
Extended Abstract Track 2022 NeurIPS Workshop on Symmetry and Geometry in Neural Representations

Breaking the Symmetry: Resolving Symmetry Ambiguities
in Equivariant Neural Networks

Sidhika Balachandar sidhikab@cs.cornell.edu
Cornell University, Ithaca, NY, USA

Adrien Poulenard padrien@stanford.edu

Congyue Deng congyue@stanford.edu

Leonidas Guibas guibas@cs.stanford.edu

Stanford University, Stanford, CA, USA

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane

Abstract

Equivariant networks have been adopted in many 3-D learning areas. Here we identify a
fundamental limitation of these networks: their ambiguity to symmetries. Equivariant net-
works cannot complete symmetry-dependent tasks like segmenting a left-right symmetric
object into its left and right sides. We tackle this problem by adding components that re-
solve symmetry ambiguities while preserving rotational equivariance. We present OAVNN:
Orientation Aware Vector Neuron Network, an extension of the Vector Neuron Network
(Deng et al., 2021). OAVNN is a rotation equivariant network that is robust to planar
symmetric inputs. Our network consists of three key components. 1) We introduce an
algorithm to calculate symmetry detecting features. 2) We create a symmetry-sensitive
orientation aware linear layer. 3) We construct an attention mechanism that relates di-
rectional information across points. We evaluate the network using left-right segmentation
and find that the network quickly obtains accurate segmentations. We hope this work
motivates investigations on the expressivity of equivariant networks on symmetric objects.

Keywords: O(3) equivariance, planar symmetry, 3-D learning, point cloud analysis

1. Introduction

3-D representations of real-life objects are used for problems in computer vision, robotics,
medicine, augmented reality, and virtual reality. Geometric deep learning leverages the
geometric properties of 3-D structures to build robust and data-efficient models for tasks in
these fields. Many networks have been proposed for 3-D geometric learning and point cloud
analysis, as seen in (Guo et al., 2021). For tasks on 3-D data, the input has no prevailing
pose, and the network must perform well regardless of the input pose. These tasks lend
themselves to invariance and equivariance. Invariant models produce the same output
regardless of the input pose. Equivariant models produce outputs that are transformed in
the same way as the input. Thus these tasks motivate rotation equivariant and invariant
networks that share information across all rotated poses. These networks have shown better
performance and data efficiency for unaligned data on tasks such as segmentation and
reconstruction in (Deng et al., 2021); shape retrieval and scene classification in (Esteves
et al., 2019); and 3-D model recognition and atomization energy regression in (Cohen et al.,
2018).
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Figure 1: The VNN has ambiguities to symmetries and cannot complete symmetry-
dependent tasks. We created the OAVNN that is rotation equivariant and robust
to planar symmetries. Consider the symmetry-dependent task of left-right seg-
mentation of left-right symmetric objects. The VNN cannot complete this task,
but the OAVNN learns the correct segmentation.

Nevertheless, as shown in Figure 1, many of these networks have issues with symmetry.
Equivariant networks are equivariant to symmetries. Therefore these networks cannot com-
plete tasks that depend on the input symmetry. Due to the prevalence of symmetric inputs
and symmetry dependent tasks, there is a need for an equivariant network that handles
symmetries. We introduce OAVNN: Orientation Aware Vector Neuron Network, Figure 2,
an extension of the Vector Neuron Network (VNN) (Deng et al., 2021). The OAVNN is a
rotation equivariant network that is robust to planar symmetric inputs. The code for the
model is available at https://github.com/sidhikabalachandar/oavnn.

2. Related Work

Many equivariant designs are summarized in (Esteves, 2020). One category uses spherical
harmonics, such as (Thomas et al., 2018) and (Weiler et al., 2018). The networks in (Co-
hen et al., 2019) and (Esteves et al., 2019) are similar but instead are equivariant to the
symmetry group of an icosahedron. A simpler formulation is the Vector Neuron Network
(Deng et al., 2021) which is based on interpretable 3-D vectors. Here, we focus on simple,
interpretable networks like the VNN which has symmetry issues that we intend to study
and improve.

