigm in non-parametric graph representation learning, where
graph nodes are embedded into a given vector space to enable downstream processing.
State-of-the-art node-embedding algorithms, such as DeepWalk and node2vec, are based
on random-walk notions of node similarity and on contrastive learning. In this work, we
introduce the graph neighbor-embedding (graph NE) framework that directly pulls together
embedding vectors of adjacent nodes without relying on any random walks. We show that
graph NE strongly outperforms state-of-the-art node-embedding algorithms in terms of local
structure preservation. Furthermore, we apply graph NE to the 2D node-embedding problem,
obtaining graph layouts that also outperform existing graph-layout algorithms.

1 Introduction

Many real-world datasets, ranging from molecule structures to citation networks, come in the form of graphs.
A graph G is an abstract object consisting of a set of nodes V and a set of edges E between them; the nodes
do not inherently belong to any specific metric space. Therefore, the field of graph representation learning has
emerged with the goal of embedding the nodes into a metric space, such as Rd, so that the graph structure
(neighborhoods, graph distances, etc.) is well-preserved. In this paper, we only consider non-parametric
approaches that do not use any node features.

Popular node-embedding methods like DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016)
are based on contrastive learning and random-walk notions of node similarity, reducing the node-embedding
problem to a word-embedding problem and then relying on the word2vec algorithm (Mikolov et al., 2013)
for optimization. At the same time, node embeddings into R2 for visualization purposes — known as graph
layouts — are typically obtained by algorithms that simply pull together neighboring (i.e. connected by an
edge) nodes, traditionally using spring models (Fruchterman & Reingold, 1991). This raises the question:
Can such neighbor-embedding approaches be used for generic node-embedding problems?

In this work, we show that neighbor-embedding methods are remarkably effective for node-embedding
problems and introduce a framework called graph neighbor embeddings (graph NE) (Figure 1). Our work
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Figure 1: Graph G embedded into S127 and R2 with graph NE. Blue denotes the attractive force between
neighboring nodes i and j, orange corresponds to repulsive forces between all points.
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builds on recent literature which allows to effectively optimize neighbor embeddings in high-dimensional
embedding spaces (McInnes et al., 2018; Damrich et al., 2023). We show that graph NE outperforms DeepWalk
and node2vec in terms of local structure preservation, while being conceptually simpler (no random walks are
needed) and without requiring costly hyperparameter tuning. Furthermore, we show that graph NE can also
be applied for 2D node embeddings (Figure 1), outperforming existing graph-layout methods. In short, our
results demonstrate that neighbor embeddings are a powerful approach to graph representation learning that
beats state-of-the-art node-embedding algorithms.

2 Related work

Non-parametric node embeddings The popular DeepWalk (Perozzi et al., 2014) and node2vec (Grover
& Leskovec, 2016) algorithms optimize node placement in a high-dimensional target space based on random
walks over a graph. These walks treat nodes as analogous to words and random-walk paths as sentences,
enabling the application of word-embedding techniques to learn the representation. Specifically, DeepWalk
achieves this by performing random walks from each starting node and then using the word2vec algorithm
(Mikolov et al., 2013) to ensure that nodes which often co-occur in these random walks are represented near
one another in the embedding space. The node2vec algorithm similarly obtains node embeddings by giving
graph traversals to the word2vec algorithm, but it differs from DeepWalk by defining two parameters which
control the depth-first vs. breadth-first nature of the random walk. These parameters (p and q) provide an
additional level of control over the community structure uncovered by the walks, with DeepWalk being a
specific instantiation of node2vec when these parameters are both set to 1.

Both DeepWalk and node2vec have been widely adopted for graph-based machine learning applications,
including classification and link-prediction tasks (Khosla et al., 2019). Although connections have been drawn
between word2vec and contrastive learning (Saunshi et al., 2019), we emphasize that the DeepWalk and
node2vec algorithms are often regarded as separate from standard contrastive techniques (Grohe, 2020).

Parametric node embeddings and node-level graph contrastive learning Our paper is about
non-parametric embeddings that only use the structure of the graph G = (V, E). In contrast, parametric
graph contrastive learning (GCL) methods use node feature vectors and employ a neural network, usually a
graph convolutional network (GCN; Kipf & Welling, 2017), to transform features into embedding vectors.

The basic principle behind contrastive learning is to learn a data representation by contrasting pairs of
observations that are similar to each other (positive pairs) with those that are dissimilar to each other
(negative pairs). In computer vision, positive pairs are generated via data augmentation, e.g. in SimCLR
(Chen et al., 2020). GCL can be graph-level or node-level, depending on whether representations are obtained
for a set of graphs or for the set of nodes of a single graph. Many graph-level (e.g. You et al., 2020) and
node-level GCL algorithms (Velickovic et al., 2019; Zhu et al., 2020b; Hassani & Khasahmadi, 2020; Thakoor
et al., 2021; Zhang et al., 2021; Zhu et al., 2021) are also based on graph augmentations, such as node
dropping or edge perturbation. A general problem with domain-agnostic graph augmentations is that they
can have unpredictable effects on graph semantics (Trivedi et al., 2022). This motivated development of
augmentation-free node-level GCL methods, where positive pairs are pairs of nodes that are located close
to each other in terms of graph distance (Lee et al., 2022; Li et al., 2023; Zhang et al., 2022). Recent work
argued that GCL methods effectively pull connected nodes together, sometimes explicitly through their loss
function, but also implicitly through the GCN architecture (Trivedi et al., 2022; Wang et al., 2023; Guo
et al., 2023). A GCN can also optimize a neighbor-embedding loss on node features and/or on shortest-path
distances (Leow et al., 2019).

Note that all algorithms mentioned in this paragraph are parametric and fundamentally depend on node
features. In contrast, our proposed graph NE algorithm is non-parametric and operates exclusively on graph
structure without requiring node features. Throughout this paper, we therefore restrict our comparisons to
other non-parametric methods.

Graph layouts Graph-layout algorithms have traditionally been based on spring models, where every
connected pair of nodes feels a distance-dependent attractive force Fa and all pairs of nodes feel a distance-
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dependent repulsive force Fr (force-directed graph layouts). Many algorithms can be written as Fa = da
ij and

Fr = dr
ij (Noack, 2007), where da

ij (resp. dr
ij) is the embedding distance between nodes i and j raised to the

a-th (resp. r-th) power. For example, the Fruchterman–Reingold algorithm uses a = 2, r = −1 (Fruchterman
& Reingold, 1991); ForceAtlas2 uses a = 1, r = −1 (Jacomy et al., 2014); LinLog uses a = 0, r = −1 (Noack,
2007). Efficient implementations can be based on Barnes–Hut approximation of the repulsive forces, as in
SFDP (Hu, 2005). ForceAtlas2 has been shown to be related to neighbor embeddings (Böhm et al., 2022).

Several recent graph-layout algorithms have been inspired by neighbor embeddings, and in particular by
t-SNE (van der Maaten & Hinton, 2008). tsNET (Kruiger et al., 2017) applied a modified version of t-SNE
to the pairwise shortest-path distances between all nodes. DRGraph (Zhu et al., 2020a) accelerated tsNET
by using negative sampling (Mikolov et al., 2013). t-FDP (Zhong et al., 2023) suggested custom Fa and
Fr forces inspired by t-SNE and adopted the interpolation-based approximation of Linderman et al. (2019).
SGtSNEpi (Pitsianis et al., 2019) is the closest method to the 2D version of our proposed graph NE algorithm.
It applies t-SNE optimization to affinities derived from the graph G, but derives these affinities in a more
complex way than we do, and with additional hyperparameters (Section 4.3).

