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ABSTRACT

Deep Neural Networks (DNNs) are typically trained using backpropagation,
which, despite its effectiveness, requires substantial memory and computing re-
sources. To address these limitations, we propose a novel local training frame-
work that enables efficient and scalable neural network training without relying
on global backpropagation. Our framework harnesses the alignment of Singu-
lar Value Decomposed (SVD) weight space with feedback matrices, guided by
custom layerwise loss functions, to enable efficient and scalable neural network
training. We decompose weight matrices into their SVD components before train-
ing, and perform local updates on the SVD components themselves, driven by
a tailored objective that integrates feedback error, alignment regularization, or-
thogonality constraints, and sparsity. Our approach leverages Direct Feedback
Alignment (DFA) to eliminate the need for global backpropagation and further
optimizes model complexity by dynamically reducing the rank of the SVD com-
ponents during training. The result is a compute- and memory-efficient model
with classification accuracy on par with traditional backpropagation while achiev-
ing a 50-75% reduction in memory usage and computational cost during training.
With strong theoretical convergence guarantees, we demonstrate that training in
the SVD space with DFA not only accelerates computation but also offers a pow-
erful, energy-efficient solution for scalable deep learning in resource-constrained
environments. Code is available.

1 INTRODUCTION

As neural networks grow in size and complexity, the memory and computational requirements for
training have become a significant bottleneck, particularly in resource-constrained environments
such as edge devices. Backpropagation (BP), the most commonly used method for training deep
networks, increases this issue as it relies on a global loss objective and needs to store intermediate
activations for layer-by-layer gradient updates. This not only demands high memory usage and
computational power, but also introduces the update-locking issue(Lillicrap et al.l [2020), in which
parameters of the hidden layer cannot be updated until both forward and backward computations
are completed. Hence, we highlight the need for alternative training paradigms that are both more
memory and compute-efficient and enable efficient parallelization of the training process.

Direct Feedback Alignment (DFA) (Ngkland, 2016) offers a promising alternative to backpropa-
gation (BP) by enabling local layerwise updates without global gradient propagation, which re-
duces the hardware complexity of neural network training. This makes DFA appealing for resource-
constrained environments. However, DFA faces limitations in scaling to more complex tasks and
deeper architectures, largely due to its reliance on fixed random feedback connections. These con-
nections limit its ability to train deep convolutional layers and perform well on datasets like CIFAR-
100 and ImageNet without transfer learning (Launay et al., 2020). Although the integration of the
Kolen-Pollack algorithm (Akrout et al.l [2019) has improved feedback alignment by learning sym-
metric feedback weights, DFA still struggles to match BP in terms of accuracy and scalability. While
DFA’s simplified learning rules have been well-studied, its potential combination with low-rank sub-
spaces—such as those from Singular Value Decomposition (SVD)—remains underexplored. This
synergy could be critical, as low-rank subspaces can reduce computational complexity, complement-
ing DFA’s goal of simpler learning rules.
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Figure 1: A comparison of neural network training methods. Notations: W = forward weights,
Layer = Layer Activations, Lop = cross-entropy loss, B = random feedback weights, § = gra-
dients, §; = gradient of Lo = feedback error, U, S, VT =SVD components of forward weights,
By, Bs, Byr = SVD components of feedback weights, Local Loss (LL) has components: Ljign
= Alignment loss, L.,s = Cosine similarity loss, L,-tno = Singular Vector Orthogonality regular-
izer, Loyer = Hoyer regularizer. (a) Backpropagation (BP): Global gradient updates through
each layer. (b) Direct Feedback Alignment (DFA): Local updates with random feedback (¢) SVD-
space Alignment (SSA) (ours): Decomposes weights into SVD components before training and
aligns feedback on those decomposed components itself with local losses. Note: LL + Lo is the
total local loss objective in our work.

We propose a novel hybrid training framework- SVD-Space Alignment (SSA) that synergistically
combines the simplified local learning rules of Direct Feedback Alignment (DFA) with the struc-
tured learning advantages of Singular Value Decomposition (SVD). SVD decomposes weight matri-
ces into orthogonal components, allowing for efficient updates in low-rank subspaces. By aligning
the SVD spaces of both the forward weights and feedback matrices, our method introduces struc-
ture into the learning process, countering the randomness inherent in DFA’s feedback matrices and
improving scalability, stability, and faster convergence. Our approach begins by decomposing the
weight matrices into their SVD components— U, S, and V7 —before training commences. We ap-
ply local updates to the SVD components using a custom loss function that minimizes model cross-
entropy loss, maintains alignment between forward and feedback weights, preserves orthogonality,
and enforces sparsity for efficiency. A key feature is the progressive rank reduction of SVD compo-
nents during training, reducing memory and computation while enabling energy-efficient inference
optimized for resource-constrained environments. Our work introduces several key innovations that
make DFA suitable for deep convolutional layers, addressing a significant gap in prior research.
Previous attempts to apply local loss methods to convolutional layers have relied on flattening these
layers, which leads to a loss of hierarchical and spatial features critical for vision-based applications.
In contrast, we preserve the convolutional structure by applying spatial-wise decomposition embed-
ded within SVD matrices, allowing our method to retain the hierarchical information necessary for
accurate visual recognition tasks.

Our key contributions are summarized as follows:

* We propose a novel hybrid training framework that incorporates feedback alignment with
Singular Value Decomposition (SVD), leveraging structured updates in SVD-space to mit-
igate the limitations of random feedback.

* We introduce a custom loss function that incorporates feedback error, alignment loss, or-
thogonality regularization, and sparsity constraints. This ensures that local layerwise up-
dates in the SVD-space are efficient and convergent.

* We demonstrate significant reductions in memory usage and computational complexity
through progressive rank reduction, achieving up to 50-75% reductions in memory usage
and computational requirements.
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* We show that our method can successfully train deep convolutional networks while retain-
ing spatial and hierarchical information. We provide theoretical convergence guarantees
and empirical validation, showing that our method achieves classification accuracy on par
with backpropagation, with faster convergence and lower computational costs, on challeng-
ing datasets like CIFAR-100 and ImageNet.

2 RELATED WORK

Our work draws upon several lines of research, including Direct Feedback Alignment (DFA), the
application of Singular Value Decomposition (SVD) in neural networks, local layerwise training
methods, and model compression techniques. This section reviews these areas.

Direct Feedback Alignment (DFA): Direct Feedback Alignment (DFA) (Ngkland, 2016)) was in-
troduced as a biologically plausible alternative to backpropagation (BP), reducing memory usage
by decoupling weight updates from global error gradients and using random feedback connections.
However, DFA struggles with gradient alignment, leading to instability in deeper networks. Ngkland
and Eidnes (Ngkland & Eidnes, |2019) improved DFA by introducing local error signals and aux-
iliary classifiers, enabling more stable layer-wise updates in deep networks. Building on this, our
approach aligns SVD-decomposed weight spaces with feedback matrices, using custom loss func-
tions to reduce feedback randomness and improve DFA’s scalability, stability, and efficiency, while
lowering model complexity.

Singular Value Decomposition (SVD) in Neural Networks: Singular Value Decomposition (SVD)
is widely used in machine learning to compress models and improve computational efficiency by
reducing the dimensionality of weight matrices. Early works, like (Denil et al.l2013)), showed that
low-rank approximations can lower the number of parameters and FLOPs with minimal performance
loss. More recent approaches, such as (Denton et al.| [2014) and (Yang et al., 2020), applied SVD
to CNNss, achieving significant inference speedups. Although (Yang et al |2020) also incorporated
an orthogonality regularizer to maintain stability, these methods still rely on backpropagation for
updates, which can disrupt orthogonality. Our method addresses this by integrating SVD with Direct
Feedback Alignment (DFA), preserving orthogonality and dynamically reducing the rank during
training to create compact models without sacrificing accuracy.

