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Abstract

Directed evolution has been the most effective method for protein engineering
that optimizes biological functionalities through a resource-intensive process of
screening or selecting among a vast range of mutations. To mitigate this extensive
procedure, recent advancements in machine learning-guided methodologies center
around the establishment of a surrogate sequence-function model. In this paper,
we propose Latent-based Directed Evolution (LDE), an evolutionary algorithm
designed to prioritize the exploration of high-fitness mutants in the latent space. At
its core, LDE is a regularized variational autoencoder (VAE), harnessing the capa-
bilities of the state-of-the-art Protein Language Model (pLM), ESM-2, to construct
a meaningful latent space of sequences. From this encoded representation, we
present a novel approach for efficient traversal on the fitness landscape, employing
a combination of gradient-based methods and directed evolution. Experimental
evaluations conducted on eight protein sequence design tasks demonstrate the
superior performance of our proposed LDE over previous baseline algorithms. We
public our code at https://github.com/HySonLab/LatentDE.

1 Introduction

The field of protein engineering aims to strategically create or identify proteins that have practical
applications with desired biological functions, such as fluorescence intensity [8], enzyme activity
[22], and therapeutic efficacy [37]. The amino acid sequence of a protein governs the properties
associated with its function through its spontaneous folding into three-dimensional structures [23, 17].
The mapping from protein sequence to functional property forms a protein fitness landscape [70] that
characterizes the protein functional levels. The evolution in nature can be regarded as a searching
procedure on the protein fitness landscape [42]. This natural process inspires the innovation of
directed evolution [3], the most widely-applied approach for engineering protein sequences. It starts
with a protein having some level of the desired function. Subsequently, a series of mutation and
screening rounds are undertaken, wherein mutations are introduced to generate a collection of variant
proteins. Through this iterative process, the most optimal variant is identified, and the cycle continues
until a satisfactory level of improvement is achieved.

Recent machine learning (ML) methods have been studied to improve the sample efficiency of
this evolutionary search [46, 68, 47, 19]. However, these approaches require repetitive rounds of
random mutagenesis and wet-lab validation, which are both money-consuming and time-intensive.
In addition, while these methods can reduce experimental screening load by proposing potentially
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promising sequences, they only operate within a discrete space and make modifications to the amino
acid sequence directly. In this manner, the challenge of navigating the sequence space remains
unaddressed. The search space of protein sequences is discrete and combinatorially large, and most
proteins have low fitness [11]. Moreover, protein fitness datasets are usually scarce as creating them
requires costly wet-lab experiments [18]. These challenges make ML methods often stuck in local
optima and prone to predict false positive samples [10]. An alternative methodology to working in
the sequence space is to focus on acquiring a low-dimensional, semantically rich representation of
proteins. These latent representations collectively form a latent space, offering more navigable and
smoother terrain as they encapsulate the fitness landscape of the sequences into continuous forms.
With this approach, a therapeutic candidate can be optimized using its latent representation in a
procedure called latent space optimization (LSO). However, the integration of LSO with directed
evolution remains a relatively unexplored territory.

Designing high-fitness protein sequences is regarded as a black-box model-based optimization (MBO)
problem, where the primary goal is to explore design inputs maximizing a black-box objective (e.g.,
fitness). Typically addressed through an online iterative process, online MBO, in each iteration,
proposes novel designs and solicits feedback from the unknown objective function to enhance
subsequent design proposals. However, accessing the true objective function of protein fitness proves
challenging due to constraints such as limited experimental data and computational resources. On
the other hand, offline MBO emerges as an efficient for design desirable outputs without accessing
true objection functions. Offline algorithms are allowed to observe a static dataset of designs and
produce data samples that are later re-evaluated by the truth objective function. Albeit efficient for
optimization, offline MBO often faces an out-of-distribution issue wherein the optimized design input
x may be unseen to a learned proxy f̂(x), which replaces the ground truth objective for evaluating
the design outputs. As f̂(x) is trained to approximate the fitness landscape of a training dataset,
out-of-distribution inputs may negatively affect its predictions [36], thereby fooling the discovery
algorithm to produce non-desirable designs.

To overcome the above challenges, in this paper, we propose Latent-based Directed Evolution (LDE),
a novel approach that, to the best of our knowledge, is the first latent-based method for directed
evolution. Specifically, by leveraging the latent space of ESM-2 [39], a state-of-the-art pre-trained
protein language model (pLM), LDE learns to reconstruct and predict the fitness value of the input
sequences in the form of a variational autoencoder (VAE) regularized by supervised signals. Post-
training, LDE addresses the limitations of the two MBO methods by combining the best of both
worlds. Starting from a wild-type sequence, LDE first encodes it into the latent representation, on
which the gradient ascent is performed as an efficient offline MBO algorithm that guides the latent
codes to reach high-fitness regions on the simulated landscape. Within these regions, to address the
out-of-distribution limitation of the offline counterpart, LDE integrates latent-based directed evolution.
This involves iterative rounds of randomly adding scaled noise to the latent representations, facilitating
local exploration around high-fitness regions. The noised latent representations are decoded into
sequences and evaluated by the truth oracles (e.g., wet-lab experiments, large ML models), and top
samples are selected for the next round of the algorithm, enabling an efficient gradient-free sampling
strategy. In summary, the contributions of our paper are outlined as follows:

• We propose a latent-based method for directed evolution for biological sequence design.

• We address the limitations of offline and online MBO methods by combining the best of both
worlds, using gradient ascent as the warm-up procedure to guide the latent representations
to feasible regions for accelerating latent-based directed evolution.

