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Abstract

Understanding the structure of loss landscape of deep neural networks (DNNs)
is obviously important. In this work, we prove an embedding principle that the
loss landscape of a DNN “contains” all the critical points of all the narrower
DNNs. More precisely, we propose a critical embedding such that any critical
point, e.g., local or global minima, of a narrower DNN can be embedded to a critical
point/affine subspace of the target DNN with higher degeneracy and preserving
the DNN output function. Note that, given any training data, differentiable loss
function and differentiable activation function, this embedding structure of critical
points holds. This general structure of DNNs is starkly different from other
nonconvex problems such as protein-folding. Empirically, we find that a wide
DNN is often attracted by highly-degenerate critical points that are embedded
from narrow DNNs. The embedding principle provides a new perspective to study
the general easy optimization of wide DNNs and unravels a potential implicit
low-complexity regularization during the training. Overall, our work provides a
skeleton for the study of loss landscape of DNNs and its implication, by which a
more exact and comprehensive understanding can be anticipated in the near future.

1 Introduction

Understanding the loss landscape of DNNs is essential for a theory of deep learning. An important
problem is to quantify exactly how the loss landscape looks like (E et al., 2020). This problem is
difficult since the loss landscape is so complicated that it can almost be any pattern (Skorokhodov
and Burtsev, 2019). Moreover, its high dimensionality and the dependence on data, model and loss
make it very difficult to obtain a general understanding through empirical study. Therefore, though it
has been extensively studied over the years, it remains an open problem to provide a clear picture
about the organization of its critical points and their properties.

In this work, we make a step towards this goal through proposing a very general embedding operation
of network parameters from narrow to wide DNNs, by which we prove an embedding principle for
fully-connected DNNs stated intuitively as follows:

Embedding principle: the loss landscape of any network “contains” all critical points of all narrower
networks.
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A “narrower network” means a DNN of the same depth but width of each layer no larger than the
target DNN. The embedding principle slightly abuses the notion of “contain” since parameter space
of DNNs of different widths are different. However, this inclusion relation is reasonable in the sense
that, by our embedding operation, any critical point of any narrower network can be embedded to a
critical point of the target network preserving its output function. Because of this criticality preserving
property, we call this embedding operation the critical embedding.

We conclude our study by a “principle” since the embedding principle is a very general property of
loss landscape of DNNs independent of the training data and choice of loss function, and is intrinsic
to the layer-wise architecture of DNNs. In addition, the embedding principle is closely related to the
training of DNNs. For example, as shown in Fig. 1(a), the training of a width-500 two-layer tanh
NN experiences stagnation around the blue dot presumably very close to a saddle point, where the
loss decreases extremely slowly. As shown in Fig. 1(b), we find that the DNN output at this blue
point (red solid) is very close to the output of the global minimum (black dashed) of the width-1 NN,
indicating that the underlying two critical points of two DNNs with different widths have the same
output function conforming with the embedding principle. Importantly, this example shows that the
training of a wide DNN can indeed experience those critical points from a narrow DNN unraveled by
the embedding principle. Moreover, it demonstrates the potential of a transition from a local/global
minimum of a narrow NN to a saddle point of a wide NN, which may be the reason underlying the
easy optimization of wide NNs.

The embedding principle suggests an underlying mechanism to understand why heavily overparame-
terized DNNs often generalize well (Breiman, 1995; Zhang et al., 2017) as follows. Roughly, the
overparameterized DNN has a large capacity, which seems contradictory to the conventional learning
theory, i.e., learning by a model of large capacity easily leads to overfitting. The embedding principle
shows that the optima of a wide network intrinsically may be embedded from an optima of a much
narrower network, thus, its effective capacity is much smaller. For example, as illustrated in Fig. 1,
training of a heavily overparametrized width-500 NN (vs. 50 training data) with small initialization
first stagnated around a saddle presumably from width-1 NN and later converges to a global minimum
presumably from width-3 NN, which clearly does not overfit. This implicit regularization effect
unraveled by the embedding principle is consistent with previous works, such as low-complexity bias
(Arpit et al., 2017; Kalimeris et al., 2019; Jin et al., 2020), low-frequency bias (Xu et al., 2019, 2020;
Rahaman et al., 2019), and condensation phenomenon of network weights (Luo et al., 2021; Chizat
and Bach, 2018; Ma et al., 2020).
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Figure 1: (a) The training loss of two-layer tanh neural network with 500 hidden neurons. (b) (c)
Red solid: the DNN output at a training step indicated by (b) the blue dot or (c) the orange dot
in (a); Black dashed: the output of the global minimum of (b) width-1 DNN or (c) width-3 DNN,
respectively; Blue dots: training data.

