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Abstract

Synthetic data is widely used in speech recog-001
nition due to the availability of text-to-speech002
models, which facilitate adapting models to pre-003
viously unseen text domains. However, existing004
methods suffer in performance when they fine-005
tune an automatic speech recognition (ASR)006
model on synthetic data as they suffer from the007
distributional shift commonly referred to as the008
synthetic-to-real gap. In this paper, we find009
that task arithmetic is effective at mitigating010
this gap. Our proposed method, SYN2REAL011
task vector, shows an average improvement of012
10.03% improvement in word error rate over013
baselines on the SLURP dataset. Additionally,014
we show that an average of SYN2REAL task015
vectors, when we have real speeches from mul-016
tiple different domains, can further adapt the017
original ASR model to perform better on the018
target text domain.019

1 Introduction020

Existing automatic speech recognition (ASR) mod-021

els have been found to lack generalizability towards022

domains unseen during training (Bartelds et al.,023

2023; Radford et al., 2022; Sundar et al., 2023).024

Existing works, when adapting an ASR model to025

a previously unseen domain, often rely on syn-026

thetic speech data (Su et al., 2024; Bataev et al.,027

2023; Joshi and Singh, 2022; Zheng et al., 2021;028

Yuen et al., 2023; Yang et al., 2023) due to its029

ease of generation and availability. However, this030

approach often leads to performance degradation031

due to acoustic mismatches such as intonations,032

background noise, speaker accents, and environ-033

mental sound differences between synthetic and034

real speech (Su et al., 2024). This distributional035

shift is often referred to as the synthetic-to-real gap.036

This paper tackles this problem, particularly when037

adapting an ASR model from a source domain with038

text and real speech data to a new target domain039

with only text data.040

Figure 1: Overview of the SYN2REAL Task Vector
Approach. The pre-trained model is fine-tuned on
source domain synthetic and real speech data, sepa-
rately. The difference between their parameters forms
the SYN2REAL task vector. The SYN2REAL task vector
is then added to a model fine-tuned on target synthetic
data to overcome the synthetic-to-real gap.

Our idea is that paired synthetic speech and real 041

speech data within a single domain can guide the 042

adaptation of models trained on synthetic data to 043

perform better on real-world data in a new do- 044

main. Inspired by the new paradigm of editing 045

pre-trained neural networks by manipulating their 046

weights(Sung et al., 2023; Tam et al., 2024), we pro- 047

pose to bridge the synthetic-to-real gap using task 048

vectors (Huang et al., 2024; Bhardwaj et al., 2024). 049

A task vector is a representation that encodes the 050

difference between two tasks, allowing models to 051

perform arithmetic operations to transition from 052

one task to another. In this paper, we show that we 053

can apply simple arithmetic operations to bridge 054

the synthetic-to-real gap. 055

Taking inspiration from Ilharco et al. (2023), 056

we propose SYN2REAL task vector for synthetic- 057

to-real adaptation in ASR. Figure 1 provides an 058

overview of the SYN2REAL task vector approach. 059

The top row illustrates the process of fine-tuning 060

models on synthetic and real speech data separately 061

and then deriving the SYN2REAL task vector from 062
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the differences in their parameters. The bottom063

