Autonomous Improvement of Instruction Following

SKills via Foundation Models

Zhiyuan Zhou*, Pranav Atreya*, Abraham Lee, Homer Walke, Oier Mees, Sergey Levine
UC Berkeley

3J soAR

Autonomous Data Collection

Vision-Language Model
Semantic Task Proposals

Image-Editing
Diffusion Model

Subgoal Generation

https://auto-improvement.github.io

~ Autonomous Improvement

@ Collects 1K Trajectories/Robot/Day
& 2x Pre-training Performance
& Fleet of 5 WidowX Robots

& No Human In The Loop
@ Uses Internet-scale Knowledge

?/ SOAR-Dataset

@ 30K Autonomous Trajectories
&3 3M Transitions

< Over 53 Objects, 5 Table Tops
v/ VLM Success Labels

$: VLM Language Annotations

w =53 i
& & A)
Robot Policy D N .
@ Robot Fleet
Vision-Language Model
Success Detection

Self-Supervised Policy Improvement ~

Figure 1: We introduce SOAR, an approach to autonomously improve instruction following policies by leverag-
ing foundation models for large-scale autonomous data collection and self-improvement with no human in the
loop. SOAR imports Internet-scale knowledge from pre-trained Vision-Language Models and image-editing
Diffusion Models to guide autonomous data collection, and enables policy-improvement with a self-supervised
objective on the autonomous data. We make available the 30.5K autonomous trajectories collected with SOAR
in SOAR-dataset.

Abstract: Intelligent instruction-following robots capable of improving from au-
tonomously collected experience have the potential to transform robot learning:
instead of collecting costly teleoperated demonstration data, large-scale deploy-
ment of fleets of robots can quickly collect larger quantities of autonomous data
that can collectively improve their performance. However, autonomous improve-
ment requires solving two key problems: (i) fully automating a scalable data col-
lection procedure that can collect diverse and semantically meaningful robot data
and (ii) learning from non-optimal, autonomous data with no human annotations.
To this end, we propose a novel approach that addresses these challenges, allow-
ing instruction-following policies to improve from autonomously collected data
without human supervision. Our framework leverages vision-language models to
collect and evaluate semantically meaningful experiences in new environments,
and then utilizes a decomposition of instruction following tasks into (semantic)
language-conditioned image generation and (non-semantic) goal reaching, which
makes it significantly more practical to improve from this autonomously collected
data without any human annotations. We carry out extensive experiments in the
real world to demonstrate the effectiveness of our approach, and find that in a suite
of unseen environments, the robot policy can be improved 2x with autonomously
collected data. We open-source the code for our semantic autonomous improve-
ment pipeline, as well as our autonomous dataset of 30.5K trajectories collected
across five tabletop environments.

1 Introduction

Key to the success of modern machine learning methods is the ability to leverage large amounts of
weakly labeled data: from scraping the web for free-form text to train large language models [1, 2,
3, 4] to self-supervised training of visual representations on diverse images [5, 6, 7, 8, 9], methods

*Equal contribution. Correspondence to zhiyuan_zhou@berkeley.edu, pranavatreya@berkeley.edu

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://auto-improvement.github.io
mailto:zhiyuan_zhou@berkeley.edu
mailto:pranavatreya@berkeley.edu

that can make effective use of larger, more weakly labeled, and more loosely curated datasets tend
to exhibit better robustness and generalization. For embodied agents such as robots, following this
recipe presents a major challenge: while text, images, and videos can be sourced from the web, there
is no existing repository of abundant robot data. While there have been efforts aimed at creating
larger robotic datasets [10], it is hard to match the volume and diversity of Internet-scale data, as
robot data needs to be collected in the laboratory with costly human effort [11, 12, 13, 14, 15]. A
more scalable recipe for robotic data acquisition would be to acquire data autonomously, with robots
interacting on their own with real-world scenes and objects, subject to minimal human supervision.
However, building a robot learning system to collect and effectively make use of such autonomous
data under realistic conditions requires addressing a number of technical challenges: deciding which
tasks to collect data for [16, 17], designing a self-supervised robotic learning analogue to the scalable
methods employed in other fields, such as NLP and CV [1, 3, 5], and ensuring that the autonomous
self-improvement process is stable and requires minimal human intervention [18, 19, 20, 21].

In this work, we explore a simple idea to overcome these challenges: while human-provided robotic
demonstration data is costly to collect at scale, we can leverage cheap Internet-scale data to learn
about semantics, and cheap autonomous experience to learn about physics, robot motion, and envi-
ronment interaction, connecting these two sources of experience through vision-language models.

This allows us to improve robotic instruction-following policies without costly additional human
supervision, while focusing on tasks that are semantically meaningful and connecting the robot’s
behaviors to language instructions. To instantiate this idea, we present a complete robotic system
that starts with a set of behaviors learned from previously collected offline data, and then improves
its repertoire of skills through autonomous data collection guided by task proposals from a vision-
language model (VLM) [22], effectively importing Internet-scale knowledge. To enable the robot
to improve its ability to follow language instructions from autonomous experience, we separate the
instruction following system into a semantic component, which interprets language commands and
converts them into subgoal images, and a functional component, which then attempts to reach these
goal images. The semantic component can be instantiated as a language-conditioned image genera-
tion model trained on Internet-scale data [7, 23], and the functional component can be instantiated as
a goal-conditioned policy [24] trained on unlabeled robot data, without any additional supervision.
Finally, a VLM scores the success of the executed behaviors in reaching the proposed tasks. In this
way, all of the parts of our system that require understanding semantics — task proposals, scoring and
instruction following — can acquire these semantic concepts from Internet-scale pre-training, while
all of the parts that require controlling a robot can utilize unlabeled, autonomously collected data.

Figure 1 highlights our proposed approach and its benefits. We introduce a semantics-aware au-
tonomous system designed to improve skills without human intervention, using natural language to
index semantic skills. The process starts with VLM that generates task proposals by drawing on
its broad understanding of environment affordances. For example, it will only suggest opening a
drawer if the drawer is currently closed. To learn from autonomously collected data, the system
must link each trajectory to the semantic meaning of the task completed. This becomes challeng-
ing when semantics are expressed through natural language, as the robot only receives one bit of
feedback per trajectory: whether or not it successfully completed the language-based task. This
becomes even more challenging when the success labels for trajectories might occasionally be in-
correct, such as those generated by a VLM. To address this, we use a particular form of instruction
following policy that decouples language understanding from robotic control. Specifically, we train
a goal-conditioned policy, re-framing the semantic concepts as goal images instead of language
instructions. We command the goal-conditioned policy to follow language tasks by synthesizing
image subgoals from language via an image-editing diffusion model [23]. This allows us to for-
mulate learning as a goal-conditioned problem, with dense supervision provided through hindsight
relabeled image goals [25]. This decoupling also allows for a high level of generalization. The im-
age subgoal generator, pre-trained on internet data, performs well in environments with distribution
shifts—precisely the kind of environments we aim to improve autonomously. Finally, to determine
whether the robot successfully achieved the commanded language instructions during autonomous
rollouts, we again use a VLM to label each trajectory, focusing policy improvement on semantically
meaningful tasks.

As the main contribution of our work, we propose Scaled Collection for Autonomous Improvement
(SOAR), a general-purpose robotic system for autonomous improvement of multi-task language-
conditioned policies in varied real-world environments. While our system makes use of a number of

components developed in prior work, it combines them in a novel way to enable self-improvement
of general-purpose robotic policies, and to our knowledge is the first to demonstrate a self-improving
robotic policy that does not rely on human hand-specified downstream tasks or fine-tuning on ad-
ditional demonstrations. We deployed SOAR on a fleet of five WidowX robot arms in various
real-world scenes experiencing distribution shifts. During the few weeks of SOAR’s deployment,
we collected over 30,000 trajectories (totaling 3M transitions) of autonomous data. We demon-
strate that SOAR can effectively utilize this data to autonomously improve policy performance by
2x across 10 different scenes.