Local Layerwise Training: Local learning rules, which update layers independently of global gra-
dients, are gaining attention for their scalability and efficiency. Methods like greedy layerwise train-
ing (Belilovsky et al., 2019), DRTP (Frenkel et all 2021), and Auglocal (Ma et al. 2024), re-
duce backpropagation’s memory costs using local losses or auxiliary networks. Forward-only meth-
ods, such as Hinton’s Forward-Forward (FF) (Hinton, 2022) and PEPITA (Dellaferrera & Kreiman),
2022), avoid backprop entirely but often fall short in accuracy, especially in deeper networks, and
struggle with global alignment. Our work focuses on improving local loss methods, as forward-only
approaches struggle with classification accuracy in deeper networks. We enhance local layerwise
training by applying Singular Value Decomposition (SVD) to layer weights and aligning compo-
nents with feedback matrices using Direct Feedback Alignment (DFA).

Model Compression Techniques: Model compression techniques like pruning, quantization, and
low-rank factorization (Marind et al., [2023) reduce neural network size and computation but often
require retraining to recover accuracy and rely on backpropagation. Our approach trains low-rank
SVD components from scratch, with no retraining needed. Progressive rank reduction dynamically
adjusts model complexity, maintaining accuracy while creating compact models. Using DFA for
feedback also improves hardware efficiency and scalability.

3 METHODOLOGY

We present SVD-Space Alignment (SSA), a novel method combining Singular Value Decomposition
(SVD) with Direct Feedback Alignment (DFA) for efficient local layerwise training in deep neural
networks. By decomposing weight matrices with SVD and applying local updates using our custom
loss function (including DFA’s feedback error), SSA reduces computational complexity and memory
usage. The custom loss function ensures structured learning, incorporating alignment, orthogonality,
and sparsity regularization. Additionally, a dynamic rank reduction strategy further optimizes the
model for edge devices.
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3.1 SVD-SPACE DECOMPOSITION

Given a weight matrix W; € R™*" for layer ¢, we decompose it into its SVD form:
W; = U;S; VT (1)

where U; € R™*" and V; € R™*" are orthogonal matrices, and S; € R"*" is a diagonal matrix
of singular values, with » < min(m,n). Decomposing weights before training allows updates
to be made directly in the SVD-space, preserving the orthogonality of U; and VI while enabling
efficient rank reduction during training. This avoids the computational overhead of performing SVD
at every epoch and promotes more structured learning by preventing orthogonality disruption caused
by gradient descent in BP.

SVD-Space for Convolutional Layers. For convolutional layers, we integrate the SVD-space
approach by leveraging spatial decomposition inspired by (Yang et al.| |2020). A convolutional
kernel K € RV*XCXHXW 'with N as the number of filters, C' as the number of input channels, and
H x W as the spatial dimensions, is first reshaped into a 2D matrix K’ € RVNWXCH This matrix
is then decomposed using SVD:

K =vuxvT )
where U € RVW*T and V € REHX" are unitary matrices, and ¥ € R™*" is a diagonal matrix of
singular values, with = min(NW, CH).

The decomposed components are reshaped back into convolutional layers as follows:

 U+/X is reshaped into a convolutional kernel K| € R *CxHx1,

+ VXV is reshaped into a kernel K, € RVXrx1xW,

This decomposition splits the original convolutional operation into two consecutive layers, preserv-
ing hierarchical and spatial features while reducing computational complexity. During the forward
pass, the convolutions are performed using Ky and K5. During backpropagation, gradients are com-
puted for K7 and K5 and used to directly update these decomposed kernels without reconstructing
the original kernel K. We retain the decomposed kernels for inference.

3.2 DIRECT FEEDBACK ALIGNMENT IN SVD-SPACE

DFA uses random feedback matrices that are independent of the inter-layer weight matrices, en-
abling efficient local updates. For each layer ¢, the feedback matrices By,, Bgs,, and By, r are used

to update the SVD components U;, S;, and V;T, respectively. The update rules for each SVD com-
ponent are defined as follows:

Ut = u® — vy, Li(U;, Si, VT 3)
S = § Vs, Li(Us, 53, V) X
VI — v e (U, S V) ©)

where 7 is the learning rate, and L;(U;, S;, V) is the layer-specific loss function (detailed in Section
3.3). These updates are independent across layers, reducing the computational overhead typically
associated with backpropagation and enabling parallelization of layer updates.

3.3 TRAINING OBJECTIVE: CUSTOM LAYERWISE LOSS FUNCTION

We design a custom layerwise loss function with regularization terms to maintain the model’s struc-
ture and efficiency in the SVD-space. We provide the gradients of this loss to the layer as shown in
Fig 1. The local loss function for layer ¢ is formulated as:

LL; (91) = CYLCE(GZ‘) + BLcos(ei) + 'VLalign(ei) + (5Lorth0(9i> + 6LHoyer(ei) (6)
where §; = (U;, S;, V;1'), and the terms are defined as follows:

Cross-Entropy Loss (Lcg): This loss is the model cross entropy loss. We get the feedback error,
matching DFA’s local error, from the derivative of this loss. The feedback error measures how well
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the model’s predictions align with target outputs, crucial for classification tasks. The feedback error
comes from the derivative of the entire model’s cross entropy loss.

ALCE' = Ypredict — Ylabel )

Cosine Similarity Loss (L.o): This loss encourages alignment between the activations of the net-
work and the feedback signals, ensuring that the directions of the activations remain consistent with
the feedback.
(layer_input - (USVT), (ByBsByr)T - e)
[Nayer_input - (USVT)|| - ||(ByBsByr)T - €]

Where layer_input - (USVT) is the activation from the network. (B Bs By r)T - e is the feedback
signal with e = AL¢cEg.

Lcos =

®)

Alignment Loss (Lqjgn): This loss ensures alignment between the SVD-decomposed matrices (U,
S;, VZ-T) and their respective feedback matrices (By,, Bs,, By ). This loss is defined as:

Luign (0:) = |Ui = Bu,|[% + [1Si = Bs, |7 + Vi = By % ©

Singular Vector Orthogonality Regularizer (Lq,): This component promotes orthogonality in
the singular vectors U; and V,T', which preserves the structure of the SVD decomposition. The
regularizer is defined as:

Lorno(60:) = U Us = 1|7 + V" Vi = 1| (10)

Hoyer Regularizer (Lyoyer): This regularizer encourages sparsity in the singular values by mini-
mizing the ratio of the L; norm to the Lo norm of the singular values. We apply this loss every ten
epochs to enhance sparsity and reduce the rank. The regularizer is defined as:

Si
Lttoer(0:) = S}; (11)

Each term in the composite loss function serves a specific purpose in ensuring efficient, structured,
and stable learning of the SVD-decomposed weights (detailed in the Appendix). By jointly mini-
mizing these objectives, the model is able to achieve efficient training.

3.4 DYNAMIC RANK REDUCTION STRATEGY

To reduce model size and computational complexity, we employ a dynamic rank reduction strategy.
Initially, each layer’s SVD decomposition starts with full rank ry. During the initial epochs, we use
an epoch-based schedule, progressively reducing the rank every ten epochs by applying the Hoyer
regularizer to sparsify the matrices. The rank rj, at epoch k is:

Kk
T =19 X (1 — IL(l/OIJ()) s

where K is the total number of epochs.