• Empirical evaluations conducted on eight protein datasets demonstrate that our proposed
LDE surpasses the SOTA method in terms of fitness scores. We additionally conduct several
ablation studies to showcase the effectiveness of our method, as well as to gain more insights
into ML-based protein design.

2 Related works

ML for Fitness Landscape Modeling. The application of ML in protein engineering has expe-
rienced a significant upswing, particularly in the domain of modeling the protein fitness landscape.
Several methodologies have been proposed, leveraging co-evolutionary information extracted from
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Figure 1: Overview of our proposed method. Top: We iteratively encode the wild-type sequence
into latent variables and run gradient ascent to move them towards regions of high fitness on the
approximated landscape. This process yields an initial population of K-diverse variant sequences.
Bottom From K sequences, our latent-based directed evolution is performed in G generations.
Sequences in the previous generation are encoded into the latent space at each generation. Then,
B neighbors are sampled around those latent variables and decoded into B sequences, which are
evaluated by a black-box oracle. The protein used in this figure is only for illustration purposes.

multiple sequence alignments to predict fitness scores [26, 50, 40]. Alternatively, pre-trained lan-
guage models have been employed for transfer learning or zero-shot inference [48, 1, 43, 27]. The
learned protein landscape models can be used to replace the expensive wet-lab validation to screen
enormously designed sequences [49, 57].

Latent-based Methods for Sequence Design. Directed evolution represents a classical paradigm in
protein sequence design that has achieved significant successes [6, 20, 62, 5]. Within this framework,
various ML algorithms have been proposed to improve the sample efficiency of the evolutionary
search [46, 49, 47, 19, 63]. However, the majority of these methods are designed to optimize protein
sequences directly in the sequence space, dealing with discrete, high-dimensional decision variables.
Alternatively, [24] and [13] employed a VAE model and applied gradient ascent to optimize the
latent representation, which is subsequently used to decode into string-based representations of small
molecules. Similarly, [38] employed an off-policy reinforcement learning method to facilitate updates
in the representation space. Another notable approach [58] involves training a denoising autoencoder
with a discriminative multi-task Gaussian process head, enabling gradient-based optimization of
multi-objective acquisition functions in the latent space of the autoencoder. Recently, latent diffusion
has been introduced for designing novel proteins, harnessing the capabilities of a protein language
model [14]. Diverging from the aforementioned works, we introduce a novel approach wherein,
within the latent representation of a VAE model, gradient ascent is employed as a warm-up phase for
latent-based directed evolution.

3 Method

We present the preliminary section in Appendix A. Our work introduces a novel approach that
utilizes directed evolution to efficiently discover optimal protein sequences directly from their latent
representations.

We begin with the problem formulation in Section 3.1. Then, we present our pre-trained regularized
variational autoencoders (VAEs) [32] in Section 3.2 and how to perform directed evolution, which is
accelerated by gradient ascent, in the latent space of VAEs in Section 3.3.
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3.1 Problem Formulation

We consider the problem of designing protein sequences to search for high-fitness sequences s in
the sequence space VL, where V denotes the vocabulary of amino acids (i.e. |V| ≈ 20 because
both animal and plant proteins are made up of about 20 common amino acids) and L is the desired
sequence length. We aim to design sequences that maximize a black-box protein fitness function
O : VL 7→ R which can only be measured by wet-lab experiments:

x∗ = argmaxx∈VLO(x). (1)

For in-silico evaluation, given a static dataset of all known sequences and fitness measurements
D∗ = {(x, y)|x ∈ VL, y ∈ R}, an oracle Oψ parameterized by ψ is trained to minimize the
prediction error on D∗. Afterward, Oψ is used as an approximator for the black-box function O to
evaluate computational methods that are developed on a training subset Dt of D∗. In other words,
given Dt, our task is to generate sequences x̂ that optimize the fitness approximated by Oψ .

In this paper, we focus on designing sequences upon wild-type sequences as the same with traditional
evolution and exploration algorithms described in [4, 6, 49, 2]. Specifically, the algorithms commence
with a single wild-type sequence and iteratively generate candidates with enhanced properties from
previous references. Figure 1 illustrates the overview of our method.

3.2 Regularized Variational Autoencoder

Considering a dataset of protein sequences x ∈ VL with corresponding fitness values y ∈ R, denoted
as Dt = {(xi, yi)}Ni=1, we train a VAE comprising an encoder ϕ : VL 7→ Rdh and a decoder
θ : Rd 7→ VL. Each sequence xi is encoded into a low-dimensional vector hi ∈ Rdh . Subsequently,
the mean µi ∈ Rd and log-variance log σi ∈ Rd of the variational posterior approximation are
computed from hi using two feed-forward networks, µϕ : Rdh 7→ Rd and σϕ : Rdh 7→ Rd. A
latent vector zi ∈ Rd is then sampled from the Gaussian distribution N (µi, σ

2
i ), and the decoder θ

maps zi back to the reconstructed protein sequence x̂i ∈ VL. The training objective involves the
cross-entropy loss C(x̂i, xi) between the ground truth sequence xi and the generated x̂i, as well as
the Kullback-Leibler (KL) divergence between N (µi, σ

2
i ) and N (0, Id):

Lvae =
1

N

N∑
i=1

C(x̂i, xi) +
β

N

N∑
i=1

DKL(N (µi, σ
2
i )∥N (0, Id)). (2)

Here, β is the hyperparameter to control the disentanglement property of the VAE’s latent space.