A related computer graphics problem is symmetry detection, as seen in (Gao et al.,
2021) and (Shi et al., 2020). In this project, we not only study symmetry detection but also
resolve expressivity issues of equivariant networks related to symmetries.

3. A Fundamental Problem in Equivariant Networks

3.1. Definitions

We consider the group O(3) of all rotation and reflection matrices. A function f is O(3)
equivariant if for all R ∈ O(3) and x ∈ R3, f(R · x) = R · f(x), and O(3) invariant if
f(R · x) = f(x). An O(3) equivariant function can be made invariant by taking the norm.
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Figure 2: Framework — The OAVNN takes input X and passes it through the nearest
neighbor embedding defined in Section 3.3 to create local patches. Additionally,
as defined in Section A.1 the symmetry detecting features are extracted. These
features are passed through the attention mechanism defined in Section A.3 and
the orientation aware mechanism (right), which uses the orientation aware linear
layer defined in Section A.2. The outputs are passed through another orientation
aware mechanism. For tasks like segmentation, a final invariant layer is applied.

3.2. Ambiguity under Self-Symmetries

Equivariant networks display problems in encoding objects with self-symmetries. Consider
object X ∈ RC×3 with self-symmetry R0. When encoded by an equivariant f , due to the
self-symmetry, f(R0X ) = f(X ). Additionally, since f is equivariant, f(R0X ) = R0f(X ).
Thus, f(X ) = R0f(X ). Let’s call f(X )⊥ the component of f(X ) in the direction of
symmetry or the component orthogonal to R0’s plane of symmetry. Then f(X )⊥ =
R0f(X )⊥ = −f(X )⊥. Thus we see that f(X )⊥ must be zero. Therefore for a planar sym-
metric input, an O(3) equivariant function cannot predict information in the direction of
symmetry. This means an equivariant network will have trouble solving tasks that distin-
guish between two symmetric parts, such as symmetric segmentation.

3.3. Vector Neuron Network: An Example

Here we focus on a specific equivariant network, the VNN (Deng et al., 2021). The VNN’s
linear layer is structured as flin(X ) = WX , where X ∈ RC×3 is a list of input vectors and
W ∈ RC′×C is a learnable weight matrix. The VNN maintains O(3) equivariance since it
treats each vector input as an independent unit, and a matrix R ∈ O(3) commutes with
this linear layer as flin(X · R) = WX · R = flin(X ) · R. The VNN also modifies ReLU,
pooling, and batch normalization layers. All modified layers operate on vectors and preserve
equivariance. The VNN also proposes an invariant layer.

The VNN has two drawbacks. First, since it is O(3) equivariant, it cannot learn the
direction of symmetry. Second, the VNN can only share information between local patches
of points. The VNN creates local patches through a nearest neighbor embedding by con-
catenating each point with its k nearest neighbors. For symmetry-dependent tasks, the
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Figure 3: Results for the left-right segmentation experiment described in Section 5 for air-
plane objects. The plot shows training (solid) and testing accuracies (dashed)
for 1) DGCNN (not equivariant), 2) VNN (equivariant and ambiguous to sym-
metries), 3) Shell-Only (symmetry-detecting features and attention mechanism),
4) Complex-Only (orientation aware linear layer and attention mechanism), and
5) OAVNN (symmetry-detecting features, orientation aware linear layer, and at-
tention mechanism).

network must also globally transfer information. Consider a left-right symmetric object.
The left-right direction of symmetry is uniquely determined by the top-bottom and front-
back directions. When learning symmetries, these directions must be globally transferred.
Since the VNN cannot globally propagate information it has difficulty learning symmetries.

4. Methods

We introduce an orientation aware framework (Figure 2) to resolve the limitations of the
VNN for planar symmetric inputs. We modify the VNN by adding three components:
symmetry-detecting features defined in Section A.1, an orientation aware linear layer defined
in Section A.2, and an attention mechanism defined in Section A.3. Finally, we apply the
VNN invariant layer for tasks such as segmentation.

