
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNLOCKING SVD-SPACE FOR FEEDBACK ALIGNED
LOCAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Neural Networks (DNNs) are typically trained using backpropagation,
which, despite its effectiveness, requires substantial memory and computing re-
sources. To address these limitations, we propose a novel local training frame-
work that enables efficient and scalable neural network training without relying
on global backpropagation. Our framework harnesses the alignment of Singu-
lar Value Decomposed (SVD) weight space with feedback matrices, guided by
custom layerwise loss functions, to enable efficient and scalable neural network
training. We decompose weight matrices into their SVD components before train-
ing, and perform local updates on the SVD components themselves, driven by
a tailored objective that integrates feedback error, alignment regularization, or-
thogonality constraints, and sparsity. Our approach leverages Direct Feedback
Alignment (DFA) to eliminate the need for global backpropagation and further
optimizes model complexity by dynamically reducing the rank of the SVD com-
ponents during training. The result is a compute- and memory-efficient model
with classification accuracy on par with traditional backpropagation while achiev-
ing a 50-75% reduction in memory usage and computational cost during training.
With strong theoretical convergence guarantees, we demonstrate that training in
the SVD space with DFA not only accelerates computation but also offers a pow-
erful, energy-efficient solution for scalable deep learning in resource-constrained
environments. Code is available.

1 INTRODUCTION

As neural networks grow in size and complexity, the memory and computational requirements for
training have become a significant bottleneck, particularly in resource-constrained environments
such as edge devices. Backpropagation (BP), the most commonly used method for training deep
networks, increases this issue as it relies on a global loss objective and needs to store intermediate
activations for layer-by-layer gradient updates. This not only demands high memory usage and
computational power, but also introduces the update-locking issue(Lillicrap et al., 2020), in which
parameters of the hidden layer cannot be updated until both forward and backward computations
are completed. Hence, we highlight the need for alternative training paradigms that are both more
memory and compute-efficient and enable efficient parallelization of the training process.

Direct Feedback Alignment (DFA) (Nøkland, 2016) offers a promising alternative to backpropa-
gation (BP) by enabling local layerwise updates without global gradient propagation, which re-
duces the hardware complexity of neural network training. This makes DFA appealing for resource-
constrained environments. However, DFA faces limitations in scaling to more complex tasks and
deeper architectures, largely due to its reliance on fixed random feedback connections. These con-
nections limit its ability to train deep convolutional layers and perform well on datasets like CIFAR-
100 and ImageNet without transfer learning (Launay et al., 2020). Although the integration of the
Kolen-Pollack algorithm (Akrout et al., 2019) has improved feedback alignment by learning sym-
metric feedback weights, DFA still struggles to match BP in terms of accuracy and scalability. While
DFA’s simplified learning rules have been well-studied, its potential combination with low-rank sub-
spaces—such as those from Singular Value Decomposition (SVD)—remains underexplored. This
synergy could be critical, as low-rank subspaces can reduce computational complexity, complement-
ing DFA’s goal of simpler learning rules.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Input

Layer 1

Layer 2

Output Layer

True Label

Global Loss
LCE

Input

Layer 1

Layer 2

Output Layer

True Label

Global Loss
LCE

W1

W2

W3 W3T

W2T

W1

W2

W3

(a) BP

B2

B1

(b) DFA

Input

Layer 1

Layer 2

Output Layer

True Label

Global Loss
LCE

U1,S1,V1
T

U2,S2,V2
T

U3,S3,V3T

(BU1,BS1,BV1
T)

(c) SSA

Feedback
Error

Propagation
Local Error
Propagation

(BU2,BS2,BV2
T)

LLi = Local Loss
for ith layer

+ LL1

+ LL2

Figure 1: A comparison of neural network training methods. Notations: W = forward weights,
Layer = Layer Activations, LCE = cross-entropy loss, B = random feedback weights, δ = gra-
dients, δl = gradient of LCE = feedback error, U, S, V T = SVD components of forward weights,
BU , BS , BV T = SVD components of feedback weights, Local Loss (LL) has components: Lalign

= Alignment loss, Lcos = Cosine similarity loss, Lortho = Singular Vector Orthogonality regular-
izer, LHoyer = Hoyer regularizer. (a) Backpropagation (BP): Global gradient updates through
each layer. (b) Direct Feedback Alignment (DFA): Local updates with random feedback (c) SVD-
space Alignment (SSA) (ours): Decomposes weights into SVD components before training and
aligns feedback on those decomposed components itself with local losses. Note: LL + LCE is the
total local loss objective in our work.

We propose a novel hybrid training framework- SVD-Space Alignment (SSA) that synergistically
combines the simplified local learning rules of Direct Feedback Alignment (DFA) with the struc-
tured learning advantages of Singular Value Decomposition (SVD). SVD decomposes weight matri-
ces into orthogonal components, allowing for efficient updates in low-rank subspaces. By aligning
the SVD spaces of both the forward weights and feedback matrices, our method introduces struc-
ture into the learning process, countering the randomness inherent in DFA’s feedback matrices and
improving scalability, stability, and faster convergence. Our approach begins by decomposing the
weight matrices into their SVD components— U , S, and V T —before training commences. We ap-
ply local updates to the SVD components using a custom loss function that minimizes model cross-
entropy loss, maintains alignment between forward and feedback weights, preserves orthogonality,
and enforces sparsity for efficiency. A key feature is the progressive rank reduction of SVD compo-
nents during training, reducing memory and computation while enabling energy-efficient inference
optimized for resource-constrained environments. Our work introduces several key innovations that
make DFA suitable for deep convolutional layers, addressing a significant gap in prior research.
Previous attempts to apply local loss methods to convolutional layers have relied on flattening these
layers, which leads to a loss of hierarchical and spatial features critical for vision-based applications.
In contrast, we preserve the convolutional structure by applying spatial-wise decomposition embed-
ded within SVD matrices, allowing our method to retain the hierarchical information necessary for
accurate visual recognition tasks.

Our key contributions are summarized as follows:

• We propose a novel hybrid training framework that incorporates feedback alignment with
Singular Value Decomposition (SVD), leveraging structured updates in SVD-space to mit-
igate the limitations of random feedback.

• We introduce a custom loss function that incorporates feedback error, alignment loss, or-
thogonality regularization, and sparsity constraints. This ensures that local layerwise up-
dates in the SVD-space are efficient and convergent.

• We demonstrate significant reductions in memory usage and computational complexity
through progressive rank reduction, achieving up to 50-75% reductions in memory usage
and computational requirements.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We show that our method can successfully train deep convolutional networks while retain-
ing spatial and hierarchical information. We provide theoretical convergence guarantees
and empirical validation, showing that our method achieves classification accuracy on par
with backpropagation, with faster convergence and lower computational costs, on challeng-
ing datasets like CIFAR-100 and ImageNet.

2 RELATED WORK

Our work draws upon several lines of research, including Direct Feedback Alignment (DFA), the
application of Singular Value Decomposition (SVD) in neural networks, local layerwise training
methods, and model compression techniques. This section reviews these areas.

Direct Feedback Alignment (DFA): Direct Feedback Alignment (DFA) (Nøkland, 2016) was in-
troduced as a biologically plausible alternative to backpropagation (BP), reducing memory usage
by decoupling weight updates from global error gradients and using random feedback connections.
However, DFA struggles with gradient alignment, leading to instability in deeper networks. Nøkland
and Eidnes (Nøkland & Eidnes, 2019) improved DFA by introducing local error signals and aux-
iliary classifiers, enabling more stable layer-wise updates in deep networks. Building on this, our
approach aligns SVD-decomposed weight spaces with feedback matrices, using custom loss func-
tions to reduce feedback randomness and improve DFA’s scalability, stability, and efficiency, while
lowering model complexity.

Singular Value Decomposition (SVD) in Neural Networks: Singular Value Decomposition (SVD)
is widely used in machine learning to compress models and improve computational efficiency by
reducing the dimensionality of weight matrices. Early works, like (Denil et al., 2013), showed that
low-rank approximations can lower the number of parameters and FLOPs with minimal performance
loss. More recent approaches, such as (Denton et al., 2014) and (Yang et al., 2020), applied SVD
to CNNs, achieving significant inference speedups. Although (Yang et al., 2020) also incorporated
an orthogonality regularizer to maintain stability, these methods still rely on backpropagation for
updates, which can disrupt orthogonality. Our method addresses this by integrating SVD with Direct
Feedback Alignment (DFA), preserving orthogonality and dynamically reducing the rank during
training to create compact models without sacrificing accuracy.

