
On the Expressivity and Sample Complexity of
Node-Individualized Graph Neural Networks

Paolo Pellizzoni
Max Planck Institute of Biochemistry

Martinsried, Germany
pellizzoni@biochem.mpg.de

Till Hendrik Schulz
Max Planck Institute of Biochemistry

Martinsried, Germany
tschulz@biochem.mpg.de

Dexiong Chen †

Max Planck Institute of Biochemistry
Martinsried, Germany

dchen@biochem.mpg.de

Karsten Borgwardt †

Max Planck Institute of Biochemistry
Martinsried, Germany

borgwardt@biochem.mpg.de

Abstract

Graph neural networks (GNNs) employing message passing for graph classification
are inherently limited by the expressive power of the Weisfeiler-Leman (WL) test
for graph isomorphism. Node individualization schemes, which assign unique iden-
tifiers to nodes (e.g., by adding random noise to features), are a common approach
for achieving universal expressiveness. However, the ability of GNNs endowed
with individualization schemes to generalize beyond the training data is still an
open question. To address this question, this paper presents a theoretical analysis
of the sample complexity of such GNNs from a statistical learning perspective, em-
ploying Vapnik–Chervonenkis (VC) dimension and covering number bounds. We
demonstrate that node individualization schemes that are permutation-equivariant
result in lower sample complexity, and design novel individualization schemes that
exploit these results. As an application of this analysis, we also develop a novel ar-
chitecture that can perform substructure identification (i.e., subgraph isomorphism)
while having a lower VC dimension compared to competing methods. Finally, our
theoretical findings are validated experimentally on both synthetic and real-world
datasets.

1 Introduction

Graph Neural Networks (GNNs) have become a dominant approach in graph learning, leveraging the
inherent structural information of graphs through multiple iterations of message passing. This iterative
exchange of information between nodes allows GNNs to learn rich representations for both nodes
and entire graphs. However, the expressivity of these models in the context of graph classification,
i.e., their ability to distinguish non-isomorphic graphs, is intrinsically limited by the capabilities of
the Weisfeiler-Leman (1-WL) algorithm [61], a heuristic used for the graph isomorphism problem
[40, 62]. 1-WL is known to fail to distinguish certain classes of graphs, such as regular graphs [4].
Notably, GNNs are in general unable to solve the substructure identification task [12], which is
concerned with identifying subgraph patterns in the data at hand.

To address these expressivity limitations, higher-order GNNs [40, 25] have been proposed. These
models consider interactions among larger subgraphs or sets of nodes but often suffer from high

†These authors jointly supervised this work.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

computational complexity. An alternative approach, which we call node individualization schemes,
entails introducing perturbations, such as random noise, into node features to break graph sym-
metries artificially. This technique enables message passing GNNs to become universal function
approximators [1] without the computational overhead associated with higher-order GNNs. Several
node individualization schemes have been proposed in the literature. Random Node Initializations
(RNI) [50] add random noise to node labels to make them distinct with high probability, while
Relational Pooling (RP) [41] and Colored Local Iterative Procedure (CLIP) [14] partition nodes
based on their labels and assign unique identifiers within partitions. A recent paper [19] proposes a
general framework based on individualization-refinement algorithms. Other approaches to increase
the expressivity of GNNs relabel the graphs with structural or positional node encodings, such as
node centralities, graphlet counts [9], Laplacian [15, 60, 27], and random walk [16] encodings. These
encodings give information about the graph topology, complementing the information obtained from
message passing, but cannot guarantee universal expressivity in general.

Beyond expressivity, the sample complexity of GNNs [35, 52, 22], i.e., the amount of training data
required for generalization on unseen data, is a critical consideration to obtain effective graph learning
models, and it has been recently linked to the 1-WL expressivity [36]. Nonetheless, the sample
complexity of GNNs with node individualization schemes and with structural or positional node
encodings, which is of paramount importance in the understanding of the generalization power of
maximally expressive GNNs, remains an unanswered question.

This paper presents a novel theoretical analysis of both the expressivity and sample complexity of
GNNs endowed with node individualization and structural or positional node encodings, bridging
the gap between the expressivity analysis of GNNs and statistical learning theory. Specifically,
we examine the sample complexity of various node individualization schemes in the binary graph
classification setting, offering insights that can guide the design of more effective graph learning
models. We make the following contributions:

• We demonstrate the utility of node individualization schemes even on graphs recognizable
by the 1-WL test, thereby enhancing the expressivity of shallow GNNs (Section 3).

• We analyze the sample complexity of GNNs with various node individualization schemes
using VC-dimension-based bounds (Theorem 1). Based on our analysis, we develop a model
architecture EGONN that is universally expressive for substructure identification and has
low VC dimension (Section 4.2).

• We provide a sharper analysis based on covering-number bounds, leading to the design of
novel node individualization schemes (Theorem 4). Our bounds rely on a novel covering
bound for Lipschitz functions [23], a result that is potentially of independent interest.

• We substantiate our theoretical findings with experimental results on both synthetic and
real-world datasets (Section 5).

By offering a comprehensive analysis and practical guidance, this paper aims to enhance the un-
derstanding and development of GNNs through the lens of node individualization, pushing the
boundaries of what these models can achieve in terms of expressivity and sample efficiency.

1.1 Related work

Expressivity of GNNs Since the seminal works of [40, 62] revealed the limitations of MPNNs
due to their expressivity being bounded by the 1-WL test, research has surged toward developing
more powerful GNNs. One prominent approach has been to design GNNs that emulate higher-order
WL [25] or Folklore-WL [10] tests, exemplified by k-GNNs [40] and k-FGNNs [34]. However,
their computational and memory demands often hinder real-world applicability. To mitigate this,
researchers have explored more efficient alternatives, leveraging graph locality and sparsity [39, 65,
21]. Another line of research involves subgraph GNNs, which break symmetry by transforming the
original graph into modified subgraphs for GNN processing [13, 47, 8]. For a more comprehensive
overview, readers are encouraged to consult [49, 38].

Node individualizations Individualization schemes have been proposed by several works [50, 41,
14, 19, 11] to enhance the expressivity of GNNs. GNNs with such schemes have been shown to be
universal function approximators for invariant functions [1, 5]. Individualization schemes are also
crucial on edge-level tasks [33, 51], where they break symmetry among different edge-orbits.

2

Sample complexity The generalization capabilities of restricted families of GNNs has been ad-
dressed by means of VC dimension [52], Rademacher complexity [22] and PAC-bayesian approaches
[28, 32]. Recently, [36, 20] proposed VC-dimension bounds based on the number of 1-WL color
classes. The sample complexity of frequent subgraph identification has been addressed in [44].
Moreover, [45] and[18] address the sample complexity of equivariant models using a covering-
number-based approach [6, 24], which is exploited also in [66] in an empirical setting. For a general
overview on statistical learning theory, consult [35].

2 Preliminaries

In what follows, we define a graph as a tuple G = (VG, EG, LG), with VG = {1, . . . , |VG|} a finite
set of nodes, and EG ⊆ {{u, v} : u ̸= v ∈ VG} a set of undirected edges. We define the vertex-label
function as LG : VG → L, with a finite set of labels L. For the sake of simplicity, we consider
edges to be unlabeled. We define the neighborhood of a node as N (v) = {w ∈ VG : {v, w} ∈ EG}.
We say that two graphs G and H are isomorphic, denoted as G ≃ H , if there exists a bijective
mapping π : VG → VH , called isomorphism, such that LG(v) = LH(π(v)), ∀v ∈ VG and
{π(u), π(v)} ∈ EH if and only if {u, v} ∈ EG. The isomorphism relation induces equivalence
classes, which we call unordered graphs [26]. The group of isomorphisms from G to itself is called
the automorphism group Aut(G). We denote a set of graphs with G, and if necessary, as GL to
explicate the label set. We denote sets of unordered graphs as quotient sets G/ ≃. Moreover, we
consider sets of graphs of bounded size, that is |VG| ≤ nmax,∀G ∈ G. A function defined on graphs
f : G → R is called invariant if for any G ≃ H , f(G) = f(H). A function from graphs to graphs
f : G → G′ is here called equivariant if for any G ≃ H , f(G) ≃ f(H).

2.1 The Weisfeiler–Leman and Tinhofer algorithms

The color refinement algorithm, also known as 1-Weisfeiler–Leman (denoted as WL) algorithm, is a
heuristic algorithm for the graph isomorphism problem. Let C0(v) = LG(v) ∈ N be the initial color
of node v ∈ VG. Then the algorithm updates vertex colors at iteration k > 0 as

Ck(v) = HASH (Ck−1(v), {{Ck−1(w) : w ∈ N (v)}}) ∈ N,

with HASH an injective map. Let P(k)(G) be the partitioning of VG based on colors after the k-th
iteration of color refinement. Then, after at most |VG| iterations, the color partition stabilizes, i.e.
P(k)(G) = P(k+1)(G), ∀k ≥ |VG|. Two graphs are deemed k-hop WL-isomorphic if {{Ck(v) :
v ∈ VG}} = {{Ck(v) : v ∈ VH}}, and WL-isomorphic if it holds for k = |VG|. We denote this as
G ≃WL H . Note that G ≃ H =⇒ G ≃WL H , but the converse is not true. We call a graph G
WL-amenable if ∀H such that G ̸≃ H , G ̸≃WL H .

Tinhofer [57] developed a color-refinement-based algorithm, described in Section A.2, that returns
an ordering of the nodes of a graph. This is a canonical ordering on a large class of graphs, called
Tinhofer, which is a strict superset of WL-amenable class [4]. The Tinhofer algorithm is an instance of
the individualization-refinement paradigm [19] on which several isomorphism solvers are based [3].

2.2 Graph neural networks

Message passing graph neural networks (GNNs), given a graph G, iteratively produce for each
node v ∈ VG, at each level k = 1, . . . ,K, the embeddings hk

v ∈ Rdk by taking into account
messages coming from its neighbors N (v). More formally, the embedding of node v is updated
as hk

v = fupd
(
hk−1
v , fagg

(
{{hk−1

u : u ∈ N (v)}}
))

, where fagg and fupd are the aggregate and the
update operations, respectively. The first layer of the GNN is fed with the initial node embeddings
h0
v , e.g. one-hot encodings of the node labels. Finally, one can get a graph-level readout hG ∈ [0, 1]

by aggregating the output node embeddings via a function fout. In [62, 40] it was shown that there
exist injective functions fagg, fupd and fout yielding GNNs that are provably as expressive as color
refinement. We provide examples for such architectures in Section A.1.

We denote as GNNK = {GNNK,θ, θ ∈ Θ} the class of parametric functions formed by such a
model with K message passing layers and parameter space Θ. Moreover, we define GNNbin

K,θ(G) =

1 [GNNK,θ(G) > 0.5] and GNNbin
K = {GNNbin

K,θ, θ ∈ Θ} the class of predictors.