In the later epochs, defined dynamically as the point where the rank rj, has reduced to (r¢ (( =
0.7), we incorporate a threshold-based check to dynamically retain singular values contributing
to a predefined energy threshold (95% of the matrix’s total energy). This mitigates the sharp rank
reduction induced by 1 — k/ K in epoch-based scheduling as k approaches K. If the threshold-based
check determines that the rank is already sufficiently low from the epoch-based reduction, further
reduction is halted to preserve the model’s representational capacity.

3.5 COMPUTATIONAL AND MEMORY COMPLEXITY

The computational and memory requirements of the SSA method are significantly lower than those
of traditional BP, both during training and inference, due to the use of dynamic rank reduction and
low-rank SVD representations of the neural network weights.
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Training Complexity. For a weight matrix W; € R™*", the computational cost of traditional BP
is O(m x n x p), where p is the batch size. In SSA, the weight matrix is decomposed into SVD
components: U € R™*" S € R™ ", and VT € R™*", where r < min(m, n). The computational
cost of updating these components is:

O(m xrxp)+O(rxp)+O(rxnxp), (12)
where O(m x r x p): Updating U; O(r x p): Updating the diagonal matrix S; O(r X n X p):
Updating VT, As the rank r is progressively reduced throughout training, the computational cost
decreases further, leading to substantial efficiency gains. The memory complexity is also reduced
compared to BP. Instead of storing the full weight matrix W; and its gradients, SSA stores only the
SVD components. The resulting memory complexity is:

Omxr)+0(rxr)+0(rxn), (13)
which becomes increasingly efficient as r decreases over the course of training.

Inference Complexity. During inference, SSA leverages the decomposed form U SV 7 instead of
the full weight matrix W,;. The computational complexity for inference is:

O(rxn)+O0(rxr)+0(mxr), (14)
where O(r x n): Computing V'z (given = = Layer input), O(r x r): Scaling by S, O(m x r):
Projecting with U. Since r < min(m, n), inference is lightweight, ensuring efficiency in compu-
tationally constrained environments. The memory requirements during inference are also minimal.
Gradients and activations are no longer required, and only the final decomposed components U, .S,
and V7 need to be stored, leading to the same memory complexity as training:

O(m xr)+0(r x7r)+ O(r xn). (15)

4 EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to evaluate the performance of our proposed
SSA method. We outline the datasets, neural network architectures, baseline methods for compari-
son, and the evaluation metrics used to assess the effectiveness of our approach. Further details are
elaborated in the Appendix.

Datasets: We evaluate our method on CIFAR-10, CIFAR-100 (Krizhevsky et al., [2009), and Im-
ageNet (ILSVRC-2012) (Krizhevsky et all 2017), using CIFAR for small-scale benchmarks and
ImageNet for large-scale scalability.

Network Architectures: To demonstrate the flexibility of our approach, we evaluate the SSA
method on several common neural network architectures: SmallConv (conv96-pool-conv192-pool-
conv512-pool-fc1024), VGG-13 (Simonyan & Zisserman, 2014)), and ResNet-32 (He et al., [2016).
These models cover a range of depths and sizes, allowing us to assess the performance of the SSA
method on both small and large networks.

Baselines: We compare our SSA method against several baselines to evaluate accuracy, mem-
ory, computational cost, and training stability. These include BP, the standard method for neural
network training; Direct Feedback Alignment (DFA) (Ngkland, |[2016), a biologically plausible and
scalable alternative to BP; SVD-BP, which combines low-rank approximation with backpropagation
but lacks feedback alignment; PredSim (Ngkland & Eidnes, 2019), which uses local error signals
like reconstruction and similarity matching loss; Auglocal (Ma et al., [2024), a local learning ap-
proach with augmented auxiliary networks; DRTP (Frenkel et all 2021)), a gradient-free method
using Direct Random Target Projection; and PEPITA (Dellaferrera & Kreiman, [2022)), which ap-
plies error-driven forward-only local learning.

Evaluation Metrics: To evaluate the SSA method, we use several key metrics: Classification
Accuracy, measuring top-1 and top-5 accuracy to assess how well the model generalizes to unseen
data; Memory Usage, tracking the model’s memory footprint during training to evaluate efficiency
in resource-constrained environments and computational Cost, calculating the reduction in FLOPs
per training iteration to gauge computational efficiency. These metrics provide a comprehensive
view of SSA’s performance in terms of accuracy, efficiency, and scalability compared to baselines.
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Training Details: All experiments are conducted on a machine with NVIDIA A40 GPUs and 48
GB of GDDR6 memory. We implement the SSA method and baselines using PyTorch. Training
is performed with the Adam optimizer (Kingma, [2014), with a learning rate ranging from le—4
to be—4 (detailed in Appendix), and data augmentation techniques like random cropping and hor-
izontal flipping to improve generalization. The batch size is 128 for CIFAR-10/100 and 256 for
ImageNet. For SSA, we start with the initial rank r( at the full rank of the original weight matrices,
progressively reducing it as outlined in Section 3.4.

Hyperparameter Selection. The coefficients «, 3,7, d, ¢ are set as (0.1,0.01,0.1,0.05,0.01),
consistent across all experiments. Feedback cross-entropy error and alignment loss, being convex
and smooth, are assigned higher weights, while non-convex components such as cosine similarity
loss, orthogonality loss, and the Hoyer regularizer have lower weights (Theoretical Analysis in Ap-
pendix). To mitigate non-convexity, we ensure quasi-convexity by projecting the cosine similarity
loss and SVD component norms onto the unit sphere. The Hoyer regularizer is smoothened and
applied only every ten epochs during rank reduction.

Theoretical analysis and ablation studies (Section 5.3) guide these choices. Ablation results demon-
strate the impact of removing individual loss components, emphasizing the need to balance their
contributions. To confirm the robustness of the coefficients, we perform basic k¥ = 3-fold cross-
validation, evaluating a small grid of candidate values. This process takes approximately 5%-10%
of the total training time and leverages the independence of local loss objectives, avoiding the com-
plexity of global optimization. Once selected, the coefficients remain fixed across all experiments.

5 RESULTS AND ANALYSIS

In this section, we present the results of our experiments and provide an in-depth analysis of the
performance of the proposed SSA method. We compare the results against baseline methods. Our
analysis covers classification accuracy, memory and computational efficiency, convergence rates,
ablation studies, and energy efficiency.

5.1 CLASSIFICATION ACCURACY

We present the classification accuracies of the SSA method on CIFAR-10 and ImageNet, compared
to baseline methods. Table shows a comparison with BP, SVD-BP, local training, and forward-only
methods. The Forward-Forward method is excluded as it does not extend to convolutional networks,
while DFA, DRTP, and PEPITA are omitted from the next Table E] due to their inability to scale
to larger networks without encountering heavy accuracy loss. We see that our method outperforms
other local training and forward-only methods while achieving performance on par with BP.

Network Method CIFAR-10 (mean =+ std) | CIFAR-100 (mean =+ std)
SmallConv | BP 87.57 +0.14 62.25 + 0.21
SVD-BP (Yang et al.|[2020) 87.30 £0.18 61.64 +0.19
DFA (Akrout et al.|[2019) 73.10 +0.53 44.93 +0.51
DRTP (Frenkel et al.|[2021) 68.96 £ 0.80 NA
PEPITA (Dellaferrera & Kreiman/[2022) 56.34 £1.24 27.56 £ 0.67
SSA (ours) 86.23 +0.12 60.88 +0.17

Table 1: Comparison of classification accuracy (mean + standard deviation) over 5 independent
runs with random inits for CIFAR-10 and CIFAR-100 datasets.

In Table[2] we compare our method to BP, SVD-BP, and more recent local layerwise training meth-
ods on CIFAR-10 and ImageNet datasets, focusing on larger networks.