Local Layerwise Training: Local learning rules, which update layers independently of global gra-
dients, are gaining attention for their scalability and efficiency. Methods like greedy layerwise train-
ing (Belilovsky et al., 2019), DRTP (Frenkel et al., 2021), and AugLocal (Ma et al., 2024), re-
duce backpropagation’s memory costs using local losses or auxiliary networks. Forward-only meth-
ods, such as Hinton’s Forward-Forward (FF) (Hinton, 2022) and PEPITA (Dellaferrera & Kreiman,
2022), avoid backprop entirely but often fall short in accuracy, especially in deeper networks, and
struggle with global alignment. Our work focuses on improving local loss methods, as forward-only
approaches struggle with classification accuracy in deeper networks. We enhance local layerwise
training by applying Singular Value Decomposition (SVD) to layer weights and aligning compo-
nents with feedback matrices using Direct Feedback Alignment (DFA).

Model Compression Techniques: Model compression techniques like pruning, quantization, and
low-rank factorization (Marinó et al., 2023) reduce neural network size and computation but often
require retraining to recover accuracy and rely on backpropagation. Our approach trains low-rank
SVD components from scratch, with no retraining needed. Progressive rank reduction dynamically
adjusts model complexity, maintaining accuracy while creating compact models. Using DFA for
feedback also improves hardware efficiency and scalability.

3 METHODOLOGY

We present SVD-Space Alignment (SSA), a novel method combining Singular Value Decomposition
(SVD) with Direct Feedback Alignment (DFA) for efficient local layerwise training in deep neural
networks. By decomposing weight matrices with SVD and applying local updates using our custom
loss function (including DFA’s feedback error), SSA reduces computational complexity and memory
usage. The custom loss function ensures structured learning, incorporating alignment, orthogonality,
and sparsity regularization. Additionally, a dynamic rank reduction strategy further optimizes the
model for edge devices.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SVD-SPACE DECOMPOSITION

Given a weight matrix Wi ∈ Rm×n for layer i, we decompose it into its SVD form:

Wi = UiSiV
T
i (1)

where Ui ∈ Rm×r and Vi ∈ Rn×r are orthogonal matrices, and Si ∈ Rr×r is a diagonal matrix
of singular values, with r ≤ min(m,n). Decomposing weights before training allows updates
to be made directly in the SVD-space, preserving the orthogonality of Ui and V T

i while enabling
efficient rank reduction during training. This avoids the computational overhead of performing SVD
at every epoch and promotes more structured learning by preventing orthogonality disruption caused
by gradient descent in BP.

SVD-Space for Convolutional Layers. For convolutional layers, we integrate the SVD-space
approach by leveraging spatial decomposition inspired by (Yang et al., 2020). A convolutional
kernel K ∈ RN×C×H×W , with N as the number of filters, C as the number of input channels, and
H ×W as the spatial dimensions, is first reshaped into a 2D matrix K ′ ∈ RNW×CH . This matrix
is then decomposed using SVD:

K ′ = UΣV T (2)
where U ∈ RNW×r and V ∈ RCH×r are unitary matrices, and Σ ∈ Rr×r is a diagonal matrix of
singular values, with r = min(NW,CH).

The decomposed components are reshaped back into convolutional layers as follows:

• U
√
Σ is reshaped into a convolutional kernel K1 ∈ Rr×C×H×1,

•
√
ΣV T is reshaped into a kernel K2 ∈ RN×r×1×W .

This decomposition splits the original convolutional operation into two consecutive layers, preserv-
ing hierarchical and spatial features while reducing computational complexity. During the forward
pass, the convolutions are performed using K1 and K2. During backpropagation, gradients are com-
puted for K1 and K2 and used to directly update these decomposed kernels without reconstructing
the original kernel K. We retain the decomposed kernels for inference.

3.2 DIRECT FEEDBACK ALIGNMENT IN SVD-SPACE

DFA uses random feedback matrices that are independent of the inter-layer weight matrices, en-
abling efficient local updates. For each layer i, the feedback matrices BUi

, BSi
, and BV T

i
are used

to update the SVD components Ui, Si, and V T
i , respectively. The update rules for each SVD com-

ponent are defined as follows:

U
(t+1)
i = U

(t)
i − η∇Ui

Li(Ui, Si, V
T
i) (3)

S
(t+1)
i = S

(t)
i − η∇Si

Li(Ui, Si, V
T
i) (4)

V
T (t+1)
i = V

T (t)
i − η∇V T

i
Li(Ui, Si, V

T
i) (5)

where η is the learning rate, and Li(Ui, Si, V
T
i) is the layer-specific loss function (detailed in Section

3.3). These updates are independent across layers, reducing the computational overhead typically
associated with backpropagation and enabling parallelization of layer updates.

3.3 TRAINING OBJECTIVE: CUSTOM LAYERWISE LOSS FUNCTION

We design a custom layerwise loss function with regularization terms to maintain the model’s struc-
ture and efficiency in the SVD-space. We provide the gradients of this loss to the layer as shown in
Fig 1. The local loss function for layer i is formulated as:

LLi(θi) = αLCE(θi) + βLcos(θi) + γLalign(θi) + δLortho(θi) + ϵLHoyer(θi) (6)

where θi = (Ui, Si, V
T
i), and the terms are defined as follows:

Cross-Entropy Loss (LCE): This loss is the model cross entropy loss. We get the feedback error,
matching DFA’s local error, from the derivative of this loss. The feedback error measures how well

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the model’s predictions align with target outputs, crucial for classification tasks. The feedback error
comes from the derivative of the entire model’s cross entropy loss.

∆LCE = ypredict − ylabel (7)

Cosine Similarity Loss (Lcos): This loss encourages alignment between the activations of the net-
work and the feedback signals, ensuring that the directions of the activations remain consistent with
the feedback.

Lcos = 1− ⟨layer input · (USV T), (BUBSBV T)T · e⟩
∥layer input · (USV T)∥ · ∥(BUBSBV T)T · e∥

(8)

Where layer input · (USV T) is the activation from the network. (BUBSBV T)T · e is the feedback
signal with e = ∆LCE .

Alignment Loss (Lalign): This loss ensures alignment between the SVD-decomposed matrices (Ui,
Si, V T

i) and their respective feedback matrices (BUi
, BSi

, BV T
i

). This loss is defined as:

Lalign(θi) = ∥Ui −BUi
∥2F + ∥Si −BSi

∥2F + ∥V T
i −BV T

i
∥2F (9)

Singular Vector Orthogonality Regularizer (Lortho): This component promotes orthogonality in
the singular vectors Ui and V T

i , which preserves the structure of the SVD decomposition. The
regularizer is defined as:

Lortho(θi) = ∥UT
i Ui − I∥2F + ∥V T

i Vi − I∥2F (10)

Hoyer Regularizer (LHoyer): This regularizer encourages sparsity in the singular values by mini-
mizing the ratio of the L1 norm to the L2 norm of the singular values. We apply this loss every ten
epochs to enhance sparsity and reduce the rank. The regularizer is defined as:

LHoyer(θi) =
∥Si∥1
∥Si∥2

(11)

Each term in the composite loss function serves a specific purpose in ensuring efficient, structured,
and stable learning of the SVD-decomposed weights (detailed in the Appendix). By jointly mini-
mizing these objectives, the model is able to achieve efficient training.

3.4 DYNAMIC RANK REDUCTION STRATEGY

To reduce model size and computational complexity, we employ a dynamic rank reduction strategy.
Initially, each layer’s SVD decomposition starts with full rank r0. During the initial epochs, we use
an epoch-based schedule, progressively reducing the rank every ten epochs by applying the Hoyer
regularizer to sparsify the matrices. The rank rk at epoch k is:

rk = r0 ×

(
1−

⌊
k
10

⌋
K/10

)
,

where K is the total number of epochs.

In the later epochs, defined dynamically as the point where the rank rk has reduced to ζr0 (ζ =
0.7), we incorporate a threshold-based check to dynamically retain singular values contributing
to a predefined energy threshold (95% of the matrix’s total energy). This mitigates the sharp rank
reduction induced by 1−k/K in epoch-based scheduling as k approaches K. If the threshold-based
check determines that the rank is already sufficiently low from the epoch-based reduction, further
reduction is halted to preserve the model’s representational capacity.