3

3 Node individualization schemes

In this section, we present a general framework for node individualization schemes.
Definition 1. A graph G = (V,E, LG) is called individualized if all node labels are pairwise distinct,
that is |{LG(v) : v ∈ V }| = |V |. Moreover, we define a graph as k-weakly individualized if all
nodes have different colors after k color refinement iterations, that is |{Ck(v) : v ∈ V }| = |V |.

Graph individualization is effectively achieved by assigning unique identifiers to nodes through a
relabeling process. We formally define a relabeling function Rel : GL×Ω → GL′ as a transformation
((V,E, L), ω) 7→ (V,E, L′) that maps injectively the node labels from L : V → L to a new set of
labels L′ : V → L′, e.g. with L′ = L × C and L′(v) = (L(v), c), c ∈ C. This function preserves
the graph’s underlying structure (the nodes and edges). For the sake of generality, the relabeling
function incorporates an additional argument ω ∈ Ω ⊆ N. This integer can be interpreted as a source
of pseudo-randomness involved in the relabeling process (i.e., a random seed). For example, the
relabeling function used in RNI [50], due to its pseudo-random nature, can generate non-isomorphic
relabeled graphs even from two identical copies of the same graph if it is given two different random
seeds. Moreover, we note that node encodings such as the random walk [16] or the Laplacian [15]
positional encodings can be cast as relabeling functions.

A relabeling function is an individualization scheme if, for each (G,ω) ∈ G × Ω, it holds that
Rel(G,ω) is a (possibly k-weakly) individualized graph. Moreover, for G ∈ G, let Rel(G) :=
{Rel(G,ω), ω ∈ Ω} and let Rel(G) := {Rel(G) : G ∈ G}.

Expressive GNNs on individualized graphs are well known to be universal approximators for functions
over graphs [1]. In fact, even a GNN with a single message passing layer and a MLP head is enough
to provide a universal approximator [14]. We can generalize this result to k-weakly individualized
graphs by noticing that k message passing layers, each simulating a WL iteration, provide a graph
individualized by its node embeddings. The following statement formalizes this intuition.
Proposition 1. Let f : G → {0, 1} be an invariant function and k ≥ 1. Then there exists θ ∈ Θ such
that GNNbin

k,θ(G) = f(G) for every (k − 1)-weakly individualized graph G ∈ G.

The above proposition highlights the importance of node individualization schemes, not only for
enhancing model expressivity, but also for managing model complexity. While GNNs are theoretically
capable of representing arbitrary functions on WL-amenable graphs (which compose the majority
of graphs [4]), they might require a large number of message-passing layers to achieve this. This
phenomenon, known as under-reaching [2], can be problematic. GNNs with many layers can suffer
from oversmoothing [42] or oversquashing [2], hindering their ability to effectively distinguish graphs
in practice. However, as Proposition 1 demonstrates, endowing GNNs with a (possibly k-weak)
individualization scheme can offer sufficient signals for graph discrimination with fewer message-
passing iterations, thus mitigating these issues. In Section 5.1, we experimentally investigate this
assessment and show that it has implications in real-world scenarios.

4 Sample complexity bounds

In this section, we show a general framework to derive sample complexity bounds for GNNs endowed
with relabeling functions, for graph-level binary classification tasks.

Let Ddata be a joint distribution over a set of graphs G and binary labels Y = {0, 1}. Moreover, let
D be a joint distribution over the domain of Ddata and integers Ω ⊆ N. The integers ω ∈ Ω model
any (pseudo-)randomness within the classification model f(G,ω). In the following, we denote by
x = (G,ω). Given a loss function ℓ(f(x), y), our goal, in accordance with standard learning theory
[35], is to bound the difference between the true risk R(f) and the empirical risk R̂(f):

Rℓ(f) = E(x,y)∼D[ℓ(f(x), y)] and R̂D,ℓ(f) =
1

m

m∑
i=1

ℓ(f(xi), yi),

where D = {(xi, yi)}i ∼ Dm represents a training dataset of size m sampled i.i.d. from D.

In Sections 4.1 and 4.2 we derive bounds to |Rℓ(f)− R̂D,ℓ(f)| based on the VC dimension, while in
Section 4.3 we derive more refined bounds based on covering numbers.

4

4.1 VC dimension

Let ℓ(f(x), y) = 1[f(x) ̸= y] be the 0-1 loss. Then if d is the VC dimension of the hypothesis
class, we have, with probability 1− δ over the dataset D ∼ Dm, that supf∈F |Rℓ(f)− R̂D,ℓ(f)| ≤√
2d/m+O(

√
log(1/δ)/m) [35, Corollary 3.4]. We define formally the VC dimension of a class

of functions on a set.
Definition 2. Let X be a set and F ⊆ {f : X → {0, 1}} an hypothesis class. We say that F shatters
S = (x1, . . . x|S|) if |{

(
f(x1), . . . , f(x|S|)

)
: f ∈ F}| = 2|S|. Then, we say that (X,F) has VC

dimension VC(X,F) = d if the largest set S shattered by F has size d, and +∞ if the size of sets
that can be shattered is unbounded.

In particular, we consider a set X = G × Ω consisting of pairs of graphs and integers. Our
hypothesis class F comprises binary classification functions formed by the composition of graph
relabeling functions (such as individualization schemes) and GNNs that are as expressive as color
refinement: F = GNNbin

K ◦ Rel := {GNNbin
K,θ ◦ Rel : GNNbin

K,θ ∈ GNNbin
K }, setting K = nmax to

ensure expressivity. GNNs with color refinement expressivity may require a number of parameters
exponential in the maximum graph size nmax = maxG∈G |VG| [1], which is a strong assumption
we have to make. In the cases where the parameter count constraints the expressive power, the
VC bounds from [36, Theorem 6] can be applied instead. The following theorem relates the VC
dimension to the WL-isomorphism classes of the graphs in Rel(G).

Theorem 1. Let Rel : G × Ω → G′ be a relabeling function. Then VC
(
G × Ω,GNNbin

K ◦ Rel
)
=

|Rel(G)/ ≃WL |. If Rel is an individualization scheme, |Rel(G)/ ≃WL | = |Rel(G)/ ≃ |.

We provide specific bounds, proven in Section C.2, for relevant examples of relabeling schemes.

Random Node Initializations [50] The RNI scheme perturbs with some random noise the labels
of the nodes. In line with the analysis in the original paper, we suppose that the random noise,
selected via ω, takes values in a finite set C. We then have that a graph G with n nodes is mapped
to O(|C|n/|Aut(G)|) relabeled unordered graphs. In the case of unlabeled graphs with n nodes, we
then have that |RNI(G)/ ≃ | = Θ(1

n!2
(n2)|C|n) = Θ(|C|n · |G|).

Relational Pooling [41] and CLIP [14] Let G be a graph and let v1, . . . , vn be an arbitrary
enumeration of its nodes selected via ω. The simplest version of the RP scheme updates node labels
as ℓ′(vi) = (ℓ(vi), i). A more refined version of the scheme partitions the nodes as {V1, . . . , VC}
based on their labels and, letting Vc = (vi1 , . . . , vi|Vc|

), it updates node labels as ℓ′(vij) = (ℓ(vij), j).
Then, each graph can be mapped to

∏
c |Vc|!/|Aut(G)| relabeled unordered graphs. For unlabeled

graphs with n nodes , this amounts to having |RP(G)/ ≃ | = Θ(2(
n
2)) = Θ(n! · |G|). The 1-CLIP

node individualization scheme is equivalent to RP on the node partition based on initial labels.

Tinhofer algorithm Let G be a graph and let v1, . . . , vn be an ordering given by the Tinhofer
[57, 4] algorithm (Section A.2). Then updating node labels as ℓ′(vi) = (ℓ(vi), i) yields a valid
individualization scheme Tinhofer, that is an instance of the general individualization-refinement
framework given by [19]. Let the algorithm perform at most (i.e, for any choice of ω) I individualiza-
tion iterations on graph G, let {V1, . . . , VC} be a partitioning of the nodes of G based on their labels
and let R = maxc |Vc|. Then we have that |Tinhofer(G)/ ≃ | ≤ RI/|Aut(G)| ≤ nI/|Aut(G)|. In
particular, as shown in the following lemma, for data distributions restricted to WL-amenable graphs,
endowing a GNN with the Tinhofer individualization scheme does not increase its VC dimension.

Lemma 1. Let G be a set of WL-amenable graphs. Then VC
(
G×Ω,GNNbin

K ◦Tinhofer
)
= |G/ ≃ |.

In fact, the class of graphs for which the Tinhofer individualization scheme does not increase the VC
dimension is the class of Tinhofer graphs [4] and is strictly larger than the WL-amenable class.

Positional and structural encodings Deterministic and equivariant encodings such as the random
walk structural encoding [16] or adding graphlet counts [9] yield |Rel(G)| = |G|, and therefore the
increase in VC dimension is only due in the increase in the number of WL-isomorphism classes,
if any. The Laplacian positional encoding [15] is known not to be equivariant in general [60],

5

i.e., there are graphs G1 ≃ G2 for which Rel(G1, ω) ̸≃ Rel(G2, ω). Therefore we have that
|Rel(G)/ ≃WL | > |G/ ≃WL |, which leads to an increase in the VC dimension and further
motivates the attempts to obtain equivariant Laplacian-based relabeling functions [60, 27].

Discussion Note that, in general, the number of relabeled graphs given by Rel is lower if the
relabeling scheme is equivariant and if it does not depend on the second argument ω, i.e., if it is
deterministic. For example, expressive GNNs endowed with the Tinhofer relabeling scheme, when
applied to WL-amenable graphs with at most n nodes, have VC dimension that is lower by a factor
O(n!) compared to equally expressive GNNs endowed with the RP scheme.

Finally, relabeling schemes that rely on the randomness introduced by the second argument ω (e.g.
randomized schemes) are often enhanced by resampling different ω values at each epoch [41, 49],
effectively performing data augmentation. As discussed in [54], when the augmented dataset includes
all possible transformations of each data point (in this case, all possible graph relabelings), the
VC dimension of the model reduces to that of a transformation-invariant model. However, the
number of relabeled graphs in our setting often grows super-exponentially with the maximum graph
size, e.g., nmax! for RP, making it difficult to obtain enough samples for good generalization, as
shown experimentally in Section 5.2. The theoretical analysis of sample complexity for randomized
individualization schemes remains an open question we leave for future work.

4.2 Improved VC bounds for substructure identification

In this section, we showcase that developing sample complexity bounds and relabeling schemes with
low VC dimension can guide the design of architectures tailored to specific tasks. In particular, a
relevant task that has been studied in past works is substructure identification [12, 27, 44], where the
task is to decide if a graph pattern P appears as a subgraph or induced subgraph of a query graph
G, denoted hereafter as P ∈ G. Notably, message passing GNNs are unable to solve the task in
general [12]. We provide a message-passing GNN architecture, similar to the one proposed in [12,
Section 5] that, paired with node individualization schemes, is provably expressive for substructure
identification and with lower VC dimension compared to the ones presented in Section 2.2. The
idea, as in many subgraph GNNs [13, 47, 8], is to transform the original graph into a set of smaller
subgraphs and feeding them to a GNN.