From Table[2] we observe that SSA consistently achieves classification accuracy comparable to stan-
dard backpropagation (BP) across all datasets when applied to VGG-like networks. On CIFAR-10,
SSA’s accuracy is within 0.2% of BP, and the gap remains minimal on ImageNet as well. However,
for ResNet-32, SSA shows a slightly larger accuracy gap compared to BP, indicating room for im-
provement in deeper networks. Notably, PredSim does not report statistics for ImageNet in their
paper, limiting direct comparison. Auglocal, on the other hand, embeds properties of later layers
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Network Method CIFAR10 (Top-1) | ImageNet (Top-1) | ImageNet (Top-5)

VGG-13 BP 93.75 71.59 90.39
SVD-BP (Yang et al.|2020) 92.8 71.37 90.2
PredSim (Ngkland & Eidnes|[2019) 86.49 NA NA
AugLocal (Ma et al.||2024) 93.72 70.93 90.16
SSA (ours) 92.7 69.87 89.7

ResNet-32 | BP 93.74 74.28 91.76
SVD-BP (Yang et al.|[2020) 91.77 7291 89.27
PredSim (Ngkland & Eidnes;[2019) 79.31 NA NA
AugLocal (Ma et al.||2024) 93.47 73.95 91.7
SSA (ours) 88.53 70.03 88.78

Table 2: Performance comparison (accuracy %) of various methods on CIFAR-10 and ImageNet
datasets for VGG-13 and ResNet-32 architectures.

into earlier layers, effectively aligning with the global loss objective. However, this comes at the
cost of increased computational overhead due to the auxiliary networks introduced for each layer.

5.2 MEMORY AND COMPUTATIONAL EFFICIENCY

One of the primary advantages of the SSA method is its reduction in memory usage and computa-
tional cost due to progressive rank reduction of the SVD components during training process.

1e6 Computational Complexity (ResNet-32) [ ional C i i 1) Computational Complexity (VGG-13)

~

—e— BP (ResNet-32) —=— BP (MobileNetvl) —— BP (VGG-13)
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Figure 2: BP and SSA compute and memory per layer for ResNet-32, MobileNetV1 and VGG-13

SSA reduces memory usage by up to 50% compared to backpropagation and reduces compute by
at least 40% across various model architectures as demonstrated in Fig 2. We see similar compute-
memory savings in inference as well, as explained in Section 3.5. These results show that SSA is
particularly suitable for deployment in resource-constrained environments.

5.3 ABLATION STUDY

We perform an ablation study to quantify the contribution of each component in the composite loss
function to the overall performance of SSA. Table [3] shows the impact of removing each compo-
nent (Cross-Entropy Loss, Cosine Similarity Loss, Alignment Loss, Orthogonality Regularizer, and
Hoyer Regularizer) on classification accuracy and computational efficiency.

From Table[3] removing the Cross-Entropy Loss results in a significant accuracy drop, as expected.
Cosine similarity loss attempts to preserve the direction of gradient update proportional to true gra-
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Table 3: Ablation study on CIFAR-10 showing the impact of each component in the composite loss

function.
Component Removed Accuracy | FLOPs (in billions)
Full SSA (All Components) 92.7% 0.14
No Cross-Entropy Loss 70.5% 0.133
No Cosine Similarity Loss 87% % 0.126
No Alignment Loss 83.1% 0.119
No Orthogonality Regularizer 85.4% 0.112
No Hoyer Regularizer 90.5% 0.105

dient of BP. However, as we don’t have BP gradients during the training, we approximate true gra-
dient by (layer input x weight) layer output, so that the direction of the update remains consistent.
Alignment loss attempts to reduce the loss between the subspaces in forward and feedback weights.
Both cosine similarity loss and alignment loss aids gradient direction preservation, and therefore,
removing these components also decreases accuracy, but less severely than Cross-Entropy Loss.
Orthogonality Regularizer maintains the unitary properties of U, Vt. If the unitary properties are
maintained, the angular alignment and any angular transformation will be meaningful (preserving
lengths and angles). Hence, removing the regularizer negatively impacts both accuracy and compu-
tational efficiency, which might worsen in deeper models. The Hoyer regularizer sparsifies weights
during rank reduction and has limited effect on the overall accuracy. Overall, the ablation study
demonstrates that each loss component is essential for SSA’s performance and efficiency.

6 DISCUSSION

The experimental results demonstrate that our proposed SSA method achieves competitive classifi-
cation accuracy while significantly reducing memory usage and computational cost. In the following
sub-sections, we state the advantages of SSA over DFA and its limitations.

6.1 COMPARISON WITH DFA

SSA introduces two key distinctions from DFA: the use of a structured weight-space (SVD-
decomposed weights) and custom loss components applied directly in this SVD-space. To evaluate
these differences, we present comparisons between SSA and DFA, along with its variants (Sanfiz &
Akrout, 2021), in the following tables and figures.

Method | LeNet | ResNet-20 | ResNet-56 Method Top-1 Error Rate (%)

BP 15.92 10.01 7.83 BP 30.39

FA 40.67 29.59 29.23 FA 85.25

DFA 37.59 32.16 32.02 DFA 82.45

uSF 16.34 10.59 9.19 uSF 34.97

brSF 17.08 11.08 10.13 brSF 37.21

SSA 16.20 10.60 9.80 SSA (Ours) 32.45
Table 4: CIFAR-10 test error (%) for dif- Table 5: ImageNet test error rates for
ferent methods ResNet-18

Top-1 Error (%) Across Methods with SSA

One variant of DFA, known as Uniform Sign- .
concordant Feedbacks (uSF), generates feedback
weights by preserving the sign of the forward weight
matrices while assuming unit magnitude for the synap- _»
tic weights. This is mathematically represented as
B; = sign(WI)Vi. Another variant, Batchwise §
Random Magnitude Sign-concordant Feedbacks
(brSF), extends uSF by assigning random magnitudes  «
|R;| to the feedback weights after each update while

[ 10 20 0 50 60 70

0
Epoch

Figure 3: Top-1 Error (%) Across Epochs for
a 3-layer MLP.
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retaining the sign of the forward weights. The feedback weights in this case are defined as
B; = |R;| - sign(W]I') Vi.

We evaluate SSA and DFA (including its variants) on CIFAR-10 and ImageNet datasets. Tables [4]
andE] summarize the test error rates for these methods, including the baseline BP. Our results indicate
that SSA outperforms most variants of DFA across both datasets. To further analyze convergence
behavior, we plot the error across epochs for a 3-layer MLP trained with SSA, BP, and DFA (includ-
ing its variants) in Figure[3] The results illustrate that SSA converges significantly faster than DFA
and its variants, showcasing the advantages of structured feedback and custom loss design. While
DFA and its variants perform poorly on convolutional layers, or cannot be directly applied to them,
SSA achieves robust performance across both fully connected and convolutional architectures. To
ensure uniformity in comparisons, the plotted results focus on MLPs. This limitation of DFA on
convolutional layers further highlights the versatility of SSA for broader network types.

6.2 LIMITATIONS

While SSA demonstrates promising results, it also presents certain limitations that warrant further
exploration:

Rank Reduction Trade-offs: Although the progressive rank reduction strategy effectively reduces
memory and computational costs, it may introduce performance trade-offs, especially in scenarios
where an aggressive reduction in rank leads to a loss of model capacity. In some cases, the re-
duced representational power could result in lower accuracy, particularly for highly complex tasks
or datasets. This suggests the need for careful tuning of the rank reduction schedule, potentially
adapting it dynamically based on the task’s complexity or during different training phases.

Hyperparameter Sensitivity: The performance of the SSA method is sensitive to the choice of
hyperparameters, particularly the coefficients («, 3,7, d, €) that weigh the individual loss compo-
nents in the composite loss function. While cross-validation helps select these parameters, the
method could benefit from adaptive mechanisms that dynamically adjust the weights during training
to optimize performance.