2 Related works

The loss landscape of DNNs is complex and related to the generalization. Skorokhodov and Burtsev
(2019) numerically show that the loss landscape can almost be any pattern. Keskar et al. (2017)
visualize minimizers in a 1d slice and suggest that a flat minimizer generalizes better. Wu et al. (2017)
find that the volume of basin of attraction of good minima may dominate over that of poor minima
in practical problems. He et al. (2019) show that at a local minimum there exist many asymmetric
directions such that the loss increases abruptly along one side, and slowly along the opposite side.
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Degeneracy is also an important property of minima. Cooper (2021) shows that global minima is
typically a high dimensional manifold for overparameterized DNNs. Sagun et al. (2016) empirically
shows that Hessian of the minimizer obtained by the training has many zero eigenvalues. Under
strong assumptions, Choromanska et al. (2015) shows minima tend to be highly degenerate. This
work demonstrates wide existence of highly degenerate critical points, including local or global
minima and saddle points, in the loss landscape by the embedding principle.

Lots of previous theoretical works focus on very wide DNNs, such as the phase diagram of two-layer
ReLU infinite-width NNs (Luo et al., 2021), NTK regime (Jacot et al., 2018; Arora et al., 2019;
Zhang et al., 2020; Du et al., 2019; Zou et al., 2018; Allen-Zhu et al., 2019; E et al., 2019), mean-field
regime (Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat and Bach, 2018; Sirignano
and Spiliopoulos, 2020). By the embedding principle, this work demonstrate the loss landscape
similarity between a moderate-width NN and a very wide NN, that they share a set of critical points
embedded from that of narrower NNs. Therefore, results about infinite-width NNs could provide
valuable insights about training of finite-width NNs used in practice.

The complexity of NN output increases during the training (Arpit et al., 2017; Xu et al., 2019, 2020;
Rahaman et al., 2019; Kalimeris et al., 2019; Goldt et al., 2020; He et al., 2020; Mingard et al., 2019;
Jin et al., 2020). For example, the frequency principle (Xu et al., 2019, 2020) states that DNNs often
fit target functions from low to high frequencies during the training.

In Zhang et al. (2021), we make a comprehensive extension of this conference paper. In the long
paper, we provide a mathematical definition of the critical embedding and propose a new class of
general compatible embeddings, which is a much wider class of critical embeddings than composition
embeddings in this work. These general compatible embeddings provide much richer details about
the geometry of critical submanifolds of DNN loss landscape. Note that the composition embedding
technique is also studied in Fukumizu et al. (2019) and Simsek et al. (2021).

3 Main results

In this section, we intuitively summarize our key theoretical results about the embedding principle and
empirically demonstrate its relevance to practice, starting from proposing an embedding operation as
follows. Rigorous theoretical description and proofs are presented in the latter sections.

3.1 Characteristics of embedding principle

Consider a neural network fθ(x), where θ is the set of all network parameters, x ∈ Rd is the input.
We summarize assumptions and provide definitions needed for all our results in this work below.

Assumption. (i) L-layer (L ≥ 2) fully-connected NN.

(ii) Training data S = {(xi,yi)}ni=1, n ∈ Z+ ∪ {+∞}.
(iii)Loss function RS(θ) = ES`(fθ(x),y).
(iv) Loss function and activation function are differentiable. Note that, even for functions like ReLU
or hinge loss, as long as we uniquely assign a subgradient to their non-differentiable points, all our
results still hold.

