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Abstract
Continuous glucose monitors (CGMs) are increasingly used to measure blood
glucose levels and provide information about the treatment and management
of diabetes. Our motivating study contains CGM data during sleep for 174 study
participants with type II diabetes mellitus measured at a 5-min frequency for
an average of 10 nights. We aim to quantify the effects of diabetes medications
and sleep apnea severity on glucose levels. Statistically, this is an inference ques-
tion about the association between scalar covariates and functional responses
observed at multiple visits (sleep periods). However, many characteristics of the
data make analyses difficult, including (1) nonstationary within-period patterns;
(2) substantial between-period heterogeneity, non-Gaussianity, and outliers; and
(3) large dimensionality due to the number of study participants, sleep periods,
and time points. For our analyses, we evaluate and compare two methods: fast
univariate inference (FUI) and functional additive mixed models (FAMMs). We
extend FUI and introduce a new approach for testing the hypotheses of no effect
and time invariance of the covariates.We also highlight areas for furthermethod-
ological development for FAMM.Our study reveals that (1) biguanidemedication
and sleep apnea severity significantly affect glucose trajectories during sleep and
(2) the estimated effects are time invariant.
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1 INTRODUCTION

Diabetes is a chronic disease characterized by elevated
blood glucose levels. Type I diabetes results from the
pancreas’s inability to produce insulin, whereas type II
is characterized by insulin resistance and insufficient
amount of insulin.Diabetes is associatedwith considerable
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morbidity andmortality (Zimmet et al., 2001), and is linked
to multiple complications (Kodl & Seaquist, 2008; Moxey
et al., 2011; Resnick & Howard, 2002). In 2019, approxi-
mately 463 million people worldwide had diabetes , with
type II diabetes constituting about 90% of the cases, and
the rates are projected to rise (Saeedi et al., 2019). There-
fore, it is important to understand the factors that affect
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the development of diabetes and its progression with time.
Obstructive sleep apnea (OSA) is a sleep-related breathing
disorder that is prevalent among patients with type II dia-
betes (Foster et al., 2009). Multiple studies have reported
associations between OSA, insulin resistance, and glucose
intolerance (Lindberg et al., 2012; Punjabi et al., 2002).
Despite this, the explicit effects of OSA severity on the
glucose control of patients with type II diabetes are not
well understood.
Traditionally, glucose control is quantified by

Hemoglobin A1c (HbA1𝑐), which is a measure of the
long-term average glucose levels. However, the glucose
profiles are highly nonlinear and nonstationary, being sen-
sitive to various environmental factors, including quantity
and type of meals, medications, physical activity, and
stress levels. As HbA1𝑐 does not capture the within-night
variability of glucose profiles, it cannot capture short-term
and dynamic associations between exposures, such as
OSA severity and blood glucose during sleep.
In this work, we aim to quantify the effects of OSA

severity and medications on glucose control by ana-
lyzing measurements from continuous glucose monitors
(CGMs) of patients with type II diabetes from the HYP-
NOS study (Rooney et al., 2021). Unlike HbA1𝑐, CGMs
provide detailed quantification of blood glucose levels dur-
ing the entire 24-h period (typical measurement interval
is 5 min), thus playing an increasing role in clinical prac-
tice and disease management (Rodbard, 2016). A unique
characteristic of the HYPNOS study is the availability
of concurrent data from CGM and wearable actigraphy
devices. For the purpose of this study, actigraphy was used
to estimate sleep periods. Figure 1 provides examples of
CGM profiles for three study participants during their esti-
mated sleep periods. Time zero indicates the estimated
sleep onset time, and time on the x-axis is the time from
the sleep onset. Focusing on sleep periods is important
as (1) OSA occurs during sleep and (2) sleep periods are
less affected by confounding factors such as food intake
or physical activity. However, when, what, and how much
the person ate before going to sleep is likely to affect both
the blood glucose level at the beginning and its dynam-
ics during the sleep period. A subset of these data was
previously analyzed in Gaynanova et al. (2022). However,
this prior analysis focused on modeling variability using
functional PCA and did not specifically investigate the
potentially time-varying fixed effects of covariates, such as
OSA severity or diabetes medications, on glucose profiles.
It is common practice to extract summary measures