row demonstrates the application of this vector to a064

model fine-tuned on synthetic target domain data,065

resulting in an adapted model with improved perfor-066

mance by incorporating the acoustic characteristics067

of real speech.068

Empirically, we conduct comprehensive exper-069

iments and ablation studies to demonstrate the070

effectiveness of our approach. Applying the071

SYN2REAL task vector results in an average im-072

provement of 10.03% in word error rate (WER)073

for unseen target domains compared to the model074

before applying our method. Cosine similarity anal-075

ysis of task vectors generated by different TTS sys-076

tems confirms that SYN2REAL vectors effectively077

capture domain-specific acoustic information.078

2 Related Works079

ASR Text-only Domain Adaptation In the con-080

text of automatic speech recognition (ASR), "text-081

only" domain adaptation typically refers to scenar-082

ios where the target domain only provides text data083

for training or fine-tuning the models. Previous084

work has explored internal language models adap-085

tation that finetune language models in ene-to-end086

ASR models with CTC loss to improve the gen-087

eralizability (Chen et al., 2023; Sato et al., 2022;088

Vuong et al., 2023).089

The other direction is to adapt ASR models with090

synthetic speech. Zheng et al. (2021) develop a091

method that provides synthetic audio for out-of-092

vocabulary (OOV) words to boost recognition ac-093

curacy. Yang et al. (2023) works on personalize094

ASR with synthetic speech. Bataev et al. (2023) fo-095

cuses on developing a mel-spectrogram generator096

to improve ASR models.097

Task Arithmetic The concept of task vector is098

introduced in Ilharco et al. (2023). Task vectors are099

created by subtracting the weights of a fine-tuned100

model from those of its corresponding pre-trained101

model. Different task vectors derived from the102

same pre-trained models can then be adjusted and103

combined through these simple arithmetic opera-104

tions such as addition and subtraction to achieve105

multi-task learning (Zhang et al., 2023) and task106

forgetting (Daheim et al., 2023).107

Recently, task vectors have shown promise in108

natural language processing (NLP) (Huang et al.,109

2024; Daheim et al., 2023; Bhardwaj et al., 2024;110

Zhang et al., 2023). Daheim et al. 2023 used a task111

vector from a negatively fine-tuned model to miti-112

gate hallucinations. Zhang et al. (2023) proposed 113

combining parameter-efficient fine-tuning (PEFT) 114

modules (Hu et al., 2022; Liu et al., 2022) arith- 115

metically. Huang et al. (2024) obtained the Chat 116

Vector by subtracting the chat version of Llama 117

2 (Touvron et al., 2023) from its pre-trained ver- 118

sion, enhancing dialogue capabilities and safety. 119

Bhardwaj et al. (2024) introduced RESTA, adding 120

a safety vector to re-align safety for models fine- 121

tuned on downstream tasks. The application of task 122

vectors is relatively underexplored in ASR.Ramesh 123

et al. (2024) applied task arithmetic to ASR mod- 124

els and introduced a "task analogy" formulation, 125

improving performance on low-resource tasks us- 126

ing models trained on high-resource tasks. Un- 127

like Ramesh et al. (2024), we focus on using task 128

vector to mitigate the distributional shift between 129

real and synthetic data. 130

3 Methodology 131

In this work, we aim to adapt ASR models from 132

source domains with real speech and text data to a 133

new domain with only text data. More specifically, 134

we adapt ASR models using data synthesized from 135

off-the-shelf text-to-speech (TTS) models. How- 136

ever, ASR models often perform poorly due to 137

acoustic differences between synthetic data gen- 138

erated by TTS and real speech data. To overcome 139

this limitation, we introduce the SYN2REAL task 140

vector, a novel approach that bridges the gap be- 141

tween the acoustic characteristics of synthetic and 142

real speech data. 143

3.1 Problem Formulation 144

We assume a problem setting in which we have 145

two domains: a source domain Ds and a target 146

domain Dt. The source domain Ds consists of 147

paired text and speech samples, denoted as Ts and 148

Ss, respectively. The target domain Dt contains 149

only text data, denoted as Tt. This problem setting 150

is common as it is easy to generate synthetic text 151

data, whereas collecting paired real speech data is 152

labor-intensive. 153

3.2 SYN2REAL Task Vector 154

To adapt ASR models to a previously unseen do- 155

main, we employ a common methodology (Joshi 156

and Singh, 2022) that utilizes synthetic data gener- 157

ated from the target text Tt for model adaptation. 158

Previous work in task arithmetic has demon- 159

strated that vectors can encode distinct capabilities, 160
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Figure 2: Framework for SYN2REAL task vector
in Domain Adaptation for ASR. The framework il-
lustrates the process of creating the SYN2REAL task
vector by subtracting the parameter differences between
a model fine-tuned on synthetic speech (Source Syn-
thetic) and a model fine-tuned on real speech (Source
Real) from pretrained ASR (PASR). This task vector
is then applied to the target synthetic domain (Target
Synthetic) to improve ASR performance by bridging
the gap between synthetic and real speech data.