2 Related Work

Instruction following robot policies. Language is a natural interface for instructing robots and
there is significant prior work on training language-conditioned policies [26, 27, 28, 29, 30,
31], transferring language understanding from pre-trained Large Language Models (LLMs) and
VLMs [32, 33, 34, 35, 36, 37, 38, 39, 40, 41], and using language to decompose long-horizon
tasks [42, 43, 44, 45, 46]. Our focus is on improving a language-conditioned policy with autonomous
data, by decoupling language from motion skills. We decompose skills into a language-conditioned
subgoal image generator and a goal-conditioned policy. In contrast with directly conditioning ac-
tions on language inputs, we observe that motion skills can be improved in a self-supervised way,
using goal-conditioning as self-supervision [17, 47, 48, 49, 50, 51, 52, 53, 54]: the policy is trained
to reach its hindsight goals [25] and can thus learn from sub-optimal trajectories. We use an image-
editing diffusion model to produce goals based on language, as in the SuSIE method [23], together
with goal-conditioned behavioral cloning (GCBC) to produce a decomposed language-conditioned
policy and use it to autonomously improve instruction-following robot policies.

Autonomous improvement of robot policies. Recently, the most capable robot policies have lever-
aged largely optimal and static demonstration datasets with imitation learning or offline reinforce-
ment learning (RL) [55, 28, 10, 56, 57, 58, 59, 17, 60, 61, 62, 63, 64, 65]. Our work focuses on
the autonomous improvement problem: we use prior knowledge of high-level semantics and low-
level skills obtained from large-scale pre-training to collect data on a fleet of robots and improve
instruction-following policies. Some prior work has explored training policies from scratch purely
from autonomously collected data with self-supervised learning [66, 65, 67, 68, 69] or online RL [70,
16, 71, 72, 73]. Others have attempted to improve pre-trained robot policies with autonomous data
using either conditional behavior cloning [61, 74] or RL [75, 19, 58, 16, 71, 76, 77, 78]. However,
these methods are limited in that they do not improve language-conditioned skills and they require
additional human demonstrations to bootstrap self-improvement. For instance, Bousmalis et al. [61]
autonomously improve a goal-conditioned policy rather than improving language-conditioned skills,
and they rely on 500 to 1000 human demonstrations of each improvement task when fine-tuning the
policy, training task-specific reward functions, and obtaining goal images for commanding the pol-
icy. Yang et al. [19] autonomously improve language-conditioned skills, however they similarly use
human demonstrations of the improvement tasks for pre-training the policy and fine-tuning task-
specific VLM-based reward functions. Kalashnikov et al. [16] and Kumar et al. [58] improve the
performance of task-index conditioned rather than language-conditioned skills, and they rely on
hand-collected success examples to train a reward classifier. In comparison, our system is designed
to improve language-conditioned skills in an entirely self-supervised manner. We use a frozen VLM
to both choose language-conditioned skills to improve and filter the self-collected data for successes.

Autonomous data collection and task proposals. To improve an instruction-following policy, we
use a vision-language model (VLM) trained on Internet-scale data to propose semantically mean-
ingful tasks given the current state of the robot’s environment. The use of Internet-scale pre-trained
models to propose tasks has also been explored by Xian et al. [79] and Wang et al. [80] in the context
of simulated environments. Most similar to our setup is AutoRT [81], which automatically proposed
tasks using a VLM and LLM: the VLM generates text descriptions of the scene, and the LLM uses
the descriptions to generate language tasks. However, AutoRT only focuses on proposing tasks for
data collection, without provisions for automatic success detection, goals, or other components nec-
essarily for improvement of robotic policies. In contrast, our work describes a complete autonomous
self-improvement cycle, where the proposed tasks are used to automatically collect data, continually
improving a language-conditioned policy.

Continuous
Improvement

7% Robot 1

#

“Z Robot 2 7% Robot 5

Goal-conditioned |, [#Image-Editing CLar:jg:aged @
Policy) Diffusion Model °"S:(;I‘I’"e Success Detector

Model

ZAPN a’/ #F:Vision Language]
Task Proposals
SOAR

[ﬁ*? Vision Language]

Model

Pretraining ~ Autonomous
Dataset Dataset

Autonomous Data Collection

Figure 2: Overview of the SOAR autonomous improvement pipeline: First, we equip the robot with a set of
basic skill by pre-training. Then, we deploy the pre-trained policy on a fleet of five robots to autonomously col-
lect data, with a VLM proposing viable language tasks to practice. Specifically, the language task is turned into
a subgoal image via an pre-trained image-editing diffusion model, and the robot executes a goal-conditioned
policy. Finally, we use a VLM to label success information of the collected trajectories, and train the policy
using this data, resulting in improvement.

3 SOAR

In this section, we present our general-purpose system for autonomously enhancing multi-task
instruction-following policies in real-world environments. SOAR comprises four components that
collectively facilitate this autonomous improvement. Fig. 2 illustrates our semantics-aware au-
tonomous improvement pipeline: after training the robot on a pre-training dataset to equip it with a
set of basic skills, the pre-trained policy is deployed across a fleet of robots to gather data using au-
tomated task proposals and success detection. Finally, we retrain the policy with the autonomously
collected data to achieve further improvement.

Component 1: VLM task proposals. When deploying language-based instruction-following
policies in real-world scenes, it is crucial for the collected autonomous experience to involve mean-
ingful interactions that manipulate the world. This ensures that the policy improves at tasks that
humans find valuable. In theory, this can be achieved by querying a capable VLM for task proposals,
which takes in an image of the environment and outputs a language task. However, we find that our
chosen VLM, CogVLM [22], is not yet sophisticated enough to fully reason about the intersection
between the environment’s affordances and the robot’s physical capabilities (e.g., it might suggest
opening a microwave door that is out of the robot’s reach). Nonetheless, if we pre-specify a list of
tasks the robot can physically perform, CogVLM is adept at reasoning about spatial relationships
and environment affordances. More detailed information can be found in Apendix B.1.1.

When the VLM finds that multiple plausible tasks can be meaningfully commanded, we pick the
task that maximizes diversity of task execution. Formally, given a set of candidate task commands
T ={m,72,..., 71}, we formulate the problem of picking which task to command as a multi-armed
bandit problem where the goal of the task-selection agent is to minimize its uncertainty of each task’s
success rates. We can use the Upper Confidence Bound (UCB) algorithm [82] for this, picking the
task according to

log(N +1
Tcommand = argmax L—"_)7 (1)
Ti €T teasible ”(Ti) +1
and Tteasible = {7 : VLM (s, 7;) = feasible}. 2)

Tteasible 18 the subset of tasks from T' = {7y, 75, ..., 7% } that the VLM considers feasible to accom-
plish in state s. n(7;) is the number of times task ¢ has been attempted during data collection, and
N =3 et n(7i) is the total number of all feasible tasks attempted.

4

Execution Trajectory

Reaching subgoal 1 Reaching subgoal 2 Reaching subgoal 3
- - . - - - . .

What tasks could
we do here?

Goal-conditioned Goal-conditioned Goal-conditioned -
VLM
% VLM @Subgoa\ 2 Subgoal 3]

“Take banana out “Take banana out Success label
« of silver pot” of silver pot”
Tal:e llaananal?ul 3 Image-Editing P % Image-Editing —>p ¥ Image-Editing

of silver po Diffusion Model Diffusion Model Diffusion Model

Figure 3: Trajectory rollout with decomposed language-conditioned policy: The VLM proposes a meaningful
language task given the observation of the environment, and this language instruction is used to generate a
subgoal image via an image-editing diffusion model. The goal-conditioned policy then tries to achieve a se-
quence of 5 subgoals (only 3 visualized here) each with 20 steps. Finally, the VLM determines if the language
instruction has been achieved at the end of a trajectory.

Component 2: language-conditioned control as goal-conditioned control. In the context of
autonomous improvement, there are two key desiderata any choice of policy must satisfy. Firstly,
the policy must exhibit a high-degree of generalizability to handle out-of-distribution environments.
Secondly, the improvement algorithm for the policy should be self-supervised, so it can leverage au-
tonomous data without human supervision. Language-conditioned behavior cloning (LCBC) does
not meet these criteria [55]: LCBC policies suffer from grounding problems when queried with vo-
cabulary outside the training data [12], and it is hard for a LCBC policy to improve from autonomous
robot data without near-perfect language annotations.