(e.g., mean, standard deviation, coefficient of variation)
from CGM data and use these summaries in subsequent
analyses (Broll et al., 2021; Rodbard, 2016). For example, a
prior study of the HYPNOS data (Aurora et al., 2022) has
used average glucose values over each sleep period and

a linear mixed model to account for the multiple days of
monitoring. Such approaches are easy to interpret as they
use standard, well-known statistical models. Themain dis-
advantage is that substantial informationmay be lost while
compressing the CGM trajectory into a single number.
Data compression may also make it impossible to test cer-
tain hypotheses of interest, such as whether the effects of
covariates are time-varying.
In this paper, we focus on modeling the complete glu-

cose profile as a functional response. We are interested in
how these profiles are associated with OSA severity and
medication. The methodology used for analysis is in the
general area of multilevel function-on-scalar regression
(Bigelow & Dunson, 2009; Di et al., 2009; Goldsmith et al.,
2015; Greven et al., 2010; Morris & Carroll, 2006). The term
function-on-scalar regressionwas introduced in Reiss et al.
(2010). While estimation in multilevel function-on-scalar
regression has been well studied, statistical inference
remains an active area of research. In particular, the HYP-
NOS data have (1) large dimensionality with 174 study
participants, an average of 10 sleep periods per partici-
pant, and 84 time points per period (data observed in 5
min intervals for the first 7 h from sleep onset); (2) highly
nonstationary within-period patterns; and (3) substantial
between-period heterogeneity with non-Gaussianity and
outliers. The main problems with existing methods for
such data are (1) computational feasibility and scalabil-
ity, (2) availability of software, and (3) validity of resulting
uncertainty estimates in the presence ofwithin-curve func-
tional correlations, outliers, and non-Gaussian errors. Our
goal is to conduct inference on the HYPNOS data using
computationally feasible methods that account for its mul-
tilevel functional structure and heterogeneity. We have
identified only one method, the recently published fast
univariate inference (FUI) (Cui et al., 2022), which can be
adapted to achieve these goals. We compare this approach
with the FAMMs framework (Scheipl et al., 2015) imple-
mented in the R package refund (Goldsmith et al., 2020),
which is the current state-of-the-art for functional data
analysis (FDA) (Morris, 2015).
One major contribution is to compare FUI and FAMM

in a realistic scenario with a new data type (CGM) and
provide practical guidance on their implementation. We
conclude that FUI is much faster than FAMM when
accounting for the within-sleep period correlation struc-
ture of the data (fitting the FAMM model with such a
structure is computationally prohibitive for the HYPNOS
data). Moreover, even when within-sleep period correla-
tions are ignored, FAMM is still very slow using the default
settings (over 12 h on a standard laptop). We show how to
change the FAMM default settings to substantially reduce
computation time to 7 min. These changes may be known
to FAMM experts, but most users would be unaware of
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F IGURE 1 Glucose trajectories during sleep for three selected subjects. The x-axis is the time from estimated sleep onset, one
observation every 5 min. The glucose values are measured in mg/dL.

where and how to adjust these settings. Our guidelines
can substantially improve the user experience and, ulti-
mately, the use of FAMM in practice. We also show that
despite philosophical differences between the methods,
FUI (accounting forwithin-period correlation) and FAMM
(ignoring within-period correlation) lead to similar point
estimators of fixed effects. The resulting FUI joint confi-
dence bands are based on nonparametric case bootstrap,
and thus, unlike FAMM, take into account within-curve
functional correlations, outliers, and non-Gaussian dis-
tribution of the errors. While FAMM confidence bands
are slightly narrower, they are pointwise rather than joint
and could not account for within-sleep period correlations.
This comparison is new, as the original FUI paper did not
include simulations with correlated visit-specific data.
Moreover, we expand the utility of the FUI framework,

proposing new methods for obtaining p-values for test-
ing the global null hypotheses of (1) no fixed effects and
(2) no time-invariant fixed effects. We implement simula-
tion studies, confirming that the proposed approach has
nominal rejection rates under the null and provide power
curves for both tests under the alternative hypothesis. To
our knowledge, this is the first time when joint confidence
intervals are used to derive p-values for testing functional
effects. For the no effect hypothesis on HYPNOS data,
there are substantial differences between the newly pro-
posed p-values and the approximate p-values using FAMM
(Wood, 2013). This may be due to the misspecification
of the FAMM model and correlations among the covari-

ates. At this point, it is unclear how to conduct formal
tests of time invariance based on FAMM, but they can be
conducted using our novel proposed testing procedure.
In summary, our case study (1) characterizes the asso-

ciation between covariates and glucose trajectories as a
function of time from sleep onset; (2) provides confi-
dence intervals and measures of statistical significance of
fixed effects, including p-values for testing time invariance;
(3) evaluates and compares two analyticmethods (FUI and
FAMM); and (4) provides guidelines for the use of these
methods in future studies. Such case studies are crucial to
the ultimate success of FDA approaches. Indeed, despite
their success in the statistical literature, FDA is rarely used
in practice. Successful case studies that go beyond didac-
tic examples could help improve the acceptability of FDA
methods in realistic scenarios.