Latent Space Regularization One can consider the KL-divergence loss term in Equation (2) as a
regularizer for training autoencoders. In particular, the KL-divergence regularizer makes the encoder
ϕ produce latent space that is close to the unit Gaussian prior (i.e., the global optimum). The learned
latent space could be smooth and convex, which is useful for model-based searching algorithms
during optimization. However, forcing the approximate posterior qϕ(z|x) to be unit Gaussian may
lead to the fact that the encoder network ϕ may encode zero information into the latent space [15],
resulting in less meaningful latent representations. This is not a good phenomenon for our latent-based
directed evolution algorithm that aims at locally searching for high-fitness proteins by iteratively
modifying the reference sequences (see Appendix A). Regarding learning protein fitness landscape,
the percentage of high-fitness sequences in datasets is relatively small compared to those with low
fitness scores. Consequently, the latent representations of high-fitness proteins may be hidden within
a dense of low-fitness ones [13], leading to inefficient searching processes. To address this issue,
following [13], we jointly train our VAEs with a fitness predictor f : Rd 7→ R that maps the latent
vectors z ∈ Rd to the fitness space. This leads to the final loss for training ϕ, θ, and f as:

L = Lvae +
1

N

N∑
i=1

||f(zi)− yi||22, (3)

where yi ∈ R is the experimental fitness of sequence xi ∈ VL, which is encoded into latent vector
zi = ϕ(xi) ∈ Rd. This additional L2-regularizer forces the VAE’s encoder to generate latent
representations of protein sequences with comparable fitness scores to be closely positioned in the
latent space, thereby separating those with high fitness values from dense clouds associated with
low-fitness regions.
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3.3 Latent-Based Directed Evolution

Inspired by nature’s evolutionary process, where subtle mutations in a protein’s sequence can
significantly improve its fitness, our method explores the local region of the wild-type sequence’s
latent encoding through iterative sampling from the approximate distribution encoded by the pre-
trained encoder ϕ.

A crucial challenge arises from the possibility that the latent representation z of xwt may be situated
in low-fitness regions of the protein landscape. This can lead to slow convergence in directed
evolution, where offspring generated by random mutations of low-fitness parents tend to inherit
similar limitations. To address this problem, we incorporate gradient ascent as a preliminary step to
generate the initial population P0, accelerating the evolutionary process towards more advantageous
regions. Algorithm 1 provides a detailed, line-by-line breakdown of our approach.

Algorithm 1 Latent-based directed evolution acceler-
ated by gradient ascent
Input: xwt, encoder ϕ, decoder θ, fitness predictor f ,
# iterations T , # generations G, beam size B, oracle
O.

1: P0 ←− ∅
2: for i = 1 to K do
3: Sample z ∼ N (µϕ(x

wt), σϕ(x
wt)2)

4: zT ←− gradient_ascent(z, f, T ) in Equation (4)
5: x̂←− θ(zT )
6: P0 ←− P0 ∪ {(x̂,O(x̂))}
7: end for
8: for g = 1 to G do
9: Pg ←− ∅

10: for k = 1 to K do
11: for b = 1 to B do
12: Sample zk,b ∼ N (µϕ(xk), σϕ(xk)

2)
13: p ∼ U [0, 1)
14: if p > threshold then
15: Inject noise to zk,b based on Equation (5)
16: end if
17: x̂k,b ←− θ(zk,b)
18: Pg ←− Pg ∪ {(x̂k,b,O(x̂k,b)}
19: end for
20: Pg ←− Pg ∪ Pg−1

21: Pg ←− topK(Pg)
22: end for
23: end for

Gradient Ascent (GA) At the begin-
ning of our algorithm, the wild-type pro-
tein sequence xwt is encoded by the en-
coder ϕ to produce its mean µϕ(x

wt)
and log variance log σϕ(x

wt). A latent
representation z is then sampled from
N (µϕ(x

wt), σϕ(x
wt)2). Subsequently, we

perform gradient ascent with a learning
rate of α in T iterations to move z to high-
fitness regions as:

zt+1 = zt + α∇zf(z)|z=zt , 0 ≤ t < T.
(4)

Where ∇zf(z)|z=zt is the gradient of the
fitness predictor f with respect to zt. After
T iterations, we add zT to the initial popu-
lation P0. The procedure is iteratively ex-
ecuted until K pairs of decoded sequences
along with their respective fitness scores
are obtained. At this stage, the fitness
scores are computed by the latent predictor
f , allowing fast computation and efficient
latent sampling (see lines 1 to 7).

Evolutionary Process From lines 8 to
23, a latent-based directed evolution is con-
ducted in G generations to generate K
protein sequences with high fitness val-
ues. For each candidate xk, we sample
B latent variables from its posterior distri-
bution, where each is denoted as zk,b ∼
N (µϕ(xk), σϕ(xk)

2). These latent repre-
sentations are then decoded into sequences
by the decoder θ, i.e. x̂k,b = θ(zk,b). Wet-
lab experiments then evaluate the decoded sequences to obtain their fitness scores. All sequences
generated in generation g are added into Pg . Finally, at the end of g, the top K sequences are selected
from both Pg−1 and Pg .

Random Exploration Although sampling around the local areas of high-fitness latent codes can
guarantee the superiority of the generated sequences, the search process may be prone to be trapped
in these local regions after a certain number of generations, thereby hindering the exploration of
potentially promising sequences, which are unseen before. As a result, we randomly add white noise
to the latent variables when p ∼ U [0, 1) is higher than a threshold. As demonstrated in line 14 of
Algorithm 1, the formula is defined as:

zl = z + (γ − δg)ϵ, ϵ ∼ N (0, I), (5)
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Table 1: Maximum fitness scores on eight protein datasets. Shaded rows indicate the results of
ablation studies.

avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I

xwt 1.408 -6.778 -0.015 0.774 -2.789 -1.260 0.014 -0.262
AdaLead 3.323 -1.545 0.248 -0.373 -1.483 -0.047 0.382 2.765
DyNA PPO 5.331 -2.817 0.570 -0.575 -2.790 -0.060 0.183 2.630
CbAS 5.187 -2.800 0.481 -0.658 -1.784 -0.056 0.276 2.693
CMA-ES 5.125 -3.267 0.590 -0.658 -2.790 -0.086 0.254 2.527
COMs 3.544 -3.533 0.472 -0.860 -20.182 -0.087 0.156 2.086
PEX 3.796 2.378 0.252 4.317 -0.364 0.009 1.326 3.578
GFN-AL 5.028 -4.444 0.654 -0.831 -37.360 -5.738 1.399 3.850
GGS 3.368 2.442 1.121 -1.147 -3.364 -0.972 0.059 4.101

LDE (ours) 8.058 2.636 1.745 5.120 -0.103 0.018 1.548 4.297
− w/o GA 6.407 2.148 1.220 4.597 -0.099 -0.531 1.592 3.254
− w/o DE 3.677 0.919 -0.024 3.052 -0.701 -1.597 0.285 0.766

where γ ∈ R denotes the step size that controls the exploration rate, and δ is the annealing factor at
the generation g of the evolution process. We hypothesize that when g gets close to G, i.e., the total
number of generations, the population tends to contain superior samples; thus, we slow down the
exploration to avoid degeneration at the end of the algorithm.

Efficient Sampling and Optimization Traditional directed evolution is effective but computa-
tionally intensive for protein design. Our latent-based algorithm improves sampling efficiency by
compressing long sequences into low-dimensional latent representations via VAEs, simplifying the
mutation process as noise addition in latent space. This approach, unlike complex mutation operators
[4, 63], requires no domain knowledge and is more computationally efficient. The gradient ascent
benefits from VAE regularization, creating a smoother optimization landscape and reducing the risk
of local optima. Furthermore, even if the optimization converges to a local optimum, latent-based
directed evolution (DE) can explore surrounding regions through controlled random perturbations for
a broader search, enabling a more comprehensive search of promising areas.

4 Experiments

In this section, we undertake a comprehensive set of experiments to assess and validate the efficacy
of our proposed LDE on the task of protein sequence design.

4.1 Experimental Setup

Datasets Following [49] and [57], we assess the performance of our method across eight protein
engineering benchmarks: (1) Green Fluorescent Protein (avGFP), (2) Adeno-Associated Viruses
(AAV), (3) TEM-1 β-Lactamase (TEM), (4) Ubiquitination Factor Ube4b (E4B), (5) Aliphatic
Amide Hydrolase (AMIE), (6) Levoglucosan Kinase (LGK), (7) Poly(A)-binding Protein (Pab1),
(8) SUMO E2 Conjugase (UBE2I), The detailed data descriptions and statistics, including protein
sequence length, data size, and data percentiles, are provided in Appendix C.

Implementation Details The model training is conducted using a single NVIDIA A100 card,
employing the Adam optimization algorithm [31] with a learning rate of 2e-4. Each dataset is
randomly split into training and validation sets at a ratio of 9:1. To control the disentanglement
property in the latent representation, we adopt the strategy proposed by [55] and set the expected
KL values to be 20. We train the VAE model for 130 epochs and choose the best checkpoint for
later inference. The experiments are run five times, and the average scores are reported. Additional
models and experimental settings are provided in Appendix D.1. For inference, we perform gradient
ascent as the warm-up phase for T = 500 iterations with the learning rate α ∈ [0.001, 0.01]. The
latent-based directed evolution involves G = 10 iterative processes, with the candidate number set to
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K ×B = 128. In our implementation, we set the number of samples and beam size to K = 128 and
B = 1, respectively. Finally, for the random exploration, we try multiple combinations of annealing
factor δ = 0.1 and exploration step size γ ∈ [1.5, 6] and report the best outcomes.

Baseline Algorithms We compare our method against the following representative baselines: (1)
Greedy search (AdaLead) [56], (2) Model-based reinforcement learning (DyNA PPO) [2], (3)
Model-based adaptive sampling (CbAS) [10], (4) Covariance matrix adaptation evolution strategy
(CMA-ES) [25] (5) Conservative model-based optimization (COMs) [61], (6) Proximal exploration
(PEX) [49] (7) GFlowNet (GFN-AL) [29], and (8) Gibbs sampling with graph-based smoothing
(GGS) [33]. To ensure precise evaluation, we re-execute and re-evaluate all baseline methods using
the same oracle. For the implementation from (1) to (4), we employ the open-source implementation
provided by [56]. Regarding other baseline methods, we utilize the codes released by their respective
authors.

Oracles To ensure unbiased evaluation and avoid circular use of oracles, following [35], we use two
separate oracles for each fitness dataset: (1) the optimization oracle that guides the model optimization
and (2) the evaluation oracle that assesses the performance of the methods. Following [49], we freeze
the ESM-based encoders and fine-tune an attention 1D decoder stacked after them to predict the
fitness scores (see details in Appendix D.2). For fair comparisons, we only train the optimization
oracle with the pre-trained 33-layer ESM-2 as the encoder, while using the pre-trained evaluation
oracle provided by [49] to assess our method and other baselines.

Evaluation Metrics We use three metrics defined in [28] to evaluate our method and compare with
other baselines: (1) MFS: maximum fitness score, (2) Diversity, (3) Novelty. Descriptions of these
metrics can be found in Appendix E. It is crucial to emphasize that greater diversity and novelty do
not equate to superior performance but offer insights into the exploration and exploitation trade-offs
exhibited by different methods.