There is a separate set of methods which produce graph embeddings via classical dimensionality reduction
techniques. Some of these, such as Laplacian Eigenmaps (Belkin & Niyogi, 2003) and Diffusion Maps (Coifman
& Lafon, 2006), can be applied directly to graphs. We use Laplacian Eigenmaps in our comparisons as a
representative algorithm from this family. Other approaches employ variants of multidimensional scaling on
graph-derived distances (Gansner et al., 2012; Miller et al., 2023; Zhang et al., 2023).

3 Background: Neighbor-embedding framework

3.1 Neighbor embeddings

Neighbor embeddings are a family of dimensionality-reduction methods aiming to embed n observations from
some high-dimensional metric space X into a lower-dimensional (usually two-dimensional) Euclidean space
Rd, such that neighborhood relationships between observations are preserved in the embedding space. We
denote the embedding vectors as yi ∈ Rd.

One of the most popular neighbor embedding methods, t-distributed stochastic neighbor embedding (t-SNE;
van der Maaten & Hinton, 2008), is an extension of the earlier SNE (Hinton & Roweis, 2002). t-SNE minimizes
the Kullback–Leibler divergence between the high-dimensional and low-dimensional affinities pij and qij :

L =
∑

ij

pij log pij

qij
= const −

∑

ij

pij log qij . (1)

Both affinity matrices are defined to be symmetric, positive, and to sum to 1. The high-dimensional affinities
P are computed using adaptive Gaussian kernels whose mass is concentrated on nearest neighbors. Low-
dimensional affinities Q are defined in t-SNE using a t-distribution kernel with one degree of freedom, also
known as the Cauchy kernel:

qij = (1 + ∥yi − yj∥2)−1
∑

k ̸=l(1 + ∥yl − yk∥2)−1 . (2)

In practice, t-SNE optimization can be accelerated by an approximation of the repulsive force field based on
the Barnes–Hut algorithm (van der Maaten, 2014; Yang et al., 2013), on interpolation (Linderman et al.,
2019), or on sampling (Artemenkov & Panov, 2020; Damrich et al., 2023; Draganov et al., 2023; Yang et al.,
2023).

3.2 Contrastive neighbor embeddings

The contrastive neighbor-embedding (CNE) algorithm (Damrich et al., 2023) is a flexible dimensionality-
reduction framework that replaces t-SNE’s Kullback–Leibler divergence loss with contrastive losses, such
as the InfoNCE loss (Jozefowicz et al., 2016; Oord et al., 2018). This loss function is called contrastive
because it is based on contrasting pairs of k-nearest neighbors and non-neighbors in the same mini-batch, and
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does not require a global normalization like in Equation equation 2. As a result, the runtime of CNE scales
like O(nd) with the number of points n and the embedding dimensionality d, unlike other existing t-SNE
implementations that scale like O(n2d) (van der Maaten & Hinton, 2008) or O(n2d) (Linderman et al., 2019).
This enables CNE to optimize high-dimensional outputs (large d). CNE with the InfoNCE loss approximates
t-SNE (Damrich et al., 2023; Ma & Collins, 2018) (see also Section 4.4).

The InfoNCE loss is defined for one pair of k-nearest neighbors ij (positive pair) with affinity pij as

ℓ(i, j) = −pij log wij

wij +
∑m

k=1 wik
, (3)

where wij are non-normalized low-dimensional affinities and the sum in the denominator is over m negative
pairs ik where k can be drawn from all points in the same mini-batch apart from i and j. One mini-batch
consists of b pairs of neighbors, and hence contains 2b points. Therefore, for a given batch size b, the maximal
value of m is 2b − 2. The larger the number of negative samples m, the better is the approximation to t-SNE
(Damrich et al., 2023). The InfoNCE loss aims to make wij large, i.e. place embeddings yi and yj nearby, if
ij is a positive pair, and small if it is a negative one.

The wij affinities do not need to be normalized. When embedding into R2, they can just be defined as

wij = (1 + ∥yi − yj∥2)−1. (4)

When using a high-dimensional embedding space, e.g. d = 128 instead of d = 2, embedding vectors are
usually projected to lie on the unit sphere. For points on the unit sphere, the cosine distance and the squared
Euclidean distance differ only by a constant, making the following definitions of wij equivalent:

wij = exp
(

y⊤
i yj

∥yi∥ · ∥yj∥τ

)
= const · exp

(
−

∥∥∥ yi

∥yi∥
− yj

∥yj∥
∥∥∥

2/
(2τ)

)
, (5)

where τ is called the temperature (by default, τ = 0.5). Together with Equation equation 3, this gives the
same loss function as in SimCLR (Chen et al., 2020), a popular contrastive learning algorithm in computer
vision. Note that instead of nearest neighbors, SimCLR uses pairs of augmented images as positive pairs.

4 Graph NE: Applying the neighbor-embedding framework to graphs

4.1 General approach

Neighbor-embedding algorithms employ high-dimensional affinities with most pij ≈ 0. This can be seen as
a generalization of discrete nearest neighbors: if pij is close to 0, then the points are effectively dissimilar.
However, almost the same visualizations can be obtained using hard nearest neighbors, i.e. simply by
normalizing the symmetric kNN graph adjacency matrix A directly (Artemenkov & Panov, 2020; Damrich
et al., 2023):

P = A
/ ∑

ij

Aij . (6)

Here, A has element Aij = 1 if xj is within the k nearest neighbors of xi or vice versa. This is equivalent to
simply leaving out pij from Equation (3).

Thus, even though neighbor embeddings are usually not presented as such, they can be thought of as
node-embedding algorithms, specifically applied to kNN graphs. During optimization, neighboring nodes
(sharing a kNN edge) feel attraction, whereas all nodes feel repulsion, arising through the normalization in
Equations equation 2 and equation 3.

This suggests a simple strategy, which we call graph neighbor embedding (graph NE), for applying the neighbor
embedding framework to a general graph G: obtain affinities directly from G instead of a kNN graph of some
data, and then compute a neighbor embedding on these affinities (Figure 1).
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4.2 High-dimensional node embeddings via graph NE

Given an unweighted graph G = (V, E), its adjacency matrix A has elements Aij = 1 if (i, j) ∈ E and
Aij = 0 otherwise. Since all graphs considered in this study are undirected, the adjacency matrix is a binary,
symmetric square n × n matrix. In order to convert the adjacency matrix into an affinity matrix suitable
for neighbor embedding, we followed the simple normalization strategy in Eq. equation 6. Then, graph NE
optimizes the embedding using the contrastive InfoNCE loss function (through the CNE backend) to place
neighbors close to each other in the embedding (Section 3.2).