We propose instantiating our language-instruction following policy as a foundation model wrap-
per around a goal-conditioned (GCBC) policy, the foundation model being SuSIE [23], a text-
conditioned image-editing diffusion model trained on Internet-scale data and fine-tuned on robotic
data. Rather than directly being used for conditioning the policy, the language instruction along with
the current observation is sent to SuSIE to generate a subgoal image making progress towards the
language task, and this subgoal image is then fed into the GCBC policy. This formulation satisfies
our two desiderata. First, it improves the quality of autonomous data collection due to SuSIE’s Inter-
net pre-training, with Section 4 demonstrating that generalization capabilities are a crucial advantage
of this modular language-conditioned policy. Second, it simplifies learning from autonomous data,
as the goal-conditioned training objective allows for more supervision to be extracted from unlabeled
and sub-optimal data, which is experimentally validated in Section 4.

Inference with this modular instruction-following policy is depicted in Figure 3. Given the VLM
supplied language instruction and the current observation of the robot’s environment, SuSIE gener-
ates an image subgoal corresponding to the language instruction. This subgoal, along with the cur-
rent observation of the environment, is fed to the goal-conditioned policy for a fixed 20 timesteps.
After this, SuSIE is queried again for the next subgoal. The stochastic nature of the diffusion sam-
pling process means that SuSIE-generated subgoals may vary for the same image observation and
language task. Empirically, this variability is beneficial for exploration, as subtly modifying the
goal image is akin to adding exploration noise to policy rollouts, with the advantage that the noise
is goal-directed. The training procedure of this policy is described in component 4.

Component 3: VLM success detection. To enhance the robot’s ability to follow instructions, we
need a method to identify the parts of the autonomous data where the robot’s actions align with
the commanded semantic task. Since successful trajectories are more likely to contain meaningful
interaction data, we use the VLM to automatically detect success. The VLM receives the language
task and the final frame of a trajectory, then classifies whether the trajectory successfully completed
the task or not. In SOAR’s improvement process, we only re-train on the successful trajectories
(according to the VLM) to focus on improving semantically relevant skills. As a baseline we also
tested using these success-labeled trajectories to improve a LCBC policy (see Section 4), but found
it much less efficient.

Component 4: policy improvement. The final component of SOAR is a method for self-
supervised policy improvement. The goal is to use the autonomous data to self-improve over the

Figure 4: Across the five unique robot workspaces for the five WidowX robots, there are 10 different scenes,
each scene corresponding to a distinct set of manipulatable objects available, and each scene supporting many
different tasks that can be executed. 8 scenes support pick-and-place tasks, 1 supports drawer opening and
closing, and 1 supports deformable cloth manipulation.

pre-trained policy that is used for data collection. Recall that the language-conditioned policy in
SOAR is decomposed into a high-level language-to-goal generator and a low-level goal-conditioned
policy. Since the low-level control policy is decoupled from language understanding, policy im-
provement amounts to improving the low-level goal-conditioned policy. As is common in goal-
conditioned policy learning, we can learn from hindsight experience [25]: we relabel a portion of
training goals as future states actually achieved in the same trajectory during data collection. This
objective is particularly appealing in the context of an autonomous improvement setup because goal-
conditioned learning from hindsight relabeled goals is a source of self-supervision. We instantiate
improvement of the goal-conditioned policy as goal-conditioned behavior cloning (GCBC) on suc-
cessful autonomous trajectories, where the success determination was made by the VLM. While
GCBC is a principled method to learn from failure data as well [83], filtering with the VLM allows
us to focus on improving goal-reaching tasks relevant for the semantic skills we care about.

The subgoal diffusion model SuSIE is not updated during data collection and policy-improvement,
nor is any component directly tied to language understanding (the VLM for task proposal and suc-
cess detection is also frozen). This modular formulation of our language-conditioned policy allows
self-supervised learning objectives to be aligned with semantic instruction-following improvement,
a property unattainable by methods that directly condition on language, such as LCBC.

4 Experimental Results

Our experiments aim to evaluate the end-to-end improvement attained by our method, compare our
approach to alternative methods, and evaluate the individual design decisions. Specifically, we aim
to answer the following research questions:

1. Can SOAR effectively produce autonomous improvement over an initial pre-trained policy?

2. Does decomposing instruction-following skills into a language-conditioned subgoal gen-
eration and image goal-conditioned control bring about better policy improvement than
directly conditioning the low-level policy on language?

3. Can SOAR autonomously propose meaningful tasks and collect useful robot data?

4. Is SOAR better at collecting useful interactions than a direct language-conditioned policy?

Robot and task setup. We use five WidowX 250 6-DoF robot arms in our experiments. Since we
conduct long-duration autonomous data collection experiments, we installed plexiglass barriers to
prevent objects from falling off the table during overnight collection. More details in Appendix C.

Pre-training and data collection. Before deploying SOAR, we obtain a policy that has basic
manipulation skills by pre-training on BridgeData v2 [12]. We train a GCBC policy characterized by
a Gaussian distribution, using a ResNet-34 as the image encoder. We use hindsight goal relabeling,
and the goal images are sampled randomly from 0 to 24 future steps. Then, SOAR is deployed on
10 different scenes to autonomously collect data for ~ 120 robot hours. Note that SOAR is able

Mushroom + blue
bowl

Green spoon +
silver pot

Green block +
wooden bowl!

Eggplant +
wooden bow!

Drawer

pre-trained

0.5 0.5 0.4 0.3 05 improved
0.2 0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0 0.0
Putin Take out Putin Take out Putin Take out Putin Take out Open Close
Breen marker + Carrot + red Carrot + eggplant Pink spoon + Average
blue block + object + green + lemon + blue green veggie + 0.6 0.57
wooden bow! plate tray silver pot Cloth 0.4
0.28
07 08 09 0.4 0.8 03
05 0.7 0.3 0.6 02
0.4 0.4 0.5 0.2 0.4 0.0
02 02 0.1 02 AT &)
00 ——————— 00 0.0 0.0 0.0
N DN DD Fold Unfold
&7,«\ {\@«\ & @ s ﬁ@ #o& S & ooo\ ooo\ ni
Bl N &Q &\(‘ & & »(\\0"’ &\o"’ &
&S ‘2\)& \3‘0 < &'B‘g o° (é\ > 2° Q\\Q &
N @ «& o‘@eﬁ < < < &

o
Figurels: Autonomous improvement results in each scene: for all 10 scenes, training on scene-specific au-
tonomous data helps to significantly improve performance over the pre-trained policy. On average, the pre-
trained policy has a success rate of 28% and the improved policy has success rate 57%.

to continuously collect data without scene resets: when the policy fails to complete some VLM-
proposed language task, no reset is needed to return the scene to the original condition. Instead, we
use the VLM to propose a new meaningful task given the new state of the scene and objects. For
the policy improvement experiments, we collected data in 10 scenes spread across 5 different table
settings. All our scenes involves substantial distribution shifts from the pre-training dataset (Details
in Appendix C) to test the generalization capabilities of SOAR to improve in new environments.

Autonomous improvement with SOAR. After data collection, we update the policy by co-
training on both the pre-training dataset (1.87M transitions) and the autonomously collected dataset
(416K transitions). In Figure 5, we evaluate the decomposed language conditioned policy (GCBC
+ SuSIE) on the manipulation tasks from each scene, where the improved policy is co-trained on
autonomous data collected only from that scene. We use the same architecture for the improvement
policy as the pre-trained policy. For each scene, we evaluate 2 — 4 skills. Across all 10 scenes,
training on each per-scene autonomous dataset significantly improves the policy performance over
the base pre-training dataset. On average, the success rate more than doubled the pre-training perfor-
mance, jumping from 28% to 57%. Qualitatively, we observe that the improved policy is much better
at manipulating objects in hard-to-grasp positions and unseen objects in the pre-training dataset.

We also trained a generalist policy using autonomous data from all 10 of the collection scenes, also
with co-training on the pre-training dataset. We evaluate this generalist policy on three different
scenes in Table 1. While in some scenes the generalist policy achieves the same or slightly lower
success rates, on average it achieves better performance (65%) than the improved GCBC policy that
is trained only on data from that scene (58%). This shows that training on more autonomous data
using SOAR can bring about better improvement.