3.5 COMPUTATIONAL AND MEMORY COMPLEXITY

The computational and memory requirements of the SSA method are significantly lower than those
of traditional BP, both during training and inference, due to the use of dynamic rank reduction and
low-rank SVD representations of the neural network weights.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Training Complexity. For a weight matrix Wi ∈ Rm×n, the computational cost of traditional BP
is O(m × n × p), where p is the batch size. In SSA, the weight matrix is decomposed into SVD
components: U ∈ Rm×r, S ∈ Rr×r, and V T ∈ Rr×n, where r ≪ min(m,n). The computational
cost of updating these components is:

O(m× r × p) +O(r × p) +O(r × n× p), (12)
where O(m × r × p): Updating U ; O(r × p): Updating the diagonal matrix S; O(r × n × p):
Updating V T . As the rank r is progressively reduced throughout training, the computational cost
decreases further, leading to substantial efficiency gains. The memory complexity is also reduced
compared to BP. Instead of storing the full weight matrix Wi and its gradients, SSA stores only the
SVD components. The resulting memory complexity is:

O(m× r) +O(r × r) +O(r × n), (13)
which becomes increasingly efficient as r decreases over the course of training.

Inference Complexity. During inference, SSA leverages the decomposed form USV T instead of
the full weight matrix Wi. The computational complexity for inference is:

O(r × n) +O(r × r) +O(m× r), (14)
where O(r × n): Computing V Tx (given x = Layer input), O(r × r): Scaling by S, O(m × r):
Projecting with U . Since r ≪ min(m,n), inference is lightweight, ensuring efficiency in compu-
tationally constrained environments. The memory requirements during inference are also minimal.
Gradients and activations are no longer required, and only the final decomposed components U , S,
and V T need to be stored, leading to the same memory complexity as training:

O(m× r) +O(r × r) +O(r × n). (15)

4 EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to evaluate the performance of our proposed
SSA method. We outline the datasets, neural network architectures, baseline methods for compari-
son, and the evaluation metrics used to assess the effectiveness of our approach. Further details are
elaborated in the Appendix.

Datasets: We evaluate our method on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Im-
ageNet (ILSVRC-2012) (Krizhevsky et al., 2017), using CIFAR for small-scale benchmarks and
ImageNet for large-scale scalability.

Network Architectures: To demonstrate the flexibility of our approach, we evaluate the SSA
method on several common neural network architectures: SmallConv (conv96-pool-conv192-pool-
conv512-pool-fc1024), VGG-13 (Simonyan & Zisserman, 2014), and ResNet-32 (He et al., 2016).
These models cover a range of depths and sizes, allowing us to assess the performance of the SSA
method on both small and large networks.

Baselines: We compare our SSA method against several baselines to evaluate accuracy, mem-
ory, computational cost, and training stability. These include BP, the standard method for neural
network training; Direct Feedback Alignment (DFA) (Nøkland, 2016), a biologically plausible and
scalable alternative to BP; SVD-BP, which combines low-rank approximation with backpropagation
but lacks feedback alignment; PredSim (Nøkland & Eidnes, 2019), which uses local error signals
like reconstruction and similarity matching loss; AugLocal (Ma et al., 2024), a local learning ap-
proach with augmented auxiliary networks; DRTP (Frenkel et al., 2021), a gradient-free method
using Direct Random Target Projection; and PEPITA (Dellaferrera & Kreiman, 2022), which ap-
plies error-driven forward-only local learning.

Evaluation Metrics: To evaluate the SSA method, we use several key metrics: Classification
Accuracy, measuring top-1 and top-5 accuracy to assess how well the model generalizes to unseen
data; Memory Usage, tracking the model’s memory footprint during training to evaluate efficiency
in resource-constrained environments and computational Cost, calculating the reduction in FLOPs
per training iteration to gauge computational efficiency. These metrics provide a comprehensive
view of SSA’s performance in terms of accuracy, efficiency, and scalability compared to baselines.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Training Details: All experiments are conducted on a machine with NVIDIA A40 GPUs and 48
GB of GDDR6 memory. We implement the SSA method and baselines using PyTorch. Training
is performed with the Adam optimizer (Kingma, 2014), with a learning rate ranging from 1e−4
to 5e−4 (detailed in Appendix), and data augmentation techniques like random cropping and hor-
izontal flipping to improve generalization. The batch size is 128 for CIFAR-10/100 and 256 for
ImageNet. For SSA, we start with the initial rank r0 at the full rank of the original weight matrices,
progressively reducing it as outlined in Section 3.4.

Hyperparameter Selection. The coefficients α, β, γ, δ, ϵ are set as (0.1, 0.01, 0.1, 0.05, 0.01),
consistent across all experiments. Feedback cross-entropy error and alignment loss, being convex
and smooth, are assigned higher weights, while non-convex components such as cosine similarity
loss, orthogonality loss, and the Hoyer regularizer have lower weights (Theoretical Analysis in Ap-
pendix). To mitigate non-convexity, we ensure quasi-convexity by projecting the cosine similarity
loss and SVD component norms onto the unit sphere. The Hoyer regularizer is smoothened (71) and
applied only every ten epochs during rank reduction.

Theoretical analysis and ablation studies (Section 5.3) guide these choices. Ablation results demon-
strate the impact of removing individual loss components, emphasizing the need to balance their
contributions. To confirm the robustness of the coefficients, we perform basic k = 3-fold cross-
validation, evaluating a small grid of candidate values. This process takes approximately 5%-10%
of the total training time and leverages the independence of local loss objectives, avoiding the com-
plexity of global optimization. Once selected, the coefficients remain fixed across all experiments.

5 RESULTS AND ANALYSIS

In this section, we present the results of our experiments and provide an in-depth analysis of the
performance of the proposed SSA method. We compare the results against baseline methods. Our
analysis covers classification accuracy, memory and computational efficiency, convergence rates,
ablation studies, and energy efficiency.

5.1 CLASSIFICATION ACCURACY

We present the classification accuracies of the SSA method on CIFAR-10 and ImageNet, compared
to baseline methods. Table 1 shows a comparison with BP, SVD-BP, local training, and forward-only
methods. The Forward-Forward method is excluded as it does not extend to convolutional networks,
while DFA, DRTP, and PEPITA are omitted from the next Table 2 due to their inability to scale
to larger networks without encountering heavy accuracy loss. We see that our method outperforms
other local training and forward-only methods while achieving performance on par with BP.

Network Method CIFAR-10 (mean ± std) CIFAR-100 (mean ± std)
SmallConv BP 87.57± 0.14 62.25± 0.21

SVD-BP (Yang et al., 2020) 87.30± 0.18 61.64± 0.19
DFA (Akrout et al., 2019) 73.10± 0.53 44.93± 0.51
DRTP (Frenkel et al., 2021) 68.96± 0.80 NA
PEPITA (Dellaferrera & Kreiman, 2022) 56.34± 1.24 27.56± 0.67
SSA (ours) 86.23± 0.12 60.88± 0.17

Table 1: Comparison of classification accuracy (mean ± standard deviation) over 5 independent
runs with random inits for CIFAR-10 and CIFAR-100 datasets.

In Table 2, we compare our method to BP, SVD-BP, and more recent local layerwise training meth-
ods on CIFAR-10 and ImageNet datasets, focusing on larger networks.

From Table 2, we observe that SSA consistently achieves classification accuracy comparable to stan-
dard backpropagation (BP) across all datasets when applied to VGG-like networks. On CIFAR-10,
SSA’s accuracy is within 0.2% of BP, and the gap remains minimal on ImageNet as well. However,
for ResNet-32, SSA shows a slightly larger accuracy gap compared to BP, indicating room for im-
provement in deeper networks. Notably, PredSim does not report statistics for ImageNet in their
paper, limiting direct comparison. AugLocal, on the other hand, embeds properties of later layers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Network Method CIFAR10 (Top-1) ImageNet (Top-1) ImageNet (Top-5)
VGG-13 BP 93.75 71.59 90.39

SVD-BP (Yang et al., 2020) 92.8 71.37 90.2
PredSim (Nøkland & Eidnes, 2019) 86.49 NA NA
AugLocal (Ma et al., 2024) 93.72 70.93 90.16
SSA (ours) 92.7 69.87 89.7

ResNet-32 BP 93.74 74.28 91.76
SVD-BP (Yang et al., 2020) 91.77 72.91 89.27
PredSim (Nøkland & Eidnes, 2019) 79.31 NA NA
AugLocal (Ma et al., 2024) 93.47 73.95 91.7
SSA (ours) 88.53 70.03 88.78

Table 2: Performance comparison (accuracy %) of various methods on CIFAR-10 and ImageNet
datasets for VGG-13 and ResNet-32 architectures.

into earlier layers, effectively aligning with the global loss objective. However, this comes at the
cost of increased computational overhead due to the auxiliary networks introduced for each layer.