4.2 Results

Comparison with Baseline Algorithms As demonstrated in Table 1, our proposed LDE outper-
forms other algorithms in eight protein benchmarks. It is worth noting that AAV only contains
sequences with up to 28 amino acids. For datasets with longer sequences exceeding 200 amino acids,
using continuous latent representations demonstrably enhances LDE’s optimization capabilities. This
is particularly evident on the avGFP benchmark (comprising sequences of 237 amino acids), where
it achieves a statistically significant outperformance over the baselines. This suggests that LDE’s
efficient exploration is particularly well-suited for tackling complex and longer protein sequences. In
addition to the max fitness score, we also report the diversity and novelty metrics of the algorithms in
Tables 5 and 6, respectively.
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Figure 2: The fitness landscape approximated by reg-
ularized VAEs of E4B proteins. (a): Fitness scores
are the ground truth provided by the dataset. (b):
Fitness scores are predicted by the predictor f .

Effect of Gradient Ascent and Directed
Evolution We conduct an ablation study
to demonstrate how each component of our
method contributes to the performance. In par-
ticular, we compare LDE with its variants, in-
cluding (1) without gradient ascent (w/o GA):
we do not use GA as the warm-up step for the
latent-based DE and (2) without directed evo-
lution (w/o DE): we only run gradient ascent
to optimize fitness of the sequences. As shown
by the shaded rows in Table 1, removing gra-
dient ascent notably reduces the performance
of the evolution algorithm. Similarly, perform-
ing gradient ascent without DE only leads to
sub-optimal solutions.

Visualizations of Latent Space Figures 2a
and 2b illustrate the approximated fitness land-
scapes of protein sequences in the E4B family.
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Table 2: Reported metrics of LDE with different latent sizes on two datasets. All experiments were
conducted five times using learning rate α = 0.002 and exploration step size γ = 3.

Dataset Latent Dim Fitness Novelty Diversity

E4B
(L = 102)

128 4.433 2.040 5.322
256 4.597 0.615 0.968
320 5.120 2.038 4.504
512 3.052 0.862 0.968

TEM
(L = 286)

128 1.408 17.109 44.906
256 1.220 267.013 1.783
320 1.745 62.508 61.652
512 -0.024 269.992 0.044

These visualizations imply that by applying the regularization to VAEs as outlined in Equation (3),
the latent representations can be organized following their fitness levels. Furthermore, as illustrated
in Figure 2a, our VAEs demonstrate the capability to generate meaningful latent representations when
grounded in actual fitness values for labeling these vectors. In contrast, as depicted in Figure 2b, the
jointly-trained predictor f effectively approximates a smooth fitness landscape by predicting fitness
values of latent vectors in close alignment with their true values, thereby facilitating the gradient
ascent step. These observations provide a rationale for the effectiveness of our proposed latent-based
directed evolution, leveraging the expressiveness power of deep learning.

Effect of Latent Dimension To have a comprehensive understanding of latent-based DE, we study
the effect of latent dimensions on the evolution process. Table 2 shows that a large latent dimension
can lead to worse performance in optimizing protein fitness, while smaller latent sizes can result
in sub-optimal fitness. This is an expected behavior in LSO where high dimensions may impose
challenges for optimization algorithms and lower dimensions can not encode sufficient information
about the input data. Furthermore, we observe that novelty and diversity are independent of good
fitness and vary specifically for different fitness landscapes.

Active Learning Protein fitness datasets are often fragmented due to the cost of wet lab experiments
[18], and even then, they only capture a small protein of real-world protein behavior. This limitation
can trap machine learning models, which learn from training samples, in local optima, hindering their
generalizability and accuracy [10]. To overcome this issue, in this work, we propose using active
learning to update the fitness landscape approximated by our regularized VAEs. Indeed, Algorithm 2
demonstrates our method in detail.

In particular, we perform an outer active learning loop with N rounds to iteratively update the latent
space, as well as the simulated landscape produced by the encoder ϕ and the latent fitness predictor f
as mentioned in Section 3.2. For each round i, we fine-tune the VAE model M with the dataset Di−1.
The fine-tuned model is then used in Algorithm 1 to explore sequences with higher fitness scores.
In our study, we avoid the circular use of oracles by using the optimization oracle O(·) during the
optimization process to guide the exploration, and the evaluation oracle E(·) is used to evaluate of the
final population. We remove all duplicated samples in P and use them as training samples Di for the
next round in our algorithm.

To validate our proposed method, we conduct additional experiments on the four smallest benchmark
datasets, each containing fewer than 8, 000 training data points: TEM, AMIE, LGK, and UBE2I. For
this demonstration, we set the number of active learning rounds N to 10 and decrease the number
of directed evolution iterations G to 5. Additionally, in each active learning loop, the regularized
VAE M is fine-tuned in 30 epochs. As outlined in Table 3, LDE demonstrates improved performance
when combined with active learning. These results empirically validate our hypothesis and confirm
the efficacy of our proposed method.
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Algorithm 2 Active Learning with Latent-Based DE
Input: a VAE M = (ϕ, θ, f), training dataset Dt, number of rounds N ,

optimization oracle O, number of epochs n.
1: Train M on Dt
2: D0 ←− ∅
3: for i = 1 to N do
4: Run Algorithm 1 with oracle O and M to

find population P = {(x,O(y))|x ∈ VL, y ∈ R}.
5: Di ←− Di−1∪ RemoveDuplicate(P)
6: Update M on the data Di in n epochs
7: end for

Return PG

Table 3: Max fitness scores on four smallest protein datasets.
Model TEM AMIE LGK UBE2I

LDE 1.095 -0.558 -0.005 2.976
− w/ active learning 2.167 -0.015 0.022 3.698

5 Conclusion and Future Work

In this work, we present Latent-based Directed Evolution (LDE), a novel method that combines
directed evolution with gradient ascent in a regularized VAE latent space to efficiently optimize
and design protein sequences. This approach leverages deep representation learning capabilities
of generative models to significantly speed up the evolutionary process, achieving superior results
compared to traditional methods solely operating in sequence space. LDE holds significant promise
for accelerating protein engineering and drug discovery efforts, and we invite further research on
integrating it with in vitro protein characterization for real-world validation.