Comparison with language-conditioned behavior cloning. Is decomposing language skills to
language-conditioned subgoal generation and goal-conditioned control better at self-improvement
than learning a direct language conditioned policy from the autonomous data? To test this, we com-
pare against swapping the policy in SOAR with language-conditioned behavioral cloning (LCBC).
We train the LCBC policy on the same autonomous data as the SOAR policy, with the language
labels for LCBC coming from the VLM task proposer, and report the improvement performance on
manipulation skills from six tasks across three different scenes in Table 1. We compare the two ap-
proaches trained with three different data types: (1) only pre-training data, (2) pre-training data and
scene-specific autonomous data, and (3) pre-training data and all autonomous data across 10 scenes.
Table 1 shows that for all six tasks redthat are unseen during pre-training, the pre-trained LCBC
policy is mostly unable to achieve the task because it suffers from grounding the unseen language
command to unseen objects. When trained on +scene autonomous data, LCBC policies are able
to improve because the autonomous data provides such grounding. However, we find that SOAR
improves much more effectively than LCBC for both autonomous dataset types. Furthermore, when
trained on more autonomous data (+all), SOAR is able to improve better while LCBC performed
worse. We attribute SOAR’s success to using goal-conditioned policy learning for improvement: it
provides a dense self-supervision and is robust to sub-optimal data. For instance, if a robot failed
to “open the drawer” but the VLM success detector incorrectly marked the attempt as successful,
LCBC will use this failed attempt to train the “open the drawer” policy, which ultimately degrades

GCBC + SuSIE LCBC

Tasks (scene #)

pre-trained +scene +all | pre-trained +scene +all
Put green block in (#1) 0.4 0.8 0.7 0.0 0.5 0.3
Take green block out (#1) 0.2 0.7 0.6 0.0 0.4 0.3
Put carrot in (#8) 0.4 0.7 0.6 0.0 0.4 0.3
Take carrot out (#8) 0.4 0.6 0.7 0.0 0.1 0.3
Put spoon in (#9) 0.3 0.4 0.7 0.0 0.5 0.5
Take spoon out (#9) 0.3 03 0.6 0.0 0.0 0.0
Average 0.33 0.58 0.65 0.0 0.32 0.28

Table 1: The decomposed language-conditioned policy in SOAR is better at autonomous improvment than
LCBC. Compared to LCBC, GCBC+SuSIE is much better at utilizing autonomous data for improvement, with
training on all the autonomous data showing positive transfer.

its performance. SOAR offers a more robust solution: it does not use the VLM success/language
labels and improves a goal-conditioned policy through hindsight relabeling.

Comparison with relevant methods To evaluate the performance of SOAR, we compare it
against two relevant methods: DIAL [84] and RoboFuME [19]. DIAL improves a language-
conditioned policy by labeling an unlabeled human expert demonstration dataset with a VLM,
though it relies on expert demonstration data to finetune the VLM rather than autonomous data.
RoboFuME employs online RL to improve language skills from autonomous data but requires ad-
ditional expert demonstrations to fine-tune the policy before improvement. Implementation details
of both methods can be found in Appendix F. Even though these two methods both require expert
demonstration data, we re-purpose them to our setting by replacing the expert data with the au-
tonomous data SOAR collected. We test all methods on two tasks in scene 1. Our results, presented
in Table 2, show that SOAR significantly outperforms both baselines. The baselines encountered
challenges when learning from autonomously collected suboptimal data. We hypothesize that Robo-
FuME may have struggled due to difficulties in learning a robust language-conditioned Q function on
a large pre-training dataset, while DIAL’s performance is constrained because it cannot effectively
utilize sub-optimal autonomous data. More details and a discussion are provided in Appendix F.

Tasks SOAR | RoboFuME | DIAL
Put green block in (#1) 0.8 0 0
Take green block out (#1) 0.7 0 0

Table 2: SOAR significantly outperforms both RoboFuME and DIAL, which heavily relies on expert demon-
strations and were not able to improve with autonomous data.

Dataset details. Besides evaluating autonomous improvement with our system, a secondary con-
tribution of our work is to provide a publicly available dataset of autonomously gathered robotic
experience that can be used for future research on self-improvement. This dataset, SOAR-Data,
consists partly of data collected during the autonomous improvement experiments with our GCBC
policy on the 10 scenes in Figure 4, and also includes autonomous data collected by SOAR on vari-
ous other scenes. In total, SOAR-Data has more than 30, 582 trajectories (3M transitions) collected
with 53 different sets of objects across 5 different table top setups. Each trajectory in SOAR-Data
comes with language annotations, 5 commanded subgoal images generated by SuSIE, and a task
success label predicted by the VLM. More details can be found in Apendix E. The mixed quality
nature of this dataset makes it potentially a good resource for offline reinforcement learning research.

5 Conclusion

In this paper, we propose SOAR, a robotic system capable of fully autonomous large scale data
collection in the real world, which can use that data to improve a multitask instruction-following
policy via self-supervision to 2x the pre-training performance. We find that language-conditioned
skills can be effectively decomposed into a language-conditioned subgoal image generator and an
image-goal conditioned policy, and such decomposition can make use of Internet-scale pre-training
for semantic understanding and improve a low-level control policy with unlabeled autonomous data.
We release the large autonomous dataset collected by SOAR, and in doing so demonstrate that
autonomous data collection is a viable way of scaling robotic improvement, potentially even beyond
the limits of human teleoperation.

Acknowledgments

We would like to thank Kyle Stachowicz, Aviral Kumar, Seohong Park, Kevin Black, and Mitsuhiko
Nakamoto for valuable advice and discussions. This research is partly supported by NSF FRR IIS-
2150826, as well as ONR N00014-20-1-2383, N00014-21-1-2838, and N00014-22-1-2773. We
thank the Google TPU Research Cloud (TRC) program for their donation of TPU computing re-
sources. Pranav is supported by the NSF Graduate Research Fellowship.

References

[1] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730-27744, 2022.

[2] OpenAl. Gpt-4 technical report.

[3] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa,
P. Bailey, Z. Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

[4] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. Van Kleef, S. Auer, et al. Dbpedia—a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic web, 6(2):167-195, 2015.

[5] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748-8763. PMLR, 2021.

[6] A.Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

[7] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-
thesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684—10695, 2022.

[8] T. Weyand, A. Araujo, B. Cao, and J. Sim. Google landmarks dataset v2-a large-scale bench-
mark for instance-level recognition and retrieval. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2575-2584, 2020.

[9] B. Wu, W. Chen, Y. Fan, Y. Zhang, J. Hou, J. Liu, and T. Zhang. Tencent ml-images: A
large-scale multi-label image database for visual representation learning. IEEE Access, 7:
172683-172693, 2019.

[10] O. X.-E. Collaboration, A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan,
A. Khazatsky, A. Rai, A. Singh, A. Brohan, A. Raffin, A. Wahid, B. Burgess-Limerick, B. Kim,
B. Schoélkopf, B. Ichter, C. Lu, C. Xu, C. Finn, C. Xu, C. Chi, C. Huang, C. Chan, C. Pan, C. Fu,
C. Devin, D. Driess, D. Pathak, D. Shah, D. Biichler, D. Kalashnikov, D. Sadigh, E. Johns,
F. Ceola, F. Xia, F. Stulp, G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Schiavi, H. Su,
H.-S. Fang, H. Shi, H. B. Amor, H. I. Christensen, H. Furuta, H. Walke, H. Fang, I. Mordatch,
I. Radosavovic, I. Leal, J. Liang, J. Kim, J. Schneider, J. Hsu, J. Bohg, J. Bingham, J. Wu,
J. Wu, J. Luo, J. Gu, J. Tan, J. Oh, J. Malik, J. Tompson, J. Yang, J. J. Lim, J. Silvério,
J. Han, K. Rao, K. Pertsch, K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne,
K. Oslund, K. Kawaharazuka, K. Zhang, K. Majd, K. Rana, K. Srinivasan, L. Y. Chen, L. Pinto,
L. Tan, L. Ott, L. Lee, M. Tomizuka, M. Du, M. Ahn, M. Zhang, M. Ding, M. K. Srirama,
M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N. Suenderhauf, N. D.
Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer, P. R. Sanketi, P. Wohlhart, P. Xu, P. Sermanet,
P. Sundaresan, Q. Vuong, R. Rafailov, R. Tian, R. Doshi, R. Martin-Martin, R. Mendonca,
R. Shah, R. Hoque, R. Julian, S. Bustamante, S. Kirmani, S. Levine, S. Moore, S. Bahl, S. Dass,
S. Song, S. Xu, S. Haldar, S. Adebola, S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian,
S. Dasari, S. Belkhale, T. Osa, T. Harada, T. Matsushima, T. Xiao, T. Yu, T. Ding, T. Davchev,
T. Z. Zhao, T. Armstrong, T. Darrell, V. Jain, V. Vanhoucke, W. Zhan, W. Zhou, W. Burgard,
X. Chen, X. Wang, X. Zhu, X. Li, Y. Lu, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Xu, Y. Wang,
Y. Bisk, Y. Cho, Y. Lee, Y. Cui, Y. hua Wu, Y. Tang, Y. Zhu, Y. Li, Y. Iwasawa, Y. Matsuo,

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

Z. Xu, and Z. J. Cui. Open X-Embodiment: Robotic learning datasets and RT-X models.
https://arxiv.org/abs/2310.08864, 2023.