such as language or domain-specific features. We161

hypothesize that the differences in acoustic prop-162

erties between real and synthetic speech are also163

learnable and can be isolated through parameter164

arithmetic. Specifically, we assume that we have165

models fine-tuned on real and synthetic data from166

the source domain, denoted as θSreal and θSsyn re-167

spectively. The acoustic disparity between real and168

synthetic speech is quantified by subtracting the169

parameter sets of these models:170

τ = θSreal − θSsyn (1)171

Once the SYN2REAL vector τ is computed, we172

apply it to the model parameters fine-tuned on the173

synthetic data in the target domainθTsyn, thereby174

enhancing its adaptation to the target domain:175

θsyn_new = θTsyn + λτ (2)176

Where λ is the scaling factor of SYN2REAL task177

vector.178

This adjusted model, θsyn_new, is expected to179

perform more robustly in the target domain as it180

incorporates the acoustic characteristics of real181

speech, making it better suited for practical ASR182

tasks where real speech is present.183

SYN2REAL Ensemble In the previous discus-184

sion, we assume no access to domain labels such as185

’email’ or ’music’ from the source domain to em-186

ulate real-world situations better. All real speech187

data falls in the source domain. In scenarios where 188

we have access to data of multiple domains, an- 189

other approach is to create SYN2REAL task vectors 190

for each domain separately and then combine these 191

vectors. This method involves fine-tuning sepa- 192

rate ASR models on each individual source domain 193

to obtain domain-specific SYN2REAL task vectors, 194

which are then averaged to form a comprehensive 195

SYN2REAL task vector. 196

For each domain i in source domain S. The task 197

vector can be defined as: 198

τi = θSi
real − θSi

syn (3) 199

Where θSi
real and θSi

syn represent the model param- 200

eters fine-tuned on real and synthetic data for do- 201

main i respectively. Once the vector τi is computed, 202

we apply it to the model parameters fine-tuned on 203

synthetic target domain data θTsyn, thereby enhanc- 204

ing its adaptation to the target domain: 205

θsyn_new = θTsyn +
λ

|S|

|S|∑
i=0

τi (4) 206

Where |S| is the number of source domains, and λ 207

is the scaling factor for the task vector. 208

4 Experimental Setups 209

We design our experiments to answer the following 210

questions: Q1: What is the efficacy of SYN2REAL 211

task vector?, Q2: How does SYN2REAL task vec- 212

tor perform across different model sizes? Q3: Is 213

SYN2REAL task vector effective on ASR models 214

other than Whisper?, Q4: Can we form SYN2REAL 215

task vectors from other TTS models?, Q5: What 216

is the impact of the scaling factor λ? , Q6: Do 217

SYN2REAL task vectors obtained with the same 218

TTS have similar direction? 219

To answer the questions above and to mimic real- 220

world use cases, we first form a source domain ASR 221

model by compiling synthetic and real speech data 222

from various domains. We then adapt this source 223

domain ASR model to the target domain using data 224

synthesized by TTS models. SYN2REAL task vec- 225

tor is constructed by subtracting the weights of 226

an ASR model fine-tuned on synthetic data from 227

the weights of the same ASR model fine-tuned on 228

real data, both using the same pre-trained model 229

as the starting point. Our goal is to improve the 230

performance of an ASR model on the target do- 231

main without using any real speech from the target 232

domain. 233
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WER Target Domains Average
Methods Alarm Audio Calendar Cooking Datetime Email General IOT Lists Music News Play QA Recommendation Social Takeaway Transport Weather

Target Synthetic ASR
(Baseline)

16.13 14.69 22.88 14.26 47.16 16.23 27.16 13.67 15.49 23.51 21.31 21.61 24.04 17.54 29.57 21.25 18.91 15.45 21.16

+ SYN2REAL 15.65 13.68 22.64 14.36 40.29 16.15 16.87 12.49 15.22 17.03 21.25 20.77 23.88 15.19 21.87 18.03 16.90 20.38 19.04
Relative WER (%)↑ 2.95% 6.87 % 1.03 % -0.70 % 14.58 % 0.50 % 37.89 % 8.58 % 1.74 % 27.57 % 0.28 % 3.88 % 0.64 % 13.42 % 26.04 % 15.14 % 10.65 % -31.91% 10.03%

Table 1: Word Error Rate (WER) Performance Across Various Target Domains. Comparison of the baseline
Whisper model and the model enhanced with the SYN2REAL task vector generated by BARK. The SYN2REAL task
vector shows an average WER reduction of 10.03% across various target domains. Target Synthetic ASR refers to
the baseline that is finetuned on 17 domains (excluding the target domain) real+synthetic data followed by synthetic
data from the target domains in the SLURP dataset.