Linear Separability of Intermediate Features: While SSA successfully extends to ResNet-32
with minimal accuracy loss on large datasets, scaling to deeper networks may pose challenges.
Specifically, optimizing earlier layers with local loss objectives can lead to limited support for train-
ing subsequent layers, potentially affecting the quality of learned representations. Unlike BP or
Auglocal, SSA demonstrates higher linear separability in early layers, suggesting that the features
learned may be less general and less transferable to deeper layers. Addressing this limitation and
improving the alignment between layerwise and global objectives will be a focus of future work.

7 CONCLUSION

In this paper, we presented a novel local training framework that leverages Singular Value Decompo-
sition (SVD) combined with Direct Feedback Alignment (DFA) for efficient local layerwise neural
network training. Our method, SSA, decomposes the weight matrices of each layer into their SVD
components and applies local updates on the SVD components itself, driven by a composite loss
function. This loss function incorporates feedback error, alignment loss, orthogonality regulariza-
tion, and sparsity constraints, enabling structured and efficient learning.

The experimental results demonstrated that SSA achieves classification accuracy on par with back-
propagation while significantly reducing memory usage, computational cost, and energy consump-
tion. The method’s progressive rank reduction strategy ensures that the model becomes more
lightweight throughout training, making it highly suitable for deployment on resource-constrained
devices. Theoretical analysis guarantees convergence of our loss objectives, while ablation studies
highlight the role of each loss component in balancing accuracy and efficiency. SSA offers a com-
pelling scalable and energy-efficient alternative to backpropagation, paving the way for biologically
inspired, resource-aware neural network training in real-world applications.
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A APPENDIX

A.1 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the SVD-DFA training method, focusing on
the convergence of the composite loss function, the stability of the updates, and the computational
efficiency. The analysis is based on the minimization of the composite loss function defined for each
layer, which includes Cross-Entropy Loss (Lcg), Cosine Similarity Loss (L¢os), Alignment Loss
(Lalign), Singular Vector Orthogonality Regularizer (Lowno), and the Hoyer Regularizer (Lpoyer).

A.1.1 CONVERGENCE PROOF: PRELIMINARIES

To analyze the convergence of the proposed SVD-DFA method, we recall the composite loss func-
tion LL,(6;) for each layer i. Recall that the loss function is defined as:

LLZ(H’L) - CVLCE(el) + 6Lcos (01) + ’yLalign(gi) + 5L0nh0(0i) + ELhoyer(ei) (16)

where 0; = (U;, S;, V;T') represents the SVD components of the weight matrix for layer i, and
Lcg, Leos, Latign, Lortho, Lnoyer represent the different components of the composite loss function
(cross-entropy, cosine similarity, alignment loss, orthogonality regularizer, and Hoyer regularizer).

We show that the composite loss function L;(6;) is Lipschitz smooth with some constraints, mean-
ing that its gradients are Lipschitz continuous with a constant L > 0:

IVLi(6:) — VLi(05)[| < L||6; — & (17)

This ensures that the gradient of the loss function does not change abruptly, making gradient de-
scent applicable. Additionally, we show that the learning rate 7 satisfies the standard condition for
convergence in gradient descent:

2
0 — 18
<n<g (18)

This ensures that the gradient descent steps lead to a reduction in the loss function and progress
toward a local minimum.

Gradient Descent Updates For each layer 4, the gradient descent updates are applied to the SVD
components §; = (U;, S;, V;I'). The updates are performed independently for each component:

Uit = u® — vy, LUy, S, Vi) (19)
SUV = 5O Vs, Li(Us, 5, VT (20)
ViT(H—l) _ ViT(t) — ¥y r Li(U3, S;, 178! (21)

These updates ensure that each component of the SVD-decomposed weight matrix is adjusted in a
direction that minimizes the composite loss function.

The convergence of gradient descent for Lipschitz continuous loss functions is well-established in
optimization theory. Since the composite loss function L;(6;) satisfies the Lipschitz smoothness
assumption and the learning rate 7 is chosen according to the condition above, the gradient descent
updates will lead to convergence toward a local minimum. Specifically, as the number of iterations
t increases, the gradient of the loss function approaches zero:

: (N =

This implies that the updates to the SVD components will converge to a stationary point, at which
point the loss can no longer be improved.

12
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Although the updates for each layer ¢ are performed independently, the global loss function L =
>, Li will converge as each local loss L; converges to a critical point, provided the loss includes
local projection of the global cross entropy loss Lo g. The decoupled nature of the Direct Feedback
Alignment (DFA) mechanism ensures that local updates do not depend on global gradient flow,
enabling each layer to reach a stable solution independently. Therefore, the global training process
is mostly guaranteed to stabilize if the local objectives are minimized.

A.1.2 CROSS-ENTROPY L0OSS: CONVEXITY AND SMOOTHNESS

For a classification task with K classes, the global cross-entropy loss for a single data point is defined
as:

K
Lee-giovar (4, 9) = = i log () (23)
k=1

where:

* g is the true label vector (one-hot encoded),

* ¢ is the predicted probability vector, which is the output of the softmax function applied to
the logits.

To prove the convexity of the cross-entropy loss, we compute its Hessian matrix (the matrix of
second derivatives) and show that it is positive semi-definite.

Softmax Function
The softmax function is defined as:
N e
Yi= =g . (24)
Zj:l e?i
where z = (21, 29, ..., 2k ) are the logits.
Cross-Entropy Loss in Terms of Logits

By substituting the softmax function into the cross-entropy loss, we get:

=

k=1

K
Lea(z,y) ==Y oy |2 —log [ Y e (25)
j=1

Given that y is one-hot encoded, assume ¥y, = 1 for some class ¢ and y; = 0 for all k£ ## c. Then:

K
Lep(2,y) = =z +1log [ Y e (26)
j=1

Gradient of Cross-Entropy Loss

The gradient of the cross-entropy loss with respect to z; is:

8LCE _ 8zc 8 K 2
5 = o + a—zilog ;e (27)

For: = c:

13
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oL
o g =g.—1 (28)
0z
For i # c:
OLce .
5, Y (29)
Thus, the gradient vector is:
V.Lcg =9 —vy (30)

We use this as the feedback error for each layer locally.
Hessian of Cross-Entropy Loss

The Hessian matrix H, which contains the second derivatives, is:

9?Lee _ 9 31)
(9Zi82j 62’]‘
Using the derivative of the softmax function:
99 _ {yi(l—yy» ifi = 32
0z =il ifi#j
Thus, the Hessian matrix is:
Hij = §:(6i5 — 95) (33)

where §;; is the Kronecker delta. Since H is positive semi-definite, the cross-entropy loss is convex.
Smoothness of Cross-Entropy Loss

A function is L-smooth if its gradient is Lipschitz continuous. That is, there exists a constant L such
that for all z; and z5:

VLcE(21) — VLce(22)|| < L[z1 — 22| (34)

Bounding the Difference Between Softmax Outputs

We analyze the difference between the softmax outputs for two logits vectors z; and zs:

191 = G2l < llz1 — 22| (35)

The softmax function is known to be 1/2-Lipschitz, which ensures the smoothness of the cross-
entropy loss.

Result

* The cross-entropy loss is convex because its Hessian matrix is positive semi-definite.

* The cross-entropy loss is L-smooth with I = 1/2, since its gradient is Lipschitz continu-
ous.