F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
arXiv preprint arXiv:2109.13396, 2021.

H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-Estruch, A. W. He, V. My-
ers, M. J. Kim, M. Du, et al. Bridgedata v2: A dataset for robot learning at scale. In Conference
on Robot Learning, pages 1723-1736. PMLR, 2023.

N. Hirose, A. Sadeghian, M. Vazquez, P. Goebel, and S. Savarese. Gonet: A semi-supervised
deep learning approach for traversability estimation. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 3044-3051. IEEE, 2018.

A. Mandlekar, J. Booher, M. Spero, A. Tung, A. Gupta, Y. Zhu, A. Garg, S. Savarese, and
L. Fei-Fei. Scaling robot supervision to hundreds of hours with roboturk: Robotic manipulation
dataset through human reasoning and dexterity. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1048-1055. IEEE, 2019.

A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,
M. K. Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation
dataset. arXiv preprint arXiv:2403.12945, 2024.

D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,
R. Julian, C. Finn, et al. Actionable models: Unsupervised offline reinforcement learning of
robotic skills. arXiv preprint arXiv:2104.07749, 2021.

A. Sharma, A. M. Ahmed, R. Ahmad, and C. Finn. Self-improving robots: End-to-end au-
tonomous visuomotor reinforcement learning. arXiv preprint arXiv:2303.01488, 2023.

J. Yang, M. S. Mark, B. Vu, A. Sharma, J. Bohg, and C. Finn. Robot fine-tuning made easy:
Pre-training rewards and policies for autonomous real-world reinforcement learning. arXiv
preprint arXiv:2310.15145, 2023.

A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-
free reinforcement learning via multi-task learning: Learning dexterous manipulation behav-
iors without human intervention. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6664-6671. IEEE, 2021.

H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The
ingredients of real-world robotic reinforcement learning. arXiv preprint arXiv:2004.12570,
2020.

W. Wang, Q. Lv, W. Yu, W. Hong, J. Qi, Y. Wang, J. Ji, Z. Yang, L. Zhao, X. Song, et al.
Cogvlm: Visual expert for pretrained language models. arXiv preprint arXiv:2311.03079,
2023.

K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar, and S. Levine. Zero-
shot robotic manipulation with pretrained image-editing diffusion models. arXiv preprint
arXiv:2310.10639, 2023.

L. P. Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pages 1094-8. Citeseer, 1993.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-
bin, O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural
information processing systems, 30, 2017.

S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-
conditioned imitation learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33:13139-13150, 2020.

10

https://arxiv.org/abs/2310.08864

[27] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

[28] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[29] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned robot
behavior from offline data and crowd-sourced annotation. In Conference on Robot Learning,
pages 1303-1315. PMLR, 2022.

[30] O.Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation
learning over unstructured data. IEEE Robotics and Automation Letters, 7(4):11205-11212,
2022.

[31] P. Ding, H. Zhao, Z. Wang, Z. Wei, S. Lyu, and D. Wang. Quar-vla: Vision-language-action
model for quadruped robots. arXiv preprint arXiv:2312.14457, 2023.

[32] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, 1. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[34] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research, 24(240):1-113, 2023.

[35] F. Liu, K. Fang, P. Abbeel, and S. Levine. Moka: Open-vocabulary robotic manipulation
through mark-based visual prompting. arXiv preprint arXiv:2403.03174, 2024.

[36] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code
as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9493-9500. IEEE, 2023.

[37] O. Mees, J. Borja-Diaz, and W. Burgard. Grounding language with visual affordances over
unstructured data. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), London, UK, 2023.

[38] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973,2023.

[39] T. Kwon, N. Di Palo, and E. Johns. Language models as zero-shot trajectory generators. In
2nd Workshop on Language and Robot Learning: Language as Grounding, 2023.

[40] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar, and D. Sadigh. Physically
grounded vision-language models for robotic manipulation. arXiv preprint arXiv:2309.02561,
2023.

[41] M. Zawalski, W. Chen, K. Pertsch, O. Mees, C. Finn, and S. Levine. Robotic control via
embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

[42] S. Akiyama, R. F. J. Dossa, K. Arulkumaran, S. Sujit, and E. Johns. Open-loop vlm robot
planning: An investigation of fine-tuning and prompt engineering strategies. In First Workshop
on Vision-Language Models for Navigation and Manipulation at ICRA 2024.

[43] S. S. Kannan, V. L. Venkatesh, and B.-C. Min. Smart-1lm: Smart multi-agent robot task plan-
ning using large language models. arXiv preprint arXiv:2309.10062, 2023.

[44] Y. Wu, J. Zhang, N. Hu, L. Tang, G. Qi, J. Shao, J. Ren, and W. Song. Mldt: Multi-level de-
composition for complex long-horizon robotic task planning with open-source large language
model. arXiv preprint arXiv:2403.18760, 2024.

11

[45] O. Mees and W. Burgard. Composing pick-and-place tasks by grounding language. In Pro-
ceedings of the International Symposium on Experimental Robotics (ISER), La Valletta, Malta,
2021.

[46] Y. Ouyang, J. Li, Y. Li, Z. Li, C. Yu, K. Sreenath, and Y. Wu. Long-horizon locomo-
tion and manipulation on a quadrupedal robot with large language models. arXiv preprint
arXiv:2404.05291, 2024.

[47] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard. Latent plans for task ag-
nostic offline reinforcement learning. In Proceedings of the 6th Conference on Robot Learning
(CoRL), 2022.

[48] B. Eysenbach, R. Salakhutdinov, and S. Levine. C-learning: Learning to achieve goals via
recursive classification. arXiv preprint arXiv:2011.08909, 2020.

[49] E. Chane-Sane, C. Schmid, and I. Laptev. Goal-conditioned reinforcement learning with imag-
ined subgoals. In International Conference on Machine Learning, pages 1430-1440. PMLR,
2021.

[50] B. Eysenbach, T. Zhang, S. Levine, and R. R. Salakhutdinov. Contrastive learning as goal-
conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:
35603-35620, 2022.

[51] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learning: Problems and
solutions. arXiv preprint arXiv:2201.08299, 2022.

[52] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning
with imagined goals. Advances in neural information processing systems, 31, 2018.

[53] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering self-
supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

[54] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine. Rapid exploration for open-
world navigation with latent goal models. arXiv preprint arXiv:2104.05859, 2021.

[55] A.Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[56] S.Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022.

[57] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh,
C. Finn, and S. Levine. Octo: An open-source generalist robot policy. In Proceedings of
Robotics: Science and Systems, Delft, Netherlands, 2024.

[58] A. Kumar, A. Singh, F. Ebert, M. Nakamoto, Y. Yang, C. Finn, and S. Levine. Pre-training
for robots: Offline rl enables learning new tasks from a handful of trials. arXiv preprint
arXiv:2210.05178, 2022.

[59] Y. Chebotar, Q. Vuong, K. Hausman, F. Xia, Y. Lu, A. Irpan, A. Kumar, T. Yu, A. Herzog,
K. Pertsch, et al. Q-transformer: Scalable offline reinforcement learning via autoregressive
g-functions. In Conference on Robot Learning, pages 3909-3928. PMLR, 2023.

[60] S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed, R. Jeong, K. Zolna, Y. Ay-
tar, D. Budden, M. Vecerik, et al. Scaling data-driven robotics with reward sketching and batch
reinforcement learning. arXiv preprint arXiv:1909.12200, 2019.

[61] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee, M. Bauza, T. Davchev, Y. Zhou,
A. Gupta, A. Raju, et al. Robocat: A self-improving foundation agent for robotic manipulation.
arXiv preprint arXiv:2306.11706, 2023.