2 DATA DESCRIPTION

2.1 Data collection

The data analyzed in this paper were collected as part
of the hyperglycemic profiles in obstructive sleep apnea
(HYPNOS) randomized clinical trial. The study popula-
tion consisted of adults between 21 and 75 years old with
type II diabetes and mild-to-severe OSA recruited from
the community. The primary objective of the trial was to
determine whether treatment with positive airway pres-
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sure (PAP) therapy is associated with improvements in
glycemicmeasures. To investigate the effects of OSA sever-
ity and medication on the glucose control of patients with
type II diabetes, we consider the data at the baseline visit
(prior to the randomization of study participants into con-
trol and PAP therapy groups). The research protocol was
approved by the Institutional Review Board on human
research (Number: NA_00093188). A detailed description
of the trial protocol and implementation can be found in
Rooney et al. (2021). Below we provide a short summary.
Study participants were screened based on the point-

of-care HbA1𝑐 measured with a DC Vantage Analyzer
(Siemens, Malvern, PA) and a home sleep apnea test using
Apnealink (Resmed, San Diego, CA). The oxygen desat-
uration index (ODI) was determined using the number
of times the oxyhemoglobin decreased by at least 4% per
hour of sleep. Participants with HbA1𝑐 ≥ 6.5% and ODI ≥
5 events pre hour were invited to enroll in the study. For
each study participant, OSA severity was characterized as
mild (5 ≤ ODI < 15) or moderate-to-severe (ODI ≥ 15).
Exclusion criteria included pregnancy, any prior therapy
for OSA, insulin use, change in glycemic medications in
the previous 6 weeks, current oral steroid use, other sleep
disorders, habitual sleep duration of < 6 h/night, and any
unstable medical condition. Study participants completed
an actigraphy study using theActiwatch (Philips Respiron-
ics, Murraysville, PA) and continuous glucose monitoring
(CGM) using the Dexcom G4 Platinum sensor, which pro-
duces one measurement every 5 min. The actigraph was
worn on the nondominant wrist, and the CGMwas placed
6 cm lateral to the umbilicus. Participants were instructed
to wear both monitors for at least 7 days and provide cal-
ibration glucose data for the Dexcom sensor twice a day
according to the manufacturer’s instructions.

2.2 Extraction of glucose curves
corresponding to sleep periods

Sleep periods were estimated using the actigraphy data
and the proprietary algorithm of the Phillips Actiware soft-
ware. Actigraphy-estimated sleep periods thatwere shorter
than 5 h were excluded from the analysis. Only partici-
pants who had at least five sleep periods with concurrent
CGM measurements were included in our analyses. This
led to 1812 actigraphy-estimated sleep periods for 174 study
participants ranging from 5–20 sleep periods per study par-
ticipant, with a median of 11 sleep periods. Rather than
rescaling the time of each sleep period to account for differ-
ent lengths (which may lead to distortion of circadian and
sleep-related biological rhythms), we work with absolute
time from the actigraphy-estimated sleep onset, in accor-
dance with established practices in physiological studies

of glucose regulation during sleep (Van Cauter et al., 1991).
The median sleep period duration is 7.5 h with lower and
upper quartiles of 7 and 8 h, respectively, and we focus on
the first 7 h from the estimated sleep onset (time zero). The
measurement times are synchronized across participants
by linearly interpolating glucose trajectories at 5-min inter-
vals from time zero. The interpolation interval matches the
frequency of the CGM device, and the interpolated trajec-
tories are visually indistinguishable from the original ones.
Additional details on data processing and filtering steps are
in Web Appendix A.
Figure 1 displays the glucose trajectories during the first

7 h of actigraphy-estimated sleep for three study partic-
ipants (selected to illustrate the variety of BG profiles
observed in the data). Each solid black line corresponds
to one period of actigraphy-estimated sleep, and time zero
corresponds to the actigraphy-estimated sleep onset.While
typical glucose values range between 70 and 120 mg/dL
for people without diabetes, the glucose values for patients
with diabetes are much more variable, even during sleep.
All three study participants in Figure 1 exhibit high glu-
cose values, with Subject 2 having measurements in the
[120, 350] mg/dL range. Furthermore, while glucose val-
ues are expected to decrease during sleep due to the
absence of food intake, this decreasing trend is not con-
sistently observed across all study participants and sleep
periods. Subject 1 has trajectories that tend to increase
throughout the night, with several trajectories having a
peak in the middle of sleep. In contrast, all trajectories
for Subject 2 are decreasing. For Subject 3, trajectories are
highly variable across nights, with most, but not all, tra-
jectories decreasing. For example, one trajectory starts at
in-range values of 90 mg/dL, reaches hyperglycemic value
of 210 mg/dL at 3 h from sleep onset, and goes back to
around 100 mg/dL at 7 h.