For all experiments with CNE we used the output dimensionality d = 128 and the cosine distance (meaning
the embedding vectors lie on a hypersphere, Eq. 5). We set the batch size to min{8192, |V|/10} (smaller
graphs required smaller batch sizes for good convergence) and used full-batch repulsion (m = 2b − 2). The
number of epochs was set to 100. We used the Adam optimizer (Kingma & Ba, 2015) with learning rate 0.001.
Graph NE was initialized with 128-dimensional Laplacian Eigenmaps (Belkin & Niyogi, 2003), although we
saw almost no difference when using random initialization (Figure S4b,e).

Note that our method is conceptually much simpler than DeepWalk and node2vec. In both of these algorithms,
random walks are used to implicitly estimate node similarity by their co-occurence, and then word2vec is
employed to train the embedding. Furthermore, node2vec requires per-graph hyperparameter tuning so that
its random-walk distribution appropriately models the input graph (Grover & Leskovec, 2016). In our graph
NE method, all nodes connected by an edge attract each other, requiring no random walks.

4.3 Graph layouts via 2D graph NE

A graph layout is a 2-dimensional node embedding. Therefore, we can apply graph NE in 2D to obtain graph
layouts. Since the main purpose for graph layouts is visualization, we use the Cauchy similarity (Eq. 2). The
embedding dimensionality d = 2 allows us to use the KL divergence and openTSNE (Poličar et al., 2019) with
default parameters for optimization. It uses Laplacian Eigenmaps for initialization (Kobak & Linderman,
2021), sets the learning rate to n to achieve good convergence (Linderman & Steinerberger, 2019; Belkina
et al., 2019), and employs the FIt-SNE algorithm (Linderman et al., 2019).

In this setting, we found the row-normalization of the adjacency matrix to perform better:

P = Ã + Ã⊤

2n
, where Ãij = Aij

/ n∑

k=1
Aik. (7)

Normalizing the adjacency matrix as in Equation (6) resulted in lower neighbor recalls and kNN accuracies,
and gave visually unpleasing embeddings, with low-degree nodes pushed out to the periphery (Figure S4c,f).
Furthermore, we experimented with various initialization schemes and found that on our graphs, random
initialization performed very similar to Laplacian Eigenmaps (Figure S4b,e).

SGtSNEpi (Pitsianis et al., 2019) derives the affinity matrix P from the adjacency matrix A in a more
complicated way (Pitsianis et al., 2024, Supplementary). Non-zero elements Aij are first weighted by the
Jaccard similarity of the sets of neighbors of nodes i and j, then power-transformed to match a pre-specified
row sum λ, and finally divided by λ to yield Ã. By default, λ = 10.

4.4 Graph NE with CNE backend approximates t-SNE backend

Node embeddings computed via CNE and via openTSNE backends have the same optima:
Theorem 4.1. [adapted from Ma & Collins 2018] Let p be a probability distribution over
S = {ij|1 ≤ i ̸= j ≤ n}, so that for all pairs ij, where is a path pik1 , . . . , pklj with each step having positive
probability. Let w(θ) be a family of non-negative functions S → R≥0 parametrized by θ ∈ Θ and symmetric in
i and j, meaning wij(θ) = wji(θ). Let further ξ be a probability distribution over [n] := {1, . . . , n} with full
support. Suppose there is some θ∗ ∈ Θ and some c > 0 with qθ∗/c = p. Then, θ∗ minimizes the loss

LInfoNCE(θ) = −Eij∼pEk1,...,km∼ξ log wij(θ)/ξj

wij(θ)/ξj +
∑m

α=1 wikα
(θ)/ξkα

(8)
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Dataset Nodes Edges Classes E/N

Citeseer 2 120 7 358 6 3.5
Cora 2 485 10 138 7 4.1
PubMed 19 717 88 648 3 4.5
Photo 7 487 238 086 8 31.8
Computer 13 381 491 556 10 36.7
MNIST kNN 70 000 1 501 392 10 21.4
arXiv 169 343 2 315 598 40 13.7
MAG 726 664 10 778 888 349 14.8

Table 1: Benchmark datasets.
Columns: number of nodes in
the largest connected component,
number of undirected edges, num-
ber of node classes, and the aver-
age number of edges per node.

and for any other minimizer θ̃ ∈ Θ there exists c̃ > 0 with q(θ̃)/c̃ = p.

In particular, the minima of LInfoNCE correspond one-to-one to those of

DKL
(
p, w(θ)/Z(θ)

)
= −Eij∼p log wij(θ)

Z(θ) (9)

where Z(θ) =
∑

ij wij(θ).

The proof can be found in Appendix B. Consider this theorem in the case where p is the uniform distribution
of edges on a connected graph and wij(θ) are the non-normalized low-dimensional affinities. Applying this
theorem then shows that the InfoNCE loss (when using a uniform noise distribution ξ, Eq. 8) and the
Kullback–Leibler divergence have the same minima.

This means that our graph NE framework unifies node embeddings and graph layouts. The main difference
between graph NE with CNE and t-SNE backends is the choice of optimization strategy for 128 and for 2
dimensions.

5 Experimental setup

Datasets We used eight publicly available graph datasets (Table 1). The first five datasets were retrieved
from the Deep Graph Library (Wang et al., 2019). The arXiv and MAG dataset were retrieved from the
Open Graph Benchmark (Hu et al., 2020). The MNIST kNN dataset was obtained by computing the kNN
graph with k = 15 on top of the 50 principal components of the MNIST digit dataset (Lecun et al., 1998).
Each dataset was treated as an unweighted and undirected graph, where each node has a class label, used
only for evaluation. We restricted ourselves to graphs with labeled nodes in order to use classification
accuracy as one of the performance metrics. In all datasets we used only the largest connected component and
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Figure 2: Learning dynamics of the 128-dimensional CNE embeddings of nodes in a stochastic-block-model
graph with 10 blocks. (a, b) t-SNE visualizations of the 128D CNE embeddings with τ = 0.05, during the
first epoch and after ten epochs. (c) The neighbor recall as a function of the training epoch, for τ = 0.05
and for τ = 0.5. Labeled points correspond to t-SNE visualizations left/right. (d, e) Same as (a, b), but for
τ = 0.5.
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Figure 3: Performance metrics for node embeddings: (a) neighbor recall, (b) kNN accuracy, (c) linear accuracy.
Datasets are ordered by the number of edges. For node2vec we did a grid search over p, q ∈ {0.25, 0.5, 1, 2, 4}
(Figure S2) and show results with the highest neighbor recall.
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Figure 4: Performance metrics for 2D graph layouts: (a) neighbor recall, (b) kNN accuracy, (c) linear
accuracy. See Figures 5 and S3 for the corresponding layouts.

excluded all self-loops if present, using NetworkX (Hagberg et al., 2008) functions connected_components
and selfloop_edges. We did not use any node features.

Performance metrics We evaluated the performance using three main metrics: neighbor recall, kNN
classification accuracy, and linear classification accuracy. Such metrics are standard for evaluating graph
embedding quality (Perozzi et al., 2014; Grover & Leskovec, 2016; Zhu et al., 2020a; Zhong et al., 2023). In
addition to that, we used a metric based on the link-prediction task (Appendix C) and a Spearman correlation
between shortest-path distances and embedding distances (on 1 000 random node pairs).