4.1 Dataset234

SLURP (Bastianelli et al., 2020) is a spoken lan-235

guage understanding dataset containing 16521 ut-236

terances of human commands towards a virtual237

agent, based on 200 pre-defined prompts such as238

“How would you ask for the time.” The utterances239

are categorized into 18 domains (e.g., email, cook-240

ing, etc.). In each of our experiments, we select241

one of these domains as the target domain and com-242

bine the remaining 17 domains to form the source243

domain.244

4.2 Text-to-Speech (TTS) Models245

In our experiments, we prepare synthetic speech246

using two off-the-shelf TTS models for text from247

the target domains.248

BARK BARK1 is a transformer-based (Vaswani249

et al., 2023) autoregressive model, it is pretrained250

with similar architecture as AudioLM (Borsos et al.,251

2023) and Vall-E (Wang et al., 2023). The input of252

BARK contains prompts, transcription, and users.253

In our experiments, we do not specify the speaker254

for BARK.255

Speech T5 Speech T5 (Ao et al., 2022) is a256

unified model framework that employs encoder-257

decoder pre-training for self-supervised speech/text258

representation learning. In our experiments, we259

randomly sample 5 speakers from 7931 speakers.260

4.3 ASR Models261

Whisper Whisper (Radford et al., 2022) is262

an encoder-decoder Transformer-based (Vaswani263

et al., 2023) model that supervised finetuned on264

680,000 hours of labeled audio data. All exper-265

iments are conducted using the Whisper small266

model, except for the ablation study, where we ex-267

periment with models of different sizes, including268

the base and tiny models, to validate our method.269

1https://github.com/suno-ai/bark

Wav2Vec2-Conformer Wav2Vec2 (Baevski 270

et al., 2020) is a framework for self-supervised 271

learning of speech representations that masks 272

latent representations of the raw waveform and 273

solves a contrastive task over quantized speech 274

representations. Wav2Vec2-Conformer (Wang 275

et al., 2022) (referred to as Wav2vec2 in the 276

experiments) follows the same architecture as 277

Wav2Vec2, but replaces the Attention-block with 278

a Conformer-block (Wang et al., 2020) is the 279

conformer (Gulati et al., 2020). We use the large 280

checkpoint2 with 618M parameters with rotary 281

position embeddings, pretrained and fine-tuned 282

on 960 hours of Librispeech (Panayotov et al., 283

2015) on 16kHz sampled speech audio to conduct 284

experiments 285

5 Results & Discussion 286

Here, we discuss our results in relation to the ques- 287

tions we set out to answer. 288

5.1 What is the efficacy of SYN2REAL task 289

vector? 290

To answer Q1, we apply our method by comparing 291

the word error rate (WER) across various target do- 292

mains. We select one of these domains as the target 293

domain and combine the remaining 17 domains to 294

form the source domain Table 1 presents the WER 295

results for both the baseline ASR model fine-tuned 296

on synthetic speech data and the model enhanced 297

with the SYN2REAL task vector. 298

The baseline model, fine-tuned solely on syn- 299

thetic data, exhibits varying WERs across different 300

target domains, with an average WER of 20.15. 301

This performance highlights the challenge of adapt- 302

ing ASR models to real-world data when trained 303

on synthetic speech, primarily due to acoustic mis- 304

matches. 305

By applying the SYN2REAL task vector, we ob- 306

serve a significant reduction in WER across most 307

2facebook/wav2vec2-conformer-rope-large-960h-ft
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target domains. The SYN2REAL-enhanced model308