2.3 Research questions and statistical
challenges

In addition to the glucose trajectories, multiple covari-
ates are available: age, sex BMI (coded as 0 for BMI <
35, and as 1 for BMI ≥ 35, corresponding to severe obe-
sity), use of hypoglycemic medications (biguanides and
sulfonylureas), point-of-care HbA1𝑐, and OSA severity
status (mild OSA and moderate-to-severe OSA). Since
point-of-care HbA1𝑐 measurements were obtained prior
to the device placements, we use HbA1𝑐 as a baseline
marker of diabetes severity. These covariates are com-
pletely observed for all 174 study participants, and Table 1
provides summary statistics.
Our primary scientific goal is to investigate the effects

of OSA severity and hypoglycemic medications on glu-
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TABLE 1 Descriptive statistics of the study participants. Values
are the medians (min-max) for continuous covariates or size (%) for
binary covariates.

Covariates Full sample 𝒏 = 𝟏𝟕𝟒

Age 61 (35–75)
Male Sex 95 (55%)
Biguanide use 145 (83%)
Sulfonylurea use 66 (38%)
Severe OSA 87 (50%)
BMI >= 35 (severe obesity) 60 (34% )
HbA1𝑐 7.2 (6.5–11.2)

cose trajectories during sleep after accounting for baseline
HbA1𝑐, age, sex and BMI. Statistically, this is an inference
question about the association between fixed scalar covari-
ates (e.g., OSA severity) and functional response (CGM
trajectory during sleep). However, this is not a standard
function-on-scalar regression (terminology introduced by
Reiss et al. (2010)) because the CGM exhibits: (1) highly
nonstationary within-day patterns; (2) high between-day
heterogeneity and substantial departures from the nor-
mality of the marginal distributions; and (3) multilevel
structure with a large number of study participants (174)
and time points (84). Our methodological goal is to con-
duct inference using computationally feasible methods
that account for the known structure of the data.

3 METHODOLOGY

We start by introducing the notation and model structure.
Denote by 𝑦𝑖𝑗(𝑡𝑘) the glucose measurement for subject 𝑖 =
1, … , 𝐼, sleep period 𝑗 = 1,… , 𝐽𝑖 (number of periods varies
across study participants), at time 𝑡𝑘, 𝑘 = 1,… , 𝐾, from
sleep onset. In this application, we use an equally spaced
time index for the 7 h interval from sleep onset. The data
structure is the multilevel functional (Bigelow & Dunson,
2009; Crainiceanu et al., 2013; Di et al., 2009; Greven et al.,
2010; Morris & Carroll, 2006; Meyer et al., 2015) because
multiple functions are observed for each study participant.
Let 𝐱𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑅)

⊤ be the 𝑅 × 1-dimensional vector of
covariates for participant 𝑖 and 𝑋 = (𝐱1, … , 𝐱𝐼)

⊤ be the
𝐼 × 𝑅-dimensional matrix, where each row contains the
covariates for one study participant. We are interested in
how these covariates affect the blood glucose trajectories
from sleep onset.
We consider the following multilevel function-on-scalar

regression model:

𝑦𝑖𝑗(𝑡) = 𝛽0(𝑡) +

𝑅∑
𝑟=1

𝛽𝑟(𝑡)𝑥𝑖𝑟 + 𝑏𝑖(𝑡) + 𝜖𝑖𝑗(𝑡). (1)

Here, 𝛽0(𝑡) is the global intercept and could be interpreted
as the average blood glucose level at time 𝑡 over study par-
ticipants, 𝑖, and sleep periods, 𝑗, when covariates are equal
to zero. The component 𝛽0(𝑡) +

∑𝑅

𝑟=1
𝛽𝑟(𝑡)𝑥𝑖𝑟 is the aver-

age fixed effect at time 𝑡 across visits and subjects with
the covariates 𝐱𝑖 . The functions, 𝛽𝑟(⋅) for 𝑟 = 0,… , 𝑅, are
assumed to be continuous and smooth. The random inter-
cept 𝑏𝑖(𝑡) is the participant-specific deviation from the
population mean at time 𝑡. It plays a similar role to that
of random intercepts in standard linear mixed models but
allows for a subject-specific shift at each time 𝑡, which is
assumed to be smooth. More precisely, assume that 𝑏𝑖(⋅) ∼
𝑁(𝟎𝐾, 𝚺𝑏,𝐾), mutually independent, where 𝟎𝐾 is the 𝐾 ×