In particular, let the task at hand concern a subgraph pattern P of radius ∆P =
minv∈VP

maxw∈VP
δvw, where δvw is the length of the shortest path from v to w. Let a k-ego-

net of node v in graph G be the induced subgraph EGOv,G,k of nodes {u ∈ VG : δuv ≤ k} at
distance at most k from v. Then, a model that is able to recognize if P appears in any of the
∆P -ego-nets of the query graph will be able to solve the task. Note that there could be ego-nets that
are not recognizable by a GNN alone (Lemma 6), so we individualize each ego-net with a function
Rel to guarantee expressivity. Let then

hego
v = GNNbin

1,θ (Rel(EGOv,G,∆P
, ω)) ∈ {0, 1}, hG = max

v∈VG

hego
v ∈ {0, 1},

that is, we run a 1-layer GNN on each individualized (potentially using some randomness from ω)
ego-net and we aggregate the results using max-pooling. We denote such parametric functions as
EGONNRel

∆P,θ
. We have the following results on the expressivity and the VC dimension of the model.

Theorem 2. Let f : G → {0, 1} be f(G) = 1 [P ∈ G]. Let Rel be an individualization scheme.
Then there exists θ ∈ Θ such that EGONNRel

∆P,θ
(G) = f(G) for every G ∈ G.

Theorem 3. Let G∆ be the set of ego-nets of radius ∆ of the graphs of G. Then VC(G ×
Ω,EGONNRel

∆)≤ |Rel(G∆)/ ≃ |.

In general, G∆ is much smaller compared to G, especially for small ∆. This leads to the fact that, in
general, Rel(G∆) will be much smaller than Rel(G). Thanks to Theorem 1, we then have that the VC
dimension of EGONNRel

∆ is in general lower compared to the one of GNNbin
K ◦ Rel. In particular,

relabeling the ego-nets using a scheme with lower |Rel(G∆)/ ≃ |, such as the Tinhofer scheme, leads
to lower VC dimension compared to schemes that would produce more relabeled ego-nets, such as
RP or RNI. This theoretical result is also experimentally validated in Section 5.3.

This approach clearly increases the space complexity compared to the standard GNN model. Indeed,
if a graph G has n nodes, and each ego net has at most nE nodes and mE edges, the disjoint union of
the ego-nets of G has nnE nodes and nmE edges.

6

4.3 Covering numbers

The generalization bounds based on the VC dimension theory provide results that are useful only in
restricted cases, e.g., when the task is substructure identification. Indeed, for a maximally expressive
GNN model the VC-based bounds state that one should observe all the possible individualized graphs
from the data distribution before the model can generalize. We provide an alternative analysis,
following a Rademacher-complexity-based approach introduced in [6] and used in [22] for graph
classification, which can lead to tighter results.

Let the margin function be M(f(x), y) = (2y − 1)(2f(x) − 1) ∈ [−1, 1]. Then the margin loss,
given a γ > 0, is defined as

ℓ(f(x), y) = 1[M(f(x), y) < 0] + (1−M(f(x), y)/γ)1[0 ≤ M(f(x), y) ≤ γ] ∈ [0, 1].

Let Fℓ = {(x, y) → ℓ(f(x), y) : f ∈ F} be the set of margin losses, for each predictor f ∈
F := GNNK ◦ Rel. We then have [35], with probability 1− δ over the dataset D = {(xi, yi)}i ∼
Dm, that supf∈F |Rℓ(f)− R̂D,ℓ(f)| ≤ R̂D(Fℓ) + O(

√
ln(1/δ)/m), with R̂D(Fℓ) the empirical

Rademacher complexity of Fℓ on D (see Definition 3 in the Appendix). In particular, given that
P(x,y)∼D[1[f(x) > 0.5] ̸= y] ≤ R(f), one can then bound the probability of making an error at
inference time from the empirical loss. We then bound the empirical Rademacher complexity R̂D(Fℓ)
via a covering-number-based approach. Let D be the training dataset and let Fℓ|D = {f |D : f ∈ Fℓ}
be the set of margin losses restricted to the dataset.

Given a pseudometric space (X,dist) and a subset S ⊆ X , we call C ⊆ X an ϵ-
cover of S if maxx∈S minc∈C dist(x, c) ≤ ϵ and define the ϵ-covering number of S as
N (X, ϵ,dist) = min{|C| : C is an ϵ-cover of S}, i.e., the minimum number of balls of ra-
dius ϵ required to cover S. Similarly, for a finite S, we call C ⊆ X a p-norm ϵ-cover of S

if
(
1/|X|

∑
x∈X minc∈C dist(x, c)p

)1/p ≤ ϵ and define the p-norm ϵ-covering number of S as
N (p)(X, ϵ,dist) = min{|C| : C is a p-norm ϵ-cover of S}. With slight abuse of notation, we
let N (∞)(X, ϵ,dist) = N (X, ϵ,dist). In particular, we have that the p-norm ϵ-covering number of a
metric space is monotonically increasing in p ∈ N ∪ {∞}.

Moreover, for a finite set X and F ⊆ {f : X → [0, 1]}, we define the pseudometrics ∥f1 − f2∥p =(
1/|X|

∑
x∈X |f1(x)− f2(x)|p

)1/p
for p ≥ 1 and ∥f1 − f2∥∞ = maxx∈X |f1(x) − f2(x)|. By

Pollard’s bound [46] we then have that

R̂D(Fℓ) ≤ inf
α>0

(
α+

√
2 logN (Fℓ|D, α, ∥ · ∥1)/|D|

)
.

We bound the covering number of the class of functions Fℓ by covering the space of graphs and
assuming the Lipschitzness of GNNs, similarly to the approaches in [18] and [45]. In fact, we
provide a generalization of a covering bound for Lipschitz functions [23, Lemma 5.2], that relaxes the
Kolmogorov-Tikhomirov bound [56, Eq. 238], tailored to the aforementioned Rademacher bound.
Lemma 2. Let (X,dist) be a pseudometric space and S ⊆ X a finite subset. Let F ⊆ {f : S →
[0, 1]} be a set of C-Lipschitz functions. Let p, q ∈ N ∪ {+∞}, q ≥ p ≥ 1. Then

logN (F , α, ∥ · ∥p) ≤ log(1/α+ 1) · N (q)
(
S,

α

2C
,dist

)
.

Theorem 4. Let Fℓ be the set of margin losses for predictors F := GNNK ◦ Rel. Let Rel(D) =
{G′ = Rel(G,ω) : (G,ω, y) ∈ D} be the graphs of the dataset after the relabeling, endowed with
a pseudometric dist. Let functions in GNNK be C-Lipschitz continuous with respect to dist. Then

R̂D(Fℓ) ≤ inf
α>0

(
α+ |D|−1/2

√
2 log(1/α+ 1) · 4N (1)

(
Rel(D),

αγ

4C
,dist

))
.

Theorem 4 relies on the assumption that the GNN models are Lipschitz with respect to some
pseudometric dist on graphs, such as the edit distance [53, 43] or the WWL distance [58]. This
assumption, albeit strong, is often taken when considering the generalization of GNNs [27]. Note
that, for small α and arbitrarily complex GNNs, i.e. C >> 1, we have that the covering number is
proportional to the number of WL-isomorphic graphs in the relabeled dataset Rel(D), effectively
retrieving the bounds obtained by the VC dimension. When GNNK is instead simpler, i.e. it has
smaller Lipschitz constant C, the space of graphs can be covered with fewer balls, and we obtain
better sample complexity.

7

A

A
BDC

A

A
EDC

A

Â
BDC

A

Â
EDC

A0

A1
B2D4C3

A0

A1
E4D3C2

A0

A1
B0D0C0

A0

A1
E0D0C0

Figure 1: Comparison between Tinhofer and TinhoferW. Panel (a): Two graphs, where letters
indicate initial node labels. The Tinhofer algorithm finds a canonical ordering on the two graphs.
Panel (b): The Tinhofer scheme concatenates the position of the node in the ordering to the node
label. The relabeled graphs have edit distance 3. Panel (c): The TinhoferW scheme concatenates the
position of the node within its WL color class. The edit distance remains 1, as in the original graphs.

Discussion Let the graphs of the dataset DG = {G : (G,ω, y) ∈ D} and the relabeled graphs
Rel(D) = {Rel(G,ω) : (G,ω, y) ∈ D} be subsets of the same metric space (G,dist). The results
of Theorem 4 suggest that if a labeling function does not increase much the covering number of the
dataset, i.e. N (1) (Rel(D), ϵ,dist) ≃ N (1) (DG, ϵ,dist), then the model GNNK ◦Rel would have
roughly the same sample complexity as GNNK while being more expressive.

In particular, this can be achieved if the relabeling scheme maps pairs of graphs with low distance (e.g.
dist(G1, G2) ≤ ϵ) to pairs of relabeled graphs with low distance. An example of such graphs at low
distance could be a pair of graphs that differ only in the label of a node belonging to a singleton color
class, like graphs G1 and G2 in Figure 1. These two graphs could be, for example, two molecules
where an atom is substituted with a similar one, or two proteins where an amino-acid is substituted
with a functionally-similar one [43].

Driven by this intuition, we design a (k-weak) individualization scheme, which we call weak Tinhofer
scheme TinhoferW , that relabels only few nodes. The scheme obtains an ordering v1, . . . , vn of the
nodes via the Tinhofer algorithm. Let {V1, . . . , VC} be a partition of the nodes of graph G into color
classes after k color refinement steps and let Vc = (vi1 , . . . , vi|Vc|

). The scheme then relabels nodes
by appending their position in the ordering within their partition as ℓ′(vij) = (ℓ(vij), j). For nodes
that belong to singleton classes, which is common in graphs such as molecules or random graphs, no
relabeling is necessary.

See Figure 1 for a visual example of a comparison between Tinhofer and TinhoferW on the pair of
graphs G1 and G2. We have, for a u ∈ VG, that ∃ϕ : VG1

→ VG2
such that {ϕ(v), ϕ(w)} ∈ EG2

iff {v, w} ∈ EG1
, LG2

(ϕ(v)) = LG1
(v),∀v ̸= u ∈ VG1

and LG2
(π(u)) ̸= LG1

(u). Then
dist(G1, G2) would be given by the cost of substituting LG2

(π(u)) with LG1
(u). Consider the

graphs produced by the TinhoferW procedure. Here we have that the labels of nodes that matched in
the original graphs still match in the relabeled graphs. By contrast, with the graphs produced by the
Tinhofer procedure, the number of node labels that do not match could be arbitrarily large.

This scheme ensures that the relabeled graphs are k-weakly individualized, while yielding no increase
in the VC dimension for WL-amenable graphs (Lemma 1) and increasing the covering numbers only
marginally. This in general yields better generalization, as shown experimentally in Section 5.4.