achieves an average WER of 19.04, representing an309

average relative WER reduction of 10.03%. This310

improvement demonstrates the effectiveness of the311

SYN2REAL task vector in bridging the gap between312

synthetic and real speech data, thus enhancing the313

model’s adaptability to diverse real-world scenar-314

ios.315

The SYN2REAL task vector shows particularly316

notable improvements in domains such as ’Mu-317

sic’ (27.57% reduction), ’Takeaway’ (15.14% re-318

duction), and ’Social’ (26.04% reduction). These319

results suggest that the task vector effectively cap-320

tures domain-specific acoustic variations, enabling321

the ASR model to generalize better to unseen target322

domains. In the following experiments we select323

the four domains includes two highest improved324

domains (’Music’ & ’Social’), and the two low-325

est improved domains (’Weather’ & ’Cooking’) to326

conduct the experiments.327

However, it is important to note that some do-328

mains, such as ’Cooking’ and ’Weather,’ exhibit329

marginal improvements or slight degradation in330

WER. These variations indicate that while the331

SYN2REAL task vector generally enhances perfor-332

mance, further fine-tuning and domain-specific ad-333

justments may be necessary to optimize results334

across all target domains.335

Overall, the results demonstrate that the336

SYN2REAL task vector is a promising approach for337

improving ASR domain adaptation. By addressing338

the acoustic mismatches between synthetic and real339

speech data, our method significantly enhances the340

performance of ASR models in real-world applica-341

tions.342

5.2 How does SYN2REAL task vector perform343

across different model sizes?344

To answer Q2, we analyze the effect of model size345

on the performance of ASR adaptation using the346

SYN2REAL task vector. Table 2 presents the rela-347

tive word error rate (WER) improvements across348

different model sizes (Tiny, Base, Small) and vari-349

ous target domains. The results indicate that the350

Base model achieves the highest average relative351

WER improvement of 14.70% across all target do-352

mains. This model size shows substantial gains,353

particularly in the ’Music’ (37.80%) and ’Social’354

(5.00%) domains, demonstrating its robustness in355

adapting to diverse acoustic characteristics using356

the SYN2REAL task vector.357

The Tiny model, while achieving a higher av-358

Relative WER ↑ Cooking Music Social Weather Average

Tiny 41.11% -13.47% 2.60% 30.42% 19.48%

Base 1.49% 37.80% 5.00% 6.82% 14.70%

Small -0.70% 27.56% 26.04% -31.91% 12.43%

Table 2: Relative WER Improvement Across Dif-
ferent Model Sizes after applying SYN2REAL task
vector. This table shows the relative WER improvement
compared to the Target Synthetic ASR for Whisper mod-
els of various sizes (Tiny, Base, and Small).

erage improvement of 19.48%, shows consider- 359

able performance gains in the ’Cooking’ (41.11%) 360

and ’Weather’ (30.42%) domains. However, it ex- 361

periences a performance degradation in the ’Mu- 362

sic’ domain (-13.47%). This suggests that while 363

the Tiny model can benefit significantly from the 364

SYN2REAL task vector in certain domains, its over- 365

all adaptability might be limited compared to larger 366

models due to its reduced model size. 367

Interestingly, the Small model exhibits an aver- 368

age relative WER improvement of 12.43%, with 369

significant performance enhancement in the ’So- 370

cial’ (26.04%) and ’Music’ (27.56%) domains. 371

However, it shows a notable degradation in the 372

’Weather’ domain (-31.91%), indicating potential 373

overfitting or sensitivity to specific acoustic varia- 374

tions. 375

These results highlight the importance of model 376

size in ASR adaptation using the SYN2REAL task 377

vector. The Base model consistently provides bal- 378

anced performance across most domains, suggest- 379

ing it strikes a good balance between model size 380

and performance. In contrast, the Tiny and Small 381

models show varying degrees of effectiveness. 382

Overall, the analysis demonstrates that while 383

the SYN2REAL task vector significantly improves 384

ASR performance across different model sizes, the 385

extent of improvement is influenced by the model’s 386

capacity. 387

5.3 Is SYN2REAL task vector effective on 388

ASR models other than Whisper? 389

To validate the effectiveness of the SYN2REAL task 390

vector on other ASR models, we conduct addi- 391

tional experiments using the Wav2vec2-Conformer 392

large model. Table 3 presents the WER results 393

across various target domains, including ’Cook- 394

ing’, ’Music’, ’Social’, and ’Weather’, comparing 395

the baseline model finetuned on synthetic speech 396

with the model enhanced by the SYN2REAL task 397

vector. The Table 3 shows a significant reduction in 398
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Wav2Vec2-Conformer Cooking Music Social Weather Average

Target Synthetic ASR
(Baseline)

21.26 17.41 25.84 16.74 20.31

+ SYN2REAL 18.88 14.33 21.48 13.36 17.01
Relative WER ↑ 11.21% 17.66% 16.87% 20.22% 16.25%

Table 3: WER of SYN2REAL task vector on
Wav2Vec2-Conformer. This table shows the WER
and relative WER improvement across different target
domains on Wav2Vec2-Conformer model before and
after applying SYN2REAL task vector.

WER when the SYN2REAL task vector is applied.399

The average WER drops from 20.31 to 17.01, repre-400

senting an overall relative improvement of 16.25%.401

The most notable improvement is observed in402

the ’social’ domain, with a relative WER reduction403

of 16.87%. The ’Music’ domain also shows a sub-404

stantial improvement of 17.66%, indicating that the405

task vector successfully captures and mitigates the406

acoustic variability associated with music-related407

speech.408

In the ’Cooking’ and ’Weather’ domains, the409

WER reductions are 11.21% and 20.22%, respec-410

tively. While the improvement in the ’Cooking’411

domain is more modest, it still indicates that the412

SYN2REAL task vector enhances the model’s adapt-413

ability to domain-specific acoustic characteristics.414

Overall, the application of the SYN2REAL task415

vector significantly enhances the performance of416

the Wav2vec2-Conformer large model across all417

tested domains. These results validate the effective-418

ness of the SYN2REAL approach in bridging the419

gap between synthetic and real speech data, ulti-420

mately improving the robustness and versatility of421

ASR systems in diverse real-world scenarios.422

Whisper Small
+Speech T5 Cooking Music Social Weather Average

Target Synthetic ASR
(Baseline)