5. Results

We test five models using a left-right segmentation experiment run on symmetric airplane
objects from the Shapenet dataset (Chang et al., 2015). Descriptions of the models are in
Section C and the results are shown in Figure 3. Since the segmentation is symmetric, the
model must detect the direction of symmetry. The VNN is ambiguous to symmetries and
therefore fails to segment the airplane. Any network sensitive to the direction of symmetry
can complete the task. However, the DGCNN model (Wang et al., 2019), a conventional
segmentation network which is not equivariant, takes a long time to learn. When we add
symmetry-detecting features to create the Shell-Only network, we can complete the task
faster. The OAVNN model, which combines both symmetry-detecting features and the
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orientation aware linear layer, can obtain an accurate segmentation faster than any other
model. Therefore, as more symmetry-detecting features are added, the model completes
the task faster. A more extensive ablation study is provided in Appendix Section C. Ex-
perimental results on other object classes (caps and chairs) are also provided in Appendix
Section C.

6. Conclusions

Overall we have shown that equivariant networks are equivariant to symmetries, so their out-
puts are ambiguous to symmetries. Thus these networks have trouble completing symmetry-
dependent tasks. We propose the OAVNN model, which resolves symmetry ambiguities for
planar symmetric objects while preserving rotational equivariance. In the future, we hope
to address more complex symmetries and symmetry-dependent tasks. Overall, we hope this
work motivates investigations into the symmetry ambiguities of equivariant networks.
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Appendix A. Methods

Here we provide more detailed explanations of the three orientation aware components of
the OAVNN.

A.1. Symmetry Detecting Hand-Crafted Features

We propose hand-crafted features that detect the direction of symmetry. We calculate these
features by using the planar symmetry detection algorithm. The algorithm is described in
Figure 4, and the pseudocode is in Algorithm 1. It takes in two inputs: the point cloud
X ∈ RC×3 and the number of shells n. We let Xi represents the ith point in the point
cloud where i ∈ {0, . . . , C − 1}. For each point, we split the point cloud into n distance-
based shells. We let Si,j represent each distance based shells where j ∈ {0, . . . , n− 1}. For
each shell, we calculate the shell vector from the starting point Xi to the centroid of the
shell. We let vi,j represent the shell vector. We then calculate the n(n−1)

2 directed cross-
products ci,j,k between nearer and further shell vectors. ci represents the cross vector for
a point i (average of all directed cross products). For some geometric intuition, the shell
vectors increase in length and rotate, and the cross vector represents the axis of rotation.
The algorithm returns the average cross vector c across all points. Symmetric points will
have shell vectors rotating in opposite directions. Therefore many components of the cross
vectors will cancel out, and for a symmetric input, the average cross vector lies along the
direction of symmetry. A proof of this claim is in Appendix Section B. The symmetry
detecting feature is the average cross vector which informs the network about the object’s
symmetries.
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Figure 4: As shown in Algorithm 1, the planar symmetry detection algorithm identifies
the direction of symmetry by calculating shell vectors (black) and cross vectors
(red). It outputs the average cross vector across all points. The shell vectors
for symmetric points, such as on the left and right wings, rotate in opposite
directions. Therefore, many components cancel out, and in the end, the output
lies in the direction of symmetry.

Algorithm 1: Pseduocode for the Planar Symmetry Detection Algorithm

Input: X ∈ RC×3, n
Output: c, the direction of symmetry
for i← 0, C − 1 do

for j ← 0, n− 1 do

Si,j ← j Cn to (j + 1)Cn nearest neighbors
vi,j ←mean(Si,j −Xi)

end
for j ∈ [n] do

for k ∈ [j + 1, n] do
ci,j,k ← vi,j × vi,k

end

end
ci ←meanj,k(ci,j,k)

end
c←meani(ci)