5 Experimental evaluation

In this section, we provide proof-of-concept experimental evidence about our theoretical results. In
particular, Section 5.1 investigates the empirical expressivity of GNNs with and without individualiza-
tion schemes, Section 5.2 and Section 5.3 validate respectively the general VC dimension bounds and
the substructure identification ones, and Section 5.4 explores the results on covering numbers. Details
about the datasets, experimental setup, tasks and infrastructure are reported in Section E. Code and
datasets are available at https://github.com/BorgwardtLab/NodeIndividualizedGNNs.

5.1 Expressivity

To highlight the efficacy of individualization schemes in practical applications, we compare a GNN
endowed with Tinhofer to ordinary GNNs on challenging datasets. In particular, we consider subsets
of the real-world datasets MCF-7 and Peptites-func, for which at least six message-passing
iterations are necessary to distinguish all pairs of graphs, and synthetic datasets Cycles-pin and
CSL-pin, for which nine, resp. five, iterations are necessary. To compare the performance between

8

https://github.com/BorgwardtLab/NodeIndividualizedGNNs

0 200 400 600 800 1000
Epochs

60

80

100

Ac
cu

ra
cy

 in
 %

Cy
cl

es
-p

in

Tinhofer
GNN (9 Layers)

0 200 400 600 800 1000
Epochs

60

80

100

Ac
cu

ra
cy

 in
 %

CS
L-

pi
n

Tinhofer
GNN (5 Layers)

0 200 400 600 800 1000
Epochs

60

80

100
Ac

cu
ra

cy
 in

 %
MC

F-
7

Tinhofer
GNN (6 Layers)

0 200 400 600 800 1000
Epochs

60

80

100

Ac
cu

ra
cy

 in
 %

Pe
pt

id
es

-f
un

c

Tinhofer
GNN (6 Layers)

Figure 2: Accuracy for GNNK and GNN1 ◦ Tinhofer over 1000 epochs on synthetic datasets
Cycles-pin and CSL-pin and real-world datasets MCF-7 [63, 37] and Peptites-func [55, 17].

RNI RP Tinhofer

CS
L

100 101 102 103
0

10

20

30

40

50

Tr
ai

n
-t

es
ta

cc
.i

n
%

n = 17
n = 41
n = 83

100 101 102 103
0

10

20

30

40

50

Tr
ai

n
-t

es
ta

cc
.i

n
%

n = 17
n = 41
n = 83

100 101 102 103
0

10

20

30

40

50

Tr
ai

n
-t

es
ta

cc
.i

n
% n = 17

n = 41
n = 83

3-
re

g

100 101 102 103
0

10

20

30

40

50

Samples

Tr
ai

n
-t

es
ta

cc
.i

n
%

n = 16
n = 32
n = 64

100 101 102 103
0

10

20

30

40

50

Samples

Tr
ai

n
-t

es
ta

cc
.i

n
%

n = 16
n = 32
n = 64

100 101 102 103
0

10

20

30

40

50

Samples

Tr
ai

n
-t

es
ta

cc
.i

n
% n = 16

n = 32
n = 64

Figure 3: Difference between test and training accuracy for GNNs with the RNI, RP and Tinhofer
individualization schemes, on datasets of CSL and 3-regular graphs of various sizes.

the two methods, we measure the models’ capabilities to distinguish non-isomorphic graphs. Figure 2
shows the accuracy obtained by ordinary GNNs with a theoretically sufficient number of layers as
well as a 1-layer GNN endowed with Tinhofer. While the ordinary GNNs can achieve a perfect
score for both synthetic datasets, their learning process is slow and unstable. For the real-world
datasets, it can be observed that ordinary GNNs do not achieve a score close to 100% within the
tested 1000 epochs at all. These observations may be explained by the fact that the model has to
learn to propagate structural information for several layers, possibly encountering oversquashing
issues. In contrast, the GNN with Tinhofer converges faster and more stably with only a single GNN
layer. The results particularly emphasize that the Tinhofer individualization scheme can improve the
expressive power in shallow GNNs, demonstrating the value of our approach in practical scenarios.

5.2 VC dimension

We empirically evaluate the generalization bounds based on the VC dimension derived in Section 4.1.
Recall that for an individualization scheme Rel and a set of graphs G, the generalization gap is
bounded by the VC dimension d = |Rel(G)/ ≃ |. We evaluate RNI, RP, and Tinhofer using
datasets of circular skip link (CSL) [41] graphs of sizes n = 17, 41, 83 and 3-regular graphs of sizes
n = 16, 32, 64 . The task is to distinguish non-isomorphic graphs. Figure 3 shows the generalization
gap with increasing numbers of permuted copies of the graphs in the training set. RNI and RP, which
generate highly randomized individualizations, require several samples to generalize effectively.
As graph size n increases, the VC dimension increases, resulting in a greater generalization gap.
Interestingly, Tinhofer perfectly learns the target function on CSL graphs with only a single copy of
the graphs, as the individualization is in fact canonical.

5.3 Substructure identification

To assess the expressivity and generalization of GNNs for substructure identification, we created four
challenging datasets, each comprising 1000 unlabeled 3-regular graphs. The task is to detect whether

9

graphs contain the induced subgraphs: 3-cycle C3, 4-cycle C4, 5-cycle C5, or complete bipartite
graph K2,3. We tested GNNs with and without individualization schemes, along with our novel
architecture EGONN∆P

. As reported in Table 1, GNNs lacking individualization fail to distinguish
between graphs. Those with RP or Tinhofer individualizations tend to overfit on training data but
struggle to generalize. In contrast, EGONN∆P

models generally exhibit a smaller generalization
gap. Not providing individualizations to ego-nets results in a small generalization gap, but often fails
to fit the training data. RP individualization enables the model to fit training data but may lead to
overfitting. The Tinhofer individualization yields, as predicted by the theory, the best performance.

Table 1: Train and test accuracies for the substructure identification task on 3-regular graphs.
Datasets

C3 C4 C5 K2,3

GNN Rel Train Test Train Test Train Test Train Test

GNNK

None 50.1 ±0.0 49.0 ±0.0 50.6 ±0.0 45.0 ±0.0 50.1 ±0.0 49.0 ±0.0 50.0 ±0.0 50.0 ±0.0

RP 100.0 ±0.0 59.8 ±2.8 100.0 ±0.0 60.6 ±2.6 100.0 ±0.0 50.4 ±1.7 100.0 ±0.0 59.6 ±3.6

Tinhofer 100.0 ±0.0 62.0 ±3.3 100.0 ±0.0 61.4 ±3.9 100.0 ±0.0 47.0 ±2.1 100.0 ±0.0 62.0 ±4.0

EGONN∆P

None 100.0 ±0.0 100.0 ±0.0 74.2 ±7.2 73.6 ±10.2 92.3 ±1.9 89.4 ±1.5 74.1 ±2.9 74.2 ±2.2

RP 100.0 ±0.0 100.0 ±0.0 99.6 ±0.5 93.2 ±2.1 99.4 ±0.6 90.6 ±1.0 97.0 ±0.9 71.6 ±1.9

Tinhofer 100.0 ±0.0 100.0 ±0.0 99.4 ±0.6 99.6 ±0.5 99.8 ±0.3 99.6 ±0.8 100.0 ±0.0 100.0 ±0.0

5.4 Covering numbers

To validate the theoretical results on covering numbers from Section 4.3, we use two molecular (NCI1
and Mutagenicity) and two social network (IMDB-b and COLLAB-b) datasets. As suggested by
the theory, we use as a proxy for the sample complexity the ratio between the covering number (for
simplicity fixing ϵ = 0.05, see Section F for complete results) of the relabeled dataset and the dataset
size N̂ = N (1)(Rel(D), ϵ,dist)/|D|. As a (pseudo-)metric, we use the distance used by the WWL
kernel [58]. We report N̂ , together with the test accuracy and the difference between test and train
accuracy, in Table 2 for GNNs with no individualizations, with RP, RNI, Tinhofer and weak Tinhofer
individualizations, and with a Laplacian-encoding-based relabeling. We observe that across datasets
N̂ strongly correlates with the generalization gap, confirming empirically the intuition provided by
the theory. Moreover, we observe that on molecular datasets, that are easily recognizable by the WL
test, individualizations don’t help expressivity. On the other hand, on unlabeled datasets such as
COLLAB-b, ordinary GNNs might struggle to converge to good local minima, and the additional
information given by relabeling schemes usually helps. In fact, it is common in the literature [62, 40]
to relabel such unlableled graphs with, e.g., degree centrailities.

Table 2: Covering numbers and classification accuracies on real-world datasets.
Datasets

NCI1 Mutagenicity IMDB-b COLLAB-b
GNN Rel N̂ Test Diff. N̂ Test Diff. N̂ Test Diff. N̂ Test Diff.

GNN5

None 0.090 83.8 ±0.5 16.1 ±0.5 0.156 83.0 ±2.6 17.0 ±2.6 0.025 71.8 ±5.0 3.6 ±5.9 0.214 56.1 ±3.1 1.1 ±2.9

RP 0.719 67.8 ±1.5 32.2 ±1.5 0.746 70.9 ±1.3 29.1 ±1.3 0.443 65.4 ±2.6 33.0 ±2.5 0.488 67.5 ±9.1 3.1 ±2.5

RNI 0.705 67.1 ±1.8 32.9 ±1.8 0.717 73.1 ±1.5 26.9 ±1.5 0.580 62.4 ±9.0 37.6 ±9.0 0.547 56.8 ±3.6 1.2 ±2.9

Tinhofer 0.677 71.5 ±2.2 28.4 ±2.2 0.697 74.9 ±0.7 25.1 ±0.7 0.266 70.0 ±2.6 19.1 ±2.7 0.471 64.8 ±7.0 2.0 ±3.4

Tinhoferw 0.203 81.9 ±1.2 18.0 ±1.2 0.282 82.6 ±1.4 17.4 ±1.4 0.133 67.8 ±4.0 21.3 ±4.0 0.310 79.5 ±2.6 13.6 ±3.2

LPE 0.589 77.3 ±1.8 22.6 ±1.8 0.485 76.2 ±1.4 23.8 ±1.4 0.271 68.0 ±3.3 21.1 ±3.4 0.409 74.6 ±2.4 21.6 ±2.7

GNN2

None 0.090 81.8 ±1.4 18.1 ±1.5 0.156 81.5 ±1.3 18.4 ±1.3 0.025 71.4 ±3.9 2.2 ±4.4 0.214 75.3 ±1.1 0.0 ±1.0

RP 0.719 67.4 ±1.2 32.6 ±1.2 0.746 71.2 ±1.0 28.8 ±1.0 0.443 63.8 ±2.3 34.6 ±2.3 0.488 75.1 ±2.3 18.1 ±3.1

RNI 0.705 68.0 ±1.0 32.0 ±1.0 0.717 72.7 ±2.4 27.3 ±2.4 0.580 63.6 ±8.8 36.4 ±8.8 0.547 72.1 ±2.8 19.6 ±4.9

Tinhofer 0.677 72.9 ±3.0 26.9 ±3.0 0.697 73.1 ±2.3 26.9 ±2.3 0.266 68.6 ±3.1 20.5 ±3.1 0.471 75.2 ±1.7 19.5 ±1.2

Tinhoferw 0.203 81.8 ±2.3 18.1 ±2.4 0.282 81.2 ±1.7 18.8 ±1.7 0.133 69.4 ±3.4 19.6 ±3.2 0.310 80.8 ±1.9 12.2 ±2.1

LPE 0.589 76.4 ±1.9 23.5 ±1.9 0.485 75.4 ±2.0 24.6 ±2.0 0.271 68.4 ±3.3 20.7 ±3.3 0.409 75.8 ±1.8 19.9 ±2.3

6 Conclusion

In this paper, we developed novel sample complexity bounds for graph neural networks endowed with
individualization schemes. Several research directions are left open for future work, including the
analysis of data augmentation for individualization schemes via resampling, and the development of
tighter covering bounds for specific model architectures. We envision that this work will inspire the
development of new, practical graph learning models that are both theoretically sound and empirically
effective, ultimately advancing the field of graph representation learning.