On-going Direction However, our present work is not complete and has limitations, including
its reliance on a single fitness predictor that could destabilize the optimization if poorly calibrated.
To address this, we are planning to use ensembles of surrogate models with risk-aware strategies to
handle uncertainty, along with robustness checks and sensitivity analyses to examine model stability
and parameter impact. Previous studies [45, 65] have explored this issue and shown promising results.
A potential extension would involve integrating structural information [64, 60] into the optimization
process, ensuring that the generated structures closely resemble the wild-type to maintain functionality.
Additionally, LDE could be adapted for multi-objective optimization. These ongoing efforts will
enhance the robustness, applicability, and effectiveness of our method, connecting computational
predictions with real-world biological outcomes.
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Sequence Space Latent Space

Figure 3: Optimizing protein fitness directly in sequence space is notoriously difficult due to its
non-smooth and sparse landscape. We overcome this obstacle by performing directed evolution within
the smooth and continuous latent space of a generative model. Our algorithm begins by identifying
high-fitness regions through gradient ascent. Within these regions, we strategically sample a defined
number of neighboring points (represented by gray circles) to create a diverse population for the
evolutionary process. This population then undergoes iterative selection and mutation within the
latent space, ultimately converging to sequences with enhanced fitness.

A Preliminaries

Directed Evolution Theory (DE) is a conventional approach in protein engineering that aims to
search for global maximal protein sequences from a large database of unlabeled candidates S with
minimal experimental validation [30]. DE employs an accelerated cycle of mutation and selection,
which iteratively generates a pool of protein variants and selects those having improved desired
properties as the next generation. In essence, directed evolution is a local exploration around the
regions of high-fitness proteins in large sequence space. The algorithm typically starts with wild-
type protein sequences and repeatedly mutates a relatively small number of their amino acids to
obtain variants with enhanced properties. This is motivated by the observation of [42] showing that
functional protein sequences are clustered into groups in a vast space of non-functional ones, making
locally exploring around the seed sequences possible to find ones with improved functions. Indeed,
we illustrate this phenomenon in the left part of Figure 3.

Latent Space Optimization (LSO) is a model-based optimization technique that performs in the
latent space Z of deep generative models. In particular, an objective function f : Z 7→ R is trained
to predict the objective values of data samples directly from their latent representations. When Z is a
low-dimensional and continuous space, LSO acts as an efficient and effective optimization method
as it overcomes the difficulties of optimizing in discrete and high-dimensional spaces by turning
the problem into the continuous version, which is simpler to solve with a wide range of available
techniques like gradient ascent and Bayesian optimization (BO) [54]. Additionally, f can be trained
by using an encoder ϕ : X 7→ Z that maps the input sample x ∈ X to its corresponding latent point
z ∈ Z .

B Variational Autoencoders

Variational autoencoders (VAEs) [32] is a class of generative model wherein each data sample x is
generated by a generative distribution pθ(x|z), parameterized by θ, that conditions on the unseen
low dimensional latent variable z ∈ Rd, which can be sampled from a prior distribution p(z)
(usually assumed as Gaussian). In other words, θ is trained to maximize the marginal log-likelihood
log pθ(x) := log

∫
z
pθ(x|z)p(z)dz. However, this is intractable as all the configurations of the latent

variable z must be examined during the optimization. To address this issue, [32] proposed to use
amortized variational inference to approximate the true posterior distribution pθ(z|x) via a variational
distribution qϕ(z|x) with learnable parameters ϕ. They, instead, optimize the evidence of the lower
bound (ELBO) of log p(x), which is written as:

log p(x) ≥ Eqϕ(z|x)(log pθ(x|z))− βDKL(qϕ(z|x)||p(z)). (6)

From the perspective of autoencoding, ϕ and θ are regarded as an encoder (inference network)
and decoder (generative network), respectively. The encoder ϕ maps the high-dimensional input
variable x to the low-dimensional latent variable z within the latent space. In particular, the mean
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µϕ(x) and log-variance log σϕ(x) of the posterior qϕ(z|x) are computed, and z is sampled from
qϕ(z|x) ∼ N (µϕ(x), σϕ(x)

2). Finally, the decoder θ maps z back to the input space.

Popular VAE applications often involve a trade-off between reconstruction accuracy and some other
application-specific goals (e.g., to produce new and original candidates), effectively manipulated
through KL-divergence. ControlVAE [55] combines control theory [7] with the basic VAE to stabilize
the KL-divergence to a desired value. It designs a PI controller to dynamically tune the weight β in
the Equation (6) by using the actual KL-divergence as feedback during training as follows:

β(t) = Kpσ(−e(t))−Ki

t∑
j=0

e(j) + βmin, (7)

where e(t) = C −DKL(qϕ(z|x)||p(z))(t), which is the difference between desired KL-divergence
C and the actual one at training step t; σ(·) is a sigmoid function; βmin is a constant; Kp and Ki are
positive co-efficients for the P term and I term respectively.

C Task Details

In this section, we present how the eight datasets in this study are collected and processed. Across all
datasets, we filter out sequences containing special characters and those lacking corresponding fitness
scores. Specifically for the AAV dataset, only sequences with a length of 28 are retained. Detailed
statistical information, including protein sequence length, dataset size, and percentile distribution, is
provided in Table 4. We submit all the pre-processed data and training code in the supplementary
materials.