5.2 MEMORY AND COMPUTATIONAL EFFICIENCY

One of the primary advantages of the SSA method is its reduction in memory usage and computa-
tional cost due to progressive rank reduction of the SVD components during training process.

Figure 2: BP and SSA compute and memory per layer for ResNet-32, MobileNetV1 and VGG-13

SSA reduces memory usage by up to 50% compared to backpropagation and reduces compute by
at least 40% across various model architectures as demonstrated in Fig 2. We see similar compute-
memory savings in inference as well, as explained in Section 3.5. These results show that SSA is
particularly suitable for deployment in resource-constrained environments.

5.3 ABLATION STUDY

We perform an ablation study to quantify the contribution of each component in the composite loss
function to the overall performance of SSA. Table 3 shows the impact of removing each compo-
nent (Cross-Entropy Loss, Cosine Similarity Loss, Alignment Loss, Orthogonality Regularizer, and
Hoyer Regularizer) on classification accuracy and computational efficiency.

From Table 3, removing the Cross-Entropy Loss results in a significant accuracy drop, as expected.
Cosine similarity loss attempts to preserve the direction of gradient update proportional to true gra-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Ablation study on CIFAR-10 showing the impact of each component in the composite loss
function.

Component Removed Accuracy FLOPs (in billions)
Full SSA (All Components) 92.7% 0.14
No Cross-Entropy Loss 70.5% 0.133
No Cosine Similarity Loss 87%% 0.126
No Alignment Loss 83.1% 0.119
No Orthogonality Regularizer 85.4% 0.112
No Hoyer Regularizer 90.5% 0.105

dient of BP. However, as we don’t have BP gradients during the training, we approximate true gra-
dient by (layer input x weight) layer output, so that the direction of the update remains consistent.
Alignment loss attempts to reduce the loss between the subspaces in forward and feedback weights.
Both cosine similarity loss and alignment loss aids gradient direction preservation, and therefore,
removing these components also decreases accuracy, but less severely than Cross-Entropy Loss.
Orthogonality Regularizer maintains the unitary properties of U, V t. If the unitary properties are
maintained, the angular alignment and any angular transformation will be meaningful (preserving
lengths and angles). Hence, removing the regularizer negatively impacts both accuracy and compu-
tational efficiency, which might worsen in deeper models. The Hoyer regularizer sparsifies weights
during rank reduction and has limited effect on the overall accuracy. Overall, the ablation study
demonstrates that each loss component is essential for SSA’s performance and efficiency.

6 DISCUSSION

The experimental results demonstrate that our proposed SSA method achieves competitive classifi-
cation accuracy while significantly reducing memory usage and computational cost. In the following
sub-sections, we state the advantages of SSA over DFA and its limitations.

6.1 COMPARISON WITH DFA

SSA introduces two key distinctions from DFA: the use of a structured weight-space (SVD-
decomposed weights) and custom loss components applied directly in this SVD-space. To evaluate
these differences, we present comparisons between SSA and DFA, along with its variants (Sanfiz &
Akrout, 2021), in the following tables and figures.

Method LeNet ResNet-20 ResNet-56
BP 15.92 10.01 7.83
FA 40.67 29.59 29.23
DFA 37.59 32.16 32.02
uSF 16.34 10.59 9.19
brSF 17.08 11.08 10.13
SSA 16.20 10.60 9.80

Table 4: CIFAR-10 test error (%) for dif-
ferent methods

Method Top-1 Error Rate (%)
BP 30.39
FA 85.25
DFA 82.45
uSF 34.97
brSF 37.21
SSA (Ours) 32.45

Table 5: ImageNet test error rates for
ResNet-18

Figure 3: Top-1 Error (%) Across Epochs for
a 3-layer MLP.

One variant of DFA, known as Uniform Sign-
concordant Feedbacks (uSF), generates feedback
weights by preserving the sign of the forward weight
matrices while assuming unit magnitude for the synap-
tic weights. This is mathematically represented as
Bi = sign(WT

i)∀i. Another variant, Batchwise
Random Magnitude Sign-concordant Feedbacks
(brSF), extends uSF by assigning random magnitudes
|Ri| to the feedback weights after each update while

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

retaining the sign of the forward weights. The feedback weights in this case are defined as
Bi = |Ri| · sign(WT

i)∀i.
We evaluate SSA and DFA (including its variants) on CIFAR-10 and ImageNet datasets. Tables 4
and 5 summarize the test error rates for these methods, including the baseline BP. Our results indicate
that SSA outperforms most variants of DFA across both datasets. To further analyze convergence
behavior, we plot the error across epochs for a 3-layer MLP trained with SSA, BP, and DFA (includ-
ing its variants) in Figure 3. The results illustrate that SSA converges significantly faster than DFA
and its variants, showcasing the advantages of structured feedback and custom loss design. While
DFA and its variants perform poorly on convolutional layers, or cannot be directly applied to them,
SSA achieves robust performance across both fully connected and convolutional architectures. To
ensure uniformity in comparisons, the plotted results focus on MLPs. This limitation of DFA on
convolutional layers further highlights the versatility of SSA for broader network types.

6.2 LIMITATIONS

While SSA demonstrates promising results, it also presents certain limitations that warrant further
exploration:

Rank Reduction Trade-offs: Although the progressive rank reduction strategy effectively reduces
memory and computational costs, it may introduce performance trade-offs, especially in scenarios
where an aggressive reduction in rank leads to a loss of model capacity. In some cases, the re-
duced representational power could result in lower accuracy, particularly for highly complex tasks
or datasets. This suggests the need for careful tuning of the rank reduction schedule, potentially
adapting it dynamically based on the task’s complexity or during different training phases.

Hyperparameter Sensitivity: The performance of the SSA method is sensitive to the choice of
hyperparameters, particularly the coefficients (α, β, γ, δ, ϵ) that weigh the individual loss compo-
nents in the composite loss function. While cross-validation helps select these parameters, the
method could benefit from adaptive mechanisms that dynamically adjust the weights during training
to optimize performance.

Linear Separability of Intermediate Features: While SSA successfully extends to ResNet-32
with minimal accuracy loss on large datasets, scaling to deeper networks may pose challenges.
Specifically, optimizing earlier layers with local loss objectives can lead to limited support for train-
ing subsequent layers, potentially affecting the quality of learned representations. Unlike BP or
AugLocal, SSA demonstrates higher linear separability in early layers, suggesting that the features
learned may be less general and less transferable to deeper layers. Addressing this limitation and
improving the alignment between layerwise and global objectives will be a focus of future work.

7 CONCLUSION

In this paper, we presented a novel local training framework that leverages Singular Value Decompo-
sition (SVD) combined with Direct Feedback Alignment (DFA) for efficient local layerwise neural
network training. Our method, SSA, decomposes the weight matrices of each layer into their SVD
components and applies local updates on the SVD components itself, driven by a composite loss
function. This loss function incorporates feedback error, alignment loss, orthogonality regulariza-
tion, and sparsity constraints, enabling structured and efficient learning.

The experimental results demonstrated that SSA achieves classification accuracy on par with back-
propagation while significantly reducing memory usage, computational cost, and energy consump-
tion. The method’s progressive rank reduction strategy ensures that the model becomes more
lightweight throughout training, making it highly suitable for deployment on resource-constrained
devices. Theoretical analysis guarantees convergence of our loss objectives, while ablation studies
highlight the role of each loss component in balancing accuracy and efficiency. SSA offers a com-
pelling scalable and energy-efficient alternative to backpropagation, paving the way for biologically
inspired, resource-aware neural network training in real-world applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. Advances in neural information processing systems, 32, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pp. 583–593. PMLR, 2019.

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit as-
signment problem without a backward pass. In International Conference on Machine Learning,
pp. 4937–4955. PMLR, 2022.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predict-
ing parameters in deep learning. Advances in neural information processing systems, 26, 2013.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks. Frontiers in neuro-
science, 15:629892, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. Advances in neural information processing
systems, 33:9346–9360, 2020.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Back-
propagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

Chenxiang Ma, Jibin Wu, Chenyang Si, and Kay Chen Tan. Scaling supervised local learning with
augmented auxiliary networks. arXiv preprint arXiv:2402.17318, 2024.