1-dimensional vector of zeros, and 𝚺𝑏,𝐾 is the 𝐾 × 𝐾-
dimensional between-participant covariance matrix after
accounting for fixed effects. We also assume that 𝜖𝑖𝑗(⋅) ∼
𝑁(𝟎𝐾, 𝚺𝜖,𝐾), where 𝚺𝜖,𝐾 is the 𝐾 × 𝐾-dimensional within-
participant covariance matrix. Note that it would be too
restrictive to assume that 𝜖𝑖𝑗(𝑡) are uncorrelated across 𝑡
because model (1) would not be generative for the type of
data observed in the HYPNOS study. In the actual data,
the period-specific deviations from the participant-specific
means are highly structured and smooth.
We consider two competing methods for estimation and

inference ofmodel (1): FAMM(Scheipl et al., 2015) andFUI
(Cui et al., 2022). We review FAMM in Section 3.1 and FUI
in Section 3.2. In Section 3.3, we build upon the FUI frame-
work to develop p-values for fixed effects to test the null
hypotheses of (1) no effect and (2) time-invariant effect.

3.1 Estimation and inference with
FAMM

The FAMM is based on the extension of the generalized
additive models. For the fixed effects coefficient func-
tions 𝛽𝑟(⋅), 𝑟 = 0,… , 𝑅, FAMMuses spline basis expansion.
For the subject-specific random intercept 𝑏𝑖(⋅) and period-
specific time-dependent 𝜖𝑖𝑗(⋅), FAMM uses the tensor
product expansion (Scheipl et al., 2015; Wood, 2006). The
tensor product uses a Kronecker product to cross the bases
for the random and time-dependent components. This cre-
ates a significant computational bottleneck as the total
number of basis functions is a product between the num-
ber of participants, the number of sleep periods, and the
number of basis functions for the time component. With
10 basis functions for the time component and 174 partic-
ipants, the basis for the subject-specific random intercept
𝑏𝑖(⋅) consists of 1740 functions. With 1812 sleep periods,
the basis for the period-specific time-dependent 𝜖𝑖𝑗(⋅) con-
sists of 18,120 functions. Given the size of the basis, we
found it impossible to fit the full model (1) using FAMM
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on our data. To achieve computational feasibility, we use
FAMM to fit a simpler model that assumes that the resid-
uals, 𝜖𝑖𝑗(⋅), are independent across time. However, this
model is misspecified as the CGM data have a strong
within-sleep period structure (Figure 1). Web Appendix B
provides guidelines for fitting both models with FAMM
using refund package (Goldsmith et al., 2020).
FAMM produces pointwise confidence intervals for

fixed effects based onBayesian credible intervals. To obtain
joint confidence intervals, Wood (2017) suggests using
posterior simulations or the bootstrap procedure. How-
ever, both approaches require significant computational
resources on our data. Even without access to joint con-
fidence intervals, approximate p-values for testing the
hypothesis of no effect can be calculated as inWood (2013).
The approximation, however, neglects the uncertainty in
the smoothing parameters (Wood, 2013), which, combined
with model misspecification, could lead to inflated rejec-
tion rates under the null (see simulation study in Web
Appendix D).

3.2 Estimation and inference with FUI

FUI fits univariate linear mixedmodels at each time point.
To be specific, for each 𝑡 from the discrete set {𝑡1, … , 𝑡𝐾},
FUI fits a univariate mixed effects model using, for exam-
ple, lme4 in the R (Bates et al., 2015). From the pointwise
univariate models, we obtain estimators of the coefficient
vectors𝜷𝑟 = (𝛽𝑟(𝑡1), … , 𝛽𝑟(𝑡𝐾)). These coefficients can then
be smoothed; see, for example, Cui et al. (2022).
To conduct fixed-effects inference, FUI uses a non-

parametric case bootstrap of study participants. For a
bootstrap 𝑏 = 1,… , 𝐵, study participants {1, … , 𝐼} are sam-
pled with replacement and estimators of the effects of
interest {𝜷(𝑏)

𝑟 } are obtained. For each effect of interest 𝑟 =
1,… , 𝑅, we obtain the mean, 𝜷𝑟, and covariance, var(𝜷𝒓),
from the 𝐵 bootstrap estimators. The approach proceeds
by sampling 𝜷(𝑛)

𝑟 ∼  {𝜷𝑟, var(𝜷𝑟)} 𝑁 times and calculating
the distribution of the standardized maximum deviations
𝑢𝑛 = max |𝜷(𝑛)

𝑟 − 𝜷𝒓|∕
√
diag(var{𝜷𝑟)}. The empirical 1 − 𝛼

quantile 𝑞1−𝛼 of the distribution {𝑢1, … , 𝑢𝑁} is used to com-
pute the joint confidence bands for the effects as 𝜷𝑟 ±

𝑞1−𝛼

√
diag(var(𝜷𝑟)).