The neighbor recall quantifies how well local node neighborhoods are preserved in the embedding. We defined
it as the average fraction of each node’s graph neighbors that are among the node’s nearest neighbors in the
embedding:

Recall = 1
|V|

|V|∑

i=1

∣∣NG[i] ∩ NE,ki [i]
∣∣

ki
, (10)

where |V| is the number of nodes in the graph, NG[i] is the set of node i’s graph neighbors, NE,k[i] denotes
the set of node i’s k nearest neighbors in the embedding space, and ki = |NG[i]| is the number of node i’s
graph neighbors. This metric does not require ground-truth classes and is similar to what is commonly used
in the literature to benchmark graph-layout algorithms (Kruiger et al., 2017; Zhu et al., 2020a; Zhong et al.,
2023). Therefore, we use this as our primary metric for measuring the embedding quality.

The kNN classification accuracy quantifies local class separation in the embedding. To calculate kNN
accuracy, we randomly split all nodes into a training (90% of all nodes) and a test set (10%), and used the
KNeighborsClassifier from scikit-learn (Pedregosa et al., 2011) with k = 15.

We used the cosine similarity for all kNN evaluations (recall and accuracy) in d = 128. CNE uses the cosine
metric in its loss function (Equation 5), so only cosine neighbors make sense for evaluation. DeepWalk and
node2vec rely on word2vec, which uses dot-product similarity in the loss function, and the original paper also
used cosine metric for evaluation (Mikolov et al., 2013). In our experiments cosine evaluation led to better
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Table 2: Neighbor recall for all methods and datasets (in %). All values are mean ± standard deviation across
three training runs. The top performing method for each dimensionality is highlighted in bold. Methods in
blue are ours. See Table S1 for additional graph NE variants in 128D.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128
graph NE 81.0 ± 0.1 83.8 ± 0.0 44.3 ± 0.2 70.3 ± 0.1 64.8 ± 0.0 96.0 ± 0.0 72.3 ± 0.6 89.0 ± 0.5
DeepWalk 60.5 ± 0.9 67.1 ± 0.4 32.9 ± 0.6 50.0 ± 0.5 47.7 ± 0.3 70.8 ± 0.2 51.4 ± 0.6 60.0 ± 0.7
node2vec 70.7 ± 0.6 72.1 ± 1.0 70.1 ± 0.3 50.9 ± 0.5 41.3 ± 0.2 43.2 ± 0.2 42.9 ± 0.6 29.3 ± 0.4
Laplacian E. 53.4 ± 0.0 56.7 ± 0.0 18.3 ± 0.1 39.7 ± 0.0 32.4 ± 0.0 38.5 ± 0.0 32.1 ± 0.1 40.6 ± 0.3

2

graph NE 71.7 ± 2.2 66.7 ± 0.5 25.0 ± 0.2 46.9 ± 0.2 41.8 ± 0.1 40.2 ± 0.2 36.3 ± 0.3 32.3 ± 0.7
SGtSNEpi 59.1 ± 0.3 57.4 ± 0.8 23.3 ± 0.3 44.5 ± 0.4 39.0 ± 0.3 29.1 ± 0.1 23.6 ± 0.3 8.1 ± 0.4
DRGraph 42.8 ± 1.0 31.0 ± 0.5 7.5 ± 1.1 20.5 ± 0.1 12.8 ± 0.4 10.0 ± 0.1 4.7 ± 0.2 3.2 ± 0.3
ForceAtlas2 38.8 ± 0.3 24.4 ± 0.3 3.2 ± 0.1 20.6 ± 0.1 11.1 ± 0.1 7.0 ± 0.0 2.9 ± 0.3 1.7 ± 0.2
t-FDP 24.4 ± 1.2 15.2 ± 0.7 1.3 ± 0.1 21.6 ± 0.1 10.2 ± 0.2 13.9 ± 0.1 0.7 ± 0.2 0.3 ± 0.1
Laplacian E. 26.2 ± 0.1 17.9 ± 0.0 2.0 ± 0.1 16.0 ± 0.0 6.4 ± 0.0 5.0 ± 0.0 1.6 ± 0.3 0.8 ± 0.1

results on average for DeepWalk and node2vec. For all kNN evaluations in d = 2, we used the Euclidean
distance.

For linear accuracy we used LogisticRegression from scikit-learn with no regularization (penalty=None),
SAGA solver (Defazio et al., 2014) with tol=0.01, and the same train/test split. We standardized all features
to have unit variance, based on the training set (as this speeds up convergence of the solver).

6 Node embeddings with graph NE require low temperature

In pilot experiments, we noticed that the node-embedding performance of graph NE (in 128D, with CNE
backend) was strongly affected by the temperature parameter τ . To investigate it further, we synthesized a
graph following the stochastic block model (SBM; Holland et al., 1983). The generated graph had 80 000
nodes in 10 clusters, with any two nodes from the same cluster having probability 2.5 · 10−3 to be connected
by an edge, and any two nodes from two different clusters having probability 5 · 10−6 to be connected. The
resulting graph has a clear community structure that should be easy to recover.

CNE with the default temperature τ = 0.5 achieved near-perfect class separation but failed to retain the
neighborhood structure. The neighbor recall, after reaching 13% within the first training epoch, collapsed
to below 1% over the next several epochs (Figure 2c, orange line). The t-SNE visualization of the high-
dimensional embedding at the point of maximum neighbor recall showed ten compact clusters (Figure 2d), but
after convergence it showed nine subclusters for each of the ten classes (Figure 2e). These smaller subclusters
corresponded to nodes with an inter-cluster edge to a specific other class. During the optimization, these
nodes got ‘pulled out’ of their class, destroying the local structure of the embedding and leading to near-zero
neighbor recall.

In contrast, CNE with a lower temperature τ = 0.05 did not show this behavior. The neighbor recall
was almost monotonically increasing during training, reaching 78% after 10 epochs (Figure 2c, blue line).
The t-SNE visualization showed ten compact clusters (Figure 2b), without any visible subclusters. Our
interpretation is that the InfoNCE loss with low temperature could effectively ignore the noise in form of rare
inter-class edges.

In the following experiments, we set the temperature of graph NE with CNE backend to τ = 0.05 for all
datasets. We have also implemented learnable temperature, making τ an additional trainable parameter.
We found that on all our benchmark datasets, this the temperature converged towards a value in a range of
[0.04, 0.08]. The evaluation results were also close to the results with fixed τ = 0.05 (Tables S1 to S5).
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7 Benchmarking graph NE

7.1 Graph NE outperforms other node embeddings

We compared graph NE with the popular non-parametric node-embedding algorithms DeepWalk (Perozzi
et al., 2014) and node2vec (Grover & Leskovec, 2016), as well as with Laplacian Eigenmaps (LE), all optimizing
128-dimensional embeddings. We used node2vec’s implementation from PyTorch Geometric (Fey & Lenssen,
2019) and the DeepWalk implementation from DGL (Wang et al., 2019). We ran both methods with the
default parameters for 100 epochs (as we did for CNE, see Figure S1 for runtimes). For node2vec, we ran a
sweep over the parameters p, q ∈ {0.25, 0.5, 1, 2, 4}, as in the original paper, and report the results with the
highest neighbor recall (for all results, see Figure S2). For LE we used scikit-learn (Pedregosa et al., 2011),
with LOBPCG (Knyazev et al., 2007) for solving the generalized eigenproblem.