Definition 1 (critical point). Parameter vector θ is a critical point of the landscape of RS if
∇θRS(θ) = 0.

Definition 2 (critical submanifold/affine subspace). A critical submanifold or affine subspaceM
is a connected subsubmanifold or affine subspace of the parameter space RM , such that each θ ∈M
is a critical point of loss with the same loss value.

Definition 3 (degree of degeneracy). The degree of degeneracy of point θ in the landscape of RS
is the corank of Hessian matrix∇θ∇θRS , i.e., number of the zero eigenvalues.

Remark. In the above definition of degree of degeneracy, we require twice differentiable activation
function and twice differentiable loss to compute Hessian for convenience. For loss and activation
functions with only first-order differentiability, we extend the definition of degree of degeneracy as
follows: for any critical point θ belonging to a K-dimensional critical submanifoldM, its degree of
degeneracy is at least K.
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Figure 2: Illustration of one-step embedding. The black neuron in the left network is splitted into the
blue and purple neurons in the right network. The red (green) output weight of the black neuron in the
left net is splitted into two red (green) weights in the right net with ratio α and (1− α), respectively.

We first introduce one-step embedding intuitively, and leave the rigorous definition latter. As shown
in Fig. 2, an one-step embedding is performed by splitting any hidden neuron, say the black neuron in
the left network, into two neurons colored in blue and purple in the right network. The input weights
of the two splitted neurons are the same as the input weights of the original black neuron. Each
output weight of the original black neuron is splitted into two parts of fraction α and (1− α) (α ∈ R,
a hyperparameter), respectively. The multi-step embedding is the composition of multiple one-step
embeddings. Since each one-step embedding can add one neuron to a selected layer, parameter of
any NN can be embedded to the parameter space of any wider NN through a multi-step embedding.
The multi-step embedding operation leads to the following property readily.
Proposition (one-step embedding preserves network properties, informal Prop. 1). For any
point θnarr of a DNN, a point θwide of a wider DNN obtained from θnarr by one-step embedding
satisfies
(i) fθnarr(x) = fθwide(x) for any x;
(ii) representation of the wide DNN at θwide, i.e., the set of all different response functions of neurons,
is the same as representation of the narrow DNN at θnarr.

The most important property of this embedding is criticality preserving as follows.
Theorem (criticality preserving, informal Theorem 1). For any critical point θnarr of a DNN, a
point θwide of a wider DNN obtained from θnarr by multi-step embedding is a critical point.

The embedding operation explains the cause of a type of degeneracy in the loss landscape.
Theorem (degeneracy of embedded critical points, informal Theorem 2). If output weights of
neurons in each layer of a DNN at a critical point θnarr are not all zero, then, for any K-neuron wider
DNN, θnarr can be embedded to a K-dimensional critical affine subspace.
Remark. By above theorem, each step of embedding of a critical point in general is accompanied by
an increased degree of degeneracy. Therefore, degenerate critical points in general widely exist in
the loss landscape of a DNN, and non-degenerate critical points are rare because they often become
degenerate once embedded to a wider DNN.

In previous studies, degeneracy is often considered as a consequence of over-parameterization depend-
ing on the size of training data n. Specifically, Cooper (2021) proves that the degree of degeneracy of
global minima is m − n for 1-d output, where m is the number of network parameters. However,
we demonstrate by the above theorem that regardless of whether the NN is over-parameterized,
degenerate critical points are prevalent in its loss landscape as long as narrower DNNs possess critical
points.

3.2 Numerical experiments

Experimental setup. Throughout this work, we use two-layer fully-connected neural network with
size d-m-dout. The input dimension d is determined by the training data. The output dimension
dout is different for different experiments. The number of hidden neurons m is specified in each
experiment. All parameters are initialized by a Gaussian distribution with mean zero and variance
specified in each experiment. We use MSE loss trained by full batch gradient descent for 1D fitting
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problems (Figs. 1, 3(a) and 4), and default Adam optimizer with full batch for others. The learning
rate is fixed throughout the training. More details of experiments are shown in Appendix B.