10

Acknowledgements

The authors would like to thank Dr. Janko Sattler, Philip Hartout and the reviewers for their feedback.

References
[1] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power of

graph neural networks with random node initialization. In Proceedings of the Joint Conference on Artificial
Intelligence (IJCAI), 2021.

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In
International Conference on Learning Representations (ICLR), 2021.

[3] Markus Anders and Pascal Schweitzer. Engineering a fast probabilistic isomorphism test. In Proceedings
of the Workshop on Algorithm Engineering and Experiments (ALENEX), 2021.

[4] Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. Graph isomorphism, color
refinement, and compactness. Computational Complexity, 26:627–685, 2017.

[5] Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva. The
logical expressiveness of graph neural networks. In International Conference on Learning Representations
(ICLR), 2020.

[6] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[7] Christoph Berkholz, Paul Bonsma, and Martin Grohe. Tight lower and upper bounds for the complexity of
canonical colour refinement. Theory of Computing Systems, 60(4):581–614, May 2017.

[8] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. In
International Conference on Learning Representations (ICLR), 2021.

[9] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Trans. Pattern Anal. Mach. Intell.,
45(1):657–668, 2023.

[10] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for
graph identification. Combinatorica, 12(4):389–410, 1992.

[11] Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Dominique Beaini,
and Ladislav Rampášek. Graph positional and structural encoder. In International Conference on Machine
Learning (ICML), 2024.

[12] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count substructures?
In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 10383–10395, 2020.

[13] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph representations.
In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[14] George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
networks for node disambiguation. In Proceedings of the Joint Conference on Artificial Intelligence
(IJCAI), 2020.

[15] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research (JMLR), 24(43):1–
48, 2023.

[16] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph
neural networks with learnable structural and positional representations. In International Conference on
Learning Representations (ICLR), 2022.

[17] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and
Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing Systems
(NeurIPS), 35:22326–22340, 2022.

[18] Bryn Elesedy. Symmetry and Generalisation in Machine Learning. PhD thesis, PhD thesis, University of
Oxford, 2023.

11

[19] Billy Joe Franks, Markus Anders, Marius Kloft, and Pascal Schweitzer. A systematic approach to universal
random features in graph neural networks. Transactions on Machine Learning Research, 2023.

[20] Billy Joe Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at the
margin: When more expressivity matters. In International Conference on Machine Learning (ICML),
pages 13885–13926, 2024.

[21] Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and extending
subgraph gnns by rethinking their symmetries. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[22] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of graph
neural networks. In International Conference on Machine Learning (ICML), pages 3419–3430, 2020.

[23] Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient regression in metric spaces via
approximate lipschitz extension. In Edwin Hancock and Marcello Pelillo, editors, Similarity-Based Pattern
Recognition, pages 43–58, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[24] Florian Graf, Sebastian Zeng, Bastian Rieck, Marc Niethammer, and Roland Kwitt. On measuring
excess capacity in neural networks. Advances in Neural Information Processing Systems (NeurIPS),
35:10164–10178, 2022.

[25] Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47.
Cambridge University Press, 2017.

[26] Frank Harary and Edgar M Palmer. Graphical enumeration. Elsevier, 2014.

[27] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li. On the
stability of expressive positional encodings for graph neural networks. arXiv preprint arXiv:2310.02579,
2023.

[28] Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural networks:
Improved pac-bayesian bounds on graph diffusion. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2023.

[29] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for muta-
genicity prediction. Journal of medicinal chemistry, 48 1:312–20, 2005.

[30] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Benchmark
data sets for graph kernels, 2016. http://graphkernels.cs.tu-dortmund.de.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Renjie Liao, Raquel Urtasun, and Richard Zemel. A PAC-bayesian approach to generalization bounds for
graph neural networks. In International Conference on Learning Representations (ICLR), 2020.

[33] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[34] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks.
In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[35] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

[36] Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WL meet VC. In International
Conference on Machine Learning (ICML), 2023.

[37] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020), 2020.

[38] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe, Matthias
Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far. The Journal of
Machine Learning Research, 24(1):15865–15923, 2023.

[39] Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-aware
permutation-equivariant graph networks. In International Conference on Machine Learning (ICML), 2022.

12

http://graphkernels.cs.tu-dortmund.de

[40] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2019.

[41] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning (ICML), pages 4663–4673.
PMLR, 2019.

[42] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations (ICLR), 2020.

[43] Paolo Pellizzoni, Carlos Oliver, and Karsten Borgwardt. Structure- and function-aware substitution matrices
via learnable graph matching. In Research in Computational Molecular Biology, 2024.

[44] Paolo Pellizzoni and Fabio Vandin. VC-dimension and rademacher averages of subgraphs, with applications
to graph mining. In International Conference on Data Engineering (ICDE), 2023.

[45] Mircea Petrache and Shubhendu Trivedi. Approximation-generalization trade-offs under (approximate)
group equivariance. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, 2023.

[46] David Pollard. Empirical processes: theory and applications. Ims, 1990.

[47] Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered subgraph
aggregation networks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[48] Kaspar Riesen and Horst Bunke. IAM graph database repository for graph based pattern recognition
and machine learning. In Niels da Vitoria Lobo, Takis Kasparis, Fabio Roli, James Tin-Yau Kwok,
Michael Georgiopoulos, Georgios C. Anagnostopoulos, and Marco Loog, editors, Structural, Syntactic,
and Statistical Pattern Recognition, Joint IAPR International Workshop, SSPR & SPR 2008, Orlando, USA,
December 4-6, 2008. Proceedings, volume 5342 of Lecture Notes in Computer Science, pages 287–297.
Springer, 2008.

[49] Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078,
2020.

[50] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural networks.
In Proceedings of the SIAM International Conference on Data Mining (SDM), pages 333–341. SIAM,
2021.

[51] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In
International Conference on Machine Learning (ICML), pages 9323–9332. PMLR, 2021.

[52] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik-chervonenkis dimension of
graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

[53] Francesc Serratosa. Redefining the graph edit distance. SN Computer Science, 2(6):438, Aug 2021.

[54] Han Shao, Omar Montasser, and Avrim Blum. A theory of pac learnability under transformation invariances.
In Advances in Neural Information Processing Systems (NeurIPS), volume 35, pages 13989–14001, 2022.

[55] Sandeep Singh, Kumardeep Chaudhary, Sandeep Kumar Dhanda, Sherry Bhalla, Salman Sadullah Usmani,
Ankur Gautam, Abhishek Tuknait, Piyush Agrawal, Deepika Mathur, and Gajendra PS Raghava. Satpdb: a
database of structurally annotated therapeutic peptides. Nucleic acids research, 44(D1):D1119–D1126,
2016.

[56] Vladimir M Tikhomirov. ε-entropy and ε-capacity of sets in functional spaces. Selected Works of AN
Kolmogorov: Volume III: Information Theory and the Theory of Algorithms, pages 86–170, 1993.

[57] G. Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2):253–264, 1991.

[58] Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler-lehman graph kernels. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[59] Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound retrieval and
classification. In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM), pages
678–689. IEEE Computer Society, 2006.

13

[60] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for
more powerful graph neural networks. In International Conference on Learning Representations (ICLR),
2021.

[61] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which
appears therein. 1968.

[62] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In International Conference on Learning Representations (ICLR), 2018.

[63] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S Yu. Mining significant graph patterns by leap search. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 433–444,
2008.

[64] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Longbing Cao, Chengqi Zhang,
Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors, Proceedings
of the ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages 1365–1374.
ACM, 2015.

[65] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness hierarchy
for subgraph gnns via subgraph weisfeiler-lehman tests. In International Conference on Machine Learning
(ICML), 2023.

[66] Sicheng Zhu, Bang An, and Furong Huang. Understanding the generalization benefit of model invariance
from a data perspective. In Advances in Neural Information Processing Systems (NeurIPS), volume 34,
pages 4328–4341, 2021.

14

A Additional details

A.1 Expressive graph neural networks

In [62] it was shown that there exist injective functions for fagg, fupd and the graph-level readout
function that lead to GNNs that are provably as expressive as color refinement.

An example of such functions that leads to models that are provably as expressive as color refinement
[40], denoting ∥ as concatenation, is

hk
v = mlp

(
hk−1
v

∥∥∥ ∑
u∈N (v)

hk−1
u

)
∈ Rdk hG = mlp

(∑
v∈VG

hK
v

)
∈ [0, 1].

In fact, provided that different node labels are encoded to linearly independent h0
v’s, even the following

simpler architecture, denoting with σ a nonlinear function such as ReLU, is as expressive as color
refinement [40]:

hk
v = σ

(
W k

1 h
k−1
v +W k

2

∑
u∈N (v)

hk−1
u

)
∈ Rdk hG = mlp

(∑
v∈VG

hK
v

)
∈ [0, 1].

A.2 Tinhofer algorithm

The Tinhofer algorithm [57, 4] returns an ordering of the nodes of a graph. In particular, it works as
follows.

1. Run color refinement on G and obtain the stable color partition P(G).

2. Given the partition P(G)

• If all nodes belong to a singleton color class, return the ordering of the nodes based on
the lexicographic order of their colors.

• Else, pick the color class with at least two nodes with the lexicographically smallest
color. Individualize one arbitrary node in such class by assigning it the smallest unused
color. Then, go to step 1.

Clearly, the algorithm will perform at most |VG| individualization steps. In fact, for several classes of
graphs a constant number I of individualizations suffices [19]. Therefore, the algorithm can run in
polynomial time.

In fact, the Tinhofer algorithm can be generalized to the Individualization-Refinement scheme [19, 3],
where the refinement operation and the selection of the nodes to be individualized can be more
general than the ones used in Tinhofer.

Computing a canonical stable partition on a graph G can be done in O((|VG|+ |EG|) log |VG|) [7,
Theorem 9]. Moreover, the Tinhofer algorithm can also be implemented so that it takes O((|VG|+
|EG|) log |VG|) time [7, Theorem 10].

