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Abstract

Equivariant networks have been adopted in many 3-D learning areas. Here we identify a
fundamental limitation of these networks: their ambiguity to symmetries. Equivariant net-
works cannot complete symmetry-dependent tasks like segmenting a left-right symmetric
object into its left and right sides. We tackle this problem by adding components that re-
solve symmetry ambiguities while preserving rotational equivariance. We present OAVNN:
Orientation Aware Vector Neuron Network, an extension of the Vector Neuron Network
(Deng et al., 2021). OAVNN is a rotation equivariant network that is robust to planar
symmetric inputs. Our network consists of three key components. 1) We introduce an
algorithm to calculate symmetry detecting features. 2) We create a symmetry-sensitive
orientation aware linear layer. 3) We construct an attention mechanism that relates di-
rectional information across points. We evaluate the network using left-right segmentation
and find that the network quickly obtains accurate segmentations. We hope this work
motivates investigations on the expressivity of equivariant networks on symmetric objects.

Keywords: O(3) equivariance, planar symmetry, 3-D learning, point cloud analysis

1. Introduction

3-D representations of real-life objects are used for problems in computer vision, robotics,
medicine, augmented reality, and virtual reality. Geometric deep learning leverages the
geometric properties of 3-D structures to build robust and data-efficient models for tasks in
these fields. Many networks have been proposed for 3-D geometric learning and point cloud
analysis, as seen in (Guo et al., 2021). For tasks on 3-D data, the input has no prevailing
pose, and the network must perform well regardless of the input pose. These tasks lend
themselves to invariance and equivariance. Invariant models produce the same output
regardless of the input pose. Equivariant models produce outputs that are transformed in
the same way as the input. Thus these tasks motivate rotation equivariant and invariant
networks that share information across all rotated poses. These networks have shown better
performance and data efficiency for unaligned data on tasks such as segmentation and
reconstruction in (Deng et al., 2021); shape retrieval and scene classification in (Esteves
et al., 2019); and 3-D model recognition and atomization energy regression in (Cohen et al.,
2018).

© 2022 S. Balachandar, A. Poulenard, C. Deng & L. Guibas.



Balachandar Poulenard Deng Guibas

Figure 1: The VNN has ambiguities to symmetries and cannot complete symmetry-
dependent tasks. We created the OAVNN that is rotation equivariant and robust
to planar symmetries. Consider the symmetry-dependent task of left-right seg-
mentation of left-right symmetric objects. The VNN cannot complete this task,
but the OAVNN learns the correct segmentation.

Nevertheless, as shown in Figure 1, many of these networks have issues with symmetry.
Equivariant networks are equivariant to symmetries. Therefore these networks cannot com-
plete tasks that depend on the input symmetry. Due to the prevalence of symmetric inputs
and symmetry dependent tasks, there is a need for an equivariant network that handles
symmetries. We introduce OAVNN: Orientation Aware Vector Neuron Network, Figure 2,
an extension of the Vector Neuron Network (VNN) (Deng et al., 2021). The OAVNN is a
rotation equivariant network that is robust to planar symmetric inputs. The code for the
model is available at https://github.com/sidhikabalachandar/oavnn.

2. Related Work

Many equivariant designs are summarized in (Esteves, 2020). One category uses spherical
harmonics, such as (Thomas et al., 2018) and (Weiler et al., 2018). The networks in (Co-
hen et al., 2019) and (Esteves et al., 2019) are similar but instead are equivariant to the
symmetry group of an icosahedron. A simpler formulation is the Vector Neuron Network
(Deng et al., 2021) which is based on interpretable 3-D vectors. Here, we focus on simple,
interpretable networks like the VNN which has symmetry issues that we intend to study
and improve.

A related computer graphics problem is symmetry detection, as seen in (Gao et al.,
2021) and (Shi et al., 2020). In this project, we not only study symmetry detection but also
resolve expressivity issues of equivariant networks related to symmetries.

3. A Fundamental Problem in Equivariant Networks

3.1. Definitions

We consider the group O(3) of all rotation and reflection matrices. A function f is O(3)
equivariant if for all R 2 O(3) and x 2 R3, f(R � x) = R � f(x), and O(3) invariant if
f(R � x) = f(x). An O(3) equivariant function can be made invariant by taking the norm.
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Figure 2: Framework — The OAVNN takes input X and passes it through the nearest
neighbor embedding defined in Section 3.3 to create local patches. Additionally,
as defined in Section A.1 the symmetry detecting features are extracted. These
features are passed through the attention mechanism defined in Section A.3 and
the orientation aware mechanism (right), which uses the orientation aware linear
layer defined in Section A.2. The outputs are passed through another orientation
aware mechanism. For tasks like segmentation, a final invariant layer is applied.

3.2. Ambiguity under Self-Symmetries

Equivariant networks display problems in encoding objects with self-symmetries. Consider
object X 2 RC�3 with self-symmetry R0. When encoded by an equivariant f , due to the
self-symmetry, f(R0X ) = f(X ): Additionally, since f is equivariant, f(R0X ) = R0f(X ):
Thus, f(X ) = R0f(X ). Let’s call f(X )? the component of f(X ) in the direction of
symmetry or the component orthogonal to R0’s plane of symmetry. Then f(X )? =
R0f(X )? = �f(X )?. Thus we see that f(X )? must be zero. Therefore for a planar sym-
metric input, an O(3) equivariant function cannot predict information in the direction of
symmetry. This means an equivariant network will have trouble solving tasks that distin-
guish between two symmetric parts, such as symmetric segmentation.

3.3. Vector Neuron Network: An Example

Here we focus on a specific equivariant network, the VNN (Deng et al., 2021). The VNN’s
linear layer is structured as flin(X ) = WX , where X 2 RC�3 is a list of input vectors and
W 2 RC0�C is a learnable weight matrix. The VNN maintains O(3) equivariance since it
treats each vector input as an independent unit, and a matrix R 2 O(3) commutes with
this linear layer as flin(X � R) = WX � R = flin(X ) � R. The VNN also modifies ReLU,
pooling, and batch normalization layers. All modified layers operate on vectors and preserve
equivariance. The VNN also proposes an invariant layer.

The VNN has two drawbacks. First, since it is O(3) equivariant, it cannot learn the
direction of symmetry. Second, the VNN can only share information between local patches
of points. The VNN creates local patches through a nearest neighbor embedding by con-
catenating each point with its k nearest neighbors. For symmetry-dependent tasks, the
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