Giosué Cataldo Marinó, Alessandro Petrini, Dario Malchiodi, and Marco Frasca. Deep neural net-
works compression: A comparative survey and choice recommendations. Neurocomputing, 520:
152–170, 2023.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In Inter-
national conference on machine learning, pp. 4839–4850. PMLR, 2019.

Albert Jiménez Sanfiz and Mohamed Akrout. Benchmarking the accuracy and robustness of feed-
back alignment algorithms. arXiv preprint arXiv:2108.13446, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Huanrui Yang, Minxue Tang, Wei Wen, Feng Yan, Daniel Hu, Ang Li, Hai Li, and Yiran Chen.
Learning low-rank deep neural networks via singular vector orthogonality regularization and sin-
gular value sparsification. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pp. 678–679, 2020.

A APPENDIX

A.1 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the SVD-DFA training method, focusing on
the convergence of the composite loss function, the stability of the updates, and the computational
efficiency. The analysis is based on the minimization of the composite loss function defined for each
layer, which includes Cross-Entropy Loss (LCE), Cosine Similarity Loss (Lcos), Alignment Loss
(Lalign), Singular Vector Orthogonality Regularizer (Lortho), and the Hoyer Regularizer (Lhoyer).

A.1.1 CONVERGENCE PROOF: PRELIMINARIES

To analyze the convergence of the proposed SVD-DFA method, we recall the composite loss func-
tion LLi(θi) for each layer i. Recall that the loss function is defined as:

LLi(θi) = αLCE(θi) + βLcos(θi) + γLalign(θi) + δLortho(θi) + ϵLhoyer(θi) (16)

where θi = (Ui, Si, V
T
i) represents the SVD components of the weight matrix for layer i, and

LCE, Lcos, Lalign, Lortho, Lhoyer represent the different components of the composite loss function
(cross-entropy, cosine similarity, alignment loss, orthogonality regularizer, and Hoyer regularizer).

We show that the composite loss function Li(θi) is Lipschitz smooth with some constraints, mean-
ing that its gradients are Lipschitz continuous with a constant L > 0:

∥∇Li(θi)−∇Li(θ
′
i)∥ ≤ L∥θi − θ′i∥ (17)

This ensures that the gradient of the loss function does not change abruptly, making gradient de-
scent applicable. Additionally, we show that the learning rate η satisfies the standard condition for
convergence in gradient descent:

0 < η <
2

L
(18)

This ensures that the gradient descent steps lead to a reduction in the loss function and progress
toward a local minimum.

Gradient Descent Updates For each layer i, the gradient descent updates are applied to the SVD
components θi = (Ui, Si, V

T
i). The updates are performed independently for each component:

U
(t+1)
i = U

(t)
i − η∇Ui

Li(Ui, Si, V
T
i) (19)

S
(t+1)
i = S

(t)
i − η∇Si

Li(Ui, Si, V
T
i) (20)

V
T (t+1)
i = V

T (t)
i − η∇V T

i
Li(Ui, Si, V

T
i) (21)

These updates ensure that each component of the SVD-decomposed weight matrix is adjusted in a
direction that minimizes the composite loss function.

The convergence of gradient descent for Lipschitz continuous loss functions is well-established in
optimization theory. Since the composite loss function Li(θi) satisfies the Lipschitz smoothness
assumption and the learning rate η is chosen according to the condition above, the gradient descent
updates will lead to convergence toward a local minimum. Specifically, as the number of iterations
t increases, the gradient of the loss function approaches zero:

lim
t→∞

∥∇θiLi(θ
(t)
i)∥ = 0 (22)

This implies that the updates to the SVD components will converge to a stationary point, at which
point the loss can no longer be improved.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Although the updates for each layer i are performed independently, the global loss function L =∑
i Li will converge as each local loss Li converges to a critical point, provided the loss includes

local projection of the global cross entropy loss LCE . The decoupled nature of the Direct Feedback
Alignment (DFA) mechanism ensures that local updates do not depend on global gradient flow,
enabling each layer to reach a stable solution independently. Therefore, the global training process
is mostly guaranteed to stabilize if the local objectives are minimized.

A.1.2 CROSS-ENTROPY LOSS: CONVEXITY AND SMOOTHNESS

For a classification task with K classes, the global cross-entropy loss for a single data point is defined
as:

LCE-global(y, ŷ) = −
K∑

k=1

yk log(ŷk) (23)

where:

• y is the true label vector (one-hot encoded),

• ŷ is the predicted probability vector, which is the output of the softmax function applied to
the logits.

To prove the convexity of the cross-entropy loss, we compute its Hessian matrix (the matrix of
second derivatives) and show that it is positive semi-definite.

Softmax Function

The softmax function is defined as:

ŷi =
ezi∑K
j=1 e

zj
(24)

where z = (z1, z2, . . . , zK) are the logits.

Cross-Entropy Loss in Terms of Logits

By substituting the softmax function into the cross-entropy loss, we get:

LCE(z, y) = −
K∑

k=1

yk

zk − log

 K∑
j=1

ezj

 (25)

Given that y is one-hot encoded, assume yc = 1 for some class c and yk = 0 for all k ̸= c. Then:

LCE(z, y) = −zc + log

 K∑
j=1

ezj

 (26)

Gradient of Cross-Entropy Loss

The gradient of the cross-entropy loss with respect to zi is:

∂LCE

∂zi
= −∂zc

∂zi
+

∂

∂zi
log

 K∑
j=1

ezj

 (27)

For i = c:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

∂LCE

∂zc
= −1 + ŷc = ŷc − 1 (28)

For i ̸= c:

∂LCE

∂zi
= ŷi (29)

Thus, the gradient vector is:

∇zLCE = ŷ − y (30)

We use this as the feedback error for each layer locally.

Hessian of Cross-Entropy Loss

The Hessian matrix H , which contains the second derivatives, is:

∂2LCE

∂zi∂zj
=

∂ŷi
∂zj

(31)

Using the derivative of the softmax function:

∂ŷi
∂zj

=

{
ŷi(1− ŷi), if i = j

−ŷiŷj , if i ̸= j
(32)

Thus, the Hessian matrix is:

Hij = ŷi(δij − ŷj) (33)

where δij is the Kronecker delta. Since H is positive semi-definite, the cross-entropy loss is convex.

Smoothness of Cross-Entropy Loss

A function is L-smooth if its gradient is Lipschitz continuous. That is, there exists a constant L such
that for all z1 and z2:

∥∇LCE(z1)−∇LCE(z2)∥ ≤ L∥z1 − z2∥ (34)

Bounding the Difference Between Softmax Outputs

We analyze the difference between the softmax outputs for two logits vectors z1 and z2:

∥ŷ1 − ŷ2∥ ≤ ∥z1 − z2∥ (35)

The softmax function is known to be 1/2-Lipschitz, which ensures the smoothness of the cross-
entropy loss.

Result

• The cross-entropy loss is convex because its Hessian matrix is positive semi-definite.

• The cross-entropy loss is L-smooth with L = 1/2, since its gradient is Lipschitz continu-
ous.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1.3 COSINE SIMILARITY LOSS: CONVEXITY AND SMOOTHNESS

The cosine similarity between two vectors x and y is given by:

cos(x, y) =
xT y

∥x∥∥y∥
(36)

The cosine similarity loss is defined as:

Lcos(x, y) = 1− cos(x, y) = 1− xT y

∥x∥∥y∥
(37)

Cosine Similarity in the SSA Layer Context

For an SVD-decomposed layer, the forward pass results in the following operation:

layer input · (USV T) (38)

Where:

• U , S, and V T are the singular vectors and values of the weight matrix.
• layer input is the input to the layer.

The feedback signal for direct feedback alignment (DFA) uses the matrices BU , BS , and BV T

corresponding to the feedback paths for the U , S, and V T components:

(BUBSBV T)T · e (39)

Where e is the error vector from the cross-entropy loss LCE.

Thus, the cosine similarity loss function for this layer becomes:

Lcosine = 1− ⟨layer input · (USV T), (BUBSBV T)T · e⟩
∥layer input · (USV T)∥ · ∥(BUBSBV T)T · e∥

(40)

This measures how aligned the layer output is with the feedback signal from DFA.