FUI implicitly allows for time-dependent error curves,
𝜖𝑖𝑗(⋅), because the fitting is done separately across time
points. The correlation of the errors is accounted for when
calculating the confidence intervals based on the bootstrap
of study participants. This is a simple but highly effective
work-around for the direct modeling of highly complex
covariance structures. It does not impact the pointwise
confidence intervals but provides a way of calculating

joint confidence intervals that account for complex depen-
dence structures. Moreover, this approach allows for more
flexible modeling of the covariance that could include,
for example, latent subgroups with different dependence
structures. In turn, joint confidence intervals can be used
for global testing of parameter coefficients. While FUI
is a powerful approach to inference, the original paper
(Cui et al., 2022) does not provide (1) an assessment of
the method in the presence of within-period correlations
(which is the case for ourHYPNOSdata); (2) a one-number
summary (e.g., p-value) for testing the global null hypothe-
ses about the functional effects, 𝛽𝑟(⋅); and (3) a formal way
to assess time invariance of fixed effects.

3.3 Obtaining p-values from FUI for
testing the no effect and time invariance
hypotheses

FUI provides a way of constructing joint confidence inter-
vals for 𝛽𝑟(⋅) at any level 𝛼. However, it does not provide
a one-number summary (e.g., p-value) for testing the
null and time invariance hypotheses about the functional
effects. Specifically, given evaluation points [𝑡1, … , 𝑡𝐾], and
a fixed matrix𝑊 ∈ ℝ𝑚×𝐾 , we are interested in testing the
hypothesis:

𝐻0 ∶ 𝑊𝜷𝑟 = 𝟎,

where 𝜷𝑟 = (𝛽𝑟(𝑡1), … , 𝛽𝑟(𝑡𝐾))
𝑇 . The test of no effect corre-

sponds to𝑊 = 𝐼𝐾 . The test of time invariance corresponds
to𝑊 ∈ ℝ(𝐾−1)×𝐾 being a first-order difference matrix:

𝑊 =

⎡⎢⎢⎣
1 −1

⋱

1 −1

⎤⎥⎥⎦ .

To obtain p-values and perform the test, we propose to
use the duality between the confidence intervals and the
hypothesis tests. The original FUI paper (Cui et al., 2022)
uses bootstrap to construct joint confidence interval for
𝑊𝜷𝑟 only when 𝑊 = 𝐼𝐾 . Our first contribution is to pro-
vide an extension of this approach to any 𝑊 using the
original bootstrap samples {𝜷(𝑏)

𝑟 }. Second, we observe that
a level 𝛼 test rejects the null hypothesis if there exists at
least one element in 𝑊𝜷𝑟 for which the corresponding
1 − 𝛼 joint confidence interval does not contain zero. Thus,
we propose to calculate the p-value for these tests as the
smallest level 𝛼 for which 𝟎 ∈ ℝ𝑚 is not inside the joint
confidence interval for 𝑊𝜷𝑟. Web Appendix C provides
details of the corresponding algorithm.
An advantage of having the p-values is that they pro-

vide an interpretable, quick summary of the evidence
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against the null hypotheses, which complements the visual
inspections of joint confidence intervals. Throughout this
paper, we are using these newly proposed p-values. InWeb
Appendix D, we conduct simulation studies to empirically
validate the proposed p-values for both no effect and time
invariance tests. The p-values have approximately uniform
distributionwith close to nominal rejection rates under the
null hypothesis and have good power under the alterna-
tive. We also examine whether the no effect test can be
overly sensitive due to the 𝛽𝑟(𝑡) = 0 for all 𝑡 requirement
and conclude that the test remains robust to small devia-
tions from the null. To the best of our knowledge, this is the
first time p-values are implemented based on the bootstrap
joint confidence intervals.