Table 4: Detailed information and statistics of the eight protein datasets.

Dataset Organism Protein Optimization Target Length Size Percentiles
0.25 0.50 0.75

avGFP [52] Aequorea victoria GFP Brightness 237 51, 715 1.428 3.287 3.161
AAV [12] Homo sapiens VP1 AAV viabilities 28 42, 330 −3.964 −0.840 1.321
TEM [21] Escherichia coli TEM-1 β-Lactamase Thermodynamic stability 286 5, 199 0.049 0.444 0.934
E4B [59] Mus musculus UBE4B Ubiquitin ligase activity 102 91, 032 −1.830 −0.984 −0.093
AMIE [69] Escherichia coli Amidase Hydrolysis activity 341 6, 417 −1.228 −0.666 −0.263
LGK [34] Lipomyces starkeyi Levoglucosan kinase Levoglucosan utilization 439 7, 633 −0.871 −0.562 −0.394
Pab1 [44] Saccharomyces cerevisiae Poly(A)-binding mRNA binding 75 36, 389 −0.116 −0.022 0.036
UBE2I [66] Homo sapiens UBE2I Growth rescue rate 159 3, 022 0.068 0.492 0.766

• Green Fluorescent Protein (avGFP): Derived from Aequorea victoria, Green Fluorescent
proteins (GFPs) are capable of manifesting vivid green fluorescence upon exposure to
light within the blue to ultraviolet spectrum. These proteins are commonly employed as
biosensors for detecting gene expressions and protein locations. The goal is to optimize
sequences with higher log-fluorescence intensity values. We collect data following [52]

• Adeno-Associated Viruses (AAV): The engineer of a 28-amino acid segment (position
561–588) within the VP1 protein, situated in the capsid of the Adeno-associated virus, has
garnered significant interest in the realm of machine learning-guided design. The target is to
generate more capable sequences as gene delivery vectors measured by AAV viabilities. We
collect data following [12].

• TEM-1 β-Lactamase (TEM): The investigation of the TEM-1 β-Lactamase protein’s
resistance to penicillin antibiotics in E. coli is a subject of extensive scrutiny, aiming to
comprehend mutational impacts and the associated fitness landscape. The objective is to
propose high thermodynamic-stable sequences upon wild-type TEM-1. We gather data
following [21].

• Ubiquitination Factor Ube4b (E4B): The ubiquitination factor Ube4b plays a pivotal role
in cellular waste degradation through interactions with ubiquitin and other proteins. The
aim is to design sequences with higher enzyme activity. We merge data following [59].

• Aliphatic Amide Hydrolase (AMIE): The enzyme encoded by amiE, known as Amidase,
holds industrial relevance and is derived from Pseudomonas aeruginosa. The goal is to
optimize amidase sequences with greater enzyme activity. We merge data following [69].
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Figure 4: Schematic illustration of the VAE model used in the study.

• Levoglucosan Kinase (LGK): Levoglucosan kinase catalyzes the conversion of Levoglu-
cosan (LG) to the glycolytic intermediate glucose-6-phosphate through an ATP-dependent
reaction. The target is to optimize LGK protein sequences with improved enzyme activity.
We gather data following [34].

• Poly(A)-binding Protein (Pab1): Pab1 utilizes the RNA recognition motif (RRM) to bind
to multiple adenosine monophosphates (poly-A). The aim is to design sequences with higher
binding fitness to multiple adenosine monophosphates. We collect data following [44].

• SUMO E2 Conjugase (UBE2I): The utilization of variants for the functional mapping
of human genomes holds considerable significance in both scientific research and clinical
treatment. The goal is to identify human SUMO E2 conjugase with a higher growth rescue
rate. Data are obtained following [66].

D Implementation Details

D.1 VAEs’ Architecture

In this section, we go into detail regarding the architecture of the VAE used in our study. As mentioned
in Section 3.2, our regularized VAE consists of an encoder, a predictor, and a decoder.

Encoder Figure 4 depicts that the encoder incorporates a pre-trained ESM-2 [39] followed by
a latent encoder to compute the latent representation z. In our study, we leverage the powerful
representation of the pre-trained 30-layer ESM-2 [39] by making it the encoder of our model.
Given an input sequence x = ⟨x0, x1, · · · , xL⟩, where xi ∈ V , the transformer-based ESM-2
computes representations for each token xi in x, resulting in a token-level hidden representation
H = ⟨h0, h1, · · · , hL⟩, hi ∈ Rdh . We calculate the global representation h ∈ Rdh of x via a
weighted sum of its tokens:

h =

L∑
i=1

ωT exp (hi)∑L
i=1 ω

T exp (hi)
hi. (8)

here, ω is a learnable global attention vector. Then, two multi-layer perceptrons (MLPs) are used
to compute µ = MLP1(h) and log σ = MLP2(h), where the latent dimension is d. Finally, a latent
representation z ∈ Rd is sampled from N (µ, σ2), which is further proceeded to the decoder to
reconstruct the sequence x̂. We use an auxiliary MLP as a fitness predictor that maps the latent z to
the fitness score, i.e. y′ = MLP(z). The hidden dimensional size of the predictor is set to 512, with
the dropout of 0.2. We set dh = 1280 and d = 320 for the main experiments in our study.
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Decoder Inspired from [53], we construct our decoder as the combination of two components: an
’upsampler’ component comprising 3 layers of transposed convolutions with stride of 2 to upsample
the latent vector z to a sequence matching the output sequence’s length; and an autoregressive com-
ponent consisting of an attention-based GRU [16, 41] with 512 units. To cope with the optimization
difficulties reported when training VAE with powerful autoregressive decoders [9, 53], we follow [9]
by applying 40% dropout to the amino acid context supplied as input to the GRU during training.
This encourages the network to depend on the information conveyed through the upsampled latent
code along with the conditional information in the masked amino acid sequence to make predictions.
Additionally, we apply teacher forcing [67] with a ratio of 50% for faster convergence.