Convexity of Cosine Similarity Loss To prove convexity, we must examine the Hessian of the
cosine similarity loss function. The cosine similarity is not convex in general due to the following
reasons:

• The cosine similarity depends on both the norm of the vectors and their angle.
• The loss depends on the inner product of the vectors, and the Hessian matrix, which in-

volves second-order partial derivatives, is not guaranteed to be positive semi-definite for all
inputs.

First Derivative The first derivative with respect to x is:

∇xLcos =
y

∥x∥∥y∥
− xT y

∥x∥3∥y∥
x (41)

Hessian The Hessian, which is the matrix of second-order partial derivatives, involves terms like:

H(x) = ∇2
xLcos = − 1

∥x∥∥y∥

(
I − xxT

∥x∥2

)
+

3(xT y)

∥x∥5∥y∥
xxT − yxT

∥x∥3∥y∥
(42)

In most practical applications, this Hessian matrix will not be positive semi-definite, meaning that
the cosine similarity loss is not convex.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Quasi-Convexity of Cosine Similarity Loss

A function f(x) is quasi-convex if all its sublevel sets Sα = {x | f(x) ≤ α} are convex. This
means that for any α ∈ R, the set of points x for which f(x) is less than or equal to α forms a
convex set.

Quasi-Convexity in Normalized Vectors

If the vectors x and y are normalized, meaning ∥x∥ = ∥y∥ = 1, the cosine similarity loss simplifies
to:

Lcos(x, y) = 1− xT y (43)

In this case, the loss becomes linear with respect to x, given that y is fixed. A linear function is both
convex and concave, implying that its sublevel sets are convex. Thus, when x and y are normalized,
the cosine similarity loss exhibits quasi-convexity.

Quasi-Convexity on the Unit Sphere

If x and y are constrained to lie on the unit sphere (i.e., ∥x∥ = 1 and ∥y∥ = 1), the loss function
again simplifies to:

Lcos(x, y) = 1− xT y (44)

Since the cosine similarity is proportional to the angle between x and y, the sublevel sets Sα = {x |
1−xT y ≤ α} define a half-space on the unit sphere, which is convex. Therefore, on the unit sphere,
the cosine similarity loss is quasi-convex.

Smoothness of Cosine Similarity Loss Despite not being convex, the cosine similarity loss is
smooth because its gradient is Lipschitz continuous. The Lipschitz constant L can be derived from
the gradient:

∇xLcos =
y

∥x∥∥y∥
− xT y

∥x∥3∥y∥
x (45)

The norm difference between gradients for two inputs x1 and x2 is bounded by a constant L, imply-
ing that:

∥∇xLcos(x1, y)−∇xLcos(x2, y)∥ ≤ L∥x1 − x2∥ (46)

This proves that the loss function is smooth.

Result We project the loss into a unit sphere to make it quasi-convex. Otherwise, the cosine simi-
larity loss is L-smooth, which will also lead to a local minimum.

A.1.4 ALIGNMENT LOSS: CONVEXITY AND SMOOTHNESS

The alignment loss function is defined as:

Lalign(U, S, V
T , BU , BS , BV T) = ∥U −BU∥2F + ∥S −BS∥2F + ∥V T −BV T ∥2F (47)

where U, S, V T are the SVD matrices, and BU , BS , BV T are feedback matrices. We aim to prove
the convexity, smoothness, and boundedness of this loss function.

Convexity Analysis We need to check the convexity of each term in the alignment loss.

Convexity of ∥U −BU∥2F : This term can be expressed as:

∥U −BU∥2F =
∑
i,j

(Uij − (BU)ij)
2 (48)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The gradient with respect to Uij is:

∂

∂Uij
∥U −BU∥2F = 2(Uij − (BU)ij) (49)

The Hessian with respect to Uij is:

∂2

∂Uij∂Ukl
∥U −BU∥2F = 2δikδjl (50)

This is a diagonal matrix with positive entries, making it convex.

Convexity of ∥S −BS∥2F : Similarly, for the singular values S:

∥S −BS∥2F =
∑
i,j

(Sij − (BS)ij)
2 (51)

This follows the same analysis as for U , showing that this term is also convex.

Convexity of ∥V T −BV T ∥2F : The same steps apply to the V T term:

∥V T −BV T ∥2F =
∑
i,j

(Vij − (BV)ij)
2 (52)

Thus, all terms in the alignment loss are convex.

Convexity of the Full Loss : Since the alignment loss is a sum of convex functions, the overall
loss is convex.

Smoothness Analysis The smoothness of the alignment loss requires that the gradient be Lipschitz
continuous.

Gradient Computation : The gradients for each term are:

∇ULalign = 2(U −BU), ∇SLalign = 2(S −BS), ∇V TLalign = 2(V T −BV T) (53)

Lipschitz Continuity : The difference in gradients for two different points (U1, S1, V
T
1) and

(U2, S2, V
T
2) can be written as:

∥∇ULalign(U1, S1, V
T
1)−∇ULalign(U2, S2, V

T
2)∥F = 2∥U1 − U2∥F (54)

Thus, the alignment loss is smooth with a Lipschitz constant L = 2.

A.1.5 BOUNDEDNESS OF ALIGNMENT LOSS

The alignment loss function is bounded if the norms of the matrices U, S, V T , BU , BS , BV T are
bounded. Specifically, if ∥U∥F ≤ M , ∥S∥F ≤ M , and ∥V T ∥F ≤ M , then:

Lalign(U, S, V
T , BU , BS , BV T) ≤ 3M2 (55)

Result - The alignment loss is convex and L-smooth with L = 2. - It is bounded when the input
matrices are bounded.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.1.6 SINGULAR VECTOR ORTHOGONALITY REGULARIZER: CONVEXITY AND
SMOOTHNESS

The singular vector orthogonality regularizer ensures that the singular vectors in the SVD decompo-
sition remain orthogonal. A common form of this regularizer is:

Lortho(U) = ∥UTU − I∥2F (56)

where:

• U represents the matrix of singular vectors.
• I is the identity matrix, ensuring that UTU is orthogonal.

Convexity Analysis We begin by analyzing the convexity of Lortho(U) by computing its gradient
and Hessian.

Expansion of the Regularizer The Frobenius norm can be expanded as:

Lortho(U) = Tr((UTU − I)T (UTU − I)) (57)

Expanding this further:
Lortho(U) = Tr(UTUUTU − 2UTU + I) (58)

Gradient Computation To compute the gradient with respect to U :

∇UTr(UTUUTU) = 4U(UTU), ∇UTr(UTU) = 2U (59)

Thus, the gradient of Lortho(U) is:

∇ULortho(U) = 4U(UTU − I) (60)

Hessian Computation The Hessian H(U) is obtained by differentiating the gradient. The Hessian
involves terms such as U(UTU), making it non-trivial and potentially non-positive semi-definite.
This suggests that Lortho(U) is non-convex.

Smoothness Analysis

The function Lortho(U) is L-smooth if its gradient is Lipschitz continuous, i.e., if there exists a
constant L such that:

∥∇ULortho(U1)−∇ULortho(U2)∥F ≤ L∥U1 − U2∥F (61)

Gradient Difference The gradient is:

∇ULortho(U) = 4U(UTU − I) (62)

For two matrices U1 and U2:

∥∇ULortho(U1)−∇ULortho(U2)∥F = 4∥U1(U
T
1 U1 − I)− U2(U

T
2 U2 − I)∥F (63)

This can be bounded by:

4
(
∥U1∥F ∥UT

1 U1 − I∥F + ∥U2∥F ∥UT
2 U2 − I∥F

)
(64)

Thus, the function is smooth, with the Lipschitz constant L depending on the norms of U1 and U2.

Boundedness of the Regularizer

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The regularizer Lortho(U) = ∥UTU − I∥2F can be unbounded. However, if U is constrained such
that ∥U∥F is bounded (e.g., by norm constraints), then:

Lortho(U) ≤ (M2 − 1)2

where M is the bound on ∥U∥F .

Improving Smoothness or Quasi-Convexity

Regularization and Constraints Adding a regularization term to prevent singular vectors from
deviating can smooth the landscape:

L′
ortho(U) = ∥UTU − I∥2F + λ∥U∥2F (65)

Projection Methods Projecting U onto convex sets (such as the Stiefel manifold) or applying
constraints like ∥U∥F = 1 can improve convexity and smoothness.

Result The singular vector orthogonality regularizer Lortho(U) is non-convex but smooth, and
boundedness can be achieved with constraints. We decay weight SVD components as a regular-
ization term and project the components on a unit sphere to make the regularizer quasi-convex.