B Limitations

This paper provides sample complexity results for graph neural networks with relabeling schemes,
but nonetheless leaves several research directions open. First, most individualization schemes benefit
from resampling at random the graph individualizations at each epoch, effectively performing data
augmentation. Studying the theoretical properties of such techniques would be a major step forward
in understanding the practical performance of GNNs with individualization schemes. Secondly, our
results on covering numbers are based on the strong assumption of Lipschitzness of GNN models
with respect to some metric on graphs. Alleviating such assumptions would yield stronger theoretical
results. We hope that these open questions will foster new research efforts in this field.

15

C Definitions and Lemmas

In this section, we provide formal definitions and lemmas, which were only informally described in
the main paper.

C.1 Definitions

Definition 3. Let X be a set and S = (x1, . . . , xn) a sample of n elements from X . Let F ⊆ {f :
X −→ [0, 1]} be a family of functions. Let also σi, i = 1, . . . , n be independent and identically
distributed Rademacher random variables, i.e. taking value 1 or −1 with probability 1/2. The
empirical Rademacher complexity is the quantity

R̂S(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
where Eσ denotes the expectation taken only with respect to the σi’s, conditionally on the sample S.

C.2 Lemmas from Section 4.1

Lemma 3. Let RNI be the RNI individualization scheme [50] with random noise taking values in C
and G a graph with n nodes. Then |RNI(G)/ ≃ | = O(|C|n/Aut(G)). If G is the set of of unlabeled
graphs with n nodes, then |RNI(G)/ ≃ | = Θ(|C|

n

n! 2
(n2)).

Proof. In line with the analysis in the original paper, we suppose that the random noise, selected
via ω, takes values in a finite set C. Each node of a graph G can take |C| values. Therefore there are
O(|C|n) different labelings of the graph. To obtain the number of unordered graphs, we divide by
the number of automorphisms of G. Moreover, the set G of unlabeled graphs with n nodes contains
Θ(1

n!2
(n2)) unordered graphs. Intuitively, is obtained from the fact that for each of the

(
n
2

)
pairs of

nodes one can either have an edge or not, and by then dividing by the number of node permutations.
Formally, this is obtained via Polya’s enumeration [26]. A fraction of 1− o(1) of unordered graphs
only have the trivial automorphism [26]. Therefore, we have the claim by summing a contribution of
O(|C|n) over all such graphs.

Lemma 4. Let RP be the RP individualization scheme [41] and G a graph with partitioning
{V1, . . . , VC} of the nodes based on their labels. Then |RP(G)/ ≃ | = (

∏C
c=1 |Vc|!)/Aut(G). If G

is the set of of unlabeled graphs with n nodes, then |RP(G)/ ≃ | = Θ(2(
n
2)).

Proof. Each partition Vi can take |Vi|! different orderings, for a total of
∏C

c=1 |Vc|! different labelings
of the graph. To obtain the number of unordered graphs, we divide by the number of automorphisms
of G. Moreover, the set G contains Θ(1

n!2
(n2)) unordered graphs, and a fraction of 1− o(1) of those

only have the trivial automorphism [26]. Therefore, we have the claim by summing a contribution of
Θ(n!), i.e., the number of possible different labelings of each graph, over all such graphs.

Lemma 5. Let Tinhofer be the Tinhofer individualization scheme and G a graph with partitioning
{V1, . . . , VC} of the nodes based on their labels. Let the algorithm perform at most (i.e, for any
choice of ω) I individualization iterations on graph G, let {V1, . . . , VC} be a partitioning of the
nodes of G based on their labels and let R = maxc |Vc|. Then we have that |Tinhofer(G)/ ≃ | ≤
RI/Aut(G) ≤ nI/Aut(G).

Proof. After each individualization and color refinement iteration, the color class partition of the
nodes of G is a refinement of the partitioning {V1, . . . , VC} of the nodes of G based on their labels. At
each individualization step, the algorithm can choose to individualize a node in the lexicographically-
smallest stable color class, which has at most R = maxc |Vc| nodes. Therefore we have at most
RI labelings of the graph and we divide by the number of automorphisms to obtain the number of
distinct unordered graphs. In particular |Tinhofer(G)| ≤ RI/Aut(G) ≤ nI/Aut(G).

16

u v

Figure 4: The gadgets P1 and P2 from Lemma 6

C.3 Lemmas from Section 4.2

Lemma 6. Let Id be the identity relabeling function. There exists a pattern P and pairs of graphs
G1 ̸≃ G2 such that P ∈ G1, P ̸∈ G2 and such that they cannot be assigned different outputs by
EGONNId

∆P
.

Proof. The graphs P1 and P2 depicted in Figure 4 are non-isomorphic. Let the pattern of interest
be P = P1. Then ∆P = 2. Consider a graph G. Let G1 be the graph obtained by connecting all
nodes of G to the node u of P1 and G2 by connecting all the nodes of G to node v of P2, making
sure to select G such that P ̸∈ G2. Meanwhile, we have that P ∈ G1 by construction.. Then
for any ∆P -ego-net E1 of G1 there is a ∆P -ego-net E2 of G2 such that E1 ≃WL E2. Therefore,
EGONNId

∆P
will assign the same outputs to both G1 and G2.

C.4 Lemmas from Section 4.3

Lemma 7 (Pollard’s bound [46]). Let X be a finite set and F ⊆ {f : X → [0, 1]}. Consider the
pseudometric on F defined as ∥f1 − f2∥1 = 1/|X|

∑
x∈X |f1(x)− f2(x)|. Then

R̂X(F) ≤ inf
α>0

(
α+

√
2 logN (F , α, ∥ · ∥1)/|X|

)
.

Proof. Let C ⊂ {f : X → [0, 1]} be an α-cover of (F , ∥ · ∥1) of size N (F , α, ∥ · ∥1). Let also
cf ∈ C be such that ∥f − cf∥1 ≤ α. Then

R̂X(F) = E

sup
f∈F

1

|X|
∑
xi∈X

σif(xi)

 ≤

≤ E

sup
f∈F

1

|X|
∑
xi∈X

σi(f(xi)− cf (xi))

+ E

sup
f∈F

1

|X|
∑
xi∈X

σicf (xi)

 ≤

≤ α+ E

sup
c∈C

1

|X|
∑
xi∈X

σic(xi)

 ≤ α+ sup
c∈C

√
2 log |C|

|X| ,

where the last inequality follows from Massart lemma and the fact that the functions in C take values
in [0, 1].

D Missing proofs

In this section, we provide the proofs that were omitted from the main paper.

D.1 Proofs from Section 3

Proposition 1. Let f : G → {0, 1} be an invariant function and k ≥ 1. Then there exists θ ∈ Θ such
that GNNbin

k,θ(G) = f(G) for every (k − 1)-weakly individualized graph G ∈ G.

17

Proof. We consider the class of GNNs described in Section A.1, with depth K = maxG∈G |VG| and
large enough width [40]. Let the initial node embedding h0

v of v ∈ VG be a one-hot encoding for
its label LG(v), for any G ∈ G. Applying [40, Theorem 2] to the disjoint union of the graphs in
G, we have that there exists a function GNNk−1,θ ∈ GNNk−1 can simulate k − 1 steps of color
refinement for all graphs in G. Therefore, from the definition of (k − 1)-weakly individualized graph,
after (k − 1) message passing layers, all the node embeddings hk−1

v ∈ {−1, 1}d of nodes v ∈ VG

computed by GNNk−1,θ will be distinct, that is, the graph is individualized. Then this individualized
graph is WL amenable and 1 color refinement iteration suffices to identify the graph [4]. Then by [36,
Proposition 9], any invariant binary function on G can be realized.

D.2 Proofs from Section 4.1

Theorem 1. Let Rel : G × Ω → G′ be a relabeling function. Then VC
(
G × Ω,GNNbin

K ◦ Rel
)
=

|Rel(G)/ ≃WL |. If Rel is an individualization scheme, |Rel(G)/ ≃WL | = |Rel(G)/ ≃ |.

Proof. We consider the class of GNNs described in Section A.1, with depth K = maxG∈G |VG| and
large enough width [40]. Let the initial node embedding h0

v of v ∈ VG be a one-hot encoding for its
label LG(v), for any G ∈ G.

Let d := |Rel(G)/ ≃WL |. We prove the upper bound. Let by contradiction S be a (multi)set of
d+ 1 elements that can be shattered. Then by pigeon hole, two elements (G,ω), (G′, ω′) ∈ S must
be mapped by Rel to graphs belonging to the same WL-isomorphism class. Then, by equivalence of
GNNbin

K to color refinement [40, Theorem 1], these two graphs are always mapped to the same value
by GNNbin

K ◦ Rel. Then, there is no set of d+ 1 elements that can be shattered.

We then prove the lower bound. Let S′ be a set of d graphs that are representatives of the WL-
isomorphism classes contained in Rel(G)/ ≃WL. For G′ ∈ S′, let Rel−1(G′) = (G,ω) ∈ G × Ω
such that Rel(G,ω) = G′. Note that, since Rel is injective in the first argument, the graph G is
unique. On the other hand, ω may not be unique. We take any such ω with a deterministic rule (e.g.
the minumum). Moreover, since we restrict the domain to S′, this inverse always exists. Let then
S = {Rel−1(G′) : G′ ∈ S′}. We have that |S| = |S′| = d and it can be shattered by Proposition 1 .

When the graphs in Rel(G) are individualized, WL-isomorphism class correspond to isomorphism
classes [4], which proves the second claim.

Lemma 1. Let G be a set of WL-amenable graphs. Then VC
(
G × Ω,GNNbin

K ◦ Tinhofer
)

=

|G/ ≃ |.

Proof. Tinhofer algorithm yields a canonical ordering on WL amenable graphs [4], therefore we
have |Tinhofer(G)| = 1, ∀G ∈ G. Then, by Theorem 1 we have the claim.

D.3 Proofs from Section 4.2

Theorem 2. Let f : G → {0, 1} be f(G) = 1 [P ∈ G]. Let Rel be an individualization scheme.
Then there exists θ ∈ Θ such that EGONNRel

∆P,θ
(G) = f(G) for every G ∈ G.

Proof. By Proposition 1 we have that GNN1 ◦ Rel is universally expressive. In particular, it can
take value 1 if P ∈ EGOv,G,∆P

and 0 otherwise for each possible EGOv,G,∆P
. Then hG =

maxv∈VG
hego
v = 1 if and only if P ∈ G.

Theorem 3. Let G∆ be the set of ego-nets of radius ∆ of the graphs of G. Then VC(G ×
Ω,EGONNRel

∆) ≤ |Rel(G∆)/ ≃ |.