Increment of degeneracy through embedding. We train a two-layer NN of width msmall = 2 to
learn data of Fig. 1 shown in Fig. 3(a) or Iris dataset (Fisher, 1936) in Fig. 3(b) to a critical point. We
first roughly estimate the possible interval of critical points by observing where the loss decays very
slowly, and then take the point with the smallest derivative of the parameters (use L1 norm) as an
empirical critical point. The L1 norm of the derivative of loss function at the empirical critical point
is approximately 7.15× 10−15 for Fig. 3(a) and 3.72× 10−13 for Fig. 3(b), which are reasonably
small. We then embed this critical point to networks of width m = 3 and m = 4 through an one-step
or a two-step embedding, respectively. It is obvious from Fig. 3 that each step of embedding incurs
one more zero eigenvalue in the Hessian matrix, which conforms with Theorem 2. Moreover, in Fig.
3(a), for m = 2, all eigenvalues are positive (red) indicating the critical point obtained by training is
a local or global minimum. After embedding, this point becomes a saddle due to the emergence of
negative eigenvalues (blue). Specifically, in both Fig. 3(a) and (b), we observe a steady increase of
significant negative eigenvalues, e.g., from 0 to 1 to 2 in (a) and from 3 to 5 to 7 in (b), which implies
reduced difficulty in escaping from the corresponding critical point in a wider NN during the training.

0 2 4

10 8

10 26ab
s(

ei
g)

m=2
negative
positive

0 4 8

10 8

10 26ab
s(

ei
g)

m=3

0 5 10
index

10 8

10 26ab
s(

ei
g)

m=4

(a) synthetic data

0 5 10 15

10 5

10 14ab
s(

ei
g)

m=2

0 5 10 15 20

10 5

10 14ab
s(

ei
g)

m=3

0 5 10 15 20 25 30
index

10 5

10 14ab
s(

ei
g)

m=4

(b) Iris data

Figure 3: Eigenvalues of Hessian of NNs at the critical points embedded from the NN with width
msmall = 2 for learning data of Fig. 1 in (a) and for Iris dataset in (b). The value of m in each
sub-figure is the NN width after embedding. The auxiliary dash line in each sub-figure is y = 10−11.
We equally split one neuron of a width-2 two-layer NN at a critical point into k neurons (k = 2, 3),
whose input weights remain the same but output weights are 1/k of the original neuron.

Empirical diagram of loss landscape. In Fig. 4, we present an empirical diagram of loss landscape
of a width-3 two-layer tanh DNN to visualize a set of its critical points predicted by the embedding
principle, i.e., critical points embedded from network of width-1 or -2 respectively as well as critical
points that cannot be obtained through embedding. Through the training of width-1, -2, -3 network
respectively on the training data presented in Fig. 1 for multiple trials, we discover 1 critical point for
width-1 network, 2 critical points for width-2 network and 1 critical point for width-3 network that
cannot be embedded from a narrower NN. Then, embedding all these four critical points to critical
points/affine subspaces of loss landscape of the width-3 network, we obtain four sets of critical points
with their loss values, output functions, degrees of degeneracy and width of network they embedded
from illustrated in Fig. 4. This diagram immediately tells us what attracts the gradient-based training
trajectory for a width-3 network. Specifically, if stagnation happens during the training, this diagram
informs us the potential loss values and output functions at stagnation, which could help us better
understand the nonlinear training process of not only a width-3 network but also much wider networks
due to the embedding principle. Furthermore, as illustrated in Fig. 1 for the training process of
a 500-neuron NN, saddle points of a wide NN, effectively local or global minima of narrow NNs,
composes a trajectory, which may serve as a compass for achieving a global minimum from narrow
NNs of low complexity.