A.2 HOYER REGULARIZER: CONVEXITY AND SMOOTHNESS

The Hoyer regularizer is frequently used in machine learning to encourage sparsity in a vector or
matrix. It is defined as the ratio of the ℓ1 norm and the ℓ2 norm, and for a matrix S (Singular Values),
the regularizer is given by:

LHoyer(S) =
∥S∥1
∥S∥2

(66)

where:

• ∥S∥1 =
∑

i,j |Sij | is the ℓ1 norm of the matrix S,

• ∥S∥2 =
√∑

i,j S
2
ij is the ℓ2 norm of S.

This regularizer promotes sparsity by minimizing the ratio of the two norms.

Convexity Analysis

To check whether LHoyer(S) is convex, we analyze the convexity of both the numerator and the
denominator.

Convexity of the Numerator and Denominator

• Numerator: The ℓ1 norm ∥S∥1 =
∑

i,j |Sij | is convex because the absolute value function
is convex.

• Denominator: The ℓ2 norm ∥S∥2 =
√∑

i,j S
2
ij is also convex because it is the square

root of a convex function.

Although both the numerator and the denominator are convex, the ratio of two convex functions is
not generally convex unless the denominator is affine. Thus, LHoyer(S) is non-convex.

Smoothness Analysis

The smoothness of LHoyer(S) can be determined by analyzing the gradient and checking its Lipschitz
continuity. For any two matrices S1 and S2, we need to check if there exists a constant L > 0 such
that:

∥∇LHoyer(S1)−∇LHoyer(S2)∥ ≤ L∥S1 − S2∥ (67)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Gradient of the Hoyer Regularizer Let:

• f(S) = ∥S∥1 =
∑

i,j |Sij |,

• g(S) = ∥S∥2 =
√∑

i,j S
2
ij .

The gradient of LHoyer(S) =
f(S)
g(S) can be computed using the quotient rule:

∇SLHoyer(S) =
g(S)∇f(S)− f(S)∇g(S)

g(S)2
(68)

Where:

• ∇f(S) is the subgradient of the ℓ1 norm, which is sign(S),

• ∇g(S) is the gradient of the ℓ2 norm, which is S
∥S∥2

.

Thus, the gradient becomes:

∇SLHoyer(S) =
∥S∥2 · sign(S)− ∥S∥1·S

∥S∥2

∥S∥22
(69)

Lipschitz Continuity of the Gradient The gradient of LHoyer(S) involves non-smooth terms (like
the absolute value), particularly near points where Sij = 0. These points can cause the gradient to
be discontinuous, making the regularizer not Lipschitz continuous. Therefore, LHoyer(S) is non-
smooth.

Boundedness of the Regularizer

The Hoyer regularizer is bounded under certain conditions:

• Lower Bound: LHoyer(S) ≥ 1 for any non-zero matrix S. This is due to the fact that
∥S∥1 ≥ ∥S∥2 by the Cauchy-Schwarz inequality.

• Upper Bound: The Hoyer regularizer can become unbounded when S is sparse, as ∥S∥1
can dominate ∥S∥2 when many entries of S are zero.

Thus, LHoyer(S) is not generally bounded, but has a lower bound of 1 for non-zero matrices.

Making the Hoyer Regularizer More Smooth or Quasi-Convex

Since the Hoyer regularizer is non-convex and non-smooth, we can consider alternative approaches
to make it more tractable:

Smoothing the Regularizer One method is to apply smoothing approximations to the ℓ1 norm,
such as:

∥S∥1,ϵ =
∑
i,j

√
S2
ij + ϵ2 (70)

This approximation is differentiable, and ϵ controls the degree of smoothness. The smoothed Hoyer
regularizer becomes:

LHoyer, smooth(S) =

∑
i,j

√
S2
ij + ϵ2

∥S∥2
(71)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Quasi-Convexity Another approach is to use convex surrogates that balance sparsity and smooth-
ness, such as:

Lsurrogate(S) = λ∥S∥1 + (1− λ)∥S∥2 (72)

This function is convex and maintains a balance between the ℓ1 and ℓ2 norms.

Result

• The Hoyer regularizer LHoyer(S) =
∥S∥1

∥S∥2
is non-convex due to the interaction between the

ℓ1 and ℓ2 norms.

• The regularizer is non-smooth because its gradient is not Lipschitz continuous, particularly
near zero entries.

• The regularizer is bounded below by 1 for non-zero matrices but can become unbounded
in the case of sparse matrices.

• Smoothing approximations and convex surrogates can be used to improve the tractability
of the Hoyer regularizer for optimization purposes.

• For our experiments, we use the smoothed regularizer every 10 epochs to reduce the rank
of SVD components progressively.

A.2.1 GRADIENT DESCENT UPDATE EQUATIONS

Given the composite loss function for each layer i:

Li(θi) = αLCE + βLcos + γLalign + δLortho + ϵLhoyer (73)

where θi = (Ui, Si, V
T
i), we derive the gradient descent updates for the decomposed matrices Ui,

Si, and V T
i by computing the partial derivatives of Li(θi) with respect to these matrices and applying

the gradient descent rule.

Gradient with Respect to Ui

The update for Ui is given by:

U
(t+1)
i = U

(t)
i − η

∂Li(θi)

∂Ui
(74)

Expanding the gradient:

∂Li(θi)

∂Ui
= α

∂LCE

∂Ui
+ β

∂Lcos

∂Ui
+ γ

∂Lalign

∂Ui
+ δ

∂Lortho

∂Ui
+ ϵ

∂Lhoyer

∂Ui
(75)

Thus, the update rule for Ui becomes:

U
(t+1)
i = U

(t)
i − η

(
α
∂LCE

∂Ui
+ β

∂Lcos

∂Ui
+ γ

∂Lalign

∂Ui
+ δ

∂Lortho

∂Ui
+ ϵ

∂Lhoyer

∂Ui

)
(76)

Gradient with Respect to Si

Similarly, the update for Si is:

S
(t+1)
i = S

(t)
i − η

∂Li(θi)

∂Si
(77)

Expanding the gradient:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

∂Li(θi)

∂Si
= α

∂LCE

∂Si
+ β

∂Lcos

∂Si
+ γ

∂Lalign

∂Si
+ δ

∂Lortho

∂Si
+ ϵ

∂Lhoyer

∂Si
(78)

Thus, the update rule for Si becomes:

S
(t+1)
i = S

(t)
i − η

(
α
∂LCE

∂Si
+ β

∂Lcos

∂Si
+ γ

∂Lalign

∂Si
+ δ

∂Lortho

∂Si
+ ϵ

∂Lhoyer

∂Si

)
(79)

Gradient with Respect to V T
i

Finally, the update for V T
i is:

V
T (t+1)
i = V

T (t)
i − η

∂Li(θi)

∂V T
i

(80)

Expanding the gradient:

∂Li(θi)

∂V T
i

= α
∂LCE

∂V T
i

+ β
∂Lcos

∂V T
i

+ γ
∂Lalign

∂V T
i

+ δ
∂Lortho

∂V T
i

+ ϵ
∂Lhoyer

∂V T
i

(81)

Thus, the update rule for V T
i becomes:

V
T (t+1)
i = V

T (t)
i − η

(
α
∂LCE

∂V T
i

+ β
∂Lcos

∂V T
i

+ γ
∂Lalign

∂V T
i

+ δ
∂Lortho

∂V T
i

+ ϵ
∂Lhoyer

∂V T
i

)
(82)

Summary of Update Equations

The gradient descent updates for the SVD matrices at each layer i can be summarized as:

U
(t+1)
i = U

(t)
i − η

∑
j

λj
∂Lj

∂Ui
(83)

S
(t+1)
i = S

(t)
i − η

∑
j

λj
∂Lj

∂Si
(84)

V
T (t+1)
i = V

T (t)
i − η

∑
j

λj
∂Lj

∂V T
i

(85)

where λj corresponds to the weighting coefficients α, β, γ, δ, ϵ for the respective loss terms Lj .
These updates ensure that each component of the composite loss is accounted for in the optimization
of the decomposed matrices Ui, Si, V T

i .

A.2.2 CONVERGENCE ANALYSIS AND LAYERWISE CONVERGENCE FOR COMPOSITE LOSS

Among the loss components:

• LCE is convex and smooth.
• Lalign and Lortho are convex, though the latter may exhibit non-convexity in specific formu-

lations.
• Lcos and Lhoyer are typically non-convex.