4 RESULTS

Our first question of interest is investigating the effects
of OSA severity and hypoglycemic medications on glu-
cose trajectories during sleep after accounting for baseline
HbA1𝑐, age, sex and BMI. BMI is coded as 0 for BMI <
35, and as 1 for BMI ≥ 35 (corresponding to severe obe-
sity). OSA severity is coded as 0 for mild OSA and as 1 for
moderate-to-severe OSA. For hypoglycemic medications,
we consider the biguanide family (coded as 0 for nouse and
1 for active use) and the sulfonylurea family (coded as 0 for
no use and 1 for active use). Both biguanides and sulfony-
lureas are families of oral drugs commonly prescribed for
type II diabetes to reduce glucose levels. Metformin is the
most recognized drug in the biguanides group and is com-
monly used as a first-line treatment for type II diabetes.
While biguanides work by suppressing the production of
glucose in the liver, sulfonylureas promote the body’s pro-
duction of insulin. The two families of medications are not
mutually exclusive. Out of 174 patients, 18 take neither type
of drug, 90 take biguanide only, 11 take sulfonylurea only,
and 55 take both drugs. Sex is modeled as a binary vari-
able with 1 corresponding to males and 0 to females. Age
and HbA1𝑐 are modeled as continuous variables. We apply
both FAMM and FUI methods to conduct inference on
fixed-effect coefficients 𝛽𝑟(𝑡) in model (1).
Figure 2 displays the estimated coefficient curves, 𝛽𝑟(𝑡),

for each covariate, together with the corresponding 95%

confidence bands. It is reassuring that the point estima-
tors for FUI and FAMM are relatively close, though some
differences can be observed. In particular, FUI estimates
are, in general, more variable across time. For FAMM,
we only display the pointwise confidence bands obtained
under the misspecified model that does not account for
the sleep-period-specific correlation. For FUI, we display
both the pointwise and joint confidence bands (obtained
as described in Section 3.2). FUI pointwise bands are, on

TABLE 2 P-values for each fixed effect testing (1)
𝐻

(1)

0
∶ 𝛽(𝑡) ≡ 0 using FUI and FAMM, (2)𝐻(2)

0
∶ 𝛽(𝑡) ≡ const using

FUI. For FUI, we compute the values using the method in
Section 3.3. For FAMM, we use the default method as in Wood
(2013).

Covariates 𝑯
(𝟏)

𝟎
(FUI) 𝑯

(𝟏)

𝟎
(FAMM) 𝑯

(𝟐)

𝟎
(FUI)

Age 0.008 0.085 0.809
Sex 0.099 0.126 0.968
BMI 0.832 0.728 0.901
OSA Severity 0.026 0.038 0.877
Biguanide 0.033 < 0.001 0.868
Sulfonylurea 0.673 0.024 0.736
HbA1𝑐 < 0.001 < 0.001 0.788

average, 3% wider than FAMM across all covariates with
a minimum of 1% (for biguanide and sulfonylurea) and a
maximum of 4% (for all remaining covariates). FUI joint
bands are, on average, 22% wider than FAMM, with a min-
imum of 11% (for sex) and a maximum of 57% (for HbA1𝑐).
The FUI joint band for BMI is shorter than both FUI point-
wise band and FAMM joint band. We suspect that this
discrepancy is due to differences in the calculation of stan-
dard errors. FUI pointwise bands use standard errors from
pointwise mixed models (corresponding to unsmoothed
coefficients), whereas the joint bands use standard errors
from bootstrap, where the coefficients are smoothed at
each replication. If the true underlying coefficient is very
smooth, bootstrap standard errors can be smaller.
Next, we test the hypothesis of no effect based on FUI

and FAMM p-values, as well as time invariance based on
FUI. All p-values are reported in Table 2. For the no effect
hypothesis, based on FUI, BMI and sex were not signif-
icant at the level 𝛼 = 0.05. As expected, HbA1𝑐 is very
strongly associated with the CGM curves (p-value<0.001).
Thismakes sense, as HbA1𝑐, is thought tomeasure an aver-
age of glucose values over the past 3 months (Nathan et al.,
2007). The FUI analysis seems to indicate that this associa-
tion is stronger in the first part of the sleep period, though
the association is statistically significant across the entire
sleep period. Results suggest that patients with higher
baseline HbA1𝑐 have overall higher glucose levels. While
the effect of sulfonylurea medication on glucose profiles
during sleep is not significant (p-value=0.673), the effect
of biguanide is (p-value=0.033). Specifically, biguanide is
associated with lower glucose values during sleep after
accounting forHbA1𝑐. Panels labeled biguanide in Figure 2
indicate that the effect is the strongest approximately 3 h
after the sleep onset. A possible explanation may be that
biguanide is typically taken with dinner in the evening,
and the drug effect may be delayed. Age is also signifi-
cant (p-value = 0.008), with higher age being associated
with lower glucose values. One possible explanation is
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F IGURE 2 Estimated coefficient functions together with the 95% confidence intervals from fast univariate inference method (FUI) and
functional additive mixed model (FAMM) described in Sections 3.2 and 3.1. For FAMM, the confidence intervals are pointwise. For FUI, both
pointwise and joint confidence intervals are displayed, with joint intervals obtained as in Section 3.2. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version.