Reduction of DNN at critical point. The embedding principle predicts a class of critical points
of a NN embedded from much narrower NNs. At such a critical point, we shall be able to find
neuron groups, within which neurons have similar orientation of input weights presumably originated
from the same neuron of a narrow NN through embedding. This prediction is confirmed by the
following experiment in Fig. 5. We train a width-400 two-layer ReLU NN fθ =

∑m
k=1 akσ(w

T
k x̃)
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Figure 4: Empirical diagram of loss landscape of a width-3 two-layer tanh NN, i.e., all critical points
width-3 or narrower NNs may get close to during the training under proper initialization. Each black
dot at terminal represents a specific set of critical points of loss embedded from critical points of
NNs of different widths (blue). These critical points have different loss values (ordinate), degrees
of degeneracy (green) and output functions (red solid curves) as labelled in the figure. The blue
dots represent the training data. We use the same equal splitting as Fig. 3 to embed critical points
of width-1 or width-2 NN to critical points of the width-3 NN and compute the hessian to obtain
the corresponding degree of degeneracy. Note that the degree of degeneracy of these critical points
computed numerically in this problem coincides with their minimal degree of degeneracy m−m0 in
Theorem 2.

(x̃ = [xᵀ, 1]ᵀ) on 1000 training samples of the MNIST dataset with small initialization. At the blue
dot in Fig. 5(a), the loss decreases very slowly, presumably very close to a saddle point. We then
examine the orientation similarity between each pair of neuron input weights by computing the inner
product of two normalized input weight. As shown in Fig. 5(b), there emerge 58 groups of neurons
(neurons with very small amplitudes are neglected and later directly removed), where similarity
between input weights in the same group is at least 0.9. For each group Ssimilar, we randomly select a
neuron j, replace its output weight by

∑
k∈Ssimilar

ak‖wk‖2/‖wj‖2, and discard all other neurons in
the group. The parameter set before reduction is denoted by θori, and after reduction by θredu. Width
of the NN is reduced from 400 to 58. We train the reduced NN from θredu as shown in Fig. 5, which
stagnated after a few steps at the same loss value as the blue point in Fig. 5(a) marked by the blue
dash and represented by the blue point in Fig. 5(c). We then compare the prediction between original
model and the reduced model at the corresponding blue points on 10000 test data as shown in Fig.5(d).
For each grid, color indicates the frequency of that prediction pair. Specifically, the highlight of
diagonal element indicts high prediction agreement of two models (overall ∼ 98.5%). Therefore, this
critical point of the reduced width-58 NN well matches the critical point of the original width-400
NN, clearly demonstrating the relevance of our embedding principle to real dataset training.
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Figure 5: (a) The training loss of the initial network on MNIST. The blue point is selected for
reduction. (b) The normalized inner product of input weights for different neurons. The abscissa and
ordinate represent neuron index. Neurons in “low amplitude” region has much lower amplitude than
others, hence are removed. (c) The training loss of the reduced network. Blue dash indicates the
same loss value as the blue dash in (a). The blue point is selected as a representative for comparison.
(d) Prediction similarity. For each grid, color indicates the frequency of that prediction pair.
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4 Preliminaries

4.1 Deep Neural Networks

Consider L-layer (L ≥ 2) fully-connected DNNs with a general differentiable activation function.
We regard the input as the 0-th layer and the output as the L-th layer. Let ml be the number of
neurons in the l-th layer. In particular, m0 = d and mL = d′. For any i, k ∈ N and i < k, we
denote [i : k] = {i, i + 1, . . . , k}. In particular, we denote [k] := {1, 2, . . . , k}. Given weights
W [l] ∈ Rml×ml−1 and bias b[l] ∈ Rml for l ∈ [L], we define the collection of parameters θ as a
2L-tuple (an ordered list of 2L elements) whose elements are matrices or vectors

θ =
(
θ|1, · · · ,θ|L

)
=
(
W [1], b[1], . . . ,W [L], b[L]

)
. (1)

where the l-th layer parameters of θ is the ordered pair θ|l =
(
W [l], b[l]

)
, l ∈ [L]. We may misuse

of notation and identify θ with its vectorization vec(θ) ∈ RM with M =
∑L−1
l=0 (ml + 1)ml+1.