We found that graph NE outperformed the other algorithms in terms of neighbor recall on seven datasets out
of eight; on the PubMed dataset, it was the runner-up (Figure 3a, Table 2). Across all datasets, the average
gap in neighbor recall between graph NE and the best other method was 13.4 percentage points, showing a
strong improvement over competitors.

In terms of the classification accuracies, the results on most datasets were very similar across all methods.
Graph NE had slightly lower kNN accuracy on the two smallest datasets (Citeseer and Cora), and was the
best or within 1% of the best on all other datasets (Figure 3b, Table S2). In terms of linear accuracy, graph
NE yielded competitive results and lagged only slightly behind other methods for some datasets (Figure 3c,
Table S3). Curiously, graph NE with τ = 0.5 was the best or within 1% of the best on all datasets apart from
Cora and MAG, where it was slightly behind (Table S3); but this temperature led to substantially worse
neighbor recall (Table S1). This suggests a trade-off between linear classification and neighbor quality.

Graph NE outperformed the other methods on the link prediction task (Table S4) but the performance
for many methods was close to saturated 100%. For that reason we prefer the kNN recall metric which is
conceptually close (Appendix C). Graph NE also outperformed all other methods in terms of Spearman
correlation between the shortest-path distances and the embedding distances, on all datasets apart from
MAG, where Laplacian Eigenmaps showed the best results (Figure S5).

In summary, results in terms of classification accuracies were all similar, but neighbor recall showed large and
pronounced differences with graph NE performing the best by a large margin.

7.2 Graph NE outperforms other graph layouts in terms of local structure

We benchmarked graph NE with the openTSNE backend against five existing graph-layout algorithms:
SGtSNEpi Pitsianis et al. (2019), ForceAtlas2 (FA2; Jacomy et al., 2014), Laplacian Eigenmaps (LE; Belkin &
Niyogi, 2003), DRGraph (Zhu et al., 2020a), and t-FDP (Zhong et al., 2023). We also performed comparisons
with Diffusion Maps (Coifman & Lafon, 2006), which differ from Laplacian Eigenmaps only by scaling, but
found that they produced results very similar to Laplacian Eigenmaps, so we do not report them separately.
We did not include tsNET (Kruiger et al., 2017), because it cannot embed large graphs and is outperformed
by its successor DRGraph. Unless specified otherwise, we used the original implementation of the algorithms
and ran them with the default parameters. For FA2 we used the Barnes–Hut implementation by Chippada
(2017). Both t-SNE and t-FDP are implemented in Cython, DRGraph and SGtSNEpi are implemented in
C++ and offer wrappers in Python and Julia, respectively. For consistency, we used LE initialization for all
algorithms where possible (all except SGtSNEpi and DRGraph).

Graph NE showed outstanding performance on all of our benchmark datasets. The neighbor recall of graph
NE was always the highest, with SGtSNEpi only sometimes coming close (Figure 4a, Table 2). In terms of
kNN accuracy, graph NE was either the top performing method or within 1% of the top performing method
for all datasets (Figure 4b, Table S2). In terms of linear accuracy the same was true for six out of the eight
datasets (Figure 4c, Table S3).

In terms of the Spearman correlation between the shortest-path distances and the embedding distances,
consistent winners across datasets were ForceAtlas2 and t-FDP (Table S5). This is likely related to the fact
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Figure 5: Embeddings of the Computer and Photo dataset obtained using our graph t-SNE, DRGraph,
ForceAtlas2, and t-FDP. Embeddings were aligned using Procrustes rotation. See Figure S3 for all datasets
and methods.

that in 2D embeddings, there is a trade-off between preserving local and global structure Böhm et al. (2022).
Qualitatively, graph NE layouts performs well in terms of separating clusters from each other and bringing
out sub-cluster details within individual clusters (Figure 5).

8 Discussion

We suggested graph NE, a novel approach to non-parametric node embeddings, and showed that it outperforms
existing competitors in terms of preserving local graph structure, both for high-D embeddings and for 2D
graph layouts. They can be efficiently implemented using existing neighbor-embedding backends, CNE and
openTSNE.

In this work, we focused on complex real-world graphs and have purposefully not tested our graph NE on
simple planar graphs or 3D mesh graphs that are often used for benchmarking graph layout algorithms. Such
graphs are arguably not an interesting case for high-dimensional embeddings, and we aimed to use the same
graphs for all of our benchmarks.

Our work opens up several directions for future work. First, CNE allows to train parametric embeddings
(Damrich et al., 2023), which we have not explored here. How would parametric CNE with a GCN mapping
compare to existing GCL methods, in particular augmentation-free methods? Parametric models need to use
node features. Given the ongoing debate about the usefulness of combining node and edge information in
graph learning (Errica et al., 2020; Faber et al., 2021; Bechler-Speicher et al., 2024; Coupette et al., 2025), it
would be interesting to study how much node features can help with node embeddings.

Second, we only used t-SNE-like losses here, but a similar approach could be implemented using other neighbor-
embedding algorithms, e.g. UMAP (McInnes et al., 2018). How would graph UMAP (2D and high-D) perform
for graph layouts and node embeddings, especially in contrast to DRgraph and DeepWalk/node2vec, which,
like UMAP, use negative sampling for optimization? Third, our results point to a non-trivial effect that the
temperature parameter τ can have on InfoNCE-based embeddings (Figure 2). Further investigation of this
phenomenon and its potential relevance for contrastive learning in computer vision and other domains also
remains for future work.

Our graph NE algorithms succeed because of their simplicity, not despite of it. The straightforward loss
function enables efficient optimization strategies, which scale linearly with the graph size and preserve nodes’
neighbors better than other algorithms.
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A Appendix

B Proof of Theorem 1

Theorem 4.1. [adapted from Ma & Collins 2018] Let p be a probability distribution over
S = {ij|1 ≤ i ̸= j ≤ n}, so that for all pairs ij, where is a path pik1 , . . . , pklj with each step having positive
probability. Let w(θ) be a family of non-negative functions S → R≥0 parametrized by θ ∈ Θ and symmetric in
i and j, meaning wij(θ) = wji(θ). Let further ξ be a probability distribution over [n] := {1, . . . , n} with full
support. Suppose there is some θ∗ ∈ Θ and some c > 0 with qθ∗/c = p. Then, θ∗ minimizes the loss

LInfoNCE(θ) = −Eij∼pEk1,...,km∼ξ log wij(θ)/ξj

wij(θ)/ξj +
∑m

α=1 wikα(θ)/ξkα

(8)

and for any other minimizer θ̃ ∈ Θ there exists c̃ > 0 with q(θ̃)/c̃ = p.

In particular, the minima of LInfoNCE correspond one-to-one to those of

DKL
(
p, w(θ)/Z(θ)

)
= −Eij∼p log wij(θ)

Z(θ) (9)

where Z(θ) =
∑

ij wij(θ).