16.94 16.04 53.34 16.27 25.65

+ SYN2REAL 16.00 15.75 52.95 15.97 25.17
Relative WER ↑ 5.57% 1.77% 0.73% 1.82% 1.86%

Table 4: WER on Whisper small with SYN2REAL
task vector derived from Speech T5 TTS models.
This table shows the WER and relative WER improve-
ment accross different target domains on Whisper small
with synthetic data from Speech T5.

5.4 Can we form SYN2REAL task vector from423

other TTS models?424

To answer Q4, we conducted experiments using the425

Whisper Small model with synthetic data generated426

by the Speech T5 model. Table 4 presents the WER427

results across various target domains, including 428

’Cooking’, ’Music’, ’Social’, and ’Weather’, com- 429

paring the baseline model finetuned on synthetic 430

speech with the model enhanced by the SYN2REAL 431

task vector. 432

The results indicate that applying the SYN2REAL 433

task vector leads to a reduction in WER across all 434

tested domains. The average WER drops from 435

25.65 to 25.17, representing an overall relative im- 436

provement of 1.86%. 437

The ’Cooking’ domain shows the highest rel- 438

ative WER reduction of 5.57%, suggesting that 439

the SYN2REAL task vector effectively adapts the 440

model to this specific domain. The ’Music’ and 441

’Weather’ domains also exhibit relative improve- 442

ments of 1.77% and 1.25%, respectively, indicating 443

that the SYN2REAL task vector helps mitigate the 444

acoustic variations in these domains. 445

However, the improvement in the ’social’ do- 446

main is relatively modest, with a relative WER 447

reduction of only 0.73 %. This could be attributed 448

to the high baseline WER in this domain, suggest- 449

ing that the synthetic data from Speech T5 might 450

have limitations. 451

Overall, the application of the SYN2REAL task 452

vector to the Whisper Small model with Speech 453

T5 synthetic data demonstrates consistent perfor- 454

mance enhancements, albeit with varying degrees 455

of improvement across different domains. These 456

results validate the flexibility and effectiveness of 457

our approach in improving ASR models trained 458

with synthetic data from different TTS models. 459

5.5 What is the impact of the scaling factor λ? 460

This section investigates the effect of scaling the 461

SYN2REAL task vector on the WER of different 462

ASR models. Figure 3 illustrates the WER as a 463

function of the scaling factor λ for various ASR 464

models and synthetic data, including Whisper Tiny 465

with BARK, Whisper Base with BARK, Whisper 466

Small with BARK, Whisper Small with Speech T5, 467

and W2V2-Conformer with BARK. 468

The scaling factor λ adjusts the magnitude of the 469

SYN2REAL task vector applied to the ASR models. 470

We evaluated a range of scaling factors from 0.1 to 471

1.0 to determine the optimal balance that minimizes 472

WER. 473

The results show that different models respond 474

variably to changes in the scaling factor. For 475

Whisper Tiny+BARK, the curve is steeper, indi- 476

cating that smaller models may be more sensitive 477

to larger adjustments from the SYN2REAL task vec- 478
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Figure 3: WER vs. Scaling Factor across Different
ASR Models & Different TTS Models The plot shows
the average WER on ’Cooking’, ’Music’, ’Social’, and
’Weather’ target domains as a function of the scaling
factor λ for various ASR models (Whisper and W2V2-
conformer) and the TTS models (BARK and Speech
T5) to make SYN2REAL task vectors. We denote it as
’{ASR+TTS}’, such as ’Whisper Tiny+BARK’ in the
figure. The scaling factor adjusts the magnitude of the
SYN2REAL task vector applied to each model.