Given θ ∈ RM , the neural network function fθ(·) is defined recursively. First, we write f [0]
θ (x) = x

for all x ∈ Rd. Then for l ∈ [L−1], f [l]
θ is defined recursively as f [l]

θ (x) = σ(W [l]f
[l−1]
θ (x)+b[l]).

Finally, we denote

fθ(x) = f(x,θ) = f
[L]
θ (x) =W [L]f

[L−1]
θ (x) + b[L]. (2)

For notational simplicity, we may drop the subscript θ in f [l]
θ , l ∈ [0 : L].

We introduce the following notions for the convenience of the presentation in this paper.

Definition 4 (Wider/narrower DNN). We write NN({ml}Ll=0) for a fully-connected neural network
with width (m0, . . . ,mL). Given twoL-layer (L ≥ 2) fully-connected neural networks NN({ml}Ll=0)
and NN′({m′l}Ll=0), if m′0 = m0, m′L = mL, and for any l ∈ [L − 1], m′l ≥ ml and K =∑L−1
l=1 (m′l −ml) ∈ N+, then we say that NN′({m′l}Ll=0) is K-neuron wider than NN({ml}Ll=0)

and NN({ml}Ll=0)K-neuron narrower than NN′({m′l}Ll=0).

4.2 Loss function

The training data set is denoted as S = {(xi,yi)}ni=1, where xi ∈ Rd, yi ∈ Rd′ . For simplicity, here
we assume an unknown function y satisfying y(xi) = yi for i ∈ [n]. The empirical risk reads as

RS(θ) =
1

n

n∑
i=1

`(f(xi,θ),y(xi)) = ES`(f(x,θ),y). (3)

where the expectation ESh(x) := 1
n

∑n
i=1 h(xi) for any function h : Rd → R and the loss function

`(·, ·) is differentiable and the derivative of `with respect to its first argument is denoted by∇`(y,y∗).
Generally, we always take derivatives/gradients of ` in its first argument with respect to any parameter.
We consider gradient flow ofRS as the training dynamics, i.e., dθ/dt = −∇θRS(θ) with θ(0) = θ0.

We define the error vectors z[l]θ = ∇f [l]` for l ∈ [L] and the feature gradients g[L]θ = 1 and

g
[l]
θ = σ(1)

(
W [l]f

[l−1]
θ + b[l]

)
for l ∈ [L − 1]. Here σ(1) is the first derivative of σ. We call f [l]

θ ,
l ∈ [L] feature vectors. The collections of feature vectors, feature gradients, and error vectors are
Fθ = {f [l]

θ }Ll=1,Gθ = {g[l]θ }Ll=1,Zθ = {z[l]θ }Ll=1. Using backpropagation, we can calculate the
gradients as follows

z
[L]
θ = ∇`, z

[l]
θ = (W [l+1])ᵀz

[l+1]
θ ◦ g[l+1]

θ , l ∈ [L− 1],

∇W [l]` = z
[l]
θ ◦ g

[l]
θ (f

[l−1]
θ )ᵀ, ∇b[l]` = z

[l]
θ ◦ g

[l]
θ , l ∈ [L].

Here we use ◦ for the Hadamard product of two matrices of the same dimension.
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5 Critical embedding

We introduce the one-step embedding for the DNNs which will lead us to general embeddings.
Definition 5 (one-step embedding). Given a L-layer (L ≥ 2) fully-connected neural network with
width (m0, . . . ,mL) and network parameters θ = (W [1], b[1], · · · ,W [L], b[L]) ∈ RM , for any
l ∈ [L− 1] and any s ∈ [ml], we define the linear operators Tl,s and Vl,s applying on θ as follows

Tl,s(θ)|k = θ|k, k 6= l, l + 1,

Tl,s(θ)|l =

([
W [l]

W
[l]
s,[1:ml−1]

]
,

[
b[l]

b
[l]
s

])
, Tl,s(θ)|l+1 =

([
W [l+1],0ml+1×1

]
, b[l+1]

)
,

Vl,s(θ)|k =
(
0mk×mk−1

,0mk×1
)
, k 6= l, l + 1,

Vl,s(θ)|l =
(
0(ml+1)×ml−1

,0(ml+1)×1
)
,

Vl,s(θ)|l+1 =
([

0ml+1×(s−1),−W
[l+1]
[1:ml+1],s

,0ml+1×(ml−s),W
[l+1]
[1:ml+1],s

]
,0ml+1×1

)
.