14
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A.1.3 COSINE SIMILARITY LOSS: CONVEXITY AND SMOOTHNESS

The cosine similarity between two vectors x and y is given by:

T
ry
cos(x,y) = (36)
[l 1yl
The cosine similarity loss is defined as:
Ty
Leos(z,y) =1 —cos(z,y) =1 — ———— 37)
I

Cosine Similarity in the SSA Layer Context
For an SVD-decomposed layer, the forward pass results in the following operation:

layer_input - (USV™) (38)

Where:

o U,S,and VT are the singular vectors and values of the weight matrix.
* layer_input is the input to the layer.

The feedback signal for direct feedback alignment (DFA) uses the matrices By, Bg, and By~
corresponding to the feedback paths for the U, S, and V7' components:

(BUBsBVT)T - e (39)
Where e is the error vector from the cross-entropy loss Lcg.

Thus, the cosine similarity loss function for this layer becomes:

T (layer_input - (USV™), (ByBsByr)" - e) (40)
cosine — ||1ayerjnput . (USVT)” . ||(BUBstT)T . GH

This measures how aligned the layer output is with the feedback signal from DFA.

Convexity of Cosine Similarity Loss To prove convexity, we must examine the Hessian of the
cosine similarity loss function. The cosine similarity is not convex in general due to the following
reasons:

* The cosine similarity depends on both the norm of the vectors and their angle.

* The loss depends on the inner product of the vectors, and the Hessian matrix, which in-
volves second-order partial derivatives, is not guaranteed to be positive semi-definite for all
inputs.

First Derivative The first derivative with respect to x is:

y aTy

ViLcos = — T
O =yl =Pyl

(41)

Hessian The Hessian, which is the matrix of second-order partial derivatives, involves terms like:

1 zxT 3(xTy) yxT
H(z) = V2 Leos = — <I — ) + zal — (42)
e [yl =2/ llzll®llyll [EIRIE

In most practical applications, this Hessian matrix will not be positive semi-definite, meaning that
the cosine similarity loss is not convex.

15
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Quasi-Convexity of Cosine Similarity Loss

A function f(z) is quasi-convex if all its sublevel sets S, = {x | f(z) < a} are convex. This
means that for any « € R, the set of points « for which f(z) is less than or equal to « forms a
convex set.

Quasi-Convexity in Normalized Vectors

If the vectors « and y are normalized, meaning ||z|| = ||y|| = 1, the cosine similarity loss simplifies
to:

Leos(z,y) =1 — 2Ty (43)

In this case, the loss becomes linear with respect to x, given that y is fixed. A linear function is both
convex and concave, implying that its sublevel sets are convex. Thus, when x and y are normalized,
the cosine similarity loss exhibits quasi-convexity.

Quasi-Convexity on the Unit Sphere

If x and y are constrained to lie on the unit sphere (i.e., ||z]] = 1 and ||y|| = 1), the loss function
again simplifies to:

Leos(z,y) =1 — 2Ty (44)

Since the cosine similarity is proportional to the angle between x and y, the sublevel sets S, = {z |
1— mTy < a} define a half-space on the unit sphere, which is convex. Therefore, on the unit sphere,
the cosine similarity loss is quasi-convex.

Smoothness of Cosine Similarity Loss Despite not being convex, the cosine similarity loss is
smooth because its gradient is Lipschitz continuous. The Lipschitz constant L can be derived from
the gradient:

Yy aTy
S
iyl =)yl

The norm difference between gradients for two inputs x; and 5 is bounded by a constant L, imply-
ing that:

Vz Lcos = (45)

vaLcos(l‘la Z/) - vacos(any)H < L”xl - l‘gH (46)

This proves that the loss function is smooth.

Result We project the loss into a unit sphere to make it quasi-convex. Otherwise, the cosine simi-
larity loss is L-smooth, which will also lead to a local minimum.

A.1.4 ALIGNMENT L0SS: CONVEXITY AND SMOOTHNESS
The alignment loss function is defined as:
La“g“(U7 S? VTvBUa BS) BVT) = HU - BU||2F + ||S - BS||2F + ||VT - BVT H%‘ 47)

where U, S, VT are the SVD matrices, and By, Bg, By r are feedback matrices. We aim to prove
the convexity, smoothness, and boundedness of this loss function.

Convexity Analysis We need to check the convexity of each term in the alignment loss.

Convexity of |[U — By||%  : This term can be expressed as:

IU = Buls =Y (Ui; — (Bu)i)? (48)

(2]
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The gradient with respect to U; is:

0
WHU — Byl =2(Ui; — (Bu)i) (49)
ij
The Hessian with respect to Uj; is:

82

m\w — BullF = 20051 (50)
i

This is a diagonal matrix with positive entries, making it convex.

Convexity of |S — Bg||% : Similarly, for the singular values S:

IS = Bsllz = _(Si; — (Bs)i;)” Sh

i,J
This follows the same analysis as for U, showing that this term is also convex.

Convexity of |[VT — By r||2  : The same steps apply to the V7 term:

V" = Byr|7 =Y (Vij — (Bv)y)? (52)

,J
Thus, all terms in the alignment loss are convex.

Convexity of the Full Loss : Since the alignment loss is a sum of convex functions, the overall
loss is convex.

Smoothness Analysis The smoothness of the alignment loss requires that the gradient be Lipschitz
continuous.

Gradient Computation : The gradients for each term are:

Vv Laign = 2(U — By), VsLajign = 2(S — Bs), VyrLaiga = 2(V? — Byr) (53)

Lipschitz Continuity : The difference in gradients for two different points (Uy, Sy, Vi) and
(Us, S, Vo) can be written as:

IVt Latign(U1, S1, Vi) — Vi Latign (Uz, S2, Vol )| 7 = 2||U1 — Us||» (54)
Thus, the alignment loss is smooth with a Lipschitz constant L = 2.

A.1.5 BOUNDEDNESS OF ALIGNMENT LOSS

The alignment loss function is bounded if the norms of the matrices U, S, V", By, B, By are
bounded. Specifically, if ||U||r < M, ||S||r < M, and ||[VT||p < M, then:

Laiign(U, S, VT, By, Bs, Byr) < 3M? (55)

Result - The alignment loss is convex and L-smooth with L = 2. - It is bounded when the input
matrices are bounded.
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A.1.6 SINGULAR VECTOR ORTHOGONALITY REGULARIZER: CONVEXITY AND
SMOOTHNESS

The singular vector orthogonality regularizer ensures that the singular vectors in the SVD decompo-
sition remain orthogonal. A common form of this regularizer is:

Lomno(U) = [|[UTU — 1|3 (56)
where:

» U represents the matrix of singular vectors.

« I is the identity matrix, ensuring that U7 U is orthogonal.

Convexity Analysis We begin by analyzing the convexity of Loumo(U) by computing its gradient
and Hessian.

Expansion of the Regularizer The Frobenius norm can be expanded as:

Lowno(U) = Te(UTU — NT(UTU - 1)) (57)

Expanding this further:
Lono(U) = Te(UTUUTU = 2U0TU + 1) (58)

Gradient Computation To compute the gradient with respect to U:
VuTr(UTUUTU) = 4U(UTU), VyTr(UTU) = 2U (59)
Thus, the gradient of Lo (U) is:
Vi Lorno(U) = 4U(UTU — 1) (60)
Hessian Computation The Hessian H (U) is obtained by differentiating the gradient. The Hessian

involves terms such as U(UTU), making it non-trivial and potentially non-positive semi-definite.
This suggests that Loqno(U) is non-convex.