A.2. Orientation Aware Linear Layer

We also encourage detection of the symmetry direction by creating an orientation aware
complex linear layer shown in Figure 5. The complex linear layer uses orientation to
distinguish the direction of symmetry. It takes in a list of input vectors V ∈ RN×C×3

and a list of direction vectors J ∈ RN×C×3. Here N represents the number of points in
the point cloud, and C represents the dimension of the channel that the linear layer acts
on. The complex linear layer outputs a list of vectors in RN×C′×3. Thus it changes the
dimensionality of the channel from C to C ′. The complex linear layer learns a rotation and
dilation for each vector in V in the direction of its corresponding vector in J . It does this
by defining two terms. First, it creates a list of R3 bases R(J ) = (U1,U2,J ) ∈ RN×C×3×3
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Figure 5: The orientation aware complex linear layer takes in a list of input vectors V and a
list of direction vectors J . It creates an R3 basis oriented about each J . Next, it
rotates and dilates V within the basis. This layer learns the direction of symmetry
because at least one of the basis vectors must have a nonzero component along the
direction of symmetry. Additionally, this layer is sensitive to reflections because
when J is negated, we get a rotation in the opposite direction.

where the list of the last vectors in each basis is J . Each basis is positively oriented, and
therefore for each basis b in R(J ), det b = +1. The complex linear layer rotates and dilates
each input vector in V in its corresponding basis in R(J ) using a combined weight matrix

Z(A,B, C)j,k,:,: =

Aj,k −Bj,k 0
Bj,k Aj,k 0

0 0 Cj,k

 (1)

where A,B, C ∈ RC′×C are learnable weight matrices and j ∈ {0, 1, . . . , C ′ − 1} and k ∈
{0, 1, . . . , C − 1}. The complex linear layer outputs a list of vectors in RN×C′×3 using the
following formulation

fcomplex lin(V,J )i,j,: =

C−1∑
k=0

R(J )i,k,:,:Z(A,B, C)j,k,:,:R(J )⊤i,k,:,:Vi,k,: (2)

where j and k are defined as before and i ∈ {0, 1, . . . , N − 1}. Thus i iterates over the
point dimension, k iterates over the original number of channels, and j iterates over the
new number of channels.

The complex linear layer learns the direction of symmetry because at least one of the
basis vectors must have a component in the direction of symmetry. Additionally, it is
sensitive to symmetry reversal, because if J is flipped, we get a rotation in the opposite
direction. This layer is inspired by Section 3.4 in DiffusionNet (Sharp et al., 2022), where J
is the oriented normals to the surface. However, in the complex linear layer, J is learned.

A.3. Attention Mechanism

We also create an attention mechanism to encourage global information transfer. Consider
a left-right symmetric airplane. If we identify the up-down and front-back directions, we can
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Figure 6: The attention mechanism takes in keys K, queries Q, and values V. The goal of
the attention mechanism is for each point to learn an oriented basis corresponding
to the entire object. We assume that each point contains directional information.
Each point then queries other points to learn orthogonal information. These
orthogonal vectors are detected using the cross product operation. The original
vectors combined with the orthogonal vectors create a local reference frame at
each point.

uniquely determine the left-right direction. Since the airplane is approximately symmetric in
the up-down direction, only the tail will inform us about this direction. We must propagate
this information to all points.

To transfer information we propose an attention mechanism. Attention was first intro-
duced in (Bahdanau et al., 2015), and it defines the relationship between keys, queries, and
values (Vaswani et al., 2017). The attention mechanism creates a database of key and value
pairs, and when given a query, it determines which pairs to attend to. Attention has been
considered for equivariant networks on point clouds in works such as (Fuchs et al., 2020).
However, we consider a different setting where each point has directional information. Then,
at each point x we look for orthogonal information over all other points to create a local
reference frame at x. The orthogonal frame will be used by the complex linear layer which
requires both a direction vector and an orthogonal direction to operate on. Therefore, we
design our attention weights to be large when taking in a pair of query and key vectors
that are orthogonal. Mathematically, for keys K ∈ RC×3 and queries Q ∈ RC×3, our atten-
tion weight formula is α(Q,K)j,k = softmaxk∥Qj,: ×Kk,:∥2 where j ∈ {0, 1, . . . , C − 1} and
k ∈ {0, 1, . . . , C − 1}. A diagram of the attention mechanism is shown in Figure 6.