12

[62] E.Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, pages 991-1002. PMLR, 2022.

[63] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill
acquisition. In Conference on Robot Learning, pages 3766-3777. PMLR, 2023.

[64] A. Mandlekar, S. Nasiriany, B. Wen, 1. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox.
Mimicgen: A data generation system for scalable robot learning using human demonstrations.
arXiv preprint arXiv:2310.17596, 2023.

[65] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. The International
Jjournal of robotics research, 37(4-5):421-436, 2018.

[66] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In 2016 IEEE international conference on robotics and automation (ICRA), pages
3406-3413. IEEE, 2016.

[67] F.Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568,
2018.

[68] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. Robonet: Large-scale multi-robot learning. arXiv preprint arXiv:1910.11215, 2019.

[69] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:
Experiential learning of intuitive physics. Advances in neural information processing systems,

29, 2016.

[70] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-
based robotic manipulation. arXiv preprint arXiv:1806.10293, 2018.

[71] T. Lampe, A. Abdolmaleki, S. Bechtle, S. H. Huang, J. T. Springenberg, M. Bloesch, O. Groth,
R. Hafner, T. Hertweck, M. Neunert, et al. Mastering stacking of diverse shapes with large-
scale iterative reinforcement learning on real robots. arXiv preprint arXiv:2312.11374,2023.

[72] J.Luo,Z.Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma, S. Schaal, C. Finn, A. Gupta, and S. Levine.
Serl: A software suite for sample-efficient robotic reinforcement learning. arXiv preprint
arXiv:2401.16013, 2024.

[73] A.S.Chen, H. Nam, S. Nair, and C. Finn. Batch exploration with examples for scalable robotic
reinforcement learning. IEEE Robotics and Automation Letters, 6(3):4401-4408, 2021.

[74] H. Wu, Y. Jing, C. Cheang, G. Chen, J. Xu, X. Li, M. Liu, H. Li, and T. Kong. Unleash-
ing large-scale video generative pre-training for visual robot manipulation. arXiv preprint
arXiv:2312.13139, 2023.

[75] H. R. Walke, J. H. Yang, A. Yu, A. Kumar, J. Orbik, A. Singh, and S. Levine. Don’t start from
scratch: Leveraging prior data to automate robotic reinforcement learning. In Conference on
Robot Learning, pages 1652-1662. PMLR, 2023.

[76] K. Lu, K. T. Ly, W. Hebberd, K. Zhou, I. Havoutis, and A. Markham. Learning generalizable
manipulation policy with adapter-based parameter fine-tuning.

[77] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference
on Robotics and Automation (ICRA), pages 1593-1599. IEEE, 2022.

[78] Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog, T. Xiao, A. Irpan, M. Khansari,
D. Kalashnikov, et al. Aw-opt: Learning robotic skills with imitation andreinforcement at
scale. In Conference on Robot Learning, pages 1078-1088. PMLR, 2022.

13

[79] Z. Xian, T. Gervet, Z. Xu, Y.-L. Qiao, and T.-H. Wang. Towards a foundation model for
generalist robots: Diverse skill learning at scale via automated task and scene generation.
arXiv preprint arXiv:2305.10455, 2023.

[80] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandku-
mar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023.

[81] M. Ahn, D. Dwibedi, C. Finn, M. G. Arenas, K. Gopalakrishnan, K. Hausman, B. Ichter,
A. Irpan, N. Joshi, R. Julian, S. Kirmani, I. Leal, E. Lee, S. Levine, Y. Lu, S. Maddineni,
K. Rao, D. Sadigh, P. Sanketi, P. Sermanet, Q. Vuong, S. Welker, F. Xia, T. Xiao, P. Xu, S. Xu,
and Z. Xu. Autort: Embodied foundation models for large scale orchestration of robotic agents,
2024.

[82] A. Garivier and E. Moulines. On upper-confidence bound policies for switching bandit prob-
lems. In International conference on algorithmic learning theory, pages 174—188. Springer,
2011.

[83] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysenbach, and S. Levine. Learning to
reach goals via iterated supervised learning. arXiv preprint arXiv:1912.06088, 2019.

[84] T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan, K. Hausman, S. Levine, and J. Tompson.
Robotic skill acquisition via instruction augmentation with vision-language models. arXiv
preprint arXiv:2211.11736, 2022.

[85] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. Vqa: Visual
question answering. In Proceedings of the IEEE international conference on computer vision,
pages 2425-2433, 2015.

[86] K. Marino, M. Rastegari, A. Farhadi, and R. Mottaghi. Ok-vqa: A visual question answer-
ing benchmark requiring external knowledge. In Proceedings of the IEEE/cvf conference on
computer vision and pattern recognition, pages 3195-3204, 2019.

[87] A. Singh, V. Natarajan, M. Shah, Y. Jiang, X. Chen, D. Batra, D. Parikh, and M. Rohrbach.
Towards vqa models that can read. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 8317-8326, 2019.

[88] A. Mishra, S. Shekhar, A. K. Singh, and A. Chakraborty. Ocr-vqa: Visual question answer-
ing by reading text in images. In 2019 international conference on document analysis and
recognition (ICDAR), pages 947-952. IEEE, 2019.

[89] P.Lu, S. Mishra, T. Xia, L. Qiu, K.-W. Chang, S.-C. Zhu, O. Tafjord, P. Clark, and A. Kalyan.
Learn to explain: Multimodal reasoning via thought chains for science question answering.
Advances in Neural Information Processing Systems, 35:2507-2521, 2022.

[90] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778,
2016.

[91] S.Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448—456. pmlr,
2015.

[92] Y. Wu and K. He. Group normalization. In Proceedings of the European conference on com-
puter vision (ECCV), pages 3—19, 2018.

[93] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[94] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[95] H.Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar. Roboagent: Towards
sample efficient robot manipulation with semantic augmentations and action chunking, 2023.

14

A Tllustrations of SuSIE-Generated Sub-goals

Observations

Generated Goals

Observations

Generated Goals

Observations

Generated Goals

Observations

Generated Goals

Observations

Generated Goals

Observations -
- A
Generated Goals
X A

Instruction: put pink spoon into brown bowl

Figure 6: SuSIE generated subgoals in cluttered scenes. The observations and subgoals are collected by rolling
out the SOAR policy for 100 timesteps, with a new subgoal generated every 20 timesteps (totaling 5 generated
subgoals per trajectory). The subgoals are highlighted in yellow.

Here we provide some visual examples of the image sub-goals generated by the image-editing diffu-
sion model SuSIE [23]. We show SuSIE goals in especially cluttered scenes to show its generation
capabilities. All illustrations in Figure 6 is collected by rolling out the SOAR policy with the respec-
tive language instructions, and collect the five subgoals that are 20 steps apart. We find that overall
the SuSIE generated goals are accurate and good for low-level control; we did observe hallucination
at times, but did not find it to impact SOAR’s ability to collect meaningful data.

15

B Implementation Details

B.1 VLM Task Proposals & Success Detection
B.1.1 Task Proposals

The task proposal problem can be defined formally as a mapping from the space of images of the
robot’s environment [to the space of language tasks 7. So as to account for the current capabilities
of open-source VLMs and the limitation on tasks that can actually be physically completed by the
robot, we strict T' to be a discrete set of tasks for each environment: T = {7, 72, ..., 7‘T|}. In
our setup, task proposal amounts to determining if the language task has succeeded across 1T": we
determine the success of all tasks in 7" and use the non-successful tasks as the set of feasible tasks.

We leverage CogVLM [22], an open-source VLM, for both task proposals and success detection.
Similar to many open-source VLMs, CogVLM has shown strong performance on popular image-
understanding benchmarks, particularly Visual Question Answering (VQA) benchmarks [85, 86, 87,
88, 89]. We exploit the model’s proficiency in VQA tasks by reframing the problem of task proposal
into a VQA question. In other words, we can translate each language task into a question about the
robot workspace and a boolean answer that indicates whether the task is feasible. Table 3 shows
some examples of how the feasibility of a language task can be formulated as a VQA-style pair:

| Language Task T | VQA Question-Answer Pair |
Original: move the orange crayon from | VQA-style: Is the orange crayon currently
the blue plate to the table on the blue plate?
Answer that implies task is feasible:
True
Original: put the orange crayon on the | VQA-style: Is the orange crayon on top of
cloth the cloth?