that older patients may have more experience in manag-
ing their diabetes. OSA severity has a significant negative
effect on blood glucose even after accounting for HbA1𝑐,
with larger glucose values during sleep for patients with
moderate-to-severe OSA compared to patients with mild
OSA. The p-values from FAMM lead to the same conclu-
sions at 5% level for sex, BMI, OSA severity, biguanide,
and HbA1𝑐. However, the methods differ in remaining
covariates: FUI concludes that age is significant while
sulfonylurea is not, whereas FAMM indicates vice versa.
In general, FAMM gives considerably lower p-value esti-
mates, up to 30 times lower, for both drug treatments:
biguanide and sulfonylurea. Thismay be due tomodelmis-
specification and/or not unaccounted-for uncertainty in
the smoothing parameters (see Web Appendix D for sim-
ilar results on simulated data). In Web Appendix E, we
provide additional FAMMfit diagnostics and a comparison

with FUI, which support this conclusion. For the time-
invariance hypothesis, based on FUI p-values, we cannot
reject the null, corroborating the visual inspection of the
plots in Figure 2 that suggest time invariance.
Overall, our empirical results highlight that FAMM and

FUI methods result in similar widths of the confidence
bands and comparable estimates of the coefficients func-
tions, with FUI providing slightly wider joint confidence
intervals. Further, FUI estimates are, in general, more
variables across time. Both FUI and FAMM are pow-
erful estimation approaches that are designed to work
with complex dependencies in the functional data. In
practice, however, fitting FAMM may be computation-
ally challenging and may need case-by-case adjustment
of the model specifications. Based on 10 runs, the aver-
age fitting time on a standard laptop for FUI was less
than 2 s, and for FAMM with the options selected
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in Web Appendix B was 7 min. Without computation
speedup, FAMM takes more than 12 h (the computations
were interrupted at 12 h). Combining FUI with case boot-
strap to perform inference leads to an overall computation
time of 2 min with 100 bootstrap replications performed
sequentially.

5 DISCUSSION

In this paper, we consider the problem of inference in a
multilevel function-on-scalar regression framework using
two distinct methodologies, FAMM and FUI, in the con-
text of glucose trajectories measured by CGMduring sleep.
Our results indicate that the glucose levels during sleep are
significantly higher in patients with moderate-to-severe
OSA compared to patients with mild OSA. Since height-
ened glucose levels in type II diabetes are associated with
major adverse health effects, our findings suggest that OSA
treatment options may need to be considered as part of
an overall diabetes management plan in addition to tradi-
tional diet and exercise interventions. We have also found
significant effects of participants’ age, baseline diabetes
severity asmeasured byHbA1𝑐, and biguanidemedication.
While heterogeneity in the times of sleep onset among par-
ticipants may present potential confounding, we found the
estimated effect sizes and conclusions to be similar when
restricting the analysis to the sleep curves with the same
time of sleep onset (Web Appendix E).
In terms ofmethods comparison, we found that FUI out-

performs FAMM in terms of the fitting time and allows
changes in model complexity without large losses in com-
putational time. Indeed, fitting the full model (1) with
FAMM is computationally prohibitive on our data with-
out further methodological developments. When fitting
the simplified FAMM model, FUI and FAMM provide
similar estimates of the fixed effects. However, the FUI
confidence bands are slightly wider as they are joint
and account for within-period correlations, whereas the
FAMM confidence bands are pointwise and are based
on a misspecified model. We also provide an important
improvement for FUI: computation of p-values for test-
ing the null of no effect and time invariance for fixed
effects based on joint confidence intervals. As the proposed
p-values are intuitive, we expect that they will become
popular in quantifying the significance of functional fixed
effects in other applications.
There are multiple opportunities for further method-

ological and scientific research. First, the joint inference
across the time domain is a unique feature of FUI, which
FAMMcurrently does not support for large data sets due to
computational limitations associated with model estima-
tion. To perform joint inference, FUI relies on the bootstrap

of the study participants, which is computationally effi-
cient given its low model fitting cost. In contrast, fitting
FAMM, even for a misspecified model, requires consider-
able computational resources, which reduces the appeal
of the bootstrap. An alternative approach could be to
specify and fit FAMM as a fully Bayesian model and con-
duct inference via posterior sampling. Second, while we
focused on inference for fixed effects, a subject-specific
inference could be of substantial interest in the context
of the personalized assessment of glucose control during
sleep. The main difficulties for subject-specific inference
are (1) substantial between-subject variability and (2) the
small number of sleep periods per subject. Third, it may
be important to dynamically predict individual glucose tra-
jectories and identify early unusual patterns that could
be predictive of adverse health outcomes (e.g., hyper- or
hypoglycemia).
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