Proof. The key idea is to rewrite the loss as an average over cross-entropy losses over the set {0, . . . , m}. For
i, k0, . . . , km ∈ {1, . . . , n} define

α(i, k0, . . . , km) :=
m∑

µ=0

(
pikµ

m∏

ν=0,ν ̸=µ

ξkν

)
(11)

β(µ|i, k0, . . . , km) :=
pikµ

∏m
ν=0,ν ̸=µ ξkν

α(i, k0, . . . , km) =
pikµ

/ξkµ∑m
ν=0 pikν /ξkν

(12)

γθ(µ|i, k0, . . . , km) :=
wikµ(θ)/ξkµ∑m

ν=0 wikν
(θ)/ξkν

(13)

Note that α(i, k0, . . . , km) can only be zero if pikµ
= 0 for all µ = 0, . . . , m. In this case, we define

β(µ|i, k0, . . . , km) = 0. If all wikν
(θ) are zero for ν = 0, . . . , m, we define γθ(µ|i, k0, . . . , km) = 0. Otherwise

both β(−|i, k0, . . . , km) and γθ(−|i, k0, . . . , km) are probability distributions over {0, . . . , m}.

By the proof of Theorem 4.1 in Ma & Collins (2018), we can rewrite

LInfoNCE(θ) =
∑

i,k0,...,km∈[n]

α(i, k0, . . . , km)
m + 1

(
−

m∑

µ=0
β(µ|i, k0, . . . , km) log γθ(µ|i, k0, . . . , km)

)
(14)

The latter term in parentheses is a cross-entropy loss over probability distributions over the set {0, . . . , m}.
It becomes minimal if and only if β(−|i, k0, . . . , km) = γθ(−|i, k0, . . . , km). Since α(i, k0, . . . , km) is positive
as soon as minµ pikµ

> 0 for some µ, we conclude that the minima of LInfoNCE(θ) are those θ for which
β(−|i, k0, . . . , km) = γθ(−|i, k0, . . . , km) whenever minµ pikµ

> 0.

Clearly θ∗ is a minimum of LInfoNCE(θ) as

β(−|i, k0, . . . , km) = γθ∗(−|i, k0, . . . , km)

holds for all i, k0, . . . , km ∈ [n].
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Conversely, let θ̃ be a minimizer of LInfoNCE(θ). Consider ij with pij > 0 and arbitrary k ∈ [n]. Taking
k0 = j and k1, . . . , km = k, we have

β(0|i, k0 = j, k1 = k, . . . , km = k) = γθ̃(0|i, k0 = j, k1 = k, . . . , km = k) (15)

⇔ pij/ξj

pij/ξj + mpik/ξk
= wij(θ̃)/ξj

wij(θ)/ξj + mwik(θ̃)/ξk

(hence wij(θ̃) > 0) (16)

⇔ 1
1 + m

pikξj

pijξk

= 1
1 + m

wik(θ̃)ξj

wij(θ̃)ξk

(17)

⇔ pik

pij
= wik(θ̃)

wij(θ̃)
(18)

⇒
∑

k pik

pij
=

∑
k wik(θ̃)
wij(θ̃)

(19)

⇒ wij(θ̃)
pij

=
∑

k wik(θ̃)∑
k pik

=: ci, (20)

which only depends on i, not on j. By symmetry of w, we have for any ij with pij > 0 that pji > 0, too, and

ci = wij(θ̃)
pij

= wij(θ̃)
wij(θ∗) = wji(θ̃)

wji(θ∗) = wji(θ̃)
pji

= cj .

Now we use the assumption that one can get from any i to any j via transitions with positive p. This implies
that for each i, there is some j with pij > 0 (which we ensure in our experiments by only considering a
connected component, Section 5). Moreover, for any i, j we get ci = cj =: c. So, we have for any ij with
pij > 0 that pij = wij(θ̃)/c.

Finally, let ij be such that pij = 0. By the path connectedness assumption, there is some k ∈ [n] with pik > 0.
Taking k0 = k and k1, . . . , km = j we get as above that

1 = pik

pik + mpij
= wik(θ̃)

wik(θ̃) + mwij(θ̃)
(21)

from which we can conclude that wij(θ̃) must be zero, whenever pij is zero. This implies p = w(θ̃)/c.

It is well-known that the KL-divergence between two probability distributions is minimal if and only if they
are equal.

Our setup in Theorem 4.1 deviates from that of Theorem 4.1 in Ma & Collins (2018), because they only show
a statement along the lines of Equation equation 20. In contrast, we show that the InfoNCE loss has same
minima as the KL divergence using stronger assumptions (Ma & Collins’s Assumption 2.2, symmetry, and
the path connectedness with positive probability).

C Link prediction

Link prediction is one of the standard evaluation criteria in the graph-learning community (Kipf & Welling,
2017). In a link-prediction task, the predictive model is given pairs of nodes which may or may not be
connected by an edge and must rank these pairs by the likelihood of predicting an edge correctly (Zhang &
Chen, 2018). We used 10% of all graph edges as positive test pairs and equally many non-edges as negative
test pairs. We scored each of the test pairs based on their embedding points, either by cosine similarity
(128D) or by negative Euclidean distance (2D) and computed the area under the ROC curve, similar to the
setup from Grover & Leskovec (2016).

The neighbor recall metric is conceptually similar to link prediction. It is the recall of a directed link
predictor P that predicts the links from node i to the ki nearest nodes to i’s, where ki is the degree of node

16
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i. In the case of constant, known node degree k, the recall r is linearly related to the accuracy a of P by
a = 1 − (1 − r) · 2k/(n − 1). As the task of link prediction is easier and saturates faster compared to the
neighbor recall (Table S1 vs. Table S4), we use neighbor recall as our main metric.

17
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D Supplementary Figures and Tables

Table S1: Neighbor recall for all methods and datasets (in %). All values are mean ± standard deviation
across three training runs. The top performing method for each dimensionality (and all methods within 1%)
is highlighted in bold. Methods in blue are ours. “Graph NEτ” means that the temperature τ was learned
as a parameter during training, see Section 6.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 81.0 ± 0.1 83.8 ± 0.0 44.3 ± 0.2 70.3 ± 0.1 64.8 ± 0.0 96.0 ± 0.0 72.3 ± 0.5 89.0 ± 0.4
graph NEτ 80.3 ± 0.0 82.8 ± 0.1 42.3 ± 0.1 69.5 ± 0.0 64.0 ± 0.1 96.0 ± 0.0 72.5 ± 0.7 91.0 ± 0.1
CNE, τ = 0.5 55.9 ± 0.1 58.1 ± 0.0 21.9 ± 0.3 35.7 ± 0.1 31.9 ± 0.0 39.2 ± 0.0 34.4 ± 0.2 33.2 ± 0.2
DeepWalk 60.5 ± 0.7 67.1 ± 0.3 32.9 ± 0.5 50.0 ± 0.4 47.7 ± 0.3 70.8 ± 0.2 51.4 ± 0.5 60.0 ± 0.6
node2vec 70.7 ± 0.5 72.1 ± 1.0 70.1 ± 0.3 50.9 ± 0.5 41.3 ± 0.2 43.2 ± 0.2 42.9 ± 0.6 29.3 ± 0.3
Laplacian E. 53.4 ± 0.0 56.7 ± 0.0 18.3 ± 0.1 39.7 ± 0.0 32.4 ± 0.0 38.5 ± 0.0 32.1 ± 0.1 40.6 ± 0.2