Smoothness Analysis

The function Leno(U) is L-smooth if its gradient is Lipschitz continuous, i.e., if there exists a
constant L such that:

IV Lortno(U1) — VU Lowno (U2) || p < LU — U p (61)

Gradient Difference The gradient is:

Vi Lono(U) = 4U(UTU — 1) (62)

For two matrices U7 and Us:

IV Lortho (U1) = Vr Lowno (Uz) | 7 = 4| U1 (UL Uy — 1) = Ua(Us Uz — 1) || # (63)
This can be bounded by:

4 (| rUFUL = I||p + |Us||p||US Uz — 1| ) (64)

Thus, the function is smooth, with the Lipschitz constant L depending on the norms of U; and Us.

Boundedness of the Regularizer
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The regularizer Lo, (U) = |[UTU — I||% can be unbounded. However, if U is constrained such
that ||U|| ¢ is bounded (e.g., by norm constraints), then:

Lortho(U) S (M2 - 1)2
where M is the bound on |U]|| r.
Improving Smoothness or Quasi-Convexity

Regularization and Constraints Adding a regularization term to prevent singular vectors from
deviating can smooth the landscape:

oo (U) = lUTU =I5 + AU 7 (65)

Projection Methods Projecting U onto convex sets (such as the Stiefel manifold) or applying
constraints like ||U||p = 1 can improve convexity and smoothness.

Result The singular vector orthogonality regularizer Loymo(U) is non-convex but smooth, and
boundedness can be achieved with constraints. We decay weight SVD components as a regular-
ization term and project the components on a unit sphere to make the regularizer quasi-convex.

A.2 HOYER REGULARIZER: CONVEXITY AND SMOOTHNESS

The Hoyer regularizer is frequently used in machine learning to encourage sparsity in a vector or
matrix. It is defined as the ratio of the #; norm and the ¢5 norm, and for a matrix S (Singular Values),
the regularizer is given by:

_ 15l

L) = g,

(66)

where:

* Sl = >;; 1Si5] is the £4 norm of the matrix S,

* [|Slla = /32 ; S is the £2 norm of S.

This regularizer promotes sparsity by minimizing the ratio of the two norms.
Convexity Analysis
To check whether Lyqyer(S) is convex, we analyze the convexity of both the numerator and the

denominator.

Convexity of the Numerator and Denominator

 Numerator: The ¢; norm ||S||; =
is convex.

¢ Denominator: The /5 norm || S| = .. S2 is also convex because it is the square
1,7 g

root of a convex function.

i |S;;] is convex because the absolute value function
;

Although both the numerator and the denominator are convex, the ratio of two convex functions is
not generally convex unless the denominator is affine. Thus, LHoyer(S) iS non-convex.

Smoothness Analysis

The smoothness of Lyyer(S) can be determined by analyzing the gradient and checking its Lipschitz
continuity. For any two matrices S; and S5, we need to check if there exists a constant L > 0 such
that:

HVLH()yer(Sl) - VLHoyer(SZ)H S L”Sl - SQH (67)
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Gradient of the Hoyer Regularizer Let:
« f(5) =Sl = 225515351,

¢ g(8) = IISlla = /52, 5%

The gradient of Lyjoyer(S) = % can be computed using the quotient rule:

Vs Litoger(S) = 9<5)Vf<S;(S)J2”(S)Vg(S) .

Where:

» Vf(S) is the subgradient of the ¢; norm, which is sign(.5),

» Vg(95) is the gradient of the £ norm, which is IR

2

Thus, the gradient becomes:

S]]z - sign(s) — 1505
15113

vSLHOyer(S) == (69)

Lipschitz Continuity of the Gradient The gradient of Lyoyer(S ) involves non-smooth terms (like
the absolute value), particularly near points where S;; = 0. These points can cause the gradient to
be discontinuous, making the regularizer not Lipschitz continuous. Therefore, Lyqyer(S) is non-
smooth.

Boundedness of the Regularizer
The Hoyer regularizer is bounded under certain conditions:
¢ Lower Bound: LHoyer(S) > 1 for any non-zero matrix S. This is due to the fact that
IIS]l1 > [IS||2 by the Cauchy-Schwarz inequality.
» Upper Bound: The Hoyer regularizer can become unbounded when S is sparse, as ||.S]|1
can dominate ||S||2 when many entries of S are zero.
Thus, Lyoyer(5) is not generally bounded, but has a lower bound of 1 for non-zero matrices.
Making the Hoyer Regularizer More Smooth or Quasi-Convex

Since the Hoyer regularizer is non-convex and non-smooth, we can consider alternative approaches
to make it more tractable:

Smoothing the Regularizer One method is to apply smoothing approximations to the ¢; norm,
such as:

IS]le = \/S% + ¢ (70)
5

This approximation is differentiable, and e controls the degree of smoothness. The smoothed Hoyer
regularizer becomes:

2 2
B E” Sij te

LHoyer, smooth(S) - ”SH2 (71)
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Quasi-Convexity Another approach is to use convex surrogates that balance sparsity and smooth-
ness, such as:

Liurrogare () = AllS|[x + (1 = XISl (72)

This function is convex and maintains a balance between the ¢; and /5 norms.
Result

* The Hoyer regularizer Lyoyer(S) = Hg”; is non-convex due to the interaction between the

/1 and ¢5 norms.

* The regularizer is non-smooth because its gradient is not Lipschitz continuous, particularly
near zero entries.

* The regularizer is bounded below by 1 for non-zero matrices but can become unbounded
in the case of sparse matrices.

* Smoothing approximations and convex surrogates can be used to improve the tractability
of the Hoyer regularizer for optimization purposes.

* For our experiments, we use the smoothed regularizer every 10 epochs to reduce the rank
of SVD components progressively.

A.2.1 GRADIENT DESCENT UPDATE EQUATIONS

Given the composite loss function for each layer ¢:

L; (91) = aLcg + ﬁLcos + ’VLalign + 0 Lortho + 6Lhoyer (73)

where 0; = (U;, S;, ViI'), we derive the gradient descent updates for the decomposed matrices Uj,
S;, and V' by computing the partial derivatives of L;(6;) with respect to these matrices and applying
the gradient descent rule.

Gradient with Respect to U;
The update for U; is given by:

OL;(0;)
U-(t+1) _ U(t) o i\Vq 74
i i 0, (74)
Expanding the gradient:
aLz (91 ) aLCE aLcos 8Lalign aLortho 6Lhoyer
= ) 75
ou, ~ a0, P, Ym0 Tans T an, (75)
Thus, the update rule for U, becomes:
aLCE OLcos aLali n OL th 8Lho er
U(t+1) _ U(t) . cos gl 5 ortho y 76
i oo\ TP T e, 0 an, T an, (76)
Gradient with Respect to .S;
Similarly, the update for .5 is:
OL;(0;
S — g _y, (6:) 77

05;

Expanding the gradient:
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OL; (91> _ aLCE O Lcos 8Lalign 0 Lotno +e 8Lhoyer

= : 0 78
95, s, "Pas, T7as, T0as, a5, (78)
Thus, the update rule for .S; becomes:
oL E 0L oL, li oL rth 8Lho er
S-(t+1) _ S-(t) - C cos align S ortho y 79
i i *os, "Pas, T7as, T07as, T as, 79
Gradient with Respect to V,”
Finally, the update for V. is
T(t+1) _ 1)  OLi(0;)
Expanding the gradient:
8Li (9 i ) aLCE Leos aLalign 0 Lortho a Lhoyer
v~ “avr T 5 vt T avT Oy T gy (81)
Thus, the update rule for ViT becomes:
aLCE aLali n OL rtho aLho er
VT(t—H) _ VT(t) . Leos g S o y 82
% i n 8VT + ﬁ aVT 3ViT 8ViT te aViT ( )
Summary of Update Equations
The gradient descent updates for the SVD matrices at each layer 7 can be summarized as:
(t+1) _ 7 )\ OL;
gt = y® Z 50 (83)
(t+1)
S —7 Z AJ a s (84)
T(t+1) _ T(t
1% Z AJ avT (85)

where \; corresponds to the weighting coefficients «, 3,, d, € for the respective loss terms L;.
These updates ensure that each component of the composite loss is accounted for in the optimization
of the decomposed matrices U;, S;, ViT.