Answer that implies task is feasible:

False
Original: move the red object from the | VQA-style: Is the red object on the blue
blue plate to the table plate?

Answer that implies task is feasible:
True

Table 3: Task Proposals to VQA

This translation from language task to VQA prompt can be achieved automatically with VLM and
LLMs. First, we few-shot prompt an LLM (GPT-4) to convert the language task strings from T'
into a VQA-style question and answer pair. The specific prompts we use for the LLM is released
along with our code release. Then, we feed the VQA question to CogVLM, alongside the initial
image observation of the robot workspace before the task is attempted. Since the VLM returns a
description of the workspace along with the answer, we decode the VLM reponse with an LLM
(GPT-4) into a single boolean variable. This boolean varaible indicates the VLM’s understanding
of the VQA question in the robot workspace. Finally, task feasibility is determined by matching the
boolean variable with the VQA answer that implies task feasibility, which is illustrated on the right
column of Table 3. This process constructs the set of feasible tasks Tfeasinie & 7', after which the
upper-confidence bound ranking procedure described in Section 3 is used to select a task.

To further aid understanding, we provide a complete example of the whole process in Table 4, which
shows how the task “put the green block into the brown bowl” is deemed feasible by the VLM.

16

Language Task Put the green block into the brown bowl.

Workspace initial view k

VQA Pair Question: k
Is the green block in the brown bowl?

Answer that implies task is feasible:

False

VLM Output No, the green block is placed outside the
bowl, on the edge of the transparent plat-
form.

LLM Decoded Output False

Task feasibility Feasible

Table 4: Full example of how the VLM determines the feasibility of one task.

B.1.2 Success Detection

We use the same framework as in task proposals to detect whether tasks have been successfully
completed. Given a task description and the final view of the robot workspace when attempting the
task, we can similarly translate the task into a VQA question and query the VLM for an answer.
Note that often times we can use the same VQA question from task proposal for success detection,
but the VQA answer that impliess success is the opposite of the VQA answer that implies a task is
feasible. This is because the task is only feasible to attempt when it has not already been successfully
completed.

B.2 Goal-conditioned Policy
B.2.1 Model Architecture

Here we outline the neural network architecture and training details of our goal-conditioned policy.
The image of the current observation and desired goal observation are frame stacked along the
channel dimension and fed through a ResNet-34 [90]. Instead of the usual BatchNorm [91] we
utilize GroupNorm [92] in the ResNet. Following the ResNet is a 3-layer MLP which outputs the
mean and standard deviation parameterizing a Gaussian action distribution. Each hidden layer has
dimension 256 and uses Swish [93] activations. In practice we output just the mean (and fix the
standard deviation to be state-independent).

B.2.2 Training

To pre-train a base goal-conditioned policy on BridgeData v2 we use the Adam [94] optimizer with
cosine learning rate decay from an initial 0.0003 to O over the course of 500k gradient steps. We
also use linear learning rate warmup for 2000 gradient steps. We use a L2 weight decay of 0.001
and for Adam use 81 = 0.9 and B2 = 0.98, along with clipping gradients to have maximum norm
of 1.0. Before channel-wise concatenation the current and goal images are processed via a standard
series of image augmentations, including random resized cropping, brightness, contrast, saturation,
and hue augmentations. During pre-training, goal images are sampled uniformly at random from
0 to 24 timesteps into the future, approximately matching the subgoal horizon the image subgoal
generator SUSIE was trained with.

To train an improved GC-policy leveraging the autonomous data, we co-train on the autonomous
data and pre-training dataset (BridgeData v2). For the improved policies trained on individual
scenes, we up-sampled the autonomous data 10x with respect to its proportion to the pre-training
data. (e.g., When the per-scene autonomous data is the size of 3% of the pre-training dataset, we
use a sampling ratio of 30% for the autonomous data and 70% for the pre-training data. For the

17

generalist GC-policy trained on all the autonomous data, the dataset sampling ratio is 80% for the
pre-training data and 20% for autonomous data. Following the approach used in BC-Zero [62],
data from the autonomous data is relabeled with actions being the sum of two consecutive actions
(a} < a¢ + ag+1). This counteracts the tendency of the robot during autonomous data collection
to take lower magnitude actions than those in the pre-training dataset, a behavior that results from
the Gaussian MLP head averaging modes in the state-conditioned action distribution. Like during
the pre-training stage goals are sampled uniformly at random [0, 24] timesteps into the future for the
pre-training data, and for the autonomous data goals are sampled [0, 12] timesteps into the future.
All policies are trained with a batch size of 256.

B.3 Language-conditioned Policy
B.3.1 Model Architecture

The language-conditioned policy architecture is a ResNet-34 with FiLM conditioning. Language in-
structions are first encoded by a frozen MUSE encoder and then passed through two fully connected
layers. The image observation is passed through the ResNet which is conditioned on the language
embedding via FiLM layers applied at the end of every ResNet block. The MLP action head is the
same for the language-conditioned policy as the goal-conditioned policy.

B.3.2 Training

The training procedure of the language-conditioned policy is exactly the same as that for the goal-
conditioned policy.

B.4 Image Subgoal Generation

We leverage SuSIE [23] as our language-conditioned image subgoal generator. During generation
we use classifier-free guidance with a weight of 2.0 for the image and 7.5 for the text prompt. Each
autonomous trajectory consists of 5 subgoal generations with the low-level policy given 20 timesteps
(identical to the horizon SuSIE was trained with) to reach the subgoal.

Generating a sequence of subgoal images one after another offers various practical advantages over
creating a single final goal image. Particularly for autonomous robot deployment, a significant
benefit arises when the robot’s actions alter the environment in a manner unrelated to the intended
goal. In such cases, iterative regeneration can seamlessly integrate these environmental changes into
the generated subgoals, eliminating the necessity for the policy to reset the environment to achieve
the desired goal image.

C Robot Setups & Scene Descriptions

We use delta end-effector control with a frequency of 5 Hz. We use an RGB camera to capture
the top-down third-person view of the robot workspace, and use 256 x 256 images as input to our
control policy.

Table 5 lists the scenes, associated language tasks, and the number of successful autonomous tra-
jectories collected for each of the 10 scenes. In each scene, we decide the objects to be placed in
the scene and specify a list of meaningful language tasks, and SOAR autonomously proposes the
tasks to self-practice. All scenes include distribution shift from the pre-training dataset. These dis-
tribution shifts include the presence of unseen objects, out-of-distribution camera viewpoints, and
unseen robot environments. The inclusion of plexiglass barriers also introduces additional visual
distribution shift, as no plexiglass barriers were included in the pre-training data. Specifically, two
table settings are included in the pre-training dataset [12], while the other three tabletops are unseen.
We use 19 different objects, with 14 of them not seen in the pre-training dataset. Such distribution
shifts tests SOAR’s ability to generalize and improve in new scenes.

18

Scene

Workspace
image

Task Descriptions

Autonomous
Successful
Trajectories

1. put the green block in the wooden bowl

2. remove the green block from inside the wooden bowl
and put it on the table

3. put the red fruit in the wooden bowl

4. remove the red fruit from inside the wooden bowl and
put it on the table

2056

1. put the purple eggplant in the brown bowl
2. remove the purple eggplant from inside the brown bowl
and put it on the table

282

1. move the green marker to the left side

2. move the green marker to the right side

3. put the blue block in the wooden bowl

4. remove the blue block from inside the wooden bowl
and put it on the table

5. put the lemon in the wooden bowl

6. remove the lemon from inside the wooden bowl and
put it on the table

364

1. put the red object on the green plate

2. take the red object out of the green plate and put it on
the table

3. put the carrot on the green plate

4. take the carrot out of the green plate and put it on the
table

206

1. open the drawer
2. close the drawer

221

1. put the mushroom in the blue bowl
2. remove the mushroom from the blue bowl and put it on
the table

46

1. put the mushroom in the metal pot

2. remove the mushroom from the metal pot and put it on
the table

3. move the green spoon to the left

4. move the green spoon to the right

82

1. put the carrot on the blue plate

2. remove the carrot from the blue plate and put it on the
table

3. put the purple eggplant on the blue plate

4. remove the purple eggplant from the blue plate and put
it on the table

5. put the lemon on the blue plate

6. remove the lemon from the blue plate and put it on the
table

700

1. put the green veggie on the blue plate

2. remove the green veggie from the blue plate and put it
on the table

3. put the pink spoon on the blue plate

4. remove the pink spoon from the blue plate and put it
on the table

200

10

1. fold the cloth from right to left
2. unfold the cloth from left to right

523

Table 5: Details on 10 robot scenes

19

D Autonomous data quality.