Thus, the overall loss Li(θi) may be non-convex. Proper learning rates and stabilization techniques
can ensure convergence to a critical point.

Convergence Rate:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

For a smooth, non-convex loss function, the convergence rate of gradient descent is generally sub-
linear, on the order of O(1/

√
T) for finding a point with a small gradient norm. The rate improves

in cases of strong convexity.

Independent Layerwise Convergence:

Each layer i minimizes its own objective Li(θi) independently. Provided the learning rate η is small
and the loss is smooth, the updates for Ui, Si, and V T

i converge to a critical point.

Interaction Between Layers:

• Forward Matrices: The layer outputs UiSiV
T
i affect the inputs to subsequent layers. Mis-

alignment or poor convergence in one layer can affect the next.
• Feedback Matrices: Alignment losses ensure that the forward matrices Ui, Si, V

T
i align

with the feedback matrices BU , BS , BV T , preventing large deviations in gradient back-
propagation.

Convergence of Forward and Feedback Matrices:

• Forward Matrices: These converge as long as each layer’s objective is minimized. Proper
minimization ensures alignment in subsequent layers.

• Feedback Matrices: Alignment losses Lalign guide the proper alignment of feedback matri-
ces with forward matrices.

Stabilizing Layerwise Training:

• Regularization: Adding regularization terms to the loss, such as weight decay or orthogo-
nality constraintsstabilizes training.

• Projection Methods: Ensuring matrices stay within a convex set (e.g., positive semi-definite
matrices) improves stability.

• Adaptive Learning Rates: Using adaptive learning rates (e.g., Adam) improves conver-
gence by adjusting to the curvature of the loss landscape.

Conclusion

• Each layer i will converge to a critical point of its loss function Li(θi), provided the learning
rate is sufficiently small.

• Misalignment in one layer may affect subsequent layers, requiring careful attention to feed-
back and forward matrix alignment.

• Stabilization techniques such as regularization, projection, and adaptive learning rates are
essential for effective global convergence.

A.2.3 LAYERWISE CUSTOM LOSSES AND MODEL LOSS

The overall model loss, Lmodel(Θ), is a function of the network’s final output ŷ:

Lmodel(Θ) = L(y, ŷ(Θ)), (86)

where y is the true label and ŷ is the predicted output.

Convergence of Layerwise Loss and Impact on Model Loss The gradient of the model loss with
respect to the parameters of layer i can be expressed using the chain rule:

∇θiLmodel(Θ) =
∂Lmodel(Θ)

∂ŷ
· ∂ŷ

∂zn
. . .

∂zi+1

∂zi
· ∂zi
∂θi

, (87)

where zi is the pre-activation output of layer i. The term ∂ŷ
∂zn

. . . ∂zi+1

∂zi
represents the backpropagated

gradient that passes through all layers from n to i.

Convergence of Custom Layer Loss Assume that the custom loss for each layer Li(θi) decreases
over time as:

Li(θ
(t+1)
i) ≤ Li(θ

(t)
i). (88)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

As t → ∞, the gradient of the custom layer loss vanishes:

lim
t→∞

∥∇θiLi(θ
(t)
i)∥ = 0. (89)

This implies convergence for each layer’s parameters θi.

Impact on Model Loss The decrease in each layer’s custom loss directly impacts the model loss:

Lmodel(Θ
(t+1)) = Lmodel(Θ

(t) − η∇θiLmodel(Θ
(t))) ≤ Lmodel(Θ

(t)). (90)

The inequality holds because the gradient of the model loss is aligned with the gradient of the
layerwise loss. Thus, the updates reduce Lmodel(Θ), and the model loss converges as the custom layer
losses converge. We assume that the linear separability condition holds for this convergence, which
means for early layer, the loss produced at each layer guides subsequent layers as well. However,
from empirical results, we see for deeper networks (beyond ResNet-32), this assumption holds false.

Global Convergence of Model Loss The global convergence of the model loss is guaranteed under
certain conditions:

• Lipschitz Continuity: If the gradients of the model loss are Lipschitz continuous, the
global loss converges as the layerwise losses decrease.

• Boundedness: If the model loss is lower-bounded by Lmin, the global loss converges to a
minimum.

• Linear Separability: If the loss generated at earlier layers of the network guides the sub-
sequent layers of the networks as well, then the global loss would converge well. This
assumption might not hold for very deep neural networks.

A.3 EXPERIMENTAL DETAILS

Training Setup Based on observations from (Sanfiz & Akrout, 2021), biologically plausible meth-
ods like DFA perform better with the Adam optimizer. Therefore, all experiments use Adam with
initial learning rates adapted from prior works. Learning rates for SSA are dynamically adjusted to
accommodate progressive rank reduction.

CIFAR-100 Experiments We use the CIFAR-100 dataset, containing 60,000 images across 100
classes, with 50,000 for training and 10,000 for testing. Images are resized to 32×32 pixels, and
standard data augmentation techniques, including random cropping (with 4-pixel padding) and hor-
izontal flipping, are applied. Training is conducted over 200 epochs using Adam with an initial
learning rate of 1 × 10−4. A learning rate scheduler reduces the rate by a factor of 10 at the 20th,
40th, and 60th epochs. A batch size of 128 is used, with He initialization for convolutional layers
and Xavier initialization for fully connected layers.

For SSA, weight matrices start at full rank and are progressively reduced every 10 epochs
while retaining 95% matrix energy. Loss coefficients are fixed at (α, β, γ, δ, ϵ) =
(0.1, 0.01, 0.1, 0.05, 0.01), determined through cross-validation.

ImageNet Experiments We evaluate on ImageNet (ILSVRC-2012), a large-scale dataset with
1.28 million training images and 50,000 validation images across 1,000 classes. Images are resized
to 224×224 pixels, and data augmentation includes random cropping, horizontal flipping, and color
jittering. Images are normalized using the dataset mean and standard deviation. Training is con-
ducted for 200 epochs with Adam, using an initial learning rate of 2 × 10−4 for BP and 5 × 10−4

for SSA. The learning rate is decayed every 30 epochs. A batch size of 256 is used across all
experiments.

For SSA, rank reduction begins after the first 20 epochs and proceeds every 10 epochs, retain-
ing 90% matrix energy. Loss coefficients are kept consistent with CIFAR-100 (α, β, γ, δ, ϵ =
0.1, 0.01, 0.1, 0.05, 0.01), with adjustments only to the overall learning rates for layerwise updates.

Normalization Layers For batchnorm layers, we use it mostly for the forward process, and do not
involve in the layerwise backward process (as the gradient calculation process is not sequential). We

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

also use layernorm as an alternative to batchnorm. From our experiments, we find that layernorm is
more suited to our method than batchnorm (empirically determined).

Hyperparameter Tuning We introduce four hyperparameters in our local layerwise loss objective.
We put lower values of hyperparameters for cosine similarity loss and hoyer regularizer, as they are
non-convex. We project the SVD unitary components onto unit sphere (convex sets) to improve
overall convexity and smoothness. We choose values of (0.1, 0.01, 0.1, 0.05, 0.01) for (α, β, γ, δ, ϵ)
ideally. We select the hyperparameters ultimately after cross-validation.

ResNet Local Module Splitting In our experiments, each residual block in ResNet is treated as a
fundamental layer. For ResNet-32, this results in a total of 16 fundamental layers, with each block
encapsulating key functions like identity mapping and feature transformation.

25

	Introduction
	Related Work
	Methodology
	SVD-Space Decomposition
	Direct Feedback Alignment in SVD-Space
	Training Objective: Custom Layerwise Loss Function
	Dynamic Rank Reduction Strategy
	Computational and Memory Complexity

	Experimental Setup
	Results and Analysis
	Classification Accuracy
	Memory and Computational Efficiency
	Ablation Study

	Discussion
	Comparison with DFA
	Limitations

	Conclusion
	Appendix
	Theoretical Analysis
	Convergence Proof: Preliminaries
	Cross-Entropy Loss: Convexity and Smoothness
	Cosine Similarity Loss: Convexity and Smoothness
	Alignment Loss: Convexity and Smoothness
	Boundedness of Alignment Loss
	Singular Vector Orthogonality Regularizer: Convexity and Smoothness

	Hoyer Regularizer: Convexity and Smoothness
	Gradient Descent Update Equations
	Convergence Analysis and Layerwise Convergence for Composite Loss
	Layerwise Custom Losses and Model Loss

	Experimental Details