Appendix B. Proof of Planar Symmetry Detection Algorithm

Theorem 1 For a point cloud input that is symmetric about exactly one plane, the planar
symmetry detection algorithm presented in Algorithm 1 outputs a vector orthogonal to the
input object’s plane of symmetry.

Proof We will call the input point cloud X . Without loss of generality, let X be symmetric
about the yz-plane. We will show that the planar symmetry detection algorithm outputs a
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Figure 7: We conduct a left-right segmentation experiment on four different classes of ob-
jects from the Shapenet dataset (Chang et al., 2015) — airplanes (top-left), caps
(top-right), chairs (bottom-left), and tables (bottom-right). These experiments
only use the output of the planar symmetry detection algorithm. The algorithm
returns a vector that represents the direction of symmetry. The plane which
passes through the origin and is normal to the vector defines a classifier. The al-
gorithm successfully segments objects with exactly one plane of symmetry, such
as airplanes, caps, and chairs.

vector with only an x-component. For any point x in the point cloud, there exists a point
x′ which is symmetric to x about the yz-plane. Let s1 = (x1, y1, z1), . . . , sn = (xn, yn, zn)
be the n shell vectors of x. Since x′ is the reflection of x about the yz-plane, the shell
vectors of x′ will be the reflection of the shell vectors of x about the yz-plane. Therefore
the shell vectors of x′ are s′1 = (−x1, y1, z1), . . . , s′n = (−xn, yn, zn). The directed cross
products of the shell vectors of x are of the form (yjzk − ykzj , xkzj − xjzk, xjyk − xkyj) for
all j ∈ {0, . . . , n−1} and k ∈ {0, . . . , n−1} where k > j. The directed cross products of the
shell vectors of x′ are of the form (yjzk−ykzj ,−(xkzj−xjzk),−(xjyk−xkyj)). For any fixed
(j, k), the sum of the directed cross product for x and x′ will only have an x-component.
Since the vector returned by the planar symmetry detection algorithm is the average of all
directed cross products across all points, the output vector of the algorithm will also only
have an x-component. Thus the output vector will be orthogonal to the input object’s plane
of symmetry.

Appendix C. Ablation Study

We further analyze OAVNN by conducting an ablation study. In particular, we investigate
the two methods for learning the direction of symmetry: the symmetry detecting features
and the orientation aware complex linear layer. First, we consider running a left-right seg-
mentation experiment using only the symmetry detecting features. In particular, we run the
planar symmetry detection algorithm on various left-right symmetric point clouds centered
at the origin. We calculate the plane, which is centered at the origin and perpendicular
to the average cross vector. We use this plane to divide each object into a left and right
half-space. The results for various object classes are in Figure 7. On airplane objects, we
obtain about 85% accuracy. Note that out of the four example classes shown in Figure 7,
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Figure 8: Results for the left-right segmentation experiment run on cap and chair objects
from the Shapenet dataset (Chang et al., 2015). The solid line shows testing
accuracies for five models: 1) DGCNN, a conventional segmentation network
which is not O(3) equivariant (blue), 2) VNN an O(3) equivariant network that
is ambiguous to symmetries (orange), 3) Shell-Only network which consists of only
the symmetry-detecting features and the attention mechanism (red), 4) Complex-
Only network which consists of only the orientation aware complex linear layer
and the attention mechanism (purple), and 5) OAVNN which consists of the
symmetry-detecting features, the orientation aware complex linear layer, and the
attention mechanism (green). We see that of all the models, OAVNN obtains
accurate results the quickest.

the table class does noticeably worse. This highlights one of the weaknesses of the planar
symmetry detection algorithm. This algorithm will only work for objects with exactly one
plane of symmetry. For objects like tables with two or more planes of symmetry, the algo-
rithm outputs the zero vector. The algorithm also has suboptimal results for objects that
are approximately symmetric about two planes (e.g. airplanes) or for point clouds with
sampling or density issues.