Proof. We prove the upper bound. Suppose by contradiction that there is a set G1, . . . Gd+1 of
d+ 1 graphs that can be shattered. In particular, each graph Gi must have an ego net Hi ∈ Gi that
does not appear in any other graph, i.e. Hi ̸∈ Gj ,∀j ̸= i. Indeed, suppose that for each ego-net
Hv,i = EGOv,Gi,∆ of graph Gi, we have that Hv,i ∈ Gj for some j ̸= i. Then to be able to assign
hGi

= 1, it must hold that GNN1,θ(Hv,i) = 1 for some v. But since Hv,i ∈ Gj , we have that

18

hGj = 1 and the assignment of G1 to 1 and all the other graphs to 0 cannot be achieved. Therefore,
each graph Gi must have an ego-net Hi ∈ Gi that does not appear in any other graph. Then there
must be d+ 1 distinct ego-nets, which is a contradiction.

Remark 1. In fact, there are sets of graphs G and radii ∆ for which the VC bound above is tight. This
lower bound can be proven by taking a datasets of d star graphs with maximum degrees 2, . . . d+ 1
and ∆ = 1. Each graph has an ego-net that is unique to the graph, i.e., the graph itself, so the set
can be shattered. Moreover, |Rel(G∆)/ ≃ | = d+ 1.

D.4 Proofs from Section 4.3

Lemma 2. Let (X,dist) be a pseudometric space and S ⊆ X a finite subset. Let F ⊆ {f : S →
[0, 1]} be a set of C-Lipschitz functions. Let p, q ∈ N ∪ {+∞}, q ≥ p ≥ 1. Then

logN (F , α, ∥ · ∥p) ≤ log(1/α+ 1) · N (q)
(
S,

α

2C
,dist

)
.

Proof. We construct a covering of the space F . Let p ̸= ∞. Let Sc = {x1, . . . xr} a p-norm
α/2C-covering of (S,dist) of size r = N (p)

(
S, α

2C ,dist
)
. For a point x ∈ S, let its center be

c(s) = argminxi∈Sc
dist(x, xi). Recall that a p-norm ϵ-covering C of a finite set S is such that(

1/|S|
∑

x∈S dist(x, c(x))p
)1/p ≤ ϵ.

Let F̄ =
{
f̄ : Sc → {(k + 1/2)α : k = 0, . . . , ⌊α−1⌋}

}
. For f̄i ∈ F̄ , we construct an associated

function f̂i : S → {(k + 1/2)α : k = 0, . . . , ⌊α−1⌋} such that f̂i(x) = f̄i(c(x)),∀x ∈ S. Then let
F̂ be the set of maps {f̂ : f̄ ∈ F̄}. We have that |F̄ | ≤ (1/α + 1)r, as the functions can take up
to (1/α+ 1) values over r points, and |F̄ | = |F̂ |. We show that F̂ is indeed an α-covering of F in
norm ∥ · ∥p.

Let f ∈ F . Let f̂ ∈ F̂ be such that ∀x ∈ Sc, |f̂(x) − f(x)| ≤ α/2, which always exists by
construction. Then,

∥f − f̂∥p =

(
1/S
∑
x∈S

|f(x)− f̂(x)|p
)1/p

≤

≤

(
1/S
∑
x∈S

(
|f(c(x))− f̂(c(x))|+ |f(x)− f(c(x))|+|f̂(x)− f̂(c(x))|

)p)1/p

≤

(
1/S
∑
x∈S

(α/2 + Cdist(x, c(x))+0)p
)1/p

≤

(
αp/2 + Cp2p−1 · 1/S

∑
x∈S

dist(x, c(x))p
)1/p

≤
(
αp/2 + Cp2p−1 · (α/2C)p

)1/p
= α.

In particular, we used that fact that (a+ b)p ≤ 2p−1(ap + bp) for p ≥ 1, which follows from Jensen’s
inequality with f(x) = xp.

For p = ∞, we have that Sc is a α/2C-covering of (S, dist) of size r = N
(
S, α

2C ,dist
)
, and

maxx∈S dist(x, c(x)) ≤ α/2C. We build F̂ as before. We then have

∥f − f̂∥∞ = max
x∈S

|f(x)− f̂(x)| ≤ max
x∈S

|f(c(x))− f̂(c(x))|+ |f(x)− f(c(x))|+ |f̂(x)− f̂(c(x))| ≤

≤ α/2 + Cdist(x, c(x)) + 0 ≤ α.

Finally, noting that N (q)
(
S, α

2C ,dist
)
≥ N (p)

(
S, α

2C ,dist
)

for each q ≥ p, we have the claim.

Theorem 4. Let Fℓ be the set of margin losses for predictors F := GNNK ◦ Rel. Let Rel(D) =
{G′ = Rel(G,ω) : (G,ω, y) ∈ D} be the graphs of the dataset after the relabeling, endowed with
a pseudometric dist. Let functions in GNNK be C-Lipschitz continuous with respect to dist. Then

R̂D(Fℓ) ≤ inf
α>0

(
α+ |D|−1/2

√
2 log(1/α+ 1) · 4N (1)

(
Gn,L′ ,

αγ

4C
,dist

))
.

19

Proof. We have that R̂D(Fℓ) ≤ infα>0

(
α+

√
2 logN (Fℓ|D, α, ∥ · ∥1)/|D|

)
by Lemma 7. We

bound the covering number of the loss functions.

Let Rel(D) = {Rel(G,ω) : (G,ω, y) ∈ D} be the graphs of the dataset after the relabel-
ing, endowed with a pseudometric dist. We endow D with a pseudometric distD defined as
dist ((G,ω, y), (G′, ω′, y′)) = distD (Rel(G,ω),Rel(G′, ω′)) if y = y′ and +∞ otherwise. More-
over, if functions in GNNK are C-Lipschitz on Rel(D) then the functions in F are C-Lipschitz on
D by construction. Then, functions ℓ(f(x), y) ∈ Fℓ are 2C/γ-Lipschitz on D.

Let also r be the 1-norm covering number of Rel(D) and S the set of r points that cover the set.
Then we can obtain a cover of (D,distD) of size 2r by taking the points {(x, 1), (x, 0) : x ∈ S}.

We can then apply Lemma 2 and obtain that

logN (Fℓ|D, α, ∥ · ∥1) ≤ log(1/α+ 1) · 2N (q)
(
Rel(D),

αγ

4C
,dist

)
.

Plugging this result in the first formula, we obtain the claim.

E Experimental Setups and Datasets

In this section, we provide detailed descriptions to the experimental setups and datasets used in
Sect. 5.

E.1 Computing infrastructure

The experiments are run on a cluster equipped with Intel(R) Xeon(R) Silver 4116 CPUs and NVIDIA
H100 GPUs. The code is based on PyTorch and PyTorch-Geometric.

E.2 Datasets

In the following, we describe and discuss the datasets and their properties. Real-world datasets (i.e.,
NCI1, IMDB-b, MCF-7, Mutagenicity, COLLAB-b, and Peptides-func) were provided by [30, 37]
and [17]. A summary of all datasets and their properties can be found in Tab. 3.

CSL We include three circular skip link (CSL) datasets generated analogously to the setup consid-
ered in [41]. A CSL graph is a 4-regular graph Gn,s with n > 4 and 1 < s < n/2 which consists
of a cycle of length n on which all pairs of nodes at distance s on this cycle are connected by an
additional edge. For a given n, we generate a dataset by considering the graphs {Gn,s : s ∈ S}
where S is the set of all skip values leading to non-isomorphic graphs. In particular, we consider
graph sizes n ∈ {17, 41, 83} for which there exist 4, 10, and 20 non-isomorphic graphs, respectively.
We refer to the datasets as CSL-17, CSL-41, and CSL-83. Since classification tasks in this work are
generally restricted to binary classification, we assign the graphs of a CSL dataset evenly into two
classes. The classification task is then to assign graphs to their binary skip link class. This setup is
commonly used as a benchmark for testing the expressive power of a model since 4-regular graphs
cannot be distinguished by the 1-WL test.

3-Reg 3-Reg are datasets consisting of 3-regular graphs which are common types of expressivity
benchmark datasets. For each n ∈ {16, 32, 64}, we generated a dataset containing 10 randomly
generated 3-regular graphs of size n. We refer to these three datasets as 3-reg-16, 3-reg-32, and
3-reg-64. We evenly distributed the 10 graphs into two groups such that the binary classification task
is to identify the group that a graph belongs to.

Cycles-pin As an example dataset containing k-weakly individualized graphs, we generated 10
graphs of size 33. Each such graph Gi consists of a pair of cycles of sizes 16 − i and 16 + i for
i ∈ {0, . . . , 9}. We then append a pin, i.e., an additional node, to one of the nodes in the smaller of
the two cycles. We evenly distributed the 10 graphs into two groups. The binary classification task is
then to identify the group that a graph belongs to.

20

Table 3: Overview of real-world and synthetic graph dataset properties. Datasets marked (*) are
composed of subsets of the original datasets. The column “WL number” denotes the minimum
number of WL iterations necessary to distinguish all graphs. The entry (-) in this column indicates
that this number does not exist, i.e., not all graphs can be distinguished by color refinement.

Name # Graphs Classes Avg. # nodes Avg. # edges Node labels WL number
COLLAB-b 5000 2 74.49 2457.78 − 1

IMDB-b 1000 2 19.77 96.53 − 1

MCF-7* 14 2 45.86 50.29 + 6

Mutagenicity 4337 2 30.32 30.77 + 3

NCI1 4110 2 29.87 32.30 + 3

Peptites-func* 15 2 169.47 172.93 + 6

3-reg-16 10 2 16 24 − −
3-reg-32 10 2 32 48 − −
3-reg-64 10 2 64 96 − −
CSL-17 4 2 17 34 − −
CSL-41 10 2 41 82 − −
CSL-83 20 2 83 166 − −
CSL-pin 10 2 42 83 − 5

Cycles-pin 10 2 33 33 − 9

CSL-pin Analogously to the Cycles-pin dataset, we generate a dataset called CSL-pin by appending
a pin, i.e. an additional node, to one of the nodes in every graph of the CSL-41 datasets described
above. Adding the pins turns the graphs into k-weakly individualized graphs.

COLLAB-b [64] COLLAB consists of 5,000 graphs extracted from three scientific collaboration
networks. We merge two of the three classes (class 2 and 3) to make the labels binary. Each graph
corresponds to an ego-network which represents the collaboration network of a particular researcher.
The graph is then annotated by the field of this researcher such that the classification task consists of
assigning an ego-network to the research field.

IMDB-b [64] IMDB-b includes 1,000 ego-network graphs obtained from movie collaboration
networks. In such graphs, nodes represent actors and edges represent their co-appearance in a movie.
An ego-network graph is then classified by the genre of the movie collaboration network it was
extracted from.

MCF-7 From the original MCF-7 [63, 37] dataset, we extracted a maximal set of graphs (up to
isomorphism) such that no graph can be distinguished from all others by the Weisfeiler-Lehman
(WL) test after four iterations. We divided these 14 graphs into two groups such that the binary
classification tasks, i.e. assigning a graph to its group, requires at least five color refinement iterations
to improve over random guessing and six iterations to perfectly classify all graphs.

Mutagenicity [29, 48] Mutagenicity is a binary classification benchmark dataset consisting of
4,337 molecular graphs. The classification task is to predict the mutagenic property of a molecule.