tor. In contrast, Whisper Base+BARK maintains479

relatively stable WER values across different scal-480

ing factors, suggesting a more robust performance.481

Notably, Whisper Small+BARK and Whisper482

Small + Speech T5 exhibit a U-shaped trend, where483

moderate scaling factors (around λ = 0.3 to 0.5)484

yield the lowest WER. This indicates that an opti-485

mal scaling factor exists for these models, which486

balances the incorporation of real speech charac-487

teristics without overwhelming the model with ex-488

cessive parameter adjustments. The Wav2vec2-489

Conformer model consistently shows lower WER490

values across all scaling factors, with the best per-491

formance at λ = 0.5.492

Overall, the analysis suggests that the optimal493

scaling factor λ varies depending on the ASR494

model’s architecture and size. While smaller mod-495

els like Whisper Tiny+BARK may benefit from496

lower scaling factors, larger and more robust mod-497

els like W2V2-Conformer+BARK can effectively498

leverage higher scaling factors. These findings499

highlight the importance of tuning the scaling fac-500

tor to achieve the best domain adaptation perfor-501

mance for different ASR models.502

5.6 Do SYN2REAL task vectors obtained with503

the same TTS have similar directions?504

To further validate the SYN2REAL approach, we505

conducted a cosine similarity analysis between506

SYN2REAL task vectors derived by different text-507
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1 0.67 0.66 0.43 -0.33 -0.67 -0.45 -0.76

0.67 1 0.59 0.55 -0.17 -0.36 -0.23 -0.43

0.66 0.59 1 0.49 -0.14 -0.36 -0.21 -0.43

0.43 0.55 0.49 1 -0.021 -0.13 -0.049 -0.17

-0.33 -0.17 -0.14 -0.021 1 0.57 0.61 0.49

-0.67 -0.36 -0.36 -0.13 0.57 1 0.72 0.87

-0.45 -0.23 -0.21 -0.049 0.61 0.72 1 0.67

-0.76 -0.43 -0.43 -0.17 0.49 0.87 0.67 1

Cosine Similarity between Task Vectors from different TTS

Figure 4: Cosine Similarity between task vectors
derived from Different TTS Models. This heatmap
shows the cosine similarity between task vectors gener-
ated by BARK (B_) and Speech T5 (S_) models. Higher
similarity values between vectors from similar domains
indicate effective acoustic-specific information transfer
by the SYN2REAL method.

to-speech (TTS) models: BARK (denoted as 508

B_) and Speech T5 (denoted as S_). Figure 4 509

presents the cosine similarity heatmap between 510

these SYN2REAL task vectors. 511

The heat map reveals that SYN2REAL task vec- 512

tors from similar TTS exhibit higher cosine simi- 513

larity, indicating that the SYN2REAL task vector ef- 514

fectively captures the distributional shifts between 515

different acoustic domains. 516

Moreover, the negative similarities between 517

certain SYN2REAL task vectors, such as 518

’B_recommendation’ and ’S_music’ (-0.67), 519

highlight the distinct acoustic features between 520

these TTS synthetic data, further emphasizing 521

the effectiveness of the SYN2REAL approach in 522

distinguishing and adapting to different acoustic 523

environments. 524

The overall trend observed in the heatmap sup- 525

ports the hypothesis that the SYN2REAL task vec- 526

tors not only bridge the gap between synthetic and 527

real data but also maintain consistency within simi- 528

lar acoustic environments. This consistency is cru- 529

cial for enhancing ASR performance across diverse 530

target domains, as it ensures that the task vectors 531

can generalize well to new, unseen domains. 532
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6 SYN2REAL Task Vector given Domain533

Labels534

In this section, we explore an alternative approach535

to generating SYN2REAL task vectors, assuming536

we have access to domain labels for the data in the537

source domains. This approach, which we refer538

to as SYN2REAL Ensemble, involves generating539

separate SYN2REAL task vectors for each source540

domain and then combining them to enhance the541

adaptation of the ASR model to the target domain.542

SYN2REAL Ensemble Cooking Music Social Weather Average

Target Synthetic ASR
(Baseline)

14.26 23.51 29.57 15.45 20.70

+ SYN2REAL Ensemble 14.46 16.98 21.13 15.11 16.92
Relative WER ↑ -1.40% 27.78% 28.54% 2.20% 18.25%

Table 5: WER Performance on Whisper Small Model
with SYN2REAL Ensemble task vectors. This table
compares the word error rate (WER) of the baseline
ASR model fine-tuned on synthetic speech data with the
WER of the model enhanced with the SYN2REAL En-
semble task vectors across four target domains: ’Cook-
ing’, ’Music’, ’Social’, and ’Weather’.