Figure 3 shows an example of the language tasks proposed by SOAR, and the corresponding gener-
ated goal-image during an autonomous trajectory rollout. To assess the accuracy of the VLM success
detector, we hand-labeled the ground truth success trajectories for a small subset (546 trajectories)
of the autonomous data, and found that the VLM produces correct outcome success classifications
on 78.87% of the episodes, with a precision of 0.63 and a recall of 1.0. This indicates that the VLM
is very good at avoiding false negative labels, but does include a portion of false positive success
labels. Despite such imperfect supervision, the SOAR policy is still able to improve dramatically.
This again highlights the importance of decomposing the language-conditioned policy and using
hindsight goals to learn from sub-optimal data.

Finally, we investigate whether SOAR is better at autonomous data collection compared to a
language-conditioned policy. For a fair comparison, we trained a language-conditioned behavioral
cloning (LCBC) policy on the same pre-training dataset, and task it to collect data autonomously,
following language instructions given by the same VLM. We find that when collecting data for the
mushroom + blue bowl task, which is seen in the pre-training data, LCBC achieves a 13.9% data
collection success rate over the course of two hours of data collection. That is, 13.9% of the col-
lected trajectories are successful according to the VLM. In comparison, data collection with SOAR
(with a GCBC policy) achieves a 35.0% VLM success rate. However, when collecting data on an
unseen table and a set of unseen objects, LCBC generally does not exhibit meaningful behavior,
obtaining 0% success rate over two hours. This is consistent with prior works, which found LCBC
to generalize worse to unseen objects because of grounding issues [23]. In comparison, SOAR can
handle such unseen objects with 26.1% success rate, because the image-editing diffusion model is
trained on Internet-scale data and can generalize to a wider category of objects. In general, LCBC
methods trained only on small robotic datasets suffer from poor language grounding because their
pre-training datasets do not contain very diverse objects.

E SOAR-Data Details

In total, SOAR-Data has 30, 582 trajectories, with 10, 018 successful trajectories and 20, 564 failure
trajectories. Each trajectory is 100 steps long. SOAR-Data is collected with 53 different sets of
objects across 5 different table top setups. Each trajectory in SOAR-Data comes with language
annotations (from a VLM), 5 commanded subgoal images generated by SuSIE during one episode,
and a task success label predicted by the VLM.

Dataset #Traj. #Env. Lang. Failed Traj. Public Collection
RoboNet [68] 162k 10 X X v scripted
MT-Opt [16] 800k 1 X v v scripted, learned
RGB Stacking [71] 400k 5 X N X learned
BridgeData V2 [12] 60.1k 24 v X v human, scripted
RobotSet [95] 98.5k 11 v X v human, scripted
SOAR-Data 30.5k 5 v v v 100% autonomous

Table 6: SOAR-Data is a large and publicly available robotic manipulation dataset that is collected fully au-
tonomously and includes both successful and failed trajectories. It has diverse scenes and all trajectories have
language annotations. Uniquely among datasets containing autonomous data, the SOAR-Data setup is cheap
and replicable, making it an appealing real-world benchmark for learning from sub-optimal data.

F Baselines Implementation and Discussion

For RoboFuME [19], the original implementation uses a small subset of Bridge Data v2 as the pre-
training dataset and a four-layer CNN as the actor-critic encoder. In comparsion, SOAR uses all of
Bridge Data v2 and the pre-training dataset and a ResNet-34 as the vision encoder. To make the com-
parison fair, we use SOAR’s pre-training data and encoder architecture to implement RoboFuME.
We also does not include any human demonstration data for the target task as a fair comparision to
SOAR. However, as we reported in Section 4, RoboFuME was not able to successfully complete

20

the evaluation task after pre-training. Specifically, the learned policy was not able to pick up ob-
jects, and suffered from early grasping and imprecise gripper positioning issues. We tried tuning
the conservatism parameter o in RoboFuME (in the underlying RL algorithm CalQL), but neither
of @ € {1, 5} has non-zero performance. Furthermore, following Kumar et al. [58], we tried mod-
ifying the Q function architecture to include actions as input in every layer of the MLP, but did not
observe a meaningful difference. We also applied the success reward to the last 3 steps of the trajec-
tory, and tried terminal reward of either 10 or 0 with a step penalty of —1, but all variants achieved
0 success rate. We suspect this is because RoboFuME’s Q function is quite brittle and does not
generalize well when trained on the entirety of Bridge Data v2.

For DIAL, we finetuned a CLIP model on language annotated robot data (which we obtained from
the pre-training dataset, Bridge Data V2). Via the CLIP objective we trained the model to map
start and end images of trajectories to a shared representation space with the associated language
instruction. This setup is identical to the setup used in DIAL. With this finetuned CLIP model,
we annotate all of the autonomous data collected by SOAR on scene 1 with synthetic language
annotations, following the methodology from the DIAL paper, and subsequently co-train an LCBC
policy on the pre-training dataset and this synthetically annotated autonomous dataset. This LCBC
policy has the same architecture as the LCBC baseline used in our experiments. Table 2 depicts
the performance of DIAL compared to RoboFuME and SOAR. We found the performance of this
baseline to be quite poor, which we determined was due to (1) the reliance of LCBC on high-
quality language annotations, and (2) the inability of DIAL to produce the necessary high-quality
annotations.

G Failures of Possible Modules in SOAR

First, we address how the failures of the three modules impact SOAR: (1) Occasionally we observed
that the VLM task proposer failed to understand the scene and determines no tasks are viable. We
resolve this by commanding a random task for the system to continue. We observe that this usually
perturbs the scene and sets up the VLM for a successful retry. (2) Occasionally we observe that
SuSIE failed to generate a good subgoal image due to hallucination. However, this usually only
lasts for only a single subgoal image and the next subgoal, which is only 20 steps away, correctly
re-directs the low-level policy. (3) Sometimes the VLM success detector incorrectly classifies the
success, as described in Section 4. However, we like to note that both VLM failures do not impact
SOAR’s ability to self-improve. We use task proposal to guide autonomous data collection towards
semantically meaningful behaviors, and success detection to bias improvement data towards seman-
tically meaningful trajectories. However, SOAR improves with a goal-conditioned objective and
does not use the VLM-generated language labels and success labels. In the case that either VLM
modules fail, the collected robot trajectory is still valid and SOAR can still improve by learning to
reach hindsight goals. In contrast, LCBC relies heavily on the accuracy of both the language label
and success label.

Second, when the WidowX arms experience a motor failure, we immediately detect it, perform a
software reboot, and restart a new trajectory in data collection. Note that over several weeks of
data collection, we have found only the robot hardware failure is common. This is a limitation of
the affordable robot setup. However, because of our software solution, it does not impact the data
quality because all trajectories with robot failures are ignored.

H Limitations

Here we highlight some limitations of our work which suggest promising directions for future re-
search. Although SOAR effectively harnesses autonomous data to improve policies significantly,
further improvement could be achieved by incorporating unsuccessful autonomous trajectories as
training data. Additionally, while our results showcase the capacity of the SOAR framework to ro-
bustify existing skills on unseen environments, an interesting area of future work is acquiring skills
not present in the pre-training dataset through devising strategies to explore and gather data con-
ducive to learning these new skills. Finally it would be of interest to see whether the autonomous
improvement approach presented in this work could scale to dynamic tasks (e.g., throwing, pouring,
wiping) or dextrous tasks (e.g., in-hand re-orientation).

21

	Introduction
	Related Work
	SOAR
	Experimental Results
	Conclusion
	Illustrations of SuSIE-Generated Sub-goals
	Implementation Details
	VLM Task Proposals & Success Detection
	Task Proposals
	Success Detection

	Goal-conditioned Policy
	Model Architecture
	Training

	Language-conditioned Policy
	Model Architecture
	Training

	Image Subgoal Generation

	Robot Setups & Scene Descriptions
	Autonomous data quality.
	SOAR-Data Details
	Baselines Implementation and Discussion
	Failures of Possible Modules in SOAR
	Limitations