A.2.2 CONVERGENCE ANALYSIS AND LAYERWISE CONVERGENCE FOR COMPOSITE LOSS
Among the loss components:

e Lcg is convex and smooth.

* Lgjign and Lo are convex, though the latter may exhibit non-convexity in specific formu-
lations.

* Lcos and Lpgyer are typically non-convex.

Thus, the overall loss L;(6;) may be non-convex. Proper learning rates and stabilization techniques
can ensure convergence to a critical point.

Convergence Rate:
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For a smooth, non-convex loss function, the convergence rate of gradient descent is generally sub-

linear, on the order of O(1/+/T) for finding a point with a small gradient norm. The rate improves
in cases of strong convexity.

Independent Layerwise Convergence:

Each layer ¢ minimizes its own objective L;(6;) independently. Provided the learning rate 7 is small
and the loss is smooth, the updates for U;, .S;, and V;T converge to a critical point.

Interaction Between Layers:

* Forward Matrices: The layer outputs U;S;V,T affect the inputs to subsequent layers. Mis-
alignment or poor convergence in one layer can affect the next.

* Feedback Matrices: Alignment losses ensure that the forward matrices U;, S;, V;! align
with the feedback matrices By, Bg, By r, preventing large deviations in gradient back-
propagation.

Convergence of Forward and Feedback Matrices:

» Forward Matrices: These converge as long as each layer’s objective is minimized. Proper
minimization ensures alignment in subsequent layers.

* Feedback Matrices: Alignment losses Lyjig, guide the proper alignment of feedback matri-
ces with forward matrices.

Stabilizing Layerwise Training:
* Regularization: Adding regularization terms to the loss, such as weight decay or orthogo-

nality constraintsstabilizes training.

* Projection Methods: Ensuring matrices stay within a convex set (e.g., positive semi-definite
matrices) improves stability.

» Adaptive Learning Rates: Using adaptive learning rates (e.g., Adam) improves conver-
gence by adjusting to the curvature of the loss landscape.

Conclusion

* Each layer ¢ will converge to a critical point of its loss function L;(6;), provided the learning
rate is sufficiently small.

* Misalignment in one layer may affect subsequent layers, requiring careful attention to feed-
back and forward matrix alignment.

« Stabilization techniques such as regularization, projection, and adaptive learning rates are
essential for effective global convergence.

A.2.3 LAYERWISE CUSTOM LOSSES AND MODEL LOSS

The overall model loss, Loder(©), is a function of the network’s final output §:
Lmodel(@) = L(y7 y(@))7 (86)
where y is the true label and ¢ is the predicted output.

Convergence of Layerwise Loss and Impact on Model Loss The gradient of the model loss with
respect to the parameters of layer ¢ can be expressed using the chain rule:

o 8Lmodel(@) . % azH—l . azz

where z; is the pre-activation output of layer 7. The term -2 Oziy1

Ozn, """ Oz
gradient that passes through all layers from n to i.

vﬁ,; Lmodfﬂ(@) (87)

represents the backpropagated

Convergence of Custom Layer Loss Assume that the custom loss for each layer L,(6;) decreases
over time as:
L0871y < L;(6). (88)
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As t — oo, the gradient of the custom layer loss vanishes:
: NZION

This implies convergence for each layer’s parameters 6;.

Impact on Model Loss The decrease in each layer’s custom loss directly impacts the model loss:
Lmodel(G(tJrl)) - Lmodfﬂ(@(t) - T)V& Lmodel(@(t))) < Lmodel(@(t))~ (90)

The inequality holds because the gradient of the model loss is aligned with the gradient of the
layerwise loss. Thus, the updates reduce Lyoq4e1(©), and the model loss converges as the custom layer
losses converge. We assume that the linear separability condition holds for this convergence, which
means for early layer, the loss produced at each layer guides subsequent layers as well. However,
from empirical results, we see for deeper networks (beyond ResNet-32), this assumption holds false.

Global Convergence of Model Loss The global convergence of the model loss is guaranteed under
certain conditions:

* Lipschitz Continuity: If the gradients of the model loss are Lipschitz continuous, the
global loss converges as the layerwise losses decrease.

* Boundedness: If the model loss is lower-bounded by L.,;,, the global loss converges to a
minimum.

* Linear Separability: If the loss generated at earlier layers of the network guides the sub-
sequent layers of the networks as well, then the global loss would converge well. This
assumption might not hold for very deep neural networks.

A.3 EXPERIMENTAL DETAILS

Training Setup Based on observations from (Sanfiz & Akrout,|2021)), biologically plausible meth-
ods like DFA perform better with the Adam optimizer. Therefore, all experiments use Adam with
initial learning rates adapted from prior works. Learning rates for SSA are dynamically adjusted to
accommodate progressive rank reduction.

CIFAR-100 Experiments We use the CIFAR-100 dataset, containing 60,000 images across 100
classes, with 50,000 for training and 10,000 for testing. Images are resized to 32x32 pixels, and
standard data augmentation techniques, including random cropping (with 4-pixel padding) and hor-
izontal flipping, are applied. Training is conducted over 200 epochs using Adam with an initial
learning rate of 1 x 10~%. A learning rate scheduler reduces the rate by a factor of 10 at the 20th,
40th, and 60th epochs. A batch size of 128 is used, with He initialization for convolutional layers
and Xavier initialization for fully connected layers.

For SSA, weight matrices start at full rank and are progressively reduced every 10 epochs
while retaining 95% matrix energy. Loss coefficients are fixed at («,f,7,0,¢) =
(0.1,0.01,0.1,0.05,0.01), determined through cross-validation.

ImageNet Experiments We evaluate on ImageNet (ILSVRC-2012), a large-scale dataset with
1.28 million training images and 50,000 validation images across 1,000 classes. Images are resized
to 224x224 pixels, and data augmentation includes random cropping, horizontal flipping, and color
jittering. Images are normalized using the dataset mean and standard deviation. Training is con-
ducted for 200 epochs with Adam, using an initial learning rate of 2 x 10~ for BP and 5 x 10~*
for SSA. The learning rate is decayed every 30 epochs. A batch size of 256 is used across all
experiments.

For SSA, rank reduction begins after the first 20 epochs and proceeds every 10 epochs, retain-
ing 90% matrix energy. Loss coefficients are kept consistent with CIFAR-100 («, 5,7,0,€ =
0.1,0.01,0.1,0.05, 0.01), with adjustments only to the overall learning rates for layerwise updates.

Normalization Layers For batchnorm layers, we use it mostly for the forward process, and do not
involve in the layerwise backward process (as the gradient calculation process is not sequential). We
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also use layernorm as an alternative to batchnorm. From our experiments, we find that layernorm is
more suited to our method than batchnorm (empirically determined).

Hyperparameter Tuning We introduce four hyperparameters in our local layerwise loss objective.
We put lower values of hyperparameters for cosine similarity loss and hoyer regularizer, as they are
non-convex. We project the SVD unitary components onto unit sphere (convex sets) to improve
overall convexity and smoothness. We choose values of (0.1, 0.01, 0.1, 0.05, 0.01) for (v, 3,7, d, €)
ideally. We select the hyperparameters ultimately after cross-validation.

ResNet Local Module Splitting In our experiments, each residual block in ResNet is treated as a
fundamental layer. For ResNet-32, this results in a total of 16 fundamental layers, with each block
encapsulating key functions like identity mapping and feature transformation.
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