Then the one-step embedding operator T αl,s is defined as for any θ ∈ RM

T αl,s(θ) = (Tl,s + αVl,s)(θ).

Note that the resulting parameter T αl,s(θ) corresponds to a L-layer fully-connected neural network
with width (m0, . . . ,ml−1,ml + 1,ml+1, . . . ,mL).

An illustration of Tl,s, Vl,s, and T αl,s can be found in Fig. S1 in Appendix.

Lemma 1. Given a L-layer (L ≥ 2) fully-connected neural network with width (m0, . . . ,mL), for
any network parameters θ = (W [1], b[1], · · · ,W [L], b[L]) and for any l ∈ [L − 1], s ∈ [ml], we
have the expressions for θ′ := T αl,s(θ)

(i) feature vectors in Fθ′ : f
[l′]
θ′ = f

[l′]
θ , l′ 6= l and f [l]

θ′ =
[
(f

[l]
θ )ᵀ, (f

[l]
θ )s

]ᵀ
;

(ii) feature gradients inGθ′ : g
[l′]
θ′ = g

[l′]
θ , l′ 6= l and g[l]θ′ =

[
(g

[l]
θ )ᵀ, (g

[l]
θ )s

]ᵀ
;

(iii) error vectors in Zθ′ : z
[l′]
θ′ = z

[l′]
θ , l′ 6= l

and z[l]θ′ =
[
(z

[l]
θ )ᵀ[1:s−1], (1− α)(z

[l]
θ )s, (z

[l]
θ )ᵀ[s+1:ml]

, α(z
[l]
θ )s

]ᵀ
.

An illustration of Fθ and Zθ can be found in Fig. S2 in Appendix.
Proposition 1 (one-step embedding preserves network properties). Given a L-layer (L ≥ 2)
fully-connected neural network with width (m0, . . . ,mL), for any network parameters θ =
(W [1], b[1], · · · ,W [L], b[L]) and for any l ∈ [L− 1], s ∈ [ml], the following network properties are
preserved for θ′ = T αl,s(θ):

(i) output function is preserved: fθ′(x) = fθ(x) for all x;

(ii) empirical risk is preserved: RS(θ′) = RS(θ);

(iii) the sets of features are preserved:
{(
f
[l]
θ′

)
i

}
i∈[ml+1]

=
{(
f
[l]
θ

)
i

}
i∈[ml]

and{(
f
[l′]
θ′

)
i

}
i∈[ml′ ]

=
{(
f
[l′]
θ

)
i

}
i∈[ml′ ]

for l′ ∈ [L]\{l};

Theorem 1 (criticality preserving). Given a L-layer (L ≥ 2) fully-connected neural network with
width (m0, . . . ,mL), for any network parameters θ = (W [1], b[1], · · · ,W [L], b[L]) and for any
l ∈ [L− 1], s ∈ [ml], if∇θRS(θ) = 0, then∇θRS(θ′) = 0.
Lemma 2 (increment of the degree of degeneracy). Given a L-layer (L ≥ 2) fully-connected
neural network with width (m0, . . . ,mL), if there exists l ∈ [L− 1], s ∈ [ml], and a q-dimensional
manifoldM consisting of critical points of RS such that for any θ ∈ M, W [l+1]

[1:ml+1],s
6= 0, then

M′ := {T αl,s(θ)|θ ∈ M, α ∈ R} is a (q + 1)-dimensional manifold consists of critical points
for the corresponding L-layer fully-connected neural network with width (m0, . . . ,ml−1,ml +
1,ml+1, . . . ,mL).
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Theorem 2 (degeneracy of embedded critical points). Consider two L-layer (L ≥ 2) fully-
connected neural networks NNA({ml}Ll=0) and NNB({m′l}Ll=0) which is K-neuron wider than
NNA. Suppose that the critical point θA = (W [1], b[1], · · · ,W [L], b[L]) satisfiesW [l] 6= 0 for each
layer l ∈ [L]. Then the parameters θA of NNA can be critically embedded to a K-dimensional
critical affine subspace MB = {θB +

∑K
i=1 αivi|αi ∈ R} of loss landscape of NNB . Here

θB = (
∏K
i=1 Tli,si)(θA) and vi = TlK ,sK · · · Vli,si · · · Tl1,s1θA.