6.1 Performance of SYN2REAL Ensemble543

task vector544

To evaluate the effectiveness of the SYN2REAL En-545

semble task vector, we conducted experiments us-546

ing the Whisper Small model with synthetic speech547

generated by the BARK TTS model. The exper-548

iments were carried out on four target domains:549

’cooking,’ ’music,’ ’social,’ and ’weather,’ using 17550

source domains to create the SYN2REAL Ensemble551

vectors. The results are presented in Table 5. The552

results indicate that the SYN2REAL Ensemble ap-553

proach provides significant improvements in WER554

for several target domains compared to the baseline555

method. The average WER is reduced from 20.70556

to 16.92, representing an overall relative improve-557

ment of 18.25%. This highlights the effectiveness558

of using domain-specific task vectors to capture de-559

tailed acoustic characteristics, leading to enhanced560

model adaptation.561

Comparing the SYN2REAL Ensemble approach562

to the original SYN2REAL method, we find that563

SYN2REAL Ensemble generally outperforms the564

original approach. The detailed domain-specific565

information captured by the distinct task vectors566

enhances model adaptation in most domains. How-567

ever, in real-world scenarios, we often do not have568

access to labels finer-grained domain labels.569

1 3 5 7 9 11 13 15 17
Number of Domain for SYN2REAL_Ensamble

16.5

17.0

17.5

18.0

18.5

W
ER

WER v.s. Number of Domains

Target Synthetic ASR (Baseline)
+ SYN2REAL_Ensamble

Figure 5: WER vs. Number of Source Domains for
SYN2REAL Ensemble task vector. This plot shows
the word error rate (WER) of the Whisper small model
and the number of source domains used to generate the
SYN2REAL Ensemble task vector with BARK model.
The x-axis represents the number of source domains,
and the y-axis represents the WER on average of the
four domains (’Cooking’, ’Music’, ’Social’, ’Weather’).

6.2 Impact of the number of domains on the 570

performance of SYN2REAL Ensemble task 571

vector 572

Figure 5 shows the average WER across four 573

target domains (’cooking,’ ’music,’ ’social,’ and 574

’weather’) when we use different numbers of 575

source domain data to generate SYN2REAL 576

Ensemble task vectors. 577

The results indicate that increasing the number 578

of source domains generally improves ASR perfor- 579

mance. The WER decreases from 17.8 to 16.8 as 580

the number of source domains increases from 1 to 581

17. Notably, significant improvements are observed 582

within the incorporation of the first 5 source do- 583

mains. This trend suggests that incorporating more 584

source domains helps capture diverse acoustic char- 585

acteristics, leading to better domain adaptation. 586

7 Conclusion 587

This paper introduces SYN2REAL task vector to 588

address mismatches between synthetic and real 589

speech data. Future work will refine this approach 590

and extend its application to other types of tasks 591

and data such as visual data, contributing to more 592

reliable speech and vision recognition systems. Ex- 593

periments showed significant WER reductions, av- 594

eraging 10.03% across 18 domains. We also test 595

various models, including Whisper Small, Whis- 596

per Base„ Whisper Tiny and Wav2vec2-Conformer, 597

with SYN2REAL showing robust performance. 598
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8 Limitations599

Domain-Specific Performance Variations600

While the SYN2REAL task vector shows significant601

improvements in many target domains, certain602

domains, such as ’Cooking’ and ’Weather,’ exhibit603

marginal improvements or slight degradation in604

word error rate (WER). This suggests that the605

task vector’s effectiveness may vary based on606

the specific characteristics of different domains,607

indicating a need for further domain-specific608

fine-tuning and adjustments.609

Scaling Factor Sensitivity The performance of610

the SYN2REAL-enhanced models is sensitive to the611

scaling factor λ. Finding the optimal scaling factor612

requires careful tuning, and the best value can vary613

between different ASR models and target domains.614

This adds a layer of complexity to the implementa-615

tion and may limit the approach’s generalizability616

without additional adaptive scaling strategies.617

Synthetic Data Quality The approach relies618

heavily on the quality of synthetic speech data gen-619

erated by TTS systems. Variations in the quality620

and acoustic properties of synthetic data across dif-621

ferent TTS systems can impact the effectiveness622

of the SYN2REAL task vector. Ensuring consistent623

quality in synthetic data is crucial for achieving624

robust domain adaptation.625

Model-Specific Dependencies The observed im-626

provements are model-dependent, with larger mod-627

els like Wav2Vec2-Conformer showing more sub-628

stantial gains compared to smaller models like629

Whisper Tiny. This indicates that the SYN2REAL630

task vector’s effectiveness might be influenced by631

the underlying model architecture and size, poten-632

tially limiting its applicability to a wider range of633

ASR models without further optimization.634
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