2

graph NE 71.7 ± 1.8 66.7 ± 0.4 25.0 ± 0.1 46.9 ± 0.1 41.8 ± 0.1 40.2 ± 0.2 36.3 ± 0.3 32.3 ± 0.6
SGtSNEpi 59.1 ± 0.3 57.4 ± 0.6 23.3 ± 0.2 44.5 ± 0.3 39.0 ± 0.2 29.1 ± 0.1 23.6 ± 0.2 8.1 ± 0.3
DRGraph 42.8 ± 0.8 31.0 ± 0.4 7.5 ± 0.9 20.5 ± 0.1 12.8 ± 0.3 10.0 ± 0.1 4.7 ± 0.1 3.2 ± 0.2
ForceAtlas2 38.8 ± 0.3 24.4 ± 0.3 3.2 ± 0.1 20.6 ± 0.1 11.1 ± 0.1 7.0 ± 0.0 2.9 ± 0.3 1.7 ± 0.1
t-FDP 24.4 ± 0.9 15.2 ± 0.6 1.3 ± 0.1 21.6 ± 0.1 10.2 ± 0.2 13.9 ± 0.1 0.7 ± 0.1 0.3 ± 0.1
Laplacian E. 26.2 ± 0.1 17.9 ± 0.0 2.0 ± 0.1 16.0 ± 0.0 6.4 ± 0.0 5.0 ± 0.0 1.6 ± 0.2 0.8 ± 0.1

Table S2: kNN classification accuracy. The same setup as in Table S1, with random training/test splits used
for each run.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 72.0 ± 0.4 82.7 ± 0.0 84.1 ± 0.1 94.3 ± 0.1 92.4 ± 0.1 97.2 ± 0.0 71.3 ± 0.1 41.6 ± 0.1
graph NEτ 72.2 ± 0.4 83.1 ± 0.3 83.8 ± 0.3 94.3 ± 0.1 92.4 ± 0.2 97.1 ± 0.0 71.7 ± 0.1 41.7 ± 0.1
CNE, τ = 0.5 72.8 ± 0.2 83.3 ± 0.2 83.1 ± 0.0 92.6 ± 0.0 91.4 ± 0.0 96.9 ± 0.0 71.1 ± 0.1 36.5 ± 0.1
DeepWalk 73.6 ± 1.0 84.7 ± 0.6 83.7 ± 0.2 93.3 ± 0.1 91.1 ± 0.2 97.0 ± 0.1 71.2 ± 0.1 40.5 ± 0.0
node2vec 73.1 ± 0.4 82.8 ± 0.5 83.6 ± 0.4 93.1 ± 0.2 90.5 ± 0.2 96.8 ± 0.0 70.1 ± 0.0 34.4 ± 0.1
Laplacian E. 74.5 ± 0.0 83.1 ± 0.0 82.6 ± 0.0 93.0 ± 0.0 90.3 ± 0.0 96.7 ± 0.0 67.2 ± 0.1 36.5 ± 0.0

2

graph NE 70.3 ± 0.4 83.1 ± 1.5 82.9 ± 0.5 92.6 ± 0.5 91.0 ± 0.0 96.8 ± 0.1 69.4 ± 0.2 35.3 ± 0.0
SGtSNEpi 70.6 ± 0.6 80.5 ± 1.3 82.4 ± 0.9 92.8 ± 0.4 90.6 ± 0.3 96.9 ± 0.1 65.9 ± 0.3 23.5 ± 0.3
DRGraph 70.3 ± 0.7 79.8 ± 2.9 80.4 ± 0.6 89.8 ± 0.2 80.1 ± 0.9 95.2 ± 0.3 54.7 ± 0.7 23.3 ± 0.1
ForceAtlas2 69.3 ± 0.4 80.6 ± 0.3 77.6 ± 0.2 88.6 ± 0.2 77.2 ± 0.4 81.4 ± 0.0 50.6 ± 0.6 20.0 ± 0.2
t-FDP 66.0 ± 1.0 76.6 ± 0.6 64.2 ± 0.5 84.5 ± 0.4 71.6 ± 0.5 83.9 ± 0.0 26.1 ± 0.4 7.5 ± 0.6
Laplacian E. 65.6 ± 0.0 71.8 ± 0.0 72.4 ± 0.2 84.8 ± 0.2 73.2 ± 0.2 75.3 ± 0.1 27.8 ± 0.8 9.4 ± 1.2

Table S3: Linear classification accuracy. The same setup as in Table S2 applies.
d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 71.5 ± 1.2 84.3 ± 1.0 80.9 ± 0.2 93.0 ± 0.2 89.7 ± 0.2 95.3 ± 0.0 62.6 ± 0.2 26.1 ± 0.1
graph NEτ 71.9 ± 1.4 83.6 ± 0.7 80.2 ± 0.7 93.4 ± 0.4 89.5 ± 0.4 90.8 ± 0.3 63.6 ± 0.1 27.6 ± 0.1
CNE, τ = 0.5 72.8 ± 0.8 84.3 ± 0.7 83.6 ± 0.3 92.7 ± 0.2 89.4 ± 0.2 97.1 ± 0.0 67.9 ± 0.2 32.2 ± 0.0
DeepWalk 70.3 ± 0.0 83.3 ± 0.7 81.9 ± 0.3 92.5 ± 0.4 88.5 ± 0.2 96.7 ± 0.1 68.1 ± 0.0 34.2 ± 0.1
node2vec 66.4 ± 1.4 81.0 ± 1.4 77.0 ± 0.5 93.0 ± 0.5 88.5 ± 0.1 96.1 ± 0.1 64.6 ± 0.0 29.9 ± 0.2
Laplacian E. 73.6 ± 0.0 86.7 ± 0.0 81.4 ± 0.0 92.8 ± 0.0 85.5 ± 0.0 97.0 ± 0.0 40.0 ± 0.1 21.3 ± 0.1

2

graph NE 63.2 ± 2.7 66.9 ± 1.2 62.8 ± 2.0 72.5 ± 4.8 70.9 ± 0.7 96.0 ± 0.1 48.4 ± 0.3 18.9 ± 0.6
SGtSNEpi 52.7 ± 5.2 64.0 ± 4.2 64.1 ± 0.5 79.2 ± 5.8 68.3 ± 2.8 93.3 ± 0.7 42.6 ± 1.4 10.2 ± 1.9
DRGraph 59.1 ± 1.8 64.8 ± 2.8 67.4 ± 0.2 72.5 ± 5.2 68.8 ± 1.5 94.2 ± 0.1 47.6 ± 0.6 18.5 ± 0.3
ForceAtlas2 62.4 ± 0.2 67.3 ± 0.0 71.6 ± 0.0 71.4 ± 0.4 67.3 ± 0.2 73.1 ± 0.0 45.4 ± 0.8 18.2 ± 0.3
t-FDP 50.5 ± 1.7 60.3 ± 0.2 57.5 ± 0.8 66.0 ± 0.4 60.6 ± 0.5 69.1 ± 0.2 26.5 ± 0.5 8.0 ± 1.1
Laplacian E. 47.6 ± 0.0 47.2 ± 0.0 57.1 ± 0.0 60.4 ± 0.0 47.3 ± 0.0 69.4 ± 0.0 15.6 ± 0.0 7.1 ± 1.4
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Table S4: Link prediction accuracy. The same setup as in Table S2. See Appendix C.
d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.0 99.4 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
graph NEτ 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.6 ± 0.0 99.3 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
CNE, τ = 0.5 99.7 ± 0.0 99.7 ± 0.0 99.8 ± 0.0 97.5 ± 0.0 96.2 ± 0.0 99.8 ± 0.0 98.7 ± 0.0 99.7 ± 0.0
DeepWalk 99.8 ± 0.0 99.8 ± 0.0 99.9 ± 0.0 98.1 ± 0.1 97.2 ± 0.1 100.0 ± 0.0 99.5 ± 0.0 100.0 ± 0.0
node2vec 91.6 ± 0.3 88.3 ± 0.2 84.3 ± 0.3 83.3 ± 0.2 71.9 ± 0.2 99.9 ± 0.0 66.3 ± 0.2 93.7 ± 0.1
Laplacian E. 99.8 ± 0.0 99.7 ± 0.0 98.9 ± 0.0 97.8 ± 0.0 96.0 ± 0.0 99.8 ± 0.0 95.3 ± 0.0 99.2 ± 0.0