NCI1 [59] NCI1 is a binary dataset containing 4,110 molecular compounds, each categorized based
on their ability to inhibit the growth of a non-small cell lung cancer cell line.

Peptides-func From the original Peptides-func [55, 17] dataset, we extracted a maximal set of
graphs (up to isomorphism) such that no graph can be distinguished from all others by the Weisfeiler-
Lehman (WL) test after four iterations. We divided these 15 graphs into two groups such that the
binary classification tasks, i.e. assigning a graph to its group, requires at least five color refinement
iterations to improve over random guessing and six iterations to perfectly classify all graphs.

21

E.3 Experimental setup

In the following, we give detailed descriptions of the experimental setups of our evaluation section in
the main paper.

E.3.1 Expressivity

For the expressivity evaluation, we considered the datasets Cycles-pin, CSL-pin, MCF-7, and
Peptides-func which are described in detail in Sect. E.2. The experiments compare the capability
of ordinary GNNs with that of a 1-layer GNN that is run on top of the Tinhofer individualization to
learn to distinguish WL-distinguishable graphs. For each dataset, we provide the training accuracies
obtained by a GNNK , where K is the minimum number of color refinement iterations necessary
to distinguish all graphs in the respective dataset, as well as the training accuracies obtained by
GNN1 ◦ Tinhofer. We use, as the GNNK architecture, the one described in Section A.1, with
K MLP-based message passing layers. In fact, the GNNs based on linear layers for message
passing, despite their theoretical equivalence to color refinement, were unable to converge, further
strengthening our claims.

The plotted results in Fig. 2 show the accuracy over 1000 epochs where we depict the average over a
total of 5 runs in bold and the individual runs faded out. We fixed the embedding dimension to 256
and use an Adam optimizer with a learning rate of 0.0001. Due to instability in the learning process,
we provide smoothened learning curves for better clarity of the results.

E.3.2 VC dimension

To investigate the generalization bounds based on the VC-dimension results, we compare the indi-
vidualization methods RNI [50], RP [41], and Tinhofer. The experiments are conducted on the CSL
and 3-Reg datasets of varying numbers of nodes. To investigate the generalization performance, we
generate as the training set 1, 10, 100, and 1000 permutations for each graph in the respective dataset
and test on 1000 permuted copies. We report the performance in terms of the difference between the
train and test accuracy. Particularly, for every dataset, we consider the generalization gap achieved at
the last epoch with a perfect training accuracy score over a total of 1000 epochs. We conduct a total
of 5 runs and plot the mean as well as the standard deviations over these runs.

In all cases, we used the GNNK architecture described in Section A.1, with K = 4 linear-layer-based
message passing layers. We fix the embedding dimension to 256 and use an Adam optimizer with a
learning rate of 0.0001.

E.3.3 Substructure identification

For the substructure identification task , we generate 1000 3-regular graphs of order 30 for each of
the task using NETWORKX. In particular, 500 graphs contain the pattern P and 500 do not. We split
the dataset in train and test by assigning 90% of the graphs to the train set at random.

We use, as the GNNK architecture, the one described in Section A.1, with K linear-layer-based
message passing layers. In particular, K is set to 2 for C3, C4,K2,3 and to 3 for C5, as these are the
minimum number of layers for the message passing to fully cover these patterns.

We use the same architecture GNN for the EGONN∆P
model on each of the ∆P -ego-nets, with 1

layer for the individualized versions and ∆P layers for the non-individualized version. In particular,
∆P is 1 for C3 and 2 for C4, C5,K2,3. Moreover, we replace the max aggregation with a softmax, in
order to allow the gradients to be propagated more easily, as we observe that this allows for an easier
convergence. We fix dimension of the GNN embeddings to 256. We use the Adam optimizer [31]
with learning rate 0.001 and batch size 256.

The model is trained for 1000 epochs. The epoch at which the accuracies are reported is selected as
the one with highest training accuracy, with ties broken by the lowest training loss. Note that since
the focus of this paper is on the (worst-case) generalization gap, the best epoch is not chosen using a
validation dataset, as it should be done in practice.

We report the mean and 1-sigma error bars over 5 runs, run on the same splits but with different seeds.

22

0.0

0.2

0.4

0.6

0.8

None

(1)(X, , dist)
(X, , dist)

RP

(1)(X, , dist)
(X, , dist)

RNI

(1)(X, , dist)
(X, , dist)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log10 ()

0.0

0.2

0.4

0.6

0.8

Tinhofer

(1)(X, , dist)
(X, , dist)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log10 ()

TinhoferW

(1)(X, , dist)
(X, , dist)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log10 ()

LPE

(1)(X, , dist)
(X, , dist)

Figure 5: Covering numbers for the NCI dataset

E.3.4 Covering numbers

For the section on covering numbers, we used four real world datasets for binary classification, as
described in Section E.2.

As a metric on the relabeled graphs, we use the Wasserstein distance between the continuous WL
embeddings given by [58], which we call WWL distance. In particular, we choose KWL = 5 WL
iterations to obtain the embeddings, ensuring that KWL is at leas as large as the message passing
iterations used in the GNN models. This gives the WWL distance the ability to distinguish all the
graphs that the GNNs can distinguish, which is needed to ensure Lipschitzness. In fact, this property
cannot be guaranteed, as there are graphs that are not WL-isomorphic but that have WWL distance 0.
To mitigate this issue, we assign one-hot encodings with degree centralities to the unlabeled graphs.
We then compute N̂ = N (1)(Rel(D), ϵ,dist)/|D| as a proxy for the sample complexity using the
WWL distance and ϵ = 0.05. In fact, the covering number we report is an approximation (which
is also an upper bound) computed by running a k-median clustering algorithm and selecting the
minimum k for which the objective function is less than ϵ.

We use, as the GNNK architecture, the one described in Section A.1, with K = 2, 5 linear-layer-
based message passing layers. We fix dimension of the GNN embeddings to 128. We use the Adam
optimizer [31] with learning rate 0.005 and batch size 256.

The model is trained for 1000 epochs. The epoch at which the accuracies are reported is selected as
the one with highest training accuracy, with ties broken by the lowest training loss. Note that since
the focus of this paper is on the (worst-case) generalization gap, the best epoch is not chosen using a
validation dataset, as it should be done in practice. We split the dataset in train and test by assigning
90% of the graphs to the test set at random for each run.

We report the mean and 1-sigma error bars for the accuracies over 5 runs with different seeds. We
report the covering number just for the first seed due to the high computational costs involved with
the calculation.

F Additional results on covering numbers

In this section, we report additional results on the covering numbers on real world datasets. In
particular, Figures 5, 6, 7 and 8 report the covering number curves for the NCI1, Mutagenicity,
IMDB-b and COLLAB-b datasets, respectively. The results are obtained from the train-test splits of
the first run, as described in Section E.3.

We plot both N̂ = N (1)(Rel(D), ϵ,dist)/|D|, which depends on the 1-norm covering number, and
N (Rel(D), ϵ,dist)/|D|, which depends on the (∞-norm) covering number of the relabeled dataset.
We observe that the 1-norm covering numbers are significantly lower than the ∞-norm covering
numbers across all scales and datasets, providing experimental evidence of the importance of the
results of Lemma 2.

23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
None

(1)(X, , dist)
(X, , dist)

RP

(1)(X, , dist)
(X, , dist)

RNI

(1)(X, , dist)
(X, , dist)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
log10 ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Tinhofer

(1)(X, , dist)
(X, , dist)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
log10 ()

TinhoferW

(1)(X, , dist)
(X, , dist)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
log10 ()

LPE

(1)(X, , dist)
(X, , dist)

Figure 6: Covering numbers for the Mutagenicity dataset

0.0

0.2

0.4

0.6

0.8

None

(1)(X, , dist)
(X, , dist)

RP

(1)(X, , dist)
(X, , dist)

RNI

(1)(X, , dist)
(X, , dist)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
log10 ()

0.0

0.2

0.4

0.6

0.8

Tinhofer

(1)(X, , dist)
(X, , dist)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
log10 ()

TinhoferW

(1)(X, , dist)
(X, , dist)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
log10 ()

LPE

(1)(X, , dist)
(X, , dist)

Figure 7: Covering numbers for the IMDB-b dataset

0.0

0.2

0.4

0.6

0.8

None

(1)(X, , dist)
(X, , dist)

RP

(1)(X, , dist)
(X, , dist)

RNI

(1)(X, , dist)
(X, , dist)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
log10 ()

0.0

0.2

0.4

0.6

0.8

Tinhofer

(1)(X, , dist)
(X, , dist)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
log10 ()

TinhoferW

(1)(X, , dist)
(X, , dist)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
log10 ()

LPE

(1)(X, , dist)
(X, , dist)

Figure 8: Covering numbers for the COLLAB-b dataset

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and in the introduction are addressed as follows.
Section 3 addresses the expressivity of shallow GNNs with individualization schemes.
Section 4.1 and Section 4.2 address the VC dimension bounds. Section 4.3 addresses the
covering number bounds. Section 5 reports the experimental evaluation.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the paper are discussed in the conclusions and more in detail
in Section B

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

25

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide all the proofs for our lemmas and theorems in Sections C and D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental setup is described in Section E. Moreover, our
code and data are publicly available at https://github.com/BorgwardtLab/
NodeIndividualizedGNNs to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

26

https://github.com/BorgwardtLab/NodeIndividualizedGNNs
https://github.com/BorgwardtLab/NodeIndividualizedGNNs

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and data are publicly available at https://github.com/
BorgwardtLab/NodeIndividualizedGNNs.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the details on the experimental setup in Section E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report all the performance figures as means and 1-sigma error bars, taken
over 5 runs, as described in Section E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

27

https://github.com/BorgwardtLab/NodeIndividualizedGNNs
https://github.com/BorgwardtLab/NodeIndividualizedGNNs
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computing infrastructure is described in Section E.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work is mostly theoretical and has no direct societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

28

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We describe and cite the original papers from which we take the datasets we
used in Section E.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

29

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces only simple synthetic datasets, which are released with
the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Related work

	Preliminaries
	The Weisfeiler–Leman and Tinhofer algorithms
	Graph neural networks

	Node individualization schemes
	Sample complexity bounds
	VC dimension
	Improved VC bounds for substructure identification
	Covering numbers

	Experimental evaluation
	Expressivity
	VC dimension
	Substructure identification
	Covering numbers

	Conclusion
	Additional details
	Expressive graph neural networks
	Tinhofer algorithm

	Limitations
	Definitions and Lemmas
	Definitions
	Lemmas from Section 4.1
	Lemmas from Section 4.2
	Lemmas from Section 4.3

	Missing proofs
	Proofs from Section 3
	Proofs from Section 4.1
	Proofs from Section 4.2
	Proofs from Section 4.3

	Experimental Setups and Datasets
	Computing infrastructure
	Datasets
	Experimental setup
	Expressivity
	VC dimension
	Substructure identification
	Covering numbers

	Additional results on covering numbers