D.2 Oracles

We establish the optimization oracle O(·), utilized for latent-based directed evolution, by leveraging
features generated by the pre-trained 33-layer ESM-2 [39] with a dimension of 1280. Subsequently,
we fine-tune an Attention1D model to predict fitness values based on these representations. As for
the evaluation oracle E(·), which acts as the "ground-truth" evaluator, we employ the trained oracle
provided by [49]. This evaluation oracle combines the pre-trained ESM-1b [51] with a Attention1D
model with a dimension of 512, and it is used to assess all methods.

D.3 Training Configurations

As mentioned in the Appendix B, we employ the ControlVAE mechanism to prevent KL vanishing
and enhance the diversity of generated data during training. Across all tasks, we configure the
coefficients Kp and Ki of the P term and I term to 0.01 and 0.0001, respectively. For the LGK
benchmark, the desired KL-divergence C is set to 40, while for all other tasks, C = 20 is utilized.
The batch size for each task is determined to be as large as possible, as long as the total steps in one
epoch for each task are higher than 100.

E Evaluation Metrics

We provide mathematical definitions of four metrics: maximum fitness score (MFS), diversity, and
novelty. Let P = {p1, p2, . . . pN} be the population generated by LDE and E(·) be the evaluation
oracle, we define:

• MFS = max({E(pi)}Ni=1),

• Diversity =

∑N
i=1

∑N
j=1,j ̸=i d(pi, pj)

N(N − 1)
,

• Novelty =
∑N
i=1 minsj∈D d(pi, sj)

N
,

where d(·, ·) is the Levenshtein distance, and D is the initial dataset (i.e., training dataset).

F Additional Results

F.1 Comparison with other Baselines

This section extends Section 4.2 by reporting results for two metrics: diversity and novelty in Tables
5 and 6, respectively. Again, it is important to note that while these metrics offer valuable insights
into the exploration and exploitation trade-offs exhibited by different methods, they do not determine
the efficacy of a method.

F.2 Differences between optimization oracle and evaluation oracle

In Table 7, we present a comparison of results for designs using the optimization oracle O(·) (Opt.
Oracle) and the evaluation oracle E(·) (Eval. Oracle). The table demonstrates that, with the exception
of Pab1, all other benchmarks experienced a decrease in performance when using the evaluation
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Models avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Average

AdaLead 9.814 6.904 8.071 7.412 6.898 7.430 7.441 7.439 7.676
DyNA PPO 204.376 114.229 157.964 140.617 171.123 205.098 185.145 179.212 169.721
CbAS 205.709 115.437 159.502 142.033 172.526 206.823 186.766 180.769 171.196
CMA-ES 173.365 96.882 134.633 119.388 145.151 174.274 157.098 152.058 144.106
COMs 70.319 45.761 73.191 68.398 100.731 126.623 115.242 109.650 88.739
PEX 7.048 4.782 6.692 6.625 6.388 7.031 7.012 7.219 6.600

LDE (ours) 94.646 1.604 61.652 4.504 35.762 108.053 9.040 14.666 41.806

Table 5: Diversity on eight protein datasets

Models avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Average

AdaLead 13.486 17.805 41.405 48.934 41.167 78.868 73.526 78.548 47.967
DyNA PPO 201.702 111.566 156.784 139.227 170.368 205.815 185.686 179.801 168.869
CbAS 201.825 111.549 156.845 139.172 170.031 205.404 185.354 179.549 168.716
CMA-ES 202.155 111.467 156.968 139.126 157.701 193.991 175.414 170.746 163.446
COMs 184.177 98.831 111.931 101.930 123.590 150.657 134.298 129.795 129.401
PEX 4.323 1.930 4.461 4.748 3.031 8.614 4.356 4.779 4.530

LDE (ours) 91.863 0.657 62.508 2.037 10.423 65.145 2.875 126.495 45.250

Table 6: Novelty on eight protein datasets

oracle. This decline is expected, as different oracle architectures result in different approximate
fitness scores. Therefore, as we optimize the results based on the optimization oracle and solely
utilize the evaluation oracle to assess the final performance of the method, the score produced by the
optimization oracle should be higher.

avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I

Opt. Oracle 15.266 2.736 5.986 5.594 0.327 0.939 0.786 7.405
Eval. Oracle 8.058 2.636 1.745 5.120 -0.103 0.018 1.548 4.297

Table 7: Comparison of optimization and evaluation oracles on the max fitness scores across eight
protein benchmarks.

F.3 Autoregressive vs. Non-autoregressive

In addition to the autoregressive decoder utilized in LDE, we report the performance of a non-
autoregressive decoder implemented following the architecture proposed by [13]. This decoder
comprises four 1-dimensional convolutional layers with ReLU activations and batch normalization
layers are incorporated between convolutional layers, except for the final layer. As outlined in Table 8,
it is observed that the autoregressive decoder consistently outperforms the non-autoregressive decoder
across all tasks. This paves the way for further study on how different types of decoders affect the
latent-based evolutionary algorithms.

F.4 Active Learning
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Table 8: Maximum fitness scores on eight protein datasets of two decoder versions of LDE.
avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Average

Non-autoregressive LDE 3.733 1.368 1.095 3.123 -0.558 -0.005 0.089 2.976 1.430
(Autoregressive) LDE 8.058 2.636 1.745 5.120 -0.103 0.018 1.548 4.297 3.204
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