Next, we create the Shell-Only network with only the symmetry detecting features and
the attention mechanism. In particular, this network does not use the orientation aware
complex linear layer. This network is similar to the VNN, however, it takes in two additional
features: the symmetry detection features and the output of the attention mechanism. The
results for this model are in red in Figure 3.

We also create the Complex-Only network with only the orientation aware complex linear
layer and the attention mechanism. This network has the same architecture as the OAVNN,
except the symmetry detecting features are not added. In other words, this network does
not use the planar symmetry detection algorithm. The results of this network are in purple
in Figure 3.

For airplane objects, only the VNN cannot complete the segmentation task. There-
fore any network which can detect the direction of symmetry can complete the left-right
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Airplane Cap Chair

DGCNN 0.901 0.496 0.981

VNN 0.501 0.500 0.985

Shell-Only 0.889 0.499 0.928

Complex-Only 0.876 0.511 0.972

OAVNN 0.905 0.857 0.996

Table 1: Results for the left-right segmentation experiment on airplane, cap, and chair
objects from the Shapenet dataset (Chang et al., 2015). The table shows the
average testing accuracies across three runs of five different models each trained
for 200 epochs. The OAVNN model obtains the best final testing accuracy.

segmentation task for objects with one plane of symmetry. The DGCNN network takes
roughly about 190 epochs to learn an accurate segmentation, and the Complex-Only net-
work takes about 150 epochs. Surprisingly, the Complex-Only network (which is rotation
equivariant) only does slightly better than the DGCNN (which is not rotation equivariant).
The Shell-Only network takes about 75 epochs to learn an accurate segmentation.

The OAVNN model learns an accurate segmentation faster than all other models. This
shows that when the symmetry detecting features, the complex linear layer, and the atten-
tion mechanism are combined, the model can complete the segmentation task the fastest.
Additionally, as shown in Table 1, after training for 200 epochs the OAVNN model ob-
tains the best final testing accuracy. Thus, both the planar symmetry detection algorithm
and the complex linear layer are required to robustly learn the direction of symmetry and
complete the symmetric segmentation task.

In Figure 8, we show results of the left-right segmentation experiment run on cap and
chair objects. In both of these cases we again see that the OAVNN model is able to obtain
an accurate segmentation the fastest. However, we do see two interesting behaviors.

First off, only the OAVNN successfully segments the cap objects. All other models
cannot segment the cap objects even after 200 epochs of training. We expect all networks
that are not ambiguous to symmetries, or all networks other than the VNN, to eventually
complete the task. Unlike airplane and chair objects, the models may have a harder time
learning how to segment cap objects because there are fewer cap objects in the dataset.

Second, the VNN model accurately segments chair objects after about 50 epochs of
training. We would expect the VNN to be unable to complete the task because the network is
ambiguous to symmetric objects like chairs. In these experiments, the VNN’s behavior could
be because the chair objects are not truly symmetric due to sampling issues. Additionally,
it is likely that this behavior is more clearly seen with chair objects because airplane objects
are symmetric about the left-right plane and approximately symmetric about the up-down
plane. On the other hand, chairs are only symmetric about the left-right plane and are not
approximately symmetric about any other plane. Therefore, the task of segmenting a chair
is most likely easier than the task of segmenting an airplane.

13


	Introduction
	Related Work
	A Fundamental Problem in Equivariant Networks
	Definitions
	Ambiguity under Self-Symmetries
	Vector Neuron Network: An Example

	Methods
	Results
	Conclusions
	Methods
	Symmetry Detecting Hand-Crafted Features
	Orientation Aware Linear Layer
	Attention Mechanism

	Proof of Planar Symmetry Detection Algorithm
	Ablation Study