Note that neuron-index permutation among the same layer is a trivial criticality invariant transform.
More discussions about it, specifically for NNs of homogeneous activation functions like ReLU, can
be found in Section A.1 in Appendix.

6 Conclusion and discussion

In this work, we prove an embedding principle that loss landscape of a DNN contains all critical points
of all the narrower DNNs. This embedding principle unravels wide existence of highly degenerate
critical points with low complexity in the loss landscape of a wide DNN, i.e., critical points with
low-complexity output function and degenerate Hessian matrix, embedded from critical points of
narrow DNNs. With such a loss landscape of DNN, the gradient-based training has the potential
of getting attracted or even converging to a low complexity critical point as confirmed by above
numerical experiments, which implies a potential implicit regularization towards low-complexity
function of nonlinear DNN training dynamics.

Moreover, through critical embedding, a critical point in form of a common non-degenerate local
minimum of a narrow DNN not only becomes degenerate in general, but also may become a saddle
point as illustrated by numerical experiments. This may be the reason underlying the general easy
optimization of wide DNNs observed in practice even beyond the linear/kernel/NTK regime (Chen
et al., 2020; Trager et al., 2019; Geiger et al., 2020; Fort et al., 2020; Luo et al., 2021). We will perform
more detailed analysis as well as numerical experiments specifically about this minimum-to-saddle
transition later.

At the essence, the embedding principle results from the layer structure of a neural network model,
which allows arbitrary neuron addition, input weight copying and output weight splitting within
each layer. Therefore, though results in this work assume fully-connected NNs, these can be easily
extended to other DNN architectures. Considering convolutional neural networks for example, the
quantity that corresponds to width of fully-connected NNs is channel. Similar to one-step or multi-
step embedding, we can introduce a feature splitting operation, i.e., increase the number of channels
by splitting all neurons sharing one convolution kernel with the same α, which can be proven to
preserve the output function, representation as well as the criticality. Thereby, embedding principle
holds in a sense that loss landscape of any CNN contains all critical points of all narrower CNNs
whose number of channels in each layer is no more than that of the target CNN. Currently, depth
serves as a preset hyperparameter in our analysis. Whether loss landscape of DNNs of different depth
has certain embedding relation for specific DNN architectures such as ResNet is an interesting open
problem.

Our embedding principle and experiments in Figs. 1 and 5 suggest that whenever training of a wide
DNN is stagnated around a critical point, it potentially is embedded from a much narrower DNN.
Therefore, many neurons with similar representation can be reduced to one neuron. How we can
design efficient pruning algorithm to fully realize this potential and how it is related to existing
pruning methods as well as the well-known lottery ticket hypothesis (Frankle and Carbin, 2018) are
important problems for our future research.

We remark that our embedding principle applies for landscape of general loss functions. Although
for loss functions like cross entropy, a meaningful finite critical point may not exist as its parameters
diverge in general throughout the training, yet it is reasonable to expect that critical embedding may
provide us certain approximate critical points from narrow NNs. Of course, how to properly define an
approximate critical point is in itself a problem of interest. And we leave this problem for the future
study.

Overall, our embedding principle provides the first clear picture about the general structure of critical
points of DNN loss landscape, which is fundamental to the theoretical understanding of both training
and generalization behavior of DNNs as well as the design of optimization algorithms. Of course, the
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study of loss landscape of DNN is far from complete. This work serves as a starting point for a novel
line of research, which finally leads to an exact and comprehensive theoretical description about loss
landscape of DNNs as well as an understanding of its profound impact on training and generalization.
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