2

graph NE 98.2 ± 0.1 96.6 ± 0.2 96.3 ± 0.3 96.4 ± 0.1 94.1 ± 0.0 98.4 ± 0.0 95.7 ± 0.2 98.4 ± 0.0
SGtSNEpi 97.6 ± 0.2 95.5 ± 0.2 96.0 ± 0.3 96.1 ± 0.1 93.8 ± 0.2 98.2 ± 0.1 95.3 ± 0.1 96.4 ± 0.1
DRGraph 98.9 ± 0.0 97.6 ± 0.1 97.6 ± 0.0 96.4 ± 0.2 94.5 ± 0.1 98.7 ± 0.0 97.2 ± 0.1 99.0 ± 0.0
ForceAtlas2 98.9 ± 0.1 97.7 ± 0.0 97.6 ± 0.0 96.4 ± 0.0 94.7 ± 0.0 98.6 ± 0.0 97.2 ± 0.1 98.8 ± 0.1
t-FDP 97.8 ± 0.0 96.1 ± 0.1 93.7 ± 0.3 96.1 ± 0.1 94.3 ± 0.2 98.9 ± 0.0 88.8 ± 0.5 92.8 ± 0.6
Laplacian E. 95.7 ± 0.0 88.9 ± 0.0 91.9 ± 0.0 89.8 ± 0.0 86.7 ± 0.0 96.7 ± 0.0 89.7 ± 0.3 93.4 ± 1.4

Table S5: Spearman correlation between the shortest-path distances and the embedding distances (Euclidean
for 2D embeddings, cosine for 128D embeddings). The same setup as in Table S1.

d Method Citeseer Cora PubMed Photo Computer MNIST arXiv MAG

128

graph NE 67.4 ± 1.0 81.6 ± 0.1 71.4 ± 0.3 82.4 ± 0.3 75.6 ± 0.0 54.2 ± 0.6 60.7 ± 0.6 7.3 ± 0.8
graph NEτ 48.4 ± 0.2 62.6 ± 0.3 59.2 ± 1.2 75.1 ± 0.1 70.5 ± 0.1 35.0 ± 1.0 46.8 ± 2.1 12.6 ± 0.3
CNE, τ = 0.5 33.5 ± 0.0 35.8 ± 0.1 32.9 ± 0.2 39.1 ± 0.0 32.0 ± 0.0 50.8 ± 0.0 7.8 ± 0.4 21.1 ± 0.3
DeepWalk 31.1 ± 0.3 25.9 ± 0.6 17.0 ± 0.9 48.1 ± 0.4 34.6 ± 0.8 48.3 ± 0.9 −6.0 ± 0.5 9.7 ± 1.8
node2vec 27.1 ± 1.3 27.5 ± 0.5 23.6 ± 0.8 47.9 ± 0.3 42.7 ± 0.3 35.1 ± 1.5 17.4 ± 3.0 15.5 ± 1.8
Laplacian E. 29.6 ± 0.0 26.1 ± 0.0 37.7 ± 0.0 25.8 ± 0.0 30.0 ± 0.0 26.8 ± 0.0 44.8 ± 0.2 37.5 ± 0.4

2

graph NE 56.9 ± 1.5 47.6 ± 3.2 35.0 ± 2.6 58.3 ± 1.0 47.2 ± 2.0 41.6 ± 0.3 32.9 ± 0.9 34.0 ± 2.4
SGtSNEpi 46.5 ± 6.1 40.0 ± 2.1 33.8 ± 1.7 52.5 ± 2.7 44.1 ± 1.7 37.8 ± 5.3 33.8 ± 3.0 29.9 ± 4.1
DRGraph 61.8 ± 3.2 65.1 ± 0.9 41.3 ± 1.2 64.9 ± 1.5 49.5 ± 1.9 51.3 ± 2.9 34.6 ± 1.0 31.0 ± 1.0
ForceAtlas2 65.3 ± 0.2 71.6 ± 0.1 51.0 ± 0.0 69.7 ± 0.2 54.9 ± 0.0 58.2 ± 0.0 40.2 ± 0.7 23.4 ± 0.5
t-FDP 65.7 ± 0.1 71.1 ± 0.1 63.6 ± 0.0 64.7 ± 0.4 63.8 ± 0.5 53.5 ± 0.0 56.9 ± 1.7 53.6 ± 1.3
Laplacian E. 45.5 ± 0.0 50.7 ± 0.0 21.3 ± 0.0 55.4 ± 0.0 36.2 ± 0.0 52.2 ± 0.0 35.7 ± 1.5 20.7 ± 0.3
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Figure S1: Computation times. All computations were performed on a cluster which isolates the computing
resources and removes interference between concurrent computations. All 2D experiments require only CPUs
and were ran on 8 cores of an Intel Xeon Gold 6226R. Experiments in 128D ran on a single Nvidia 2080ti
GPU card. For node2vec, this shows runtime for p = q = 1; we ran 25 parameter combinations (Figure S2),
so our actual runtime including hyperparameter tuning was much larger.
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Figure S2: Evaluation for node2vec (Grover & Leskovec, 2016) with the hyperparameters p, q ∈
{0.25, 0.5, 1, 2, 4}. These parameter values were taken from the original node2vec paper. The highest
neighbor recall was always achieved at p = 0.25, q = 4. This corresponds to oversampling unseen nodes.
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Figure S3: Embeddings of all considered datasets obtained using our graph NE, SGtSNEpi (Pitsianis et al.,
2019), DRGraph (Zhu et al., 2020a), ForceAtlas2 (Jacomy et al., 2014), t-FDP (Zhong et al., 2023), and
Laplacian Eigenmaps (Belkin & Niyogi, 2003). Embeddings in each row were aligned using orthogonal
Procrustes rotation (Schönemann, 1966). Numbers in the top-right corner correspond to the kNN accuracy
and the neighbor recall, respectively (as indicated in the bottom-right panel).
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Figure S4: The effect of initialization and normalization on graph NE for the Computer and Photo datasets.
(a, d) Default graph NE with Laplacian Eigenmaps initialization and using per-node normalization of the
adjacency matrix. (b, e) Graph NE using random initialization. (c, f) Graph NE with whole-matrix
normalization. Embeddings in each row were aligned using Procrustes